高考物理牛顿运动定律专项训练及答案.doc
牛顿运动定律练习题-选择(附答案)
牛顿运动定律专题训练一、选择题1、如图所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点。
每根杆上都套着一个小滑环(图中未画出),三个滑环分别从a 、b 、c 处由静止释放(初速为0),用t 1、t2、t 3依次表示滑环到达d 所用的时间,则( )A .t 1 < t 2 < t 3B .t 1 > t 2 > t 3C .t 3 > t 1 > t 2D .t 1 = t 2 = t 32、光滑斜轨道P A 、PB 、PC 的端点都在竖直平面内的同一圆周上,物体从P 点由静止开始沿不同轨道下滑,如图,下列说法中正确的是( ) A .物体沿P A 下滑时间最短; B .物体沿PB 下滑时间最短; C .物体沿PC 下滑时间最短;D .物体沿不同轨道下滑所用时间相同。
3、有三个光滑斜轨道1、2、3,它们的倾角依次是600,450和300,这些轨道交于O 点.现有位于同一竖直线上的3个小物体甲、乙、丙,分别沿这3个轨道同时从静止自由下滑,如图,物体滑到O 点的先后顺序是( )A.甲最先,乙稍后,丙最后B.乙最先,然后甲和丙同时到达C.甲、乙、丙同时到达D.乙最先,甲稍后,丙最后4、一间新房即将建成时要封顶,考虑到下雨时落至房顶的雨滴能尽快地流离房顶,要设计好房顶的坡度,设雨滴沿房顶下淌时做无初速度无摩擦的运动,那么图中所示四种情况中符合要求的是( )5、一质量为m 的人站在电梯中,电梯加速上升,加速度大小为g/3,g 为重力加速度。
则人对电梯底部的压力为( )A .mg 31B .2mgC .mgD .mg 346、下列哪个说法是正确的?( )A .体操运动员双手握住单杠吊在空中不动时处于失重状态;B .蹦床运动员在空中上升和下落过程中都处于失重状态;C .举重运动员在举起杠铃后不动的那段时间内处于超重状态;D .游泳运动员仰卧在水面静止不动时处于失重状态。
高考物理牛顿运动定律题20套(带答案)含解析
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。
高中物理牛顿运动定律的应用计算题专题训练含答案
高中物理牛顿运动定律的应用计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共20题)1、处于光滑水平面上的质量为2千克的物体,开始静止,先给它一个向东的6牛顿的力F1,作用2秒后,撤去F1,同时给它一个向南的8牛顿的力,又作用2秒后撤去,求此物体在这4秒内的位移是多少?2、一个质量为m的人站在电梯中,电梯加速上升,加速度大小为g.g为重力加速度,求人对电梯的压力的大小.3、一物块从倾角为θ、长为s的斜面的项端由静止开始下滑,物块与斜面的滑动摩擦系数为μ,求物块滑到斜面底端所需的时间.4、放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.取重力加速度g=10 m/s2.试利用两图线求出物块的质量及物块与地面间的动摩擦因数.5、如图所示,质量为m=1l kg的物块放在水平地面上,在与水平方向成θ=37°角斜向上、大小为50N的拉力F作用下,以大小为v0=l0m/s的速度向右做匀速直线运动,(取当地的重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8)求(1)物块与水平面间的动摩擦因数;(2)若撤去拉力F,物块经过3秒在水平地面上滑行的距离是多少?6、质量为2kg的物体,静止于水平面上,物体与水平面间的动摩擦因数为0.2。
现对物体施加一个大小为6N的水平力,此力作用一段时间后立即改变,改变后的力与原来比较,大小不变、方向相反。
再经过一段时间,物体的速度变为零。
如果这一过程物体的总位移为15m。
求:(1)力改变前后物体加速度的大小a1、a2分别为多少?(2)在这一过程物体的最大速度;(3)全过程的总时间。
(g=10m/s2)7、直升机沿水平方向匀速飞往水源取水灭火,悬挂着m=500kg空箱的悬索与竖直方向的夹角=45°.直升机取水后飞往火场,加速度沿水平方向,大小稳定在a=1.5m/s2时,悬索与竖直方向的夹角=14°.如果空气阻力大小不变,且忽略悬索的质量,试求水箱中水的质量M。
高考物理一轮复习牛顿运动定律专项训练(附答案)
高考物理一轮复习牛顿运动定律专项训练(附答案)牛顿运动定律包括牛顿第一运动定律、牛顿第二运动定律和牛顿第三运动定律三条定律,由艾萨克牛顿在1687年于«自然哲学的物理原理»一书中总结提出。
以下是力的分解与分解专项训练,请考生仔细练习。
一、选择题(此题共10小题,每题6分,共60分)1. [2021衡水中学调研]以下说法中正确的选项是()A. 牛顿第一定律提醒了一切物体都具有惯性B. 速度大的物体惯性大,速度小的物体惯性小C. 力是维持物体运动的缘由D. 做曲线运动的质点,假定将一切外力都撤去,那么该质点仍能够做曲线运动解析:牛顿第一定律提醒了一切物体都具有惯性,质量是惯性大小的量度,惯性与速度有关,选项A正确,选项B错误;力不是维持物体运动的缘由,力是发生减速度的缘由,选项C错误;做曲线运动的质点,假定将一切外力都撤去,那么该质点将做匀速直线运动,选项D错误。
答案:A2. 关于惯性,以下说法中正确的选项是()A. 磁悬浮列车能高速行驶是由于列车浮起后惯性小了B. 卫星内的仪器由于完全失重惯性消逝了C. 铁饼运发动在掷出铁饼前快速旋转可增大铁饼的惯性,使铁饼飞得更远D. 月球上物体的重力只要在空中上的1/6,但是惯性没有变化解析:惯性只与质量有关,与速度有关,A、C错误;失重或重力减速度发作变化时,物体质量不变,惯性不变,所以B 错误D正确。
答案:D3. 关于力和运动的关系,以下说法正确的选项是()A. 物体受力才会运动B. 力使物体的运动形状发作改动C. 中止用力,运动的物体就会中止D. 力是物体坚持运动或匀速直线运动形状的缘由解析:由牛顿第一定律可知,力的作用不是使物体运动,而是使物体的运动形状改动。
假设物体原来的形状是运动的,不受力仍将永远运动下去,即物体的运动不需求力来维持,因此A、C错误,B正确。
物体坚持运动或匀速直线运动形状,是物体不受力时的运动规律,并不是力作用的结果,因此D 错误。
高考物理牛顿运动定律题20套(带答案)含解析
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,倾角θ的足够长的斜面上,放着两个相距L 0、质量均为m 的滑块A 和B ,滑块A 的下表面光滑,滑块B 与斜面间的动摩擦因数tan μθ=.由静止同时释放A 和B ,此后若A 、B 发生碰撞,碰撞时间极短且为弹性碰撞.已知重力加速度为g ,求:(1)A 与B 开始释放时,A 、B 的加速度A a 和B a ;(2)A 与B 第一次相碰后,B 的速率B v ;(3)从A 开始运动到两滑块第二次碰撞所经历的时间t .【答案】(1)sin A a g θ=;0B a =(202sin gL θ3)023sin L g θ【解析】【详解】解:(1)对B 分析:sin cos B mg mg ma θμθ-= 0B a =,B 仍处于静止状态对A 分析,底面光滑,则有:mg sin A ma θ=解得:sin A a g θ=(2) 与B 第一次碰撞前的速度,则有:202A A v a L = 解得:02sin A v gL θ=所用时间由:1v A at =,解得:012sin L g t θ=对AB ,由动量守恒定律得:1A B mv mv mv =+ 由机械能守恒得:2221111222A B mv mv mv =+ 解得:100,2sin B v v gL θ==(3)碰后,A 做初速度为0的匀加速运动,B 做速度为2v 的匀速直线运动,设再经时间2t 发生第二次碰撞,则有:2212A A x a t =22B x v t =第二次相碰:A B x x = 解得:0222sin L t g θ= 从A 开始运动到两滑块第二次碰撞所经历的的时间:12t t t =+解得:023sin L t g θ=2.如图所示,足够长的木板与水平地面间的夹角θ可以调节,当木板与水平地面间的夹角为37°时,一小物块(可视为质点)恰好能沿着木板匀速下滑.若让该物块以大小v 0=10m/s 的初速度从木板的底端沿木板上滑,随着θ的改变,物块沿木板滑行的距离x 将发生变化.取g =10m/s 2,sin37°=0.6,cos37°=0.8.(1)求物块与木板间的动摩擦因数μ;(2)当θ满足什么条件时,物块沿木板向上滑行的距离最小,并求出该最小距离.【答案】(1) 0.75(2) 4m【解析】【详解】(1)当θ=37°时,设物块的质量为m ,物块所受木板的支持力大小为F N ,对物块受力分析,有:mg sin37°=μF NF N -mg cos37°=0解得:μ=0.75(2)设物块的加速度大小为a ,则有:mg sin θ+μmg cos θ=ma设物块的位移为x ,则有:v 02=2ax解得:()202sin cos v x g θμθ=+ 令tan α=μ,可知当α+θ=90°,即θ=53°时x 最小最小距离为:x min =4m3.我国的动车技术已达世界先进水平,“高铁出海”将在我国“一带一路”战略构想中占据重要一席.所谓的动车组,就是把带动力的动力车与非动力车按照预定的参数组合在一起.某中学兴趣小组在模拟实验中用4节小动车和4节小拖车组成动车组,总质量为m=2kg ,每节动车可以提供P 0=3W 的额定功率,开始时动车组先以恒定加速度21/a m s =启动做匀加速直线运动,达到额定功率后保持功率不变再做变加速直线运动,直至动车组达到最大速度v m =6m/s 并开始匀速行驶,行驶过程中所受阻力恒定,求:(1)动车组所受阻力大小和匀加速运动的时间;(2)动车组变加速运动过程中的时间为10s ,求变加速运动的位移.【答案】(1)2N 3s (2)46.5m【解析】(1)动车组先匀加速、再变加速、最后匀速;动车组匀速运动时,根据P=Fv 和平衡条件求解摩擦力,再利用P=Fv 求出动车组恰好达到额定功率的速度,即匀加速的末速度,再利用匀变速直线运动的规律即可求出求匀加速运动的时间;(2)对变加速过程运用动能定理,即可求出求变加速运动的位移.(1)设动车组在运动中所受阻力为f ,动车组的牵引力为F ,动车组以最大速度匀速运动时:F=动车组总功率:m P Fv =,因为有4节小动车,故04P P =联立解得:f=2N设动车组在匀加速阶段所提供的牵引力为Fʹ,匀加速运动的末速度为v '由牛顿第二定律有:F f ma '-=动车组总功率:P F v ='',运动学公式:1v at '=解得匀加速运动的时间:13t s =(2)设动车组变加速运动的位移为x ,根据动能定理:221122m Pt fx mv mv =-'- 解得:x=46.5m4.如图甲所示,光滑水平面上有一质量为M = 1kg 的足够长木板。
牛顿运动定律高考真题专题汇编带答案解析
专题三牛顿运动定律考点1 牛顿运动定律的理解与应用[2019浙江4月选考,12,3分]如图所示,A、B、C为三个实心小球,A为铁球,B、C为木球.A、B两球分别连接在两根弹簧上,C球连接在细线一端,弹簧和细线的下端固定在装水的杯子底部,该水杯置于用绳子悬挂的静止吊篮内.若将挂吊篮的绳子剪断,则剪断的瞬间相对于杯底(不计空气阻力,ρ木<ρ水<ρ铁) ()A.A球将向上运动,B、C球将向下运动B.A、B球将向上运动,C球不动C.A球将向下运动,B球将向上运动,C球不动D.A球将向上运动,B球将向下运动,C球不动拓展变式1.[全国卷高考题改编,多选]伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础.关于惯性有下列说法,其中正确的是()A.物体抵抗运动状态变化的性质是惯性B.没有力的作用,物体只能处于静止状态C.物体保持静止或匀速直线运动状态的性质是惯性D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动2.[2020江苏,5,3分]中欧班列在欧亚大陆开辟了“生命之路”,为国际抗疫贡献了中国力量.某运送抗疫物资的班列由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F.若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为()A.FB.C.D.3.[2020浙江1月选考,2,3分]如图所示,一对父子掰手腕,父亲让儿子获胜.若父亲对儿子的力记为F1,儿子对父亲的力记为F2,则( )A.F2>F1B.F1和F2大小相等C.F1先于F2产生D.F1后于F2产生4.[2015海南,8,5分,多选]如图所示,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断.将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g.在剪断瞬间()A.a1=3gB.a1=0C.Δl1=2Δl2D.Δl1=Δl25.[2020山东,1,3分]一质量为m的乘客乘坐竖直电梯下楼,其位移s与时间t的关系图像如图所示.乘客所受支持力的大小用F N表示,速度大小用v表示.重力加速度大小为g.以下判断正确的是()A.0~t1时间内,v增大,F N>mgB.t1~t2时间内,v减小,F N<mgC.t2~t3时间内,v增大,F N<mgD.t2~t3时间内,v减小,F N>mg6.[2021辽宁六校第一次联考,多选]如图甲所示,一轻质弹簧的下端固定在水平面上,上端叠放两个质量均为m的物体A、B(B与弹簧连接,A、B均可视为质点),弹簧的劲度系数为k,初始时物体处于静止状态.现用竖直向上的拉力F 作用在A上,使A开始向上做加速度大小为a的匀加速运动,测得A、B的v-t图像如图乙所示,已知重力加速度大小为g,则()A.施加力F前,弹簧的形变量为B.施加力F的瞬间,A、B间的弹力大小为m(g+a)C.A、B在t1时刻分离,此时弹簧弹力等于B的重力D.上升过程中,B速度最大时,A、B间的距离为a-7.[2021安徽黄山高三模拟,多选]如图甲所示,物块A、B静止叠放在水平地面上,B受到大小从零开始逐渐增大的水平拉力F的作用.A、B间的摩擦力f1、B与地面间的摩擦力f2随水平拉力F变化的情况如图乙所示.已知物块A的质量m=3 kg,取g=10 m/s2,最大静摩擦力等于滑动摩擦力,则()A.两物块间的动摩擦因数为0.2B.当0<F<4 N时,A、B保持静止C.当4 N<F<12 N时,A、B发生相对滑动D.当F>12 N时,A的加速度随F的增大而增大考点2 动力学两类基本问题[2019江苏,15,16分]如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐.A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下.接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下.最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)A被敲击后获得的初速度大小v A;(2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a'B;(3)B被敲击后获得的初速度大小v B.拓展变式1.[2020江西丰城模拟]如图所示,质量为10 kg的物体在F=200 N的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°,力F作用2 s后撤去,物体在斜面上继续上滑了1.25 s后速度减为零.求物体与斜面间的动摩擦因数μ和物体沿斜面向上运动的总位移x.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)2.[2015新课标全国Ⅰ,20,6分,多选]如图(a),一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图(b)所示.若重力加速度及图中的v0、v1、t1均为已知量,则可求出()图(a) 图(b)A.斜面的倾角B.物块的质量C.物块与斜面间的动摩擦因数D.物块沿斜面向上滑行的最大高度3.[2016上海,25,4分]地面上物体在变力F作用下由静止开始竖直向上运动,力F随高度x的变化关系如图所示,物体能上升的最大高度为h,h<H.当物体加速度最大时其高度为,加速度的最大值为.4.[2020安徽安庆检测]如图所示,质量为10 kg的环在F=140 N的恒定拉力作用下,沿粗糙直杆由静止从杆的底端开始运动,环与杆之间的动摩擦因数μ=0.5,杆与水平地面的夹角θ=37°,拉力F与杆的夹角θ=37°,力F作用一段时间后撤去,环在杆上继续上滑了0.5 s后,速度减为零,g取 10 m/s2,sin 37°=0.6,cos 37°=0.8,杆足够长.求:(1)拉力F作用的时间;(2)环运动到杆底端时的速度大小.5.[2021山西太原模拟]如图所示,在竖直平面内有半径为R和2R的两个圆,两圆的最高点相切,切点为A.B和C分别是小圆和大圆上的两个点,其中AB长为R,AC长为2R.现沿AB和AC建立两条光滑轨道,自A处由静止释放小球,已知小球沿AB轨道运动到B点所用时间为t1,沿AC轨道运动到C点所用时间为t2,则t1与t2之比为()A.1∶3B.1∶2C.1∶D.1∶6.[2020山东,8,3分]如图所示,一轻质光滑定滑轮固定在倾斜木板上,质量分别为m和2m的物块A、B,通过不可伸长的轻绳跨过滑轮连接,A、B间的接触面和轻绳均与木板平行.A与B间、B与木板间的动摩擦因数均为μ,设最大静摩擦力等于滑动摩擦力.当木板与水平面的夹角为45°时,物块A、B刚好要滑动,则μ的值为()A.B.C.D.7.[2017全国Ⅲ,25,20分]如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离8.[2020四川南充模拟]如图传送装置,水平传送带ab在电机的带动下以恒定速率v=4 m/s运动,在传送带的右端点a无初速度轻放一个质量m=1 kg的物块A(视为质点),当物块A到达传送带左端点b点时,即刻再在a点无初速度轻放另一质量为2m的物块B(视为质点).两物块到达b点时都恰好与传送带等速,b端点的左方为一个水平放置的长直轨道cd,轨道上静止停放着质量为m的木板C,从b点滑出的物块恰能水平滑上(无能量损失)木板上表面,木板足够长.已知:物块与传送带间的动摩擦因数μ1=0.8,与木板间的动摩擦因数μ2=0.2;木板与轨道间的动摩擦因数μ3=0.1;设最大静摩擦力等于滑动摩擦力,取g=10 m/s2.试求:(1)物块A、B滑上木板C上的时间差Δt;(2)木板C运动的总时间.9.如图所示,传送带的倾角θ=37°,从A到B的长度为L AB=16 m,传送带以v0=10 m/s的速度逆时针转动.在传送带A 端无初速度释放一个质量为m=0.5 kg 的物体,它与传送带之间的动摩擦因数μ=0.5,则物体从A运动到B所需的时间是多少?(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)10.[新情境——动车爬坡][2020四川宜宾模拟,多选]动车是怎样爬坡的?西成高铁从清凉山隧道开始一路上坡,采用25‰的大坡度穿越秦岭,长达45公里,坡道直接落差1 100米,为国内之最.几节自带动力的车厢加几节不带动力的车厢编成一组就是动车组.带动力的车厢叫动车,不带动力的车厢叫拖车.动车爬坡可以简化为如图所示模型,在沿斜面向上的恒力F作用下,A、B两物块一起沿倾角为θ的斜面向上做匀加速直线运动,两物块间用与斜面平行的轻弹簧相连,已知两物块与斜面间的动摩擦因数相同,则下列操作能保证A、B两物块间的距离不变的是()A.只增加斜面的粗糙程度B.只增加物块B的质量C.只增大沿斜面向上的力FD.只增大斜面的倾角θ考点3 实验:探究加速度与力、质量的关系[2017浙江下半年选考,17,5分]在做“探究加速度与力、质量的关系”实验中(1)右图仪器需要用到的是.(2)下列说法正确的是.A.先释放纸带再接通电源B.拉小车的细线应尽可能与长木板平行C.纸带与小车相连端的点迹较疏D.轻推小车,拖着纸带的小车能够匀速下滑说明摩擦力已被平衡(3)如图所示是实验时打出的一条纸带,A、B、C、D、…为每隔4个点取的计数点,据此纸带可知小车在打点计时器打D点时速度大小为m/s(小数点后保留2位).拓展变式1.[开放题][2020山东济南检测]如图所示的实验装置可以验证牛顿第二定律,小车上固定一个盒子,盒子内盛有砂子.砂桶的总质量(包括桶以及桶内砂子质量)记为m,小车的总质量(包括车、盒子及盒内砂子质量)记为M.2.[同2020北京第15题相似]在探究加速度与力的关系的实验中,小明同学设计了如图甲所示(俯视图)的实验方案:将两个小车放在水平木板上,前端分别系一条细线跨过定滑轮与砝码盘相连,后端各系一细线.(1)平衡摩擦力后,在保证两小车质量相同、盘中砝码质量不同的情况下,用一黑板擦把两条细线同时按在桌子上,抬起黑板擦时两小车同时开始运动,按下黑板擦时两小车同时停下来.小车前进的位移分别为x1、x2,由x=at2,知=,测出砝码和砝码盘的总质量m1、m2,若满足,即可得出小车的质量一定时,其加速度与拉力成正比的结论.若小车的总质量符合远大于砝码和砝码盘的总质量的需求,但该实验中测量的误差仍然较大,其主要原因是.(2)小军同学换用图乙所示的方案进行实验:在小车的前方安装一个拉力传感器,在小车后面固定纸带并穿过打点计时器.由于安装了拉力传感器,下列操作要求中不需要的是.(填选项前的字母)A.测出砝码和砝码盘的总质量B.将木板垫起适当角度以平衡摩擦力C.跨过滑轮连接小车的细线与长木板平行D.砝码和砝码盘的总质量远小于小车和传感器的总质量(3)测出小车质量M并保持不变,改变砝码的质量分别测得小车加速度a与拉力传感器示数F,利用测得的数据在坐标纸中画出如图丙中的a-F图线A;若小军又以为斜率在图像上画出如图丙中的图线B,利用图像中给出的信息,可求出拉力传感器的质量为.3.如图所示,某同学利用图示装置做“探究加速度与物体所受合力的关系”的实验.在气垫导轨上安装了两个光电门1、2,滑块上固定一遮光条,滑块通过绕过两个滑轮的细绳与弹簧测力计相连,实验时改变钩码的质量,读出弹簧测力计的不同示数F,不计细绳与滑轮之间的摩擦力和滑轮的质量.(1)根据实验装置图,本实验(填“需要”或“不需要”)将带滑轮的气垫导轨右端垫高,以平衡摩擦力;实验中(填“一定要”或“不必要”)保证钩码的质量远小于滑块和遮光条的总质量;实验中(填“一定要”或“不必要”)用天平测出所挂钩码的质量;滑块(含遮光条)的加速度(填“大于”“等于”或“小于”)钩码的加速度.(2)某同学做实验时,未挂细绳和钩码接通气源,然后推一下滑块(含遮光条)使其从气垫导轨右端向左运动,发现遮光条通过光电门2所用的时间大于通过光电门1所用的时间,该同学疏忽大意,未调节气垫导轨使其恢复水平,就继续进行其他实验步骤(其他实验步骤没有失误),则该同学作出的滑块(含遮光条)的加速度a与弹簧测力计示数F的图像可能是(填图像下方的字母).(3)若该同学作出的a-F图像中图线的斜率为k,则滑块(含遮光条)的质量为.4.图(a)[2018全国Ⅱ,23,9分]某同学用图(a)所示的装置测量木块与木板之间的动摩擦因数.跨过光滑定滑轮的细线两端分别与木块和弹簧秤相连,滑轮和木块间的细线保持水平,在木块上方放置砝码.缓慢向左拉动水平放置的木板,当木块和砝码相对桌面静止且木板仍在继续滑动时,弹簧秤的示数即木块受到的滑动摩擦力的大小.某次实验所得数据在表中给出,其中f4的值可从图(b)中弹簧秤的示数读出.砝码的质量0.05 0.10 0.15 0.20 0.25m/kg滑动摩擦力2.15 2.36 2.55 f42.93f/N图(b)图(c)回答下列问题:(1)f4= N;(2)在图(c)的坐标纸上补齐未画出的数据点并绘出f-m图线;(3)f与m、木块质量M、木板与木块之间的动摩擦因数μ及重力加速度大小g之间的关系式为f= ,f-m图线(直线)的斜率的表达式为k= ;(4)取g=9.80 m/s2,由绘出的f-m图线求得μ= .(保留2位有效数字)5.[2018江苏,11,10分]某同学利用如图所示的实验装置来测量重力加速度g.细绳跨过固定在铁架台上的轻质滑轮,两端各悬挂一只质量为M的重锤.实验操作如下:①用米尺量出重锤1底端距地面的高度H;②在重锤1上加上质量为m的小钩码;③左手将重锤2压在地面上,保持系统静止.释放重锤2,同时右手开启秒表,在重锤1落地时停止计时,记录下落时间;④重复测量3次下落时间,取其平均值作为测量值t.请回答下列问题:(1)步骤④可以减小对下落时间t测量的(选填“偶然”或“系统”)误差.(2)实验要求小钩码的质量m要比重锤的质量M小很多,主要是为了.A.使H测得更准确B.使重锤1下落的时间长一些C.使系统的总质量近似等于2MD.使细绳的拉力与小钩码的重力近似相等(3)滑轮的摩擦阻力会引起实验误差.现提供一些橡皮泥用于减小该误差,可以怎么做?(4)使用橡皮泥改进实验后,重新进行实验测量,并测出所用橡皮泥的质量为m0.用实验中的测量量和已知量表示g,得g= .答案专题三牛顿运动定律考点1 牛顿运动定律的理解与应用D剪断绳子之前,A球受力分析如图1所示,B球受力分析如图2所示,C球受力分析如图3所示.剪断绳子瞬间,水杯和水都处于完全失重状态,水的浮力消失,杯子的瞬时加速度为重力加速度.又由于弹簧的形状来不及发生改变,弹簧的弹力大小不变,相对地面而言,A球的加速度a A=<g,方向竖直向下,其相对杯子的加速度方向竖直向上.相对地面而言,B球的加速度a B=>g,方向竖直向下,其相对杯子的加速度方向竖直向下.绳子剪断瞬间,C球所受的浮力和拉力均消失,其瞬时加速度为重力加速度,故相对杯子静止,综上所述,D正确.x图1 图2 图31.ACD物体保持静止或匀速直线运动状态的性质叫惯性,所以A、C正确.如果没有力,物体将保持静止或匀速直线运动状态,所以B错误.运动物体如果不受力,将保持匀速直线运动状态,所以D正确.2.C设列车做匀加速直线运动的加速度为a,可将后面的38节车厢作为一个整体进行分析,设每节车厢的质量均为m,每节车厢所受的摩擦力和空气阻力的合力大小均为f,则有F-38f=38ma,再将最后面的2节车厢作为一个整体进行分析,设倒数第3节车厢对倒数第2节车厢的牵引力为F',则有F'-2f=2ma,联立解得F'=F,C项正确,A、B、D项均错误.3.B F1和F2是作用力和反作用力,遵循牛顿第三定律,这对力同时产生、同时消失、大小相等、方向相反,B正确,A、C、D均错误.4.AC设物块的质量为m,剪断细线的瞬间,细线上的拉力消失,弹簧还没有来得及改变,所以剪断细线的瞬间a受到重力和弹簧S1的拉力F1;剪断细线前对bc和弹簧S2组成的整体分析可知F1=2mg,故a受到的合力F合=mg+F1=mg+2mg=3mg,故加速度a1==3g,A正确,B错误.设弹簧S2的拉力为F2,则F2=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确,D错误.5.D根据位移—时间图像的斜率表示速度可知,0~t1时间内,图像斜率增大,速度v增大,加速度方向向下,由牛顿运动定律可知乘客处于失重状态,所受的支持力F N<mg,选项A错误;t1~t2时间内,图像斜率不变,速度v不变,加速度为零,乘客所受的支持力F N=mg,选项B错误;t2~t3时间内,图像斜率减小,速度v减小,加速度方向向上,由牛顿运动定律可知乘客处于超重状态,所受的支持力F N>mg,选项C错误,D正确.6.AD A与B分离的瞬间,A与B的加速度相同,速度也相同,A与B间的弹力恰好为零.分离后A与B的加速度不同,速度不同.t=0时刻,即施加力F的瞬间,弹簧弹力没有突变,弹簧弹力与施加力F前的相同,但A与B间的弹力发生突变.t1时刻,A与B恰好分离,此时A与B的速度相等、加速度相等,A与B间的弹力为零.t2时刻,B的v-t图线的切线与t轴平行,切线斜率为零,即加速度为零.施加力F前,A、B整体受力平衡,则弹簧弹力大小F0=kx0=2mg,解得弹簧的形变量x0=,选项A正确.施加力F的瞬间,对B,根据牛顿第二定律有F0-mg-F AB=ma,解得A、B间的弹力大小F AB=m(g-a),选项B错误.A、B在t1时刻之后分离,此时A、B具有共同的速度与加速度,且F AB=0,对B有F1-mg=ma,解得此时弹簧弹力大小F1=m(g+a),选项C错误.t2时刻B的加速度为零,速度最大,则kx'=mg,解得此时弹簧的形变量x'=,B上升的高度h'=x0-x'=,A上升的高度h=a,此时A、B间的距离Δh=a-,选项D正确.7.AB根据题图乙可知,发生相对滑动时,A、B间的滑动摩擦力为6 N,所以A、B之间的动摩擦因数μ==0.2,选项A正确;当0<F<4 N时,根据题图乙可知,f2还未达到B与地面间的最大静摩擦力,此时A、B保持静止,选项B正确;当4 N<F<12 N时,根据题图乙可知,此时A、B间的摩擦力还未达到最大静摩擦力,所以A、B没有发生相对滑动,选项C错误;当F>12 N时,根据题图乙可知,此时A、B发生相对滑动,对A有a==2 m/s2,加速度不变,选项D错误.考点2 动力学两类基本问题(1)(2)3μg μg (3)2解析:(1)由牛顿运动定律知,A的加速度大小a A=μg由运动学公式有2a A L=解得v A=.(2)设A、B的质量均为m对齐前,B所受合外力大小F=3μmg由牛顿运动定律有F=ma B,得a B=3μg对齐后,A、B所受合外力大小F'=2μmg由牛顿运动定律有F'=2ma'B,得a'B=μg.(3)经过时间t,A、B达到共同速度v,位移分别为x A、x B,A的加速度大小等于a A则v=a A t,v=v B-a B tx A=a A t2,x B=v B t-a B t2且x B-x A=L解得v B=2.1.0.2516.25 m解析:物体受力分析如图所示,设未撤去F前,物体加速运动的加速度为a1,末速度为v,将重力mg和F沿斜面方向和垂直于斜面方向正交分解,由牛顿运动定律得F N=F sin θ+mg cos θF cos θ-f-mg sin θ=ma1又f=μF N加速过程由运动学规律可知v=a1t1撤去F后,物体减速运动的加速度大小为a2,则a2=g sin θ+μg cos θ由匀变速运动规律有v=a2t2由运动学规律知x=a1+a2联立各式解得μ=0.25,x=16.25 m.2.ACD由题图(b)可求出0~t1和t1~2t1时间内物块的加速度分别为a1=、a2=.设斜面的倾角为θ,由牛顿第二定律知,物块上滑时有-(mg sin θ+μmg cos θ)=ma1,下滑时有μmg cos θ-mg sin θ=ma2,联立可求得物块与斜面间的动摩擦因数μ及斜面的倾角θ,A、C正确;从以上两个方程可知,物块质量被约去,即不可求,B错误;物块沿斜面向上滑行的最大高度H=sin θ,可求出,D正确.3.0或h解析:由题图可知,力F随着高度x的增加而均匀减小,即F随高度x的变化关系为F=F0-kx,其中k=,则当物体到达h高度处时,向上的拉力F1=F0-h;由牛顿第二定律知,开始时加速度方向竖直向上,随x的增加加速度逐渐减小,然后反方向增大.物体从地面上升到h高度处的过程中,根据动能定理可得W F+W G=0,即h-mgh=0,求得F0=,则物体在刚开始运动时的加速度大小满足F0-mg=ma1,求得a1=;当物体运动到h高度处时,加速度大小满足mg-F1=ma2,而F1=-,求得a2=,因此加速度最大时其高度是0或h.4.(1)1 s (2) m/s解析:(1)撤去拉力F后,由牛顿第二定律有mg sin θ+μmg cos θ=ma2又0=v1-a2t2联立解得v1=5 m/s撤去拉力F前(注意杆对环的弹力的方向),有F cos θ-mg sin θ-μ(F sin θ-mg cos θ)=ma1而v1=a1t1联立解得t1=1 s.(2)环上滑至速度为零后反向做匀加速直线运动,由牛顿第二定律得mg sin θ-μmg cos θ=ma3,又s=(t1+t2),而v2=2a3s联立解得v= m/s.5.D如题图所示,设圆中任意一条弦为OM,圆的半径为R',则弦OM长s=2R'cos θ,小球下滑的加速度a=g cos θ,根据s=at2得t=2,与角θ无关,因此沿不同弦下滑的时间相等.故小球沿AB下滑所用的时间等于小球在高度为2R 的位置做自由落体运动所用的时间,即2R=g,小球沿AC下滑所用的时间等于小球在高度为4R的位置做自由落体运动所用的时间,即4R=g,联立有=,选项D正确.6.C根据题述, 物块A、B刚要滑动,可知A、B之间的摩擦力f AB=μmg cos 45°,B与木板之间的摩擦力f=μ·3mg cos 45°.隔离A进行受力分析,由平衡条件可得轻绳中拉力F= f AB+ mg sin 45°.对AB整体,由平衡条件得2F=3mg sin 45°-f,联立解得μ=,选项C正确.7.(1)1 m/s(2)1.9 m解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B所受的摩擦力大小分别为f1、f2,地面对木板的摩擦力大小为f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1.在物块B与木板达到共同速度前有f1=μ1m A g ①f2=μ1m B g ②f3=μ2(m+m A+m B)g ③由牛顿第二定律得f1=m A a A④f2=m B a B⑤f2-f1-f3=ma1⑥设在t1时刻,B与木板达到共同速度,其大小为v1.由运动学公式有v1=v0-a B t1⑦v1=a1t1⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s⑨.(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-a B设在B与木板达到共同速度v1后,木板的加速度大小为a2.对于B与木板组成的系统,由牛顿第二定律有f1+f3=(m B+m)a2由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2.设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2对A有v2=-v1+a A t2在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-a2在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-a A(t1+t2)2A和B相遇时,A与木板的速度恰好相同.因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B联立以上各式,并代入数据得s0=1.9 m.(也可用如图的速度—时间图线求解)8.(1)0.5 s (2)2.75 s解析:(1)物块在传送带上的加速时间即为滑上木板的时间差,设物块A、B在传送带上的加速度为a0,则有μ1mg=ma0解得a0=8 m/s2根据v=a0Δt可得Δt==0.5 s.(2)过程一物块A滑上木板C与木板有相对运动,则有μ2mg=ma A,解得a A=2 m/s2,方向水平向右水平方向对木板C有μ2mg=μ3·2mg,木板C保持静止过程二经过Δt=0.5 s后,物块B滑上木板C,此时物块A的速度为v A=v-a AΔt=3 m/s物块B和木板C有相对运动,则有μ2·2mg=2ma B代入数据解得a B=2 m/s2,方向向右对木板C有μ2·2mg+μ2mg-μ1(2m+2m)g=ma C代入数据解得a C=2 m/s2,方向水平向左木板C由静止开始向左匀加速运动,物块A与木板C共速时有v A-a A t1=a C t1=v AC代入数据解得t1=0.75 s,v AC=1.5 m/s此时v B=v-a B t1=2.5 m/s过程三物块B相对木板C继续向左运动,仍做a B=2 m/s2的匀减速运动,木板C和物块A保持相对静止,将木板C和物块A看作整体有μ2·2mg-μ3(2m+2m)g=2ma AC解得a AC=0故木板C和物块A向左做匀速直线运动,直到A、B、C共速,速度为v B-a B t2=v AC,解得t2=0.5 s过程四三物体保持相对静止,一起做匀减速运动,直到减速到零,木板C停止运动,则有μ3(2m+2m)g=4ma ABC代入数据解得a ABC=1 m/s2t3==1.5 s故木板C运动的总时间为t=t1+t2+t3=2.75 s.图甲9.2 s解析:开始阶段,传送带对物体的滑动摩擦力沿传送带向下,物体由静止开始加速下滑,受力分析如图甲所示由牛顿第二定律得mg sin θ+μmg cos θ=ma1解得a1=g sin θ+μg cos θ=10 m/s2物体加速至速度与传送带速度相等时需要的时间t1==1 s物体运动的位移s1=a1 =5 m<16 m即物体加速到10 m/s时仍未到达B点图乙当物体加速至与传送带速度相等时,由于μ<tan θ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带对物体的滑动摩擦力沿传送带向上,如图乙所示由牛顿第二定律得mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2设此阶段物体滑动到B所需时间为t2,则L AB-s1=v0t2+a2,解得t2=1 s故所需时间t=t1+t2=2 s.10.AD A、B两物块间的距离不变,则弹簧弹力不变,对A、B及弹簧整体应用牛顿第二定律可得F-(m A+m B)g sin θ-μ(m A+m B)·g cos θ=(m A+m B)a,所以两物块做匀加速直线运动的加速度a=-g sin θ-μg cos θ,对物块B应用牛顿第二定律可得T-m B g sin θ-μm B g cos θ=m B a,所以弹簧弹力T=m B(g sin θ+μg cos θ)+m B a=.只改变斜面粗糙。
近6年全国各地高考物理真题汇编:牛顿运动定律(Word版含答案)
2017-2022年全国各地高考物理真题汇编:牛顿运动定律学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共15题)1.(2022·山东·高考真题)我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭。
如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空。
从火箭开始运动到点火的过程中( )A .火箭的加速度为零时,动能最大B .高压气体释放的能量全部转化为火箭的动能C .高压气体对火箭推力的冲量等于火箭动量的增加量D .高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量2.(2022·全国·高考真题)如图,一不可伸长轻绳两端各连接一质量为m 的小球,初始时整个系统静置于光滑水平桌面上,两球间的距离等于绳长L 。
一大小为F 的水平恒力作用在轻绳的中点,方向与两球连线垂直。
当两球运动至二者相距35L 时,它们加速度的大小均为( )A .58F mB .25FmC .38F mD .310Fm3.(2021·海南·高考真题)公元前4世纪末,我国的《墨经》中提到“力,形之所以奋也”,意为力是使有形之物突进或加速运动的原因。
力的单位用国际单位制的基本单位符号来表示,正确的是( ) A .1kg m s -⋅⋅B .2kg m s -⋅⋅C .2Pa m ⋅D .1J m -⋅4.(2021·海南·高考真题)如图,两物块P 、Q 用跨过光滑轻质定滑轮的轻绳相连,开始时P 静止在水平桌面上。
将一个水平向右的推力F 作用在P 上后,轻绳的张力变为原来的一半。
已知P 、Q 两物块的质量分别为p 0.5kg m =、Q 0.2kg m =,P 与桌面间的动摩擦因数0.5μ=,重力加速度210m /s g =。
则推力F 的大小为()A.4.0N B.3.0N C.2.5N D.1.5N5.(2021·广东·高考真题)唐代《耒耜经》记载了曲辕犁相对直辕犁的优势之一是起土省力,设牛用大小相等的拉力F通过耕索分别拉两种犁,F与竖直方向的夹角分别为α和β,αβ<,如图所示,忽略耕索质量,耕地过程中,下列说法正确的是()A.耕索对曲辕犁拉力的水平分力比对直辕犁的大B.耕索对曲辕犁拉力的竖直分力比对直辕犁的大C.曲辕犁匀速前进时,耕索对犁的拉力小于犁对耕索的拉力D.直辕犁加速前进时,耕索对犁的拉力大于犁对耕索的拉力6.(2017·海南·高考真题)如图,水平地面上有三个靠在一起的物块P、Q和R,质量分别为m、2m和3m,物块与地面间的动摩擦因数都为μ。
物理牛顿运动定律的应用题20套(带答案)
物理牛顿运动定律的应用题20套(带答案)一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图甲所示,长为L =4.5 m 的木板M 放在水平地而上,质量为m =l kg 的小物块(可视为质点)放在木板的左端,开始时两者静止.现用一水平向左的力F 作用在木板M 上,通过传感器测m 、M 两物体的加速度与外力F 的变化关系如图乙所示.已知两物体与地面之间的动摩擦因数相同,且最大静摩擦力等于滑动摩擦力,g = 10m /s 2.求:(1)m 、M 之间的动摩擦因数;(2)M 的质量及它与水平地面之间的动摩擦因数;(3)若开始时对M 施加水平向左的恒力F =29 N ,且给m 一水平向右的初速度v o =4 m /s ,求t =2 s 时m 到M 右端的距离. 【答案】(1)0.4(2)4kg ,0.1(3)8.125m 【解析】 【分析】 【详解】(1)由乙图知,m 、M 一起运动的最大外力F m =25N , 当F >25N 时,m 与M 相对滑动,对m 由牛顿第二定律有:11mg ma μ=由乙图知214m /s a =解得10.4μ=(2)对M 由牛顿第二定律有122()F mg M m g Ma μμ--+=即12122()()F mg M m g mg M m g Fa M M Mμμμμ--+--+==+乙图知114M = 12()94mg M m g M μμ--+=-解得M = 4 kg μ2=0. 1(3)给m 一水平向右的初速度04m /s v =时,m 运动的加速度大小为a 1 = 4 m/s 2,方向水平向左,设m 运动t 1时间速度减为零,则111s v t a == 位移21011112m 2x v t a t =-=M 的加速度大小2122()5m /s F mg M m ga Mμμ--+==方向向左, M 的位移大小22211 2.5m 2x a t == 此时M 的速度2215m /s v a t ==由于12x x L +=,即此时m 运动到M 的右端,当M 继续运动时,m 从M 的右端竖直掉落,设m 从M 上掉下来后M 的加速度天小为3a ,对M 由生顿第二定律23F Mg Ma μ-=可得2325m /s 4a =在t =2s 时m 与M 右端的距离2321311()()8.125m 2x v t t a t t =-+-=.3.如图所示,倾角θ=30°的足够长光滑斜面底端A 固定有挡板P ,斜面上B 点与A 点的高度差为h .将质量为m 的长木板置于斜面底端,质量也为m 的小物块静止在木板上某处,整个系统处于静止状态.已知木板与物块间的动摩擦因数32μ=,且最大静摩擦力等于滑动摩擦力,重力加速度为g .(1)若对木板施加一沿斜面向上的拉力F 0,物块相对木板刚好静止,求拉力F 0的大小; (2)若对木板施加沿斜面向上的拉力F =2mg ,作用一段时间后撤去拉力,木板下端恰好能到达B 点,物块始终未脱离木板,求拉力F 做的功W . 【答案】(1) 32mg (2) 94mgh 【解析】(1)木板与物块整体:F 0−2mg sinθ=2ma 0 对物块,有:μmg cosθ−mg sinθ═ma 0 解得:F 0=32mg (2)设经拉力F 的最短时间为t 1,再经时间t 2物块与木板达到共速,再经时间t 3木板下端到达B 点,速度恰好减为零. 对木板,有:F −mg sinθ−μmg cosθ=m a 1 mg sinθ+μmg cosθ=ma 3对物块,有:μmg cosθ−mg sinθ=ma 2 对木板与物块整体,有2mg sinθ=2m a 4另有:1132212 ()a t a t a t t -=+ 21243 ()a t t a t +=222111123243111222sin h a t a t t a t a t θ+⋅-+= 21112W F a t =⋅解得W =94mgh 点睛:本题考查牛顿第二定律及机械能守恒定律及运动学公式,要注意正确分析物理过程,对所选研究对象做好受力分析,明确物理规律的正确应用即可正确求解;注意关联物理过程中的位移关系及速度关系等.4.滑雪运动中当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板和雪地之间形成暂时的“气垫”从而减小雪地对滑雪板的摩擦,然后当滑雪板的速度较小时,与雪地接触时间超过某一时间就会陷下去,使得它们间的摩擦阻力增大.假设滑雪者的速度超过4m/s 时,滑雪板与雪地间的动摩擦因数就会从0.25变为0.125.一滑雪者从倾角为θ=37°斜坡雪道的某处A 由静止开始自由下滑,滑至坡底B 处(B 处为一长度可忽略的光滑小圆弧)后又滑上一段水平雪道,最后停在水平雪道BC 之间的某处.如图所示,不计空气阻力,已知AB 长14.8m ,取g =10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)滑雪者从静止开始到动摩擦因数发生变化时(即速度达到4m/s )所经历的时间; (2)滑雪者到达B 处的速度;(3)滑雪者在水平雪道上滑行的最大距离. 【答案】(1)1s ;(2)12m/s ;(3)54.4m . 【解析】 【分析】(1)根据牛顿第二定律求出滑雪者在斜坡上从静止开始加速至速度v 1=4m/s 期间的加速度,再根据速度时间公式求出运动的时间.(2)再根据牛顿第二定律求出速度大于4m/s 时的加速度,球心速度为4m/s 之前的位移,从而得出加速度变化后的位移,根据匀变速直线运动的速度位移公式求出滑雪者到达B 处的速度.(3)分析滑雪者的运动情况,根据牛顿第二定律求解每个过程的加速度,再根据位移速度关系求解. 【详解】(1)滑雪者从静止开始加速到v 1=4m/s 过程中: 由牛顿第二定律得:有:mgsin37°-μ1mgcos37°=ma 1; 解得:a 1=4m/s 2; 由速度时间关系得 t 1=11v a =1s (2)滑雪者从静止加速到4m/s 的位移:x 1=12a 1t 2=12×4×12=2m 从4m/s 加速到B 点的加速度:根据牛顿第二定律可得:mgsin37°-μ2mgcos37°=ma 2; 解得:a 2=5m/s 2;根据位移速度关系:v B 2−v 12=2a 2(L −x 1) 计算得 v B =12m/s(3)在水平面上第一阶段(速度从12m/s 减速到v=4m/s ):a 3=−μ2g =−1.25m /s 222223341251.222 1.25B v v x m a --===-⨯ 在水平面上第二阶段(速度从4m/s 减速到0)a 4=−μ1g =−2.5m /s 2,2443.22vx m a -== 所以在水平面上运动的最大位移是 x=x 3+x 4=54.4m 【点睛】对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.5.如图1所示, 质量为M 的长木板,静止放置在粗糙水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度v 0从左端冲上木板。
高考物理牛顿运动定律真题汇编(含答案)
高考物理牛顿运动定律真题汇编(含答案)一、高中物理精讲专题测试牛顿运动定律1. 如图,有一水平传送带以8m/s的速度匀速运动,现将一小物块(可视为质点)轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.4,已知传送带左、右端间的距离为4m , g 取10m/s2.求:(1)刚放上传送带时物块的加速度;(2)传送带将该物体传送到传送带的右端所需时间.【答案】(1) a g 4m/s2(2) t 1s【解析】【分析】先分析物体的运动情况:物体水平方向先受到滑动摩擦力,做匀加速直线运动;若传送带足够长,当物体速度与传送带相同时,物体做匀速直线运动•根据牛顿第二定律求出匀加速运动的加速度,由运动学公式求出物体速度与传送带相同时所经历的时间和位移,判断以后物体做什么运动,若匀速直线运动,再由位移公式求出时间.【详解】(1 )物块置于传动带左端时,先做加速直线运动,受力分析,由牛顿第二定律得:mg ma代入数据得:a g 4m/s2(2 )设物体加速到与传送带共速时运动的位移为S o根据运动学公式可得:2as0 v22运动的位移:§ —8 4m2at,则有则物块从传送带左端到右端全程做匀加速直线运动,设经历时间为2解得t 1s【点睛】物体在传送带运动问题,关键是分析物体的受力情况,来确定物体的运动情况,有利于培养学生分析问题和解决问题的能力.2. 四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用. 一架质量m=2 kg的无人机,其动力系统所能提供的最大升力F=36N,运动过程中所受空气阻力大小恒为f=4 N. (g取10 m/s2)(1) 无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t=5s时离地面的高度h;(2) 当无人机悬停在距离地面高度H=100m处,由于动力设备故障,无人机突然失去升力而坠落•求无人机坠落到地面时的速度V;(3) 接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力•为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t i.5亦【答案】(1) 75m (2) 40m/s (3) 口s3【解析】【分析】【详解】(1 )由牛顿第二定律F- mg - f=ma代入数据解得a=6m/s2代入数据解得h=75m.(2)下落过程中mg- f=ma i 代入数据解得「:t「一落地时速度v2=2a i H,代入数据解得v=40m/s(3 )恢复升力后向下减速运动过程F-mg+f=ma2代入数据解得-「「亠2 2设恢复升力时的速度为V m,则有「丄''由V m=a i t l代入数据解得3. 如图所示,在光滑水平面上有一段质量不计,长为6m的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A、B,现同时对A、B两滑块施加方向相反,大小均为F=12N的水平拉力,并开始计时.已知A滑块的质量mA=2kg, B滑块的质量mB=4kg, A、B滑块与绸带之间的动摩擦因素均为卩=0.5 A、B两滑块与绸带之间的最大静摩擦力等于滑动摩擦力,不计绸带的伸长,求:(1)t=0时刻,A、B两滑块加速度的大小;(2)0到3s时间内,滑块与绸带摩擦产生的热量.【答案】⑴印1%2& 0・5%2 ;(2)30J【解析】【详解】(1)A滑块在绸带上水平向右滑动,受到的滑动摩擦力为f A ,水平运动,则竖直方向平衡:N A mg , f A N A ;解得:f A mg ①A滑块在绸带上水平向右滑动,0时刻的加速度为a!,由牛顿第二定律得: F f A m A a,――②B滑块和绸带一起向左滑动,0时刻的加速度为a2由牛顿第二定律得: F f B m B a2――③;2 2联立①②③解得:a 1m /s , a20.5m /s ;(2)A滑块经t滑离绸带,此时A、B滑块发生的位移分别为X i和X2Lx, x221 .2x, a,t22X2 a2t2代入数据解得:x, 2m , x2 1m, t 2s2秒时A滑块离开绸带,离开绸带后A在光滑水平面上运动,B和绸带也在光滑水平面上运动,不产生热量,3秒时间内因摩擦产生的热量为:Q f A x1x2代入数据解得:Q 30J .4•滑雪者为什么能在软绵绵的雪地中高速奔驰呢?其原因是白雪内有很多小孔,小孔内充满空气•当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板与雪地间形成一个暂时的气垫”从而大大减小雪地对滑雪板的摩擦•然而当滑雪板对雪地速度较小时,与雪地接触时间超过某一值就会陷下去,使得它们间的摩擦力增大•假设滑雪者的速度超过 4 m/s 时,滑雪板与雪地间的动摩擦因数就会由0.25变为烬=0.125 .一滑雪者从倾角为0= 37°勺坡顶A由静止开始自由下滑,滑至坡底B(B处为一光滑小圆弧)后又滑上一段水平雪地,最后停在C处,如图所示•不计空气阻力,坡长为 1 = 26 m, g取10 m/s2, sin37 = 0.6, cos 37 = 0.8.求:(1) 滑雪者从静止开始到动摩擦因数发生变化经历的时间;(2) 滑雪者到达B处的速度;(3) 滑雪者在水平雪地上运动的最大距离.【答案】1s 卜护詞99.2m【解析】【分析】由牛顿第二定律分别求出动摩擦因数恒变化前后的加速度,再由运动学知识可求解速度位移和时间.【详解】m^s[n ff-/Zjm^cos 0(1)由牛顿第二定律得滑雪者在斜坡的加速度:a仁甜=4m/s2解得滑雪者从静止开始到动摩擦因数发生变化所经历的时间:t= =1sII⑵由静止到动摩擦因素发生变化的位移:x i=,a i t2=2mt? - 0动摩擦因数变化后,由牛顿第二定律得加速度:a2= =5m/s2m由V B2-v2=2a2(L-x i)解得滑雪者到达B处时的速度:V B=16m/s⑶设滑雪者速度由V B=16m/s减速到v i=4m/s期间运动的位移为X3,则由动能定理有:—1 1-- j - ;解得X3=96m速度由V i=4m/s减速到零期间运动的位移为X4,则由动能定理有:1 ?-^m^x A= d-^nvl;解得x 4=3.2m所以滑雪者在水平雪地上运动的最大距离为X=X3+X4=96+ 3.2=99.2m5. 如图,竖直墙面粗糙,其上有质量分别为m A =1 kg、m B =0.5 kg的两个小滑块A和B, A在B的正上方,A、B相距h=2. 25 m, A始终受一大小F1=|0 N、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F2作用.同时由静止释放A和B,经时间t=0.5 s,A、B恰相遇•已知A、B与墙面间的动摩擦因数均为口=0.2,重力加速度大小g=10m/s2.求:(1) 滑块A的加速度大小a A;(2) 相遇前瞬间,恒力F2的功率P.2【答案】(1)a A 8m/s ;(2)P 【解析】【详解】(1)A、B受力如图所示:A、B分别向下、向上做匀加速直线运动, 水平方向:F N F l竖直方向:m A g f m A a A且:f F N 对A :联立以上各式并代入数据解得:a A1 (2 )对A由位移公式得:X A c21 2对B由位移公式得:x B a B t22由位移关系得:x B h x A由速度公式得B的速度:V B a B t 对B由牛顿第二定律得:F? m B g 恒力F2的功率:P F2V B联立解得:P= 50W 8m/s2 2mBaB 50W6. 如图所示,在风洞实验室里,粗糙细杆与竖直光滑圆轨AB相切于A点,B为圆弧轨道的最高点,圆弧轨道半径R=1m,细杆与水平面之间的夹角0=37°. 一个m=2kg的小球穿在细杆上,小球与细杆间动摩擦因数尸0.3 •小球从静止开始沿杆向上运动,2s后小球刚好到达A点,此后沿圆弧轨道运动,全过程风对小球的作用力方向水平向右,大小恒定为40N.已知g=10m/s2, sin37 =0.6, cos37°=0.8.求:(1) 小球在A点时的速度大小;(2) 小球运动到B点时对轨道作用力的大小及方向.【答案】(1)8m/s (2)12N【解析】【详解】(1)对细杆上运动时的小球受力分析,据牛顿第二定律可得:Fcos mgsin (Fsin mgcos ) ma代入数据得:a 4m/s2小球在A点时的速度v A at 8m/s⑵小球沿竖直圆轨道从A到B的过程,应用动能定理得:1 2 1 2FRsin37 mgR(1 cos37 ) mv B mv A2 2解得:V B 2m/s小球在B点时,对小球受力分析,设轨道对球的力竖直向上,由牛顿第二定律知:2V Bmg F N mR解得:F N=12N,轨道对球的力竖直向上由牛顿第三定律得:小球在最高点B对轨道的作用力大小为12N,方向竖直向下.7. 如图所示,传送带水平部分x ab=0.2m,斜面部分x b(=5.5m, bc 与水平方向夹角«=37 °,一个小物体A与传送带间的动摩擦因数尸0.25,传送带沿图示方向以速率v=3m/s运动,若把物体A轻放到a处,它将被传送带送到c点,且物体A不脱离传送带,经b点时速率不变.(取g=10m/s2, sin37 =0.6)求:(1) 物块从a 运动到 (2) 物块从b 运动到 【答案】(1) 0.4s ; 【解析】 【分析】根据牛顿第二定律求出在 ab 段做匀加速直线运动的加速度,结合运动学公式求出 运动时间•到达b 点的速度小于传送带的速度,根据牛顿第二定律求出在bc 段匀加速运动的加速度,求出速度相等经历的时间,以及位移的大小,根据牛顿第二定律求出速度相等 后的加速度,结合位移时间公式求出速度相等后匀加速运动的时间,从而得出b 到c 的时间. 【详解】(1)物体A 轻放在a 处瞬间,受力分析由牛顿第二定律得:mg ma 1解得:A 与皮带共速需要发生位移:xab代入数据解得:(2)到达b 点的速度:由牛顿第二定律得:b 的时间;c 的时间. (2) 1.25s .a i2.5m/s 2故根据运动学公式,物体 2v x 共2a9m 1.8m 0.2mA 从a 运动到b : t i0.4sV b ait i1m/s 3m/s代入数据解得:a 2 8m/s 2物块在斜面上与传送带共速的位移是:N 2mg sin 37 2ma 2mg cos37 且 f 2N 22设从共速到下滑至 c 的时间为t 3,由x bcs 共1 2vt 3 a 3t 3,得2t3is综上,物块从b 运动到c 的时间为:t2t3i.25s解得 v ' =0.6m/s即物块和木板最终以 0.6m/s 的速度匀速运动. (3)物块先相对木板向右运动,此过程中物块的加速度为 时间物块和木板具有相同的速度 v','对物块受力分析:va 1t 1解得:t ,2m/s 3解得 s=0.5m ;t i 后物块相对木板向左运动,这再经 仍为a i ,对木板:F- mg Ma 32 2v V b代入数据解得: 时间为: t2因为 g sin37 6m/s > g cos37 由牛顿第二定律得: mg sin37 f 2 ma 3N 2 mg cos37,且 f 2 N 2代入数据解得:a 3 4m/s 2 2a 20.5m 5.5ma 2Vb 381s 0.25s2m/s 2,物块继续加速下滑此过程中物块相对木板前进的距离:Wi2 2& 5s 后系统动量守恒,最终达到相同速度 v ;则 mv i MV 2 m M va i ,木板的加速度为 ,经t i对木板:F mg Ma 2由运动公式: v 0 a 2t 1 t 2时间滑落,此过程中板的加速度 a 3,物块的加速度9.水平面上固定着倾角 0 =37的斜面,将质量 m=lkg 的物块A 从斜面上无初速度释放,其加速度a=3m/s 2。
高考物理牛顿运动定律的应用题20套(带答案)
高考物理牛顿运动定律的应用题20套(带答案)一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物体在水平面上运动的加速度大小a 1; (2)物体运动到B 处的速度大小v B ; (3)物体在斜面上运动的时间t .【答案】(1)4m/s 2 (2)8m/s (3)2.4s 【解析】 【分析】(1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间. 【详解】(1)在水平面上,根据牛顿第二定律得:1F mg ma μ-=代及数据解得:214/a m s =(2)根据运动学公式:2102B v a s =代入数据解得:8/B v m s =(3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得:23737mgsin mgcos ma μ︒+︒=①物体沿斜面向上运动的时间:22Bv t a =② 物体沿斜面向上运动的最大位移为:222212s a t = ③因3737mgsin mgcos μ︒>︒,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动根据牛顿第二定律得:33737mgsin mgcos ma μ︒-︒=④ 物体沿斜面下滑的时间为:223312s a t =⑤ 物体在斜面上运动的时间:23t t t =+⑥联立方程①-⑥代入数据解得:()2312 2.4t t t s s =+=+≈ 【点睛】本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上的总时间,不是上滑时间.3.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。
高考物理牛顿运动定律题20套(带答案)
高考物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度. (2)小物块离开传送带时的速度大小. 【答案】(1)1.25m;6m (2)55/5m s 【解析】 【分析】 【详解】(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带向下的分力sin 37mg o,在传送带方向,对小物块根据牛顿第二定律有:cos37sin 37mg mg ma μ-=o o解得:20.4/a m s =小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度为0时没有滑落,根据运动公式有:2112v x a=解得:1 1.25x m =,12Lx <,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m =小物块向下滑动的时间为11=v t a传送带运动的距离101s v t = 联立解得15s m =小物块相对传送带运动的距离11x s x ∆=+解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ; (2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动 设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:22122L v a x ⎛⎫=+ ⎪⎝⎭解得:255/v m s =20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55/m s .2.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.3.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t =5s 时离地面的高度h ; (2)当无人机悬停在距离地面高度H =100m 处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落到地面时的速度v ;(3)接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t 1.【答案】(1)75m (2)40m/s (355s 【解析】 【分析】 【详解】(1)由牛顿第二定律 F ﹣mg ﹣f=ma 代入数据解得a=6m/s 2上升高度代入数据解得 h=75m . (2)下落过程中 mg ﹣f=ma 1 代入数据解得落地时速度 v 2=2a 1H , 代入数据解得 v=40m/s(3)恢复升力后向下减速运动过程 F ﹣mg+f=ma 2 代入数据解得设恢复升力时的速度为v m ,则有由 v m =a 1t 1 代入数据解得.4.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:(1)滑块A 的加速度大小a A ; (2)相遇前瞬间,恒力F 2的功率P .【答案】(1)2A 8m/s a =;(2)50W P =【解析】 【详解】(1)A 、B 受力如图所示:A 、B 分别向下、向上做匀加速直线运动,对A : 水平方向:N 1F F = 竖直方向:A A A m g f m a -= 且:N f F μ=联立以上各式并代入数据解得:2A 8m/s a =(2)对A 由位移公式得:212A A x a t = 对B 由位移公式得:212B B x a t =由位移关系得:B A x h x =- 由速度公式得B 的速度:B B v a t = 对B 由牛顿第二定律得:2B B B F m g m a -= 恒力F 2的功率:2B P F v = 联立解得:P =50W5.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5m a g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-=木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.6.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+ 由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:13/2max c v v s ==同理得:/min v s =0//s v s ≤≤7.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m 【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgs inθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.8.一长木板静止在水平地面上,木板长5l m =,小茗同学站在木板的左端,也处于静止状态,现小茗开始向右做匀加速运动,经过2s 小茗从木板上离开,离开木板时小茗的速度为v=4m/s ,已知木板质量M =20kg ,小茗质量m =50kg ,g 取10m/s 2,求木板与地面之间的动摩擦因数μ(结果保留两位有效数字).【答案】0.13 【解析】 【分析】对人分析,由速度公式求得加速度,由牛顿第二定律求人受到木板的摩擦力大小;由运动学的公式求出长木板的加速度,由牛顿第二定律求木板与地面之间的摩擦力大小和木板与地面之间的动摩擦因数. 【详解】对人进行分析,由速度时间公式:v=a 1t 代入数据解得:a 1=2m/s 2 在2s 内人的位移为:x 1=2112a t 代入数据解得:x 1=4m由于x 1=4m <5m ,可知该过程中木板的位移:x 2=l-x 1=5-4=1m 对木板:x 2=2212a t可得:a 2=0.5m/s 2对木板进行分析,根据牛顿第二定律:f-μ(M+m )g=Ma 2 根据牛顿第二定律,板对人的摩擦力f=ma 1 代入数据解得:f=100N 代入数据解得:μ=90.1370≈. 【点睛】本题主要考查了相对运动问题,应用牛顿第二定律和运动学公式,再结合位移间的关系即可解题.本题也可以根据动量定理解答.9.一种巨型娱乐器械可以使人体验超重和失重.一个可乘十多个人的环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下.落到一定位置时,制动系统启动,到地面时刚好停下.已知座舱开始下落时的高度为75m ,当落到离地面30m 的位置时开始制动,座舱均匀减速.重力加速度g 取102/m s ,不计空气阻力. (1)求座舱下落的最大速度; (2)求座舱下落的总时间;(3)若座舱中某人用手托着重30N 的铅球,求座舱下落过程中球对手的压力. 【答案】(1)30m/s (2)5s .(3)75N . 【解析】试题分析:(1)v 2=2gh; v m =30m/s⑵座舱在自由下落阶段所用时间为:2112h gt =t 1=3s 座舱在匀减速下落阶段所用的时间为:t 2=2hv ==2s 所以座舱下落的总时间为:t =t 1+t 2=5s⑶对球,受重力mg 和手的支持力N 作用,在座舱自由下落阶段,根据牛顿第二定律有mg-N=mg解得:N=0根据牛顿第三定律有:N′=N=0,即球对手的压力为零在座舱匀减速下落阶段,根据牛顿第二定律有mg-N=ma根据匀变速直线运动规律有:a=222vh-=-15m/s2解得:N=75N(2分)根据牛顿第三定律有:N′=N=75N,即球对手的压力为75N考点:牛顿第二及第三定律的应用10.如图所示,质量1m kg=的小球套在细斜杆上,斜杆与水平方向成30α=o角,球与杆之间的滑动摩擦因数36μ=,球在竖直向上的拉力20F N=作用下沿杆向上滑动.(210/g m s=)求:(1)求球对杆的压力大小和方向;(2)小球的加速度多大;(3)要使球以相同的加速度沿杆向下加速运动,F应变为多大.【答案】(1)53N方向垂直于杆向上(2)22.5m/s(3) 0N【解析】(1)小球受力如图所示:建立图示坐标,沿y方向,有:(F−mg)cos30∘−FN=0解得:FN=53N根据牛顿第三定律,球对杆的压力大小为3N,方向垂直于杆向上.(2)沿x方向由牛顿第二定律得(F−mg)sin30∘−f=ma而f=μFN解得:a=2.5m/s2(3)沿y方向,有:(mg −F)cos30∘−FN=0沿x方向由牛顿第二定律得(mg −F)sin30∘−f=ma而f=μFN解得:F=0N。
高一物理牛顿运动定律练习及答案.
相关习题:(牛顿运动定律)一、牛顿第一定律练习题一、选择题1.下面几个说法中正确的是[ ]A.静止或作匀速直线运动的物体,一定不受外力的作用B.当物体的速度等于零时,物体一定处于平衡状态C.当物体的运动状态发生变化时,物体一定受到外力作用D.物体的运动方向一定是物体所受合外力的方向2.关于惯性的下列说法中正确的是[ ]A.物体能够保持原有运动状态的性质叫惯性B.物体不受外力作用时才有惯性C.物体静止时有惯性,一开始运动,不再保持原有的运动状态,也就失去了惯性D.物体静止时没有惯性,只有始终保持运动状态才有惯性3.关于惯性的大小,下列说法中哪个是正确的?[ ]A.高速运动的物体不容易让它停下来,所以物体运动速度越大,惯性越大B.用相同的水平力分别推放在地面上的两个材料不同的物体,则难以推动的物体惯性大C.两个物体只要质量相同,那么惯性就一定相同D.在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小4.火车在长直的轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到原处,这是因为[ ]A.人跳起后,车厢内空气给他以向前的力,带着他随火车一起向前运动B.人跳起的瞬间,车厢的地板给人一个向前的力,推动他随火车一起运动C.人跳起后,车继续前进,所以人落下必然偏后一些,只是由于时间很短,偏后的距离不易观察出来D.人跳起后直到落地,在水平方向上人和车具有相同的速度5.下面的实例属于惯性表现的是[ ]A.滑冰运动员停止用力后,仍能在冰上滑行一段距离B.人在水平路面上骑自行车,为维持匀速直线运动,必须用力蹬自行车的脚踏板C.奔跑的人脚被障碍物绊住就会摔倒D.从枪口射出的子弹在空中运动6.关于物体的惯性定律的关系,下列说法中正确的是[ ]A.惯性就是惯性定律B.惯性和惯性定律不同,惯性是物体本身的固有属性,是无条件的,而惯性定律是在一定条件下物体运动所遵循的规律C.物体运动遵循牛顿第一定律,是因为物体有惯性D.惯性定律不但指明了物体有惯性,还指明了力是改变物体运动状态的原因,而不是维持物体运动状态的原因7.如图所示,劈形物体M的各表面光滑,上表面水平,放在固定的斜面上.在M的水平上表面放一光滑小球m,后释放M,则小球在碰到斜面前的运动轨迹是[ ] A.沿斜面向下的直线B.竖直向下的直线C.无规则的曲线D.抛物线二、填空题8.行驶中的汽车关闭发动机后不会立即停止运动,是因为____,汽车的速度越来越小,最后会停下来是因为____。
高考物理牛顿运动定律的应用题20套(带答案)及解析
高考物理牛顿运动定律的应用题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。
已知木板与物块间动摩擦因数μ1=3,木板与传送带间的动摩擦因数μ2=34,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。
(1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。
【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】(1)对小木块受力分析如图甲:木块重力沿斜面的分力:1sin 2mg mg α=斜面对木块的最大静摩擦力:13cos 4m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态;(2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则1cos sin mg mg ma μαα-=木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()99.0N 8m F M m g =+=(3)因为F=10N>9N ,所以两者发生相对滑动对小木块有:21cos sin 2.5m/s a g g μαα=-=对长木棒受力如图丙所示()21sin cos cos F Mg M m g mg Ma αμαμα--+-'=解得24.5m/s a =' 由几何关系有:221122L a t at =-' 解得1t s =全过程中产生的热量有两处,则()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα⎛⎫=+=+++ ⎪⎝⎭解得:12J Q =。
高考物理牛顿运动定律题20套(带答案)含解析
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.一长木板置于粗糙水平地面上,木板右端放置一小物块,如图所示。
木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.4。
t=0时刻开始,小物块与木板一起以共同速度向墙壁运动,当t=1s 时,木板以速度v 1=4m/s 与墙壁碰撞(碰撞时间极短)。
碰撞前后木板速度大小不变,方向相反。
运动过程中小物块第一次减速为零时恰好从木板上掉下。
已知木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2。
求:(1)t=0时刻木板的速度;(2)木板的长度。
【答案】(1)05/v m s =(2)163l m =【解析】【详解】(1)对木板和物块:()()11M m g M m a μ+=+令初始时刻木板速度为0v 由运动学公式:101v v a t =+代入数据求得:0=5m/s v(2)碰撞后,对物块:22mg ma μ= 对物块,当速度为0时,经历时间t ,发生位移x 1,则有21112v x a =,112v x t = 对木板,由牛顿第二定律:()213mg M m g Ma μμ++=对木板,经历时间t ,发生位移x 2221312x v t a t =- 木板长度12l x x =+代入数据,16=m 3l2.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N;(3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆=【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+ 解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5ma g s μ==,且方向向右 板产生的加速度220.5mgm a s M μ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -= 此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--= 故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-= 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-= 代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ;(3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1,则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--=''3210.5m v v at s=-= 碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-= 故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.3.如图所示,小红和妈妈利用寒假时间在滑雪场进行滑雪游戏。
高中物理牛顿运动定律的应用综合题专题训练含答案
高中物理牛顿运动定律的应用综合题专题训练含答案姓名:__________ 班级:__________考号:__________一、综合题(共20题)1、(10分)物体以12m/s的初速度从斜面底端冲上倾角为37°的斜坡,已知物体与斜面间的动摩擦因数为0.25,g取10m/s2,求:sin37°=0.6,cos37°=0.8(1)物体沿斜面上滑的最大位移;(2)物体再滑到斜面底端时的速度大小;(3)物体在斜面上运动的时间。
2、(10分)某航空公司的一架客机,在正常航线上做水平飞行时,突然受到强大的垂直气流的作用,使飞机在10 s内下降高度为1800 m,造成众多乘客和机组人员的伤害事故,如果只研究在竖直方向上的运动,且假设这一运动是匀变速直线运动.(1)求飞机在竖直方向上产生的加速度多大?(2)试估算质量为65 kg的乘客所系安全带必须提供多大拉力才能使乘客不脱离座椅.3、(10分)在水平地面上有一质量为2kg的物体,物体在水平拉力F的作用下由静止开始运动,10s后拉力大小减为F/3,该物体的运动速度随时间t的变化规律如图所示.求:(1)物体受到的拉力F的大小.(2)物体与地面之间的动摩擦因素.(g取10m/s2)4、(8分)楼梯口一倾斜的天花板与水平地面成,一装潢工人手持木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F=10N,刷子的质量为,刷子可视为质点,刷子与板间的动摩擦因数为0.5,天花板长为,取,试求:(1)刷子沿天花板向上的加速度(2)工人把刷子从天花板底端推到顶端所用的时间5、(8分)如图所示,用水平力F将一个木块压在竖直墙壁上,已知木块重G=6N,木块与墙壁的动摩擦因数=0.25。
则:(1)当F=25N时,木块静止不动,木块受到的摩擦力是多大?(2)当F=35N时,木块静止仍不动,木块受到的摩擦力是多大?(3)当F=10N时,木块沿竖直墙壁滑动,木块受到的摩擦力是多大?6、(10分)如图 10 所示,质量m= 2kg 的物体静止在水平地面上,物体与地面间的动摩擦因数μ = 0.75。
物理牛顿运动定律题20套(带答案)
物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。
某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。
重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。
【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t=时间内,木板向右减速运动,其向右运动的位移为:1100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。
【高考物理必刷题】牛顿运动定律(后附答案解析)
上的张力先增大后减小上的张力先增大后减小1D.的大小不变,而方向与角,物块也恰好做匀速直线运动,物块与桌面间的动摩擦因数为()2由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)3实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对4表示滑块下滑的加速度大小,用表示挡光片前端到达光电门时滑块的瞬时速度大的关系式为.,.(结果保留3位有效数字)56,放在静止于水平地面上的木板的两;木板的质量为,与地面间的动摩擦因数为两滑块开始相向滑动,初速度大小均为.、相遇时,与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小为.求:开始运动时,两者之间的距离.1上的张力先增大后减小上的张力先增大后减小的合力大小方向不变,且与先增后减,始终变大.2D.;由,可知摩擦力为:,代入数据为:联立可得:,故C正确.故选C.相互作用共点力平衡多个力的动态平衡由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)34实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对56开始运动时,两者之间的距离.考点时和板共速和板共速后得加速度:再经过,和板共速,(2)牛顿运动定律牛顿运动定律专题滑块问题。
高中物理牛顿运动定律练习题(含解析)
高中物理牛顿运动定律练习题学校:___________姓名:___________班级:___________一、单选题1.关于电流,下列说法中正确的是( )A .电流跟通过截面的电荷量成正比,跟所用时间成反比B .单位时间内通过导体截面的电量越多,导体中的电流越大C .电流是一个矢量,其方向就是正电荷定向移动的方向D .国际单位制中,其单位“安培”是导出单位2.2000年国际乒联将兵乓球由小球改为大球,改变前直径是0.038m ,质量是2.50g ;改变后直径是0.040m ,质量是2.70g 。
对此,下列说法正确的是( )A .球的直径大了,所以惯性大了,球的运动状态更难改变B .球的质量大了,所以惯性大了,球的运动状态更难改变C .球的直径大了,所以惯性大了,球的运动状态更容易改变D .球的质量大了,所以惯性大了,球的运动状态更容易改变3.在物理学的探索和发现过程中常用一些方法来研究物理问题和物理过程,下列说法错误的是( )A .在伽利略研究运动和力的关系时,采用了实验和逻辑推理相结合的研究方法B .在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,再把各小段位移相加,这里运用了理想化模型法C .在不需要考虑物体本身的大小和形状时用质点来代替物体,运用了理想化模型法D .比值定义包含“比较”的思想,例如,在电场强度的概念建立过程中,比较的是相同的电荷量的试探电荷受静电力的大小4.下列说法中正确的是( )A .物体做自由落体运动时没有惯性B .物体速度小时惯性小,速度大时惯性大C .汽车匀速行驶时没有惯性,刹车或启动时才有惯性D .惯性是物体本身的属性,无论物体处于何种运动状态,都具有惯性5.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为6N 时,物体处于静止状态。
若小车以20.8m /s 的加速度向右加速运动(取210m /s g ),则( )A .物体A 受到的弹簧拉力不变B .物体相对小车向左运动C .物体A 相对小车向右运动D .物体A 受到的摩擦力增大6.下列说法中错误的是( ) A .沿着一条直线且加速度存在且不变的运动,叫做匀变速直线运动B .为了探究弹簧弹性势能的表达式,把拉伸弹簧的过程分为很多小段,拉力在每一小段可以认为是恒力,用各小段做功的代数和代表弹力在整个过程所做的功,物理学中把这种研究方法叫做微元法C .从牛顿第一定律我们得知,物体都要保持它们原来的匀速直线运动或静止的状态,或者说,它们都具有抵抗运动状态变化的“本领”D .比值定义法是一种定义物理量的方法,即用两个已知物理量的比值表示一个新的物理量,如电容的定义式Q C U=,表示C 与Q 成正比,与U 成反比,这就是比值定义的特点7.一辆货车运载着圆柱形光滑的空油桶。
高中物理牛顿运动定律题20套(带答案)及解析.docx
高中物理牛顿运动定律题20 套( 带答案 ) 及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体 B 和质量为m=0.2kg 的物体 C,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体 C 竖直向下缓慢压下一段距离后释放,物体 C 就上下做简谐运动,且当物体 C 运动到最高点时,物体 B 刚好对地面的压力为 0.已知重力加速度大小为g=10m/s2.试求:①物体 C 做简谐运动的振幅;②当物体 C 运动到最低点时,物体 C 的加速度大小和此时物体 B 对地面的压力大小.【答案】① 0.07m ②35m/s 214N【解析】【详解】①物体 C 放上之后静止时:设弹簧的压缩量为x0.对物体 C,有: mg kx0解得: x0=0.02m设当物体 C 从静止向下压缩x 后释放,物体 C 就以原来的静止位置为平衡位置上下做简谐运动,振幅 A=x当物体 C 运动到最高点时,对物体B,有:Mg k( A x0)解得: A=0.07m②当物体 C 运动到最低点时,设地面对物体 B 的支持力大小为F,物体 C 的加速度大小为a.x0 )mg ma对物体,有: k ( AC解得: a=35m/s 2对物体 B,有:F Mg k( A x0 )解得: F=14N所以物体 B 对地面的压力大小为14N2.在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。
如图所示,水平传送带匀速运行速度为v=2m/s ,传送带两端AB 间距离为 s0=10m,传送带与行李箱间的动摩擦因数μ=0.2,当质量为 m=5kg 的行李箱无初速度地放上传送带 A 端后,传送到 B 端,重力加速度 g 取 10m/ 2;求:(1)行李箱开始运动时的加速度大小a;(2)行李箱从 A 端传送到 B 端所用时间t ;(3)整个过程行李对传送带的摩擦力做功W。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理牛顿运动定律专项训练及答案一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。
某时刻速度为v0= 2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v1= 4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v2= 1m/s,方向向左。
重力加速度g= 10m/s2,试求:(1)木板与滑块间的动摩擦因数μ1(2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。
【答案】( 1)0.3( 2)1(3)2.75m 20【解析】【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解;(2)对木板分析,先向右减速后向左加速,分过程进行分析即可;(3)分别求出二者相对地面位移,然后求解二者相对位移;【详解】(1)对小滑块分析:其加速度为:a1 v2 v1 1 4 m / s2 3m / s2,方向向右t 1对小滑块根据牛顿第二定律有:1mg ma1,可以得到: 1 0.3 ;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:v01 mg22mg mt1然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:1 mg2 2mgm v2t2而且 t1 t2 t 1s联立可以得到:1t1 0.5s,t2 0.5s ;2 ,20(3)在t1 0.5s时间内,木板向右减速运动,其向右运动的位移为:0v0x1t10.5m ,方向向右;在 t20.5s 时间内,木板向左加速运动,其向左加速运动的位移为:v2 0x2 t2 0.25m ,方向向左;2在整个 t 1s 时间内,小滑块向左减速运动,其位移为:x v1v2 t 2.5m ,方向向左2则整个过程中滑块相对木板的位移大小为:x x x1 x2 2.75m 。
【点睛】本题考查了牛顿第二定律的应用,分析清楚小滑块与木板的运动过程和受力情况是解题的前提,应用牛顿第二定律与运动学公式即可解题。
2.如图所示为工厂里一种运货过程的简化模型,货物( 可视为质点质量m 4kg ,以初速度 v0 10m / s 滑上静止在光滑轨道OB 上的小车左端,小车质量为M 6kg ,高为h0.8m 。
在光滑的轨道上A处设置一固定的障碍物,当小车撞到障碍物时会被粘住不动,而货物继续运动,最后恰好落在光滑轨道上的 B 点。
已知货物与小车上表面的动摩擦因数0.5 ,货物做平抛运动的水平距离AB 长为1.2m,重力加速度 g 取10m / s2。
1求货物从小车右端滑出时的速度;2 若已知OA段距离足够长,导致小车在碰到的长度是多少?【答案】 (1)3m/s ; (2)6.7m【解析】【详解】A 之前已经与货物达到共同速度,则小车1 设货物从小车右端滑出时的速度为v x,滑出之后做平抛运动,在竖直方向上:h 1gt 2,2水平方向:l AB v x t解得:v x 3m / s2在小车碰撞到障碍物前,车与货物已经到达共同速度,以小车与货物组成的系统为研究对象,系统在水平方向动量守恒,由动量守恒定律得:mv0 m M v共,解得: v共4m / s ,由能量守恒定律得:Q mgs相对1mv02 1 m M v共2,2 2解得: s相对6m ,当小车被粘住之后,物块继续在小车上滑行,直到滑出过程,对货物,由动能定理得:mgs' 1mv x21mv共2,2 2解得: s' 0.7m ,车的最小长度:故L s相对s' 6.7m ;3.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量 m=2 kg的无人机,其动力系统所能提供的最大升力F=36N,运动过程中所受空气阻力大小恒为f=4 N. (g取10 m / s2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t=5s时离地面的高度(2)当无人机悬停在距离地面高度H=100m处,由于动力设备故障,无人机突然失去升力而h;坠落.求无人机坠落到地面时的速度v;(3)接 (2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t1.【答案】( 1) 75m (2) 40m/s ( 3)5 5s 3【解析】【分析】【详解】(1)由牛顿第二定律F﹣mg﹣ f=ma代入数据解得a=6m/s 2上升高度代入数据解得h=75m.(2)下落过程中 mg﹣ f=ma1代入数据解得落地时速度v2=2a1H,代入数据解得v=40m/s(3)恢复升力后向下减速运动过程F﹣mg+f=ma 2 代入数据解得设恢复升力时的速度为v m ,则有由 v m =a 1t 1代入数据解得.4.5s 后系统动量守恒,最终达到相同速度v ′,则 mv 1 Mv 2m M v解得 v ′=0.6m/s ,即物块和木板最终以 0.6m/s 的速度匀速运动 .(3)物块先相对木板向右运动,此过程中物块的加速度为a 1,木板的加速度为a 2t 1,经时间物块和木板具有相同的速度v ′′, 对物块受力分析: mg ma 1 对木板: F mgMa 2由运动公式: vv 0 a 2t 1v a 1t 1解得: t 11s v2m / s3 3此过程中物块相对木板前进的距离:解得 s=0.5m ;sv 0 v t 1 vt 122t 1 后物块相对木板向左运动,这再经 t 2 时间滑落,此过程中板的加速度a 3,物块的加速度仍为 a 1 ,对木板: F - mg Ma 3由运动公式:1 21 2v t 22a 1t2v t 22a 3t 2s解得t 23 s3故经过时间 t t 1 t 23 130.91s 物块滑落 .5. 如图为高山滑雪赛道,赛道分为斜面与水平面两部分,其中斜面部分倾角为 37°,斜面与水平面间可视为光滑连接。
某滑雪爱好者连滑雪板总质量为75kg (可视为质点)从赛道顶端静止开始沿直线下滑,到达斜面底端通过测速仪测得其速度为30m/s 。
然后在水平赛道上沿直线继续前进180m 静止。
假定滑雪者与斜面及水平赛道间动摩擦因数相同,滑雪者通过斜面与水平面连接处速度大小不变,重力加速度为g=10m/s 2 ,sin37 =0°.6, cos37 =0°.8.求:(1)滑雪者与赛道间的动摩擦因数;(2)滑雪者在斜面赛道上受到的合外力;(3)滑雪者在斜面滑雪赛道上运动的时间及斜面赛道的长度【答案】(1) 0.25( 2)300N(3)7.5s,112.5m【解析】【分析】根据匀变速直线运动的速度位移公式求出匀减速直线运动的加速度大小,根据牛顿第二定律求出滑雪者与赛道间的动摩擦因数;根据滑雪者的受力求出在斜面滑道上所受的合外力;根据牛顿第二定律求出在斜面滑道上的加速度,结合速度时间公式求出运动的时间,根据速度位移公式求出斜面赛道的长度;解: (1)水平面匀减速v2=2a2s得a2 =2.5m/s 2由牛顿第二定律:μmg=ma2得:μ=0.25(2) 滑雪者在斜面赛道上受到的合外力F=mg sin37 -μ°mgcos37 =300N°(3)根据牛顿第二定律得在斜面滑道上的加速度由得:由v2 =2as 得6.如图所示,小红和妈妈利用寒假时间在滑雪场进行滑雪游戏。
已知雪橇与水平雪道间的动摩擦因数为μ=0.1,妈妈的质量为M= 60kg,小红和雪橇的总质量为m= 20kg。
在游戏过程中妈妈用大小为F= 50N,与水平方向成37°角的力斜向上拉雪橇。
(g10m / s2,sin37 =°0.6, cos37 =°0.8)求:(1)小红的加速度大小和妈妈与雪道间的摩擦力大小;(2)若要使小红和雪橇从静止开始运动并能滑行到前面43m 处,求妈妈拉力作用的最短距离。
【答案】 (1) 1.15 m / s2,109N (2) 20m【解析】【分析】根据“妈妈用大小为 F = 50N ,与水平方向成 37°角的力斜向上拉雪橇”、“小红的加速度大小和妈妈与雪道间的摩擦力大小”、“若要使小红和雪橇从静止开始运动并能滑行到前面 43m 处,求妈妈拉力作用的最短距离”可知,本题考查牛顿第二定律和动能定理,根据牛顿第二定律和动能定理得规律,分别对小红和妈妈受力分析,列出牛顿第二定律方程和动能定理方程,求解即可。
【详解】(1)对小红和雪橇受力分析如图甲所示,对妈妈受力分析如图乙所示。
对于小红和雪橇由牛顿第二定律可得:N 1 F sin 37 mg 0( 1) F cos37N 1 ma(2)联立解得: a 1.15m / s 2 ( 3) 对于妈妈由牛顿第二定律可得:f F cos37Ma( 4)解得: f 109N( 5)( 2)由题意可得,当小红和雪橇到达前面 43m 刚好停止时,妈妈拉力作用的距离最短。
对小红和雪橇由动能定理可得:maxmg(s x) 0(6)解得: x 20m ( 7)【点睛】分别对小红和妈妈受力分析,根据牛顿第二定律列出方程,联立求解即可;求妈妈拉力作用的最短距离,则到达43m 处时,速度为零,根据动能定理列方程,求解即可。
7. 质量 M9kg 、长 L 1m 的木板在动摩擦因数1 0.1 的水平地面上向右滑行,当速度 v 2m/s 时,在木板的右端轻放一质量 m 1kg 的小物块如图所示.当小物块刚好滑到木板左端时,物块和木板达到共同速度.取g 10m/s 2,求:(1)从木块放到木板上到它们达到相同速度所用的时间 t ;(2)小物块与木板间的动摩擦因数 2 .【答案】( 1) 1s ( 2)0.08【解析】【分析】【详解】(1)设木板在时间t 内的位移为 x1 ;铁块的加速度大小为a2,时间 t 内的位移为 x2 则有x1 v0t 1a1t 2 2x2 1a2 t2 2x1 L x2又v0 a1t a2 t代入数据得t=1s(2)根据牛顿第二定律,有1 (M m) g2 mg Ma12mg ma2解得20.088.在水平力 F 作用下,质量为0.4kg 的小物块从静止开始沿水平地面做匀加速直线运动,经2s 运动的距离为 6m ,随即撤掉 F,小物块运动一段距离后停止.已知物块与地面之间的动摩擦因数μ=0.5,g=10m/s 2.求:(1)物块运动的最大速度;(2) F 的大小;(3)撤去 F 后,物块克服摩擦力做的功【答案】(1) 6m/s (2) 3.2N( 3) 7.2J【解析】【分析】(1)物块做匀加速直线运动,运动 2s 时速度最大.已知时间、位移和初速度,根据位移等于平均速度乘以时间,求物块的最大速度.(2)由公式v=at 求出物块匀加速直线运动的加速度,由牛顿第二定律求 F 的大小.(3)撤去 F 后,根据动能定理求物块克服摩擦力做的功.【详解】v(1)物块运动2s 时速度最大.由运动学公式有:x=t2可得物块运动的最大速度为:2x 2 66m / s v2t(2)物块匀加速直线运动的加速度为:v 62.a= =3m/st 2设物块所受的支持力为N,摩擦力为f,根据牛顿第二定律得:F-f=maN-mg=0,又 f= μN联立解得: F=3.2N1(3)撤去 F 后,根据动能定理得:-W f =0-mv22可得物块克服摩擦力做的功为:W f =7.2J【点睛】本题考查了牛顿第二定律和运动学公式的综合运用,知道加速度是联系力学和运动学的桥梁,要注意撤去 F 前后摩擦力的大小是变化的,但动摩擦因数不变.9.功能关系贯穿整个高中物理.(1)如图所示,质量为 m 的物体,在恒定外力 F 作用下沿直线运动,速度由 v0变化到 v 时,发生的位移为 x.试从牛顿第二定律及运动学公式推导出动能定理.上述推导的结果对于物体受变力作用、或者做曲线运动时是否成立?说明理由.(2)如图所示,固定的水平光滑金属导轨,间距为L,右端接有阻值为R 的电阻,处在方向竖直向外、磁感应强度为 B 的匀强磁场中,质量为 m 的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略.初始时刻,弹簧恰处于自然长度.现给导体棒一个水平向右的初速度v0,在沿导轨运动的过程中,导体棒始终与导轨垂直并保持良好接触.导体棒速度第一次为零时,弹簧的弹性势能为Ep,则在这一过程中:①直接写出弹簧弹力做功W 弹与弹性势能变化Ep 的关系,进而求W 弹;②用动能定理求安培力所做的功W 安.【答案】 (1)动能定理无论物体所受力是否为恒力、运动轨迹是否为直线均适用.简言之,动能定理是经典力学范围内的普适规律.(2) W弹E p( E p 0)E p(3)W安 E p 1 mv022【解析】【详解】(1)由牛顿第二定律F=ma及运动学公式v2v022ax可得 Fx1 mv2 1 mv 022 2当物体受变力作用、或者做曲线运动时,可以把过程分解成许多小段,认为物体在每小段运动中受到的是恒力、运动轨迹是直线,这样对每一段用动能定理,累加后也能得到同样的结果,所以动能定理无论物体所受力是否为恒力、运动轨迹是否为直线均适用.简言之,动能定理是经典力学范围内的普适规律.(2) W 弹 E p进而 W 弹E p (E p 0) E p .(3)由动能定理: W 安 W 弹0 1mv 022解得: W 安E p1mv 02210. 如图所示,航空母舰上的水平起飞跑道长度L=160m .一架质量为4m=2.0×10 kg 的飞机从跑道的始端开始,在大小恒为 5F=1.2×10N 的动力作用下,飞机做匀加速直线运动,在运动过程中飞机受到的平均阻力大小为F f =2× 4g=10m/s 2.求:10N .飞机可视为质点,取( 1)飞机在水平跑道运动的加速度大小;( 2)若航空母舰静止不动,飞机加速到跑道末端时速度大小;( 3)若航空母舰沿飞机起飞的方向以 10m/s 匀速运动,飞机从始端启动到跑道末端离开.这段时间内航空母舰对地位移大小.【答案】( 1) a 5.0m / s 2 ( 2) v 40m / s ( 3) x 2 80m【解析】 【分析】 【详解】(1)飞机在水平跑道上运动时,水平方向受到推力与阻力作用,设加速度大小为 a ,由牛顿第二定律可得F 合=F ﹣F f =ma代入数据得12a =5.0 m/s(2)由运动学公式可知v 2=2aL代入数据得飞机到达倾斜跑道末端时的速度大小v=40 m/s(3)对于飞机x 1 v 0t 1 at 22对于航空母舰有x2=v0t由几何关系:x1﹣ x2=L即有1 at2 L2代入数据解得t=8s.飞机离开航空母舰时,航空母舰的对地位移大小x2=v0t=80m.【点评】本题考查了牛顿第二定律和运动学公式的基本运用,知道加速度是联系力学和运动学的桥梁.。