华师大版初一下多边形知识点归纳修订版
初中数学华东师大七年级下册多边形多边形及其内角和PPT
③为什么要乘以180°
2、n边形一共有多少条对角线?
B
C
G F E
D
例1.求正五边形的每一个内角 等于多少度?
分析: n边形的内角和公式为(n-2) 180 ° , 现在知道这个多边形的边数是5代入这个公式即可求出内角和. 且已知正多边形的每一个内角都相等所以每个内角的度数就用内角和
除以它的内角个数 即(n-2)×180°/ n
复习: 1、什么叫三角形?
由 三条 不在同一条直线上的线段首尾顺次相接 组成的平面图形叫做 三角形 。 2 三角形的内角和和外角和
三角形内角和180°
三角形外角和360°
我们已经知道什么叫三角形,你能根据三角形 的定义,说出什么叫四边形吗?
四边形是由四条不在同一直线上的线段 首尾顺次连结组成的平面图形。 记为四边形ABCD 或四边形ADCB
三条边相等,三个角也相等的三角形叫做等边三 角形或正三角形。
各个角都相等,各条边也都相等的多边形叫做 正多边形。
正三角形 正四边形 正五边形 (等边三角形)(或正方形)
正六边形
3、多边形的对角线
多边形中连接不相邻两个顶点的线段叫做多边形的
对角线. 线段AC是四边形ABCD的一条对角线
D A
对角线
B C
7
4
5
计算规律
内角 和
1 ×180°
2×1°80 ° 3×180° 4×180°
5×180°
180°
360 ° 540°
720° 900°
… …
… … … … …
n边形
n
n-3
n-2
(n2)×180°
(n-2)×1
第九章多边形小结与复习课件华东师大版七年级数学下册(1)
B. 6cm D. 2cm
4. 三角形周长为 10,其中有两边相等且长为整数, 则第三边长为___4_或___2__.
5. 在等腰三角形 ABC 中,它的两边长分别为 8cm 和 3cm ,则它的周长为__1_9_c_m___.
6. 以线段 3、4、x-5 为边组成三角形,那么 x 的取 值范围是 6 < x < 12 .
瓷砖的铺设
三角形
多角形
三角形的 三边关系
三角形的内角和
多边形的内角和
三角形的外角性质
三角形的外角和
多边形的外角和
用正多边形铺满地面
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
∠A= ∠C,求 △ABC 的
解个:内设角度∠数B .= x° ,则 ∠A = 3x°,∠C = 4x°,
从而 x + 3 x + 4 x = 180º,
解得 x = 22.5°.
即∠B = 22.5°,∠A = 67.5°,∠C = 90°.
9. 如图,△ABC 中,BD 平分∠ABC,∠1=∠2, ∠3 = ∠C,求∠1 的度数.
12
② ∠1=∠2= ∠BAC.
注意:① 三角形的角平分线是线段; ② 三角形三条角平分线全在三角形的内部; ③ 三角形三条角平分线交于三角形内部一点; ④ 用量角器画三角形的角平分线.
3 三角形的内角和与外角和
三角形的内角和定理:三角形的内角和等于 180°.
推论:三角形的一个外角等于与它不相邻的两个内角 的和,并且大于和它不相邻的任何一个内角.
三角形稳定性,四边形具有不稳定性.
5 多边形
如果多边形的各边都相等,各内角也都相等, 那么就称它为正多边形.
华东师大版数学七年级 下第9章多边形知识点复习讲解(全)
认识三角形三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.有关三角形的概念:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.④三角形的外角:三角形的角的一边与另一边的反向延长线组成的角叫做三角形的外角.注意:(1)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.三角形外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.注意:(1)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示.三角形的分类:按角分⎩⎨⎧直角三角形斜三角形⎩⎨⎧锐角三角形钝角三角形按边分⎩⎨⎧不等边三角形(不规则三角形)等腰三角形⎩⎨⎧只有两条边相等的等腰三角形等边三角形锐角三角形 直角三角形 钝角三角形三个角都是锐角 有一个角为直角 有一个角是钝角不等边三角形 等腰三角形 等边三角形 三边不相等 有两条边相等 三条边都相等①锐角三角形:三个内角都是锐角的三角形; ②钝角三角形:有一个内角为钝角的三角形; ③直角三角形:有一个角为90°的三角形。
①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角; ③等边三角形:三边都相等的三角形。
三角形的三线:三角形的中线:三角形的一个顶点与它的对边中点的连线叫三角形的中线.这个角的顶点与交点之间的线段.三角形的角平分线:三角形内角的平分线与对边的交点和这个内角顶点之间的线段叫三角形的角平分线.三角形的高:过三角形顶点作对边的垂线,垂足与顶点间的线段叫做三角形的高.注意:(1)三角形分别有三条高线,三条中线,三条角平分线;(2)任意三角形三条角平分线,三条中线,分别交于一点,且都在三角形的内部;(3)直角三角形的三条高线的交点就是直角顶点,钝角三角形的三条高线的交点在三角形的外部,锐角三角形的三条高线在三角形的内部。
数学七年级下华东师大版多边形复习
1、如图所示:求∠A+∠B+∠C+∠D+∠E 的度数?
A
B 12
C
返回
解:∵∠1= ∠A+ ∠D
E
(三角形的外角等于与它 不相邻的两内角的和)
又∵∠2= ∠B+ ∠E
(三角形的外角等于与它不 D 相邻的两内角的和)
∴ ∠A+∠B+∠C+∠D+∠E
=(∠A+ ∠D)+(∠B+ ∠E)+∠C
=∠1+∠2+∠C =180°
注意:三角形三条高所在的直线交于一点.
课堂练习
练习1 在下图中,正确画出△ABC 中边BC 上高的
是( C ).
A
A
D
(A)
(B)
AC
B A CDB源自( C)(D)DC
BD
C
B
三角形三条重要线段 2、三角形的中线: 在三角形中,连接一个顶 点与它对边的中点的线段叫做三角形的中线.
强调:三角形的三条中线交于三角形内 部一点,三角形三条中线的交点叫做三 角形的重心.
拼在一起的几个多边形的内角加在一起恰 好是一个周角时,就拼成一个平面图形。
A
一、三角形的相关概念:
1、什么叫三角形:
B
C
由不在同一直线上的三条线段首尾顺次相接
所组成的平面图形叫做三角形.
2、顶点: 用一个大写字母表示如A、B、C
3、边:边AB,边BC,边AC
4、角(内角):∠A,∠B,∠C
5、三角形记作:△ABC
三角形三边关系
三角形两边之和大于第三边,两边之差小 于第三边
例 已知一个三角形的两条边长分别为
华师版七年级数学下册 第9章 多边形
第9章 多边形一、基础知识:1、三角形的有关概念:⑴三角形的定义:三角形是由三条不在同一直线上的线段首位顺次连接组成的平面图形。
(注意:三条线段必须不在同一直线上)⑵三角形的表示法及读法。
如图三角形可用符号表示为“△ABC ”,读作:三角形ABC 。
⑶三角形的边:组成三角形的线段叫做三角形的边。
三角形的边有两种记法:一种为边AB 、边BC 、边CA ;另一种为边a 、边b 、边c 。
⑷三角形顶点:三角形中两边的公共端点叫做三角形的顶点。
三角形的顶点用大写的英文字母表示,顶点为A 、B 、C 。
⑸三角形的角:三角形中每两条边所组成的角叫做三角形的内角,简称三角形的角。
如∠BAC 、∠ABC 、∠ACB 都是△ABC 的内角。
(注意:当以A 为顶点的角只有一个时,可简记为∠A ,以某个点为顶点的角多于一个时,不能只用顶点字母表示这个角,如:△ABC 的内角∠ACB 不能记作∠C ,原因是以C 为顶点的角有两个,分别是∠ACB 和∠ACD.) ⑹三角形的外角:三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角。
如图:∠ACD 是△ABC 中与∠ACB 相邻的外角,且它与∠ACB 互补。
2、三角形的分类: ⑴根据角的特点来分:三角形⎪⎩⎪⎨⎧角是钝角角的三角形。
钝角三角形:有一个内角是直角的三角形。
直角三角形:有一个内角都是锐角的三角形。
锐角三角形:所有的内注意:判断一个三角形是何种三角形,只需知道三角形中最大的内角是什么角就可以。
⑵根据边的特点来分:三角形⎪⎩⎪⎨⎧⎩⎨⎧等腰三角形等边三角形:是特殊的形底边和腰不相等的三角等腰三角形:互不相等的三角形不等边三角形:三条边3、三角形的三条重要线段:⑴什么叫三角形的高?三角形的高与垂线有何区别和联系?三角形的高是从三角形的一个顶点向它对边所在的直线作垂线,顶点和垂足之间的线段;而从三角形一个顶点向它对边所在的直线作垂线这条垂线是直线. ⑵什么叫三角形的中线?连结两点的线段与过两点的直线有何区别和联系? 三角形的中线是连结一个顶点和它对边的中点的线段, 而过两点的直线有着本质的不同,一个代表的是线段,另一个却是直线.⑶什么叫三角形的角平分线?三角形的角平分线与角平分线有何区别和联系? 三角形的角平分线是三角形的一个内角平分线与它的对边相交, 这个角顶点与交点之间的线段,而角平分线指的是一条射线.⑷三角形的高、中线和角平分线是代表线段还是代表射线或直线?三角形的高、中线和角平分线都代表线段, 这些线段的一个端点是三角形的一个顶点,另一个端点在这个顶点的对边上.4、三角形的外交和及内外角的关系:⑴三角形的内角和等于180°⑵三角形的外角和等于360°⑶三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角之和;②三角形的一个外角大于任何一个与它不相邻的内角;③三角形的外角与和它相邻的内角互补。
华东师大初中数学七年级下册多边形内角和与外角和(基础)知识讲解
多边形内角和与外角和(基础)知识讲解【学习目标】1.理解多边形的概念;2.掌握多边形内角和与外角和公式;3.灵活运用多边形内角和与外角和公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次连接结所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释: (1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为(3)2n n -; (3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形.知识点二、多边形内角和定理n 边形的内角和为(n-2)·180°(n ≥3).要点诠释:(1)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180n n-°; 知识点三、多边形的外角和多边形的外角和为360°.要点诠释: 凸多边形 凹多边形(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.【典型例题】类型一、多边形的概念1.(2015•重庆校级模拟)如图,正四边形有2条对角线,正五边形有5条对角线,正六边形有9条对角线,则正十边形有()条对角线.A.27 B.35 C.40 D.44【答案】B.【解析】解:当n=10时,==35,即凸十边形的对角线有35条.【总结升华】本题考查了多边形的边数与对角线的条数之间的关系,熟记多边形的边数与对角线的条数的关系式是解决此类问题的关键.举一反三:【变式】过正十二边形的一个顶点有条对角线,一个正十二边形共有条对角线【答案】9,54。
七年级数学下册阶段专题复习第9章多边形课件新版华东师大版
则此三角形的第三边的长可能是( )
A.3cm
B.4cm
C.7cm
D.11cm
【思路点拨】三边关系→确定第三边取值范围→答案
【自主解答】选C.设第三边长为xcm,则由三角形三边关系得
7-3<x<7+3,即4<x<10,因此,只有C选项符合.
【中考集训】 1.(2013·温州中考)下列各组数可能是一个三角形的边长的 是( ) A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11 【解析】选C.∵1+2<4,4+5=9,5+5<11,∴选项A,B, D不可能是一个三角形的边长,而4+6>8,8-6<4,∴选项C 是一个三角形的边长.
考点 1 三角形的三边关系 【知识点睛】 1.三角形的三边关系: (1)任意两边之和大于第三边. (2)任意两边之差小于第三边. 2.判断三条线段能否围成三角形的方法: (1)将两条较短线段之和与最长的线段比较. (2)将最长边与最短边之差与第三条线段比较.
【例1】(2012·海南中考)一个三角形的两边长分别为3cm和7cm,
谢谢观赏
You made my day!
⑥_三__角__形__的__一__个__外__角__大__于__任__何__一__个__与__它__不__相__邻__的__内__角__; ⑦_三__角__形__的__外__角__和__等__于__3_6_0_°__; ⑧_大__于__; ⑨_小__于__; ⑩_由__n_条__不__在__同__一__直__线__上__的__线__段__首__尾__顺__次__连__结__组__成__的__平__面__图__形__; ⑪_(_n_-_2_)_·__1_8_0_°__; ⑫3_6_0_°___; ⑬_各__边__都__相__等__、__各__角__也__都__相__等__的__多_边__形___.
华东师大初中数学七年级下册《多边形》全章复习与巩固—知识讲解(提高)
《多边形》全章复习与巩固(提高)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解它们这些性质在生产、生活中的广泛应用.5.理解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和公式,并能灵活运用公式解决有关问题.体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边. 要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线在三角形中,连接它的一个顶点与它的对边中点的线段叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n 边形共有(3)2n n - 条对角线. 要点五、多边形的内角和及外角和公式1.内角和公式:n 边形的内角和为(n -2)·180°(n≥3,n 是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有 关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有 ( ).A .6个B .5个C .4个D .3个【答案】D ;【解析】x 的取值范围:511x <<,又x 为偶数,所以x 的值可以是6, 8, 10,故x 的值有3个.【总结升华】不要忽略“x 为偶数”这一条件.举一反三:【变式】三角形的三边长为2,x-3,4,且都为整数,则共能组成 个不同的三角形.当x 为 时,所组成的三角形周长最大.【答案】三,8;提示:由三角形两边之和大于第三边,两边之差小于第三边,有4-2<x-3<4+2,解得5<x <9,因为x 为整数,故x 可取6,7,8;当x=8时,组成的三角形周长最大为11.2.如图,O 是△ABC 内一点,连接OB 和OC .(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【高清课堂:与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【高清课堂:与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=3BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少? 【思路点拨】按△ABC为锐角三角形和钝角三角形两种情况,分类讨论.【答案与解析】解:分两种情况讨论:(1)当△ABC为锐角三角形时,如图所示,在△ABD中,∵ BD是AC边上的高(已知),∴∠ADB=90°(垂直定义).又∵∠ABD=30°(已知),∴∠A=180°-∠ADB-∠ABD=180°-90°-30°=60°.又∵∠A+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=120°,又∵∠ABC=∠C,∴∠C=60°.(2)当△ABC为钝角三角形时,如图所示.在直角△ABD中,∵∠ABD=30°(已知),所以∠BAD=60°.∴∠BAC=120°.又∵∠BAC+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=60°.∴∠C=30°.综上,∠C的度数为60°或30°.【总结升华】在解决无图的几何题的过程中,只有正确作出图形才能解决问题.这就要求解答者必须具备根据条件作出图形的能力;要注意考虑图形的完整性和其他各种可能性,双解和多解问题也是我们在学习过程中应该注意的一个重要环节.举一反三:【高清课堂:与三角形有关的角练习(3)】【变式】如图所示,表示∠1,∠2,∠3,∠4的关系正确的选项为()A. ∠1+∠2=∠4﹣∠3B. ∠1﹣∠3=∠2﹣∠4C. ∠1+∠2=∠3+∠4D. ∠1﹣∠2=∠4﹣∠3【答案】A;提示:∵∠AEF是△BDE的外角,∴∠AEF=∠2+∠3,同理,∠4是△AEF的外角,∴∠4=∠AEF+∠1,即∠4=∠1+∠2+∠3,即∠1+∠2=∠4﹣∠3.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。
华东师大初中数学七年级下册《多边形》全章复习与巩固—知识讲解(基础)【精编】.docx
《多边形》全章复习与巩固(基础)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解它们这些性质在生产、生活中的广泛应用.5.理解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和公式,并能灵活运用公式解决有关问题.体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线在三角形中,连接它的一个顶点与它的对边中点的线段叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1. 三根木条的长度如图所示,能组成三角形的是( )【思路点拨】三角形三边关系的性质,即三角形的任意两边之和大于第三边,任意两边之差小于第三边.注意这里有“两边”指的是任意的两边,对于“两边之差”它可能是正数,也可能是负数,一般取“差”的绝对值.【答案】D【解析】要构成一个三角形.必须满足任意两边之和大于第三边.在运用时习惯于检查较短的两边之和是否大于第三边.A、B、C三个选项中,较短两边之和小于或等于第三边.故不能组成三角形.D 选项中,2cm+3cm>4cm.故能够组成三角形.【总结升华】判断以三条线段为边能否构成三角形的简易方法是:①判断出较长的一边;②看较短的两边之和是否大于较长的一边,大于则能够成三角形,不大于则不能够成三角形.【高清课堂:与三角形有关的线段例1】举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8.【答案】(1)能;(2)不能;(3)能.2.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______.【答案】5<c<9;【解析】三角形的两边长分别是2和7, 则第三边长c的取值范围是│2-7│<c<2+7,即5<c<9.【总结升华】三角形的两边a、b,那么第三边c的取值范围是│a-b│<c<a+b.举一反三:【变式】已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可)【答案】5;注:答案不唯一,填写大于4,小于12的数都对.类型二、三角形中重要线段3. 下列各图中,正确画出△ABC中AC边上的高的是()A.①B.②C.③D.④【答案】D;【解析】根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为E,纵观各图形,①②③都不符合高线的定义,④符合高线的定义.故选D.【总结升华】本题主要考查了三角形的高线的定义,是基础题,熟练掌握概念是解题的关键.举一反三:【变式】如图所示,已知△ABC,试画出△ABC各边上的高.【答案】解:所画三角形的高如图所示.4.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC=8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD的周长大3.【答案与解析】解:依题意:△BCD的周长比△ACD的周长大3cm,故有:BC+CD+BD-(AC+CD+AD)=3.又∵ CD为△ABC的AB边上的中线,∴ AD=BD,即BC-AC=3.又∵ BC=8,∴ AC=5.答:AC的长为5cm.【总结升华】运用三角形的中线的定义得到线段AD=BD是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法.举一反三:【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且12ABC S △,则S 阴影为________.【答案】3;类型三、与三角形有关的角5、如图,在△ABC 中,∠B=67°,∠C=33°,AD 是△ABC 的角平分线,则∠CAD 的度数为( )A .40°B .45°C .50°D .55°【思路点拨】首先利用三角形内角和定理求得∠BAC 的度数,然后利用角平分线的性质求得∠CAD 的度数即可.【答案】A ;【解析】解:∵∠B=67°,∠C=33°,∴∠BAC=180°-∠B -∠C=180°-67°-33°=80°∵AD 是△ABC 的角平分线, ∴∠CAD=12∠BAC=12×80°=40° 【总结升华】本题考查了三角形的内角和定理,属于基础题,比较简单.【高清课堂:与三角形有关的角 例1、】举一反三:【变式】如图,在△ABC 中,∠ACB=60°,∠BAC=75°,AD⊥BC 于D ,BE⊥AC 于E ,AD 与BE 交于H ,则∠CHD= .【答案】解:在△ABC 中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH 中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB 、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.类型五、多边形内角和及外角和公式7.一个多边形的内角和等于它的外角和的5倍,它是几边形?【思路点拨】本题实际告诉了这个多边形的内角和是.【答案与解析】n-⨯︒,设这个多边形是边形,则它的内角和是(2)180n-⨯︒=︒⨯,解得.∴(2)1803605∴这个多边形是十二边形.【总结升华】本题是多边形的内角和定理和外角和定理的综合运用. 只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.举一反三:【变式】(2016•无锡一模)若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.10【答案】C.解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.类型六、多边形对角线公式的运用8.一个十二边形有几条对角线.【思路点拨】根据多边形对角线条数公式,把边数代入计算即可.【答案与解析】解:∵过十二边形的任意一个顶点可以画9条对角线,∴十二个顶点可以画12×9条对角线,但每条对角线在每个顶点都数了一次,∴实际对角线的条数应该为12×9÷2=54(条)∴十二边形的对角线共有54条.【总结升华】对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢.举一反三:【变式】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7 C.8 D.9【答案】C;类型七、镶嵌问题9.(2015•济宁)只用下列哪一种正多边形可以进行平面镶嵌()A.正五边形 B.正六边形 C.正八边形 D.正十边形【答案】B.解:A、正五边形的每个内角度数为180°﹣360°÷5=108°,不能整除360°,不能进行平面镶嵌,不符合题意;B、正六边形的每个内角度数为180°﹣360°÷6=120°,能整除360°,能进行平面镶嵌,符合题意;C、正八边形的每个内角度数为180°﹣360°÷8=135°,不能整除360°,不能进行平面镶嵌,不符合题意;D、正十边形的每个内角度数为180°﹣360°÷10=144°,不能整除360°,不能进行平面镶嵌,不符合题意;故选B.【总结升华】本题考查平面密铺的问题,用到的知识点为:一种正多边形能镶嵌平面,这个正多边形的一个内角的度数是360°的约数;正多边形一个内角的度数=180°﹣360°÷边数.。
【推荐】华东师大初中数学七年级下册《多边形》全章复习与巩固—知识讲解(提高).doc
《多边形》全章复习与巩固(提高)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解它们这些性质在生产、生活中的广泛应用.5.理解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和公式,并能灵活运用公式解决有关问题.体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线在三角形中,连接它的一个顶点与它的对边中点的线段叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有 ( ).A .6个B .5个C .4个D .3个【答案】D ;【解析】x 的取值范围:511x <<,又x 为偶数,所以x 的值可以是6, 8, 10,故x 的值有3个.【总结升华】不要忽略“x 为偶数”这一条件.举一反三:【变式】三角形的三边长为2,x-3,4,且都为整数,则共能组成 个不同的三角形.当x 为 时,所组成的三角形周长最大.【答案】三,8;提示:由三角形两边之和大于第三边,两边之差小于第三边,有4-2<x-3<4+2,解得5<x <9,因为x 为整数,故x 可取6,7,8;当x=8时,组成的三角形周长最大为11.2.如图,O 是△ABC 内一点,连接OB 和OC .(1)你能说明OB+OC <AB+AC 的理由吗?(2)若AB =5,AC =6,BC =7,你能写出OB+OC 的取值范围吗?【答案与解析】解:(1)如图,延长BO 交AC 于点E ,根据三角形的三边关系可以得到,在△ABE 中,AB+AE >BE ;在△EOC 中,OE+EC >OC ,两不等式相加,得AB+AE+OE+EC >BE+OC .由图可知,AE+EC =AC ,BE =OB+OE .所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【高清课堂:与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【高清课堂:与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=3BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少?【思路点拨】按△ABC为锐角三角形和钝角三角形两种情况,分类讨论.【答案与解析】解:分两种情况讨论:(1)当△ABC为锐角三角形时,如图所示,在△ABD中,∵ BD是AC边上的高(已知),∴∠ADB=90°(垂直定义).又∵∠ABD=30°(已知),∴∠A=180°-∠ADB-∠ABD=180°-90°-30°=60°.又∵∠A+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=120°,又∵∠ABC=∠C,∴∠C=60°.(2)当△ABC为钝角三角形时,如图所示.在直角△ABD中,∵∠ABD=30°(已知),所以∠BAD=60°.∴∠BAC=120°.又∵∠BAC+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=60°.∴∠C=30°.综上,∠C的度数为60°或30°.【总结升华】在解决无图的几何题的过程中,只有正确作出图形才能解决问题.这就要求解答者必须具备根据条件作出图形的能力;要注意考虑图形的完整性和其他各种可能性,双解和多解问题也是我们在学习过程中应该注意的一个重要环节.举一反三:【高清课堂:与三角形有关的角练习(3)】【变式】如图所示,表示∠1,∠2,∠3,∠4的关系正确的选项为()A. ∠1+∠2=∠4﹣∠3B. ∠1﹣∠3=∠2﹣∠4C. ∠1+∠2=∠3+∠4D. ∠1﹣∠2=∠4﹣∠3【答案】A;提示:∵∠AEF是△BDE的外角,∴∠AEF=∠2+∠3,同理,∠4是△AEF的外角,∴∠4=∠AEF+∠1,即∠4=∠1+∠2+∠3,即∠1+∠2=∠4﹣∠3.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。
华东师大版七年级:多边形的内角和和外角和
多边形的内角和和外角和1.理解多边形的概念;2.掌握多边形内角和与外角和公式;3.灵活运用多边形内角和与外角和公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次连接结所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:教学目标学习内容知识梳理凸多边形凹多边形要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为(3)2n n -;(3)过n边形的一个顶点的对角线可以把n边形分成(n-2)个三角形.二、多边形内角和定理n边形的内角和为(n-2)·180°(n≥3).要点诠释:(1)内角和定理的应用:①已知多边形的边数,求其内角和;①已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180nn-°;三、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;①已知多边形边数求各相等外角的度数.类型一、多边形的概念例1.如图,在六边形ABCDEF中,从顶点A出发,可以画几条对角线?它们将六边形ABCDEF分成哪几个三角形?例题讲解解:如图,P 从顶点A 出发,可以画三条对角线,它们将六边形ABCDEF 分成的三角形分别是:①ABC 、①ACD 、①ADE 、①AEF.【变式】过正十二边形的一个顶点有 条对角线,一个正十二边形共有 条对角线 【答案】9,54。
华师大版初一下多边形知识点归纳
华师大版初一下多边形知识点归纳Newly compiled on November 23, 2020多边形知识点1.三角形(1)三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。
这三条线段就是三角形的边。
(2)内角:在三角形里,每两条边所组成的角叫做三角形的内角,一个三角形有三个内角。
(3)外角:三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角。
【注】CB的反向延长线是从点B到点C方向延长得到的一条射线(4)顶点:三角形中,每两边的交点叫做三角形的顶点,三角形共有三个顶点。
2.三角形的分类(1)按内角的大小分类直角三角形三角形斜三角形锐角三角形钝角三角形(2)按边分类不等边三角形三角形等腰三角形等边三角形(正三角形)底和腰不相等的等腰三角形3.三角形的三种重要线段(1)角平分线:三角形的一个角的平分线与这个角的对边相交,顶点和交点之间的线段叫做三角形的角平分线。
(2)中线:在三角形里,连结一个顶点和它对边中点的线段叫做三角形的中线。
(3)高线:从三角形的一个顶点向它的对边引垂线,顶点和垂足间的线段叫做三角形的高线。
【注】1)三角形中,角平分线、中线、高线都有三条,都交于一点,都是线段。
2)三角形的角平分线和中线都在三角形的内部。
而锐角三角形的三条高线在内部;直角三角形的两条高在直角边,斜边的高在形内;钝角三角形有一条高在形内,两条高在形外。
4.三角形内外角关系(1)三角形的内角和是o 180(2)三角形的一个外角等于和它不相邻的两个内角的和。
(3)三角形的一个外角大于任何一个与它不相邻的内角。
(4)与三角形的每个内角相邻的外角有两个,这两个外角是对顶角,从与每个内角相邻的两个外角中分别取一个相加,得到的和成为三角形的外角和。
(5)三角形的外角和是o3605.三角形的三边关系(1)三角形的任意两边之和大于第三边。
(2)三角形的任意两边之差小于第三边。
【注】只要三条线段的长符合上述条件之一就可以构成三角形。
七年级数学下册第9章多边形知识归纳新版华东师大版
第九章多边形一、基本概念(一)三角形有关概念1.三角形圧义:三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平而图形, 这三条线段就是三角形的边。
三角形专用符号:“△”2.三角形的顶点、边组成三角形的线段如图中的AB. BC、AC是这个三角形的三玆,两边的公共点叫三角形的殛轨(如点A等)三角形顶点只能用大写字母表示,整个三角形表示为3.三角形的内角,外角的概念:(1)内角:每两条边所组成的角叫做三角形的必.如ZBAC等。
每个三角形有三个内角,(2)外角:三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,如下图中ZACD是ZABC的一个外角, 它与内角ZACB相邻。
例如右图中ZACD是ZABC的一个外角,它与内角ZACB相邻。
与AABC的内角ZACB相邻的外角有几个?它们之间有什么关系?一个三角形共有几个外角?4.三角形的分类'锐角三角形(三个角苟是锐角)(1)三角形按角分类可分为: < 直角三角形(有一个角是直角)钝角三角形(有一个角是钝角)各类三角形的左义锐角三角形:所有内角都是锐角的三角形叫锐角三角形;直角三角形:有一个内角是直角的三角形叫直角三角形;钝角三角形:有一个内角是钝角的三角形叫钝角三角形。
(2 )三角形按边分类可分为不等边三角形(三条姗不相等)(又称斜三角形)腰二角开』腰和底不相等的等腰三角形(只两边等)二1腰和底相等的等腰三娜(等边三角形)各类三角形的左义不等边三角形:三边互不相等的三角形叫做不等边三角形;等腰三角形:有两条边相等的三角形叫等腰三角形。
相等的两边叫做等腰三角形的腰。
等边三角形:三条边都相等的三角形叫等边三角形(或正三角形)。
5.三角形的中线、角平分线、高(记住这重要的三线)三角形的中线:三角形的一介更点与它的砲中点的连线叫三角形的中线、三角形的角平分线:三角形必妙严乡线与丸弦旳交点和这个內於咬疥之间的线段叫三角形的角平分线。
三角形的高:过三角形顶点作对边的垂线,垂足与顶点间的线段N三傀形的高。
华师大七年级下册:第九章《多边形》考点例析
华师大七年级下册:第九章《多边形》考点例析(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第九章《多边形》考点例析多边形一章以瓷砖的的铺设开始,以瓷砖的铺设结束,很好的体现了多边形知识源于生活,服务于生活的事实.为了帮助同学们熟练掌握多边形的有关知识,搞好期末复习,现将多边形中常见题型与考点举例说明如下,希望大家能有所斩获.考点一 三角形的分类:例1.(1) 在ABC △中,C B A ∠=∠=∠3121,试判断ABC △的形状; (2) 在ABC △中,C B A ∠=∠=∠32,试判断ABC △的形状;(3)下列关于等腰三角形的说法正确的有___________①有且只有两条边相等的三角形叫做等腰三角形②有两条边相等的三角形叫做等腰三角形③等腰三角形都是锐角三角形④三角形可分为不等边三角形、等腰三角形、等边三角形解析:(1)设A x ∠=,则2,3B x C x ∠=∠=,由三角形的内角和定理可知:23180x x x ++=,解得30x =,从而33090C ∠=⨯=︒,故ABC △是直角三角形.(2) 设A x ∠=,则11,23B x C x ∠=∠=,由三角形的内角和定理可知:1118023x x x ++=,解得98x ≈︒,故故ABC △是钝角三角形. (3)等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.根据定义可知, ①是错误的,②是正确的;等腰三角形的定义只是对边有限制,对角并无要求,故③是错误的;等边三角形是等腰三角形的一种特殊情况,不应单独列为一类,故④是错误的.所以①②③④中只有②是正确的.点评:三角形的分类方式有两种,一种是从角的角度,这种分类方式的关键是看三个内角中的最大角是钝角、直角还是锐角.另一种是从边的角度,把三角形分为等腰三角形和不等边三角形.注意不要把这两种分类方式混在一起.考点二 考查三角形中的三种线段例2.(1)能把三角形的面积两等分的线段是三角形的( )A、高B、中线 C、角平分线 D、以上都不对(2)如图ABC △中,BC 边上的高是( )A、ADB、BE C、CF D、以上都不对(3)如图,△ABC 中,∠B =32°,∠C=55°,AD ⊥BC 于D ,AE 平分∠BAC 交BC 于E ,求∠EAD 的度数.解析:(1)中线把三角形分成两个等底等高的三角形,故应该选B.(2)BC 边上的高应该是过BC 边所对的顶点A 向BC 边做垂线,顶点A 和垂足之间的线段即是BC 边上的高,故选A. ()()1(3)(90)2111180909090222111222EAD EAC DAC BAC C B C C B C C C B C B ∠=∠-∠=∠-︒-∠=︒-∠-∠-︒+∠=︒-∠-∠-︒+∠=∠-∠=∠-∠ 故∠EAD=11.5︒点评:三角形中的三种线段,把一个三角形分成了具有很强关联性的两个三角形,大大丰富了三角形的研究内容,熟练掌握这三种线段的特点,对掌握三角形的特点是很有帮助的.考点三 三角形的外角:例3.(1)如图是中国共产主义青年团团旗上的图案(图案本身没有字母),5个角的顶点A ,B ,C ,D ,E 把外面的圆5等分,则∠A +∠B +∠C +∠D +∠E =__________________.(2) 如图,求证:A D ∠>∠:(1),180AGF B D AFG C E A B D C E A AGF AFG ∠=∠+∠∠=∠+∠∴∠+∠+∠+∠+∠=∠+∠+∠=︒解析 (1)如图,(2)延长CD 到E,可知,CDB BED BED A ∠>∠∠>∠,故CDB A ∠>∠点评:三角形的外角是中考考查的热点,对外角的考查常常结合三角形的内角和定理,解决这类问题关键是要把多个角转移到一个三角形里面;在考查角的不等关系时最常用的就是“三角形的一个外角大于与它不相邻的内角”,所以,大多数时候需要构造如(2)题中的图形.考点四 三角形的三边关系:例4.(1)有,,,a b c d 四条线段,其长度为2,4,5,7a cm b cm c cm d cm ====,任选三条线段组成三角形,其选法有______种.(2)在ABC ∆中,6AB cm =,13AC cm =,求BC 边的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师大版初一下多边形知识点归纳修订版
IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】
多边形知识点
1.三角形
(1)三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。
这三条线段就是三角形的边。
(2)内角:在三角形里,每两条边所组成的角叫做三角形的内角,一个三角形有三个内角。
(3)外角:三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角。
【注】CB的反向延长线是从点B到点C方向延长得到的一条射线
(4)顶点:三角形中,每两边的交点叫做三角形的顶点,三角形共有三个顶点。
2.三角形的分类
(1)按内角的大小分类
直角三角形
三角形
斜三角形锐角三角形
钝角三角形
(2)按边分类
不等边三角形
三角形
等腰三角形等边三角形(正三角形)
底和腰不相等的等腰三角形
3.三角形的三种重要线段
(1)角平分线:三角形的一个角的平分线与这个角的对边相交,顶点和交点之间的线段叫做三角形的角平分线。
(2)中线:在三角形里,连结一个顶点和它对边中点的线段叫做三角形的中线。
(3)高线:从三角形的一个顶点向它的对边引垂线,顶点和垂足间的线段叫做三角形的高线。
【注】1)三角形中,角平分线、中线、高线都有三条,都交于一点,都是线段。
2)三角形的角平分线和中线都在三角形的内部。
而锐角三角形的三条高线在内部;直角三角形的两条高在直角边,斜边的高在形内;钝角三角形有一条高在形内,两条高在形外。
4.三角形内外角关系
180
(1)三角形的内角和是o
(2)三角形的一个外角等于和它不相邻的两个内角的和。
(3)三角形的一个外角大于任何一个与它不相邻的内角。
(4)与三角形的每个内角相邻的外角有两个,这两个外角是对顶角,从与每个内角相邻的两个外角中分别取一个相加,得到的和成为三角形的外角和。
360
(5)三角形的外角和是o
5.三角形的三边关系
(1)三角形的任意两边之和大于第三边。
(2)三角形的任意两边之差小于第三边。
【注】只要三条线段的长符合上述条件之一就可以构成三角形。
(3)三角形具有稳定性,四边形具有不稳定性。
6.多边形
(1)一般的,在一个平面内,有n 条不在一条直线上的线段首尾顺次相接组成的图形叫做n 边形,又称为多边形。
【注】我们研究的的是凸多边形,即整个图形都在任意边所在直线同旁的多边形。
(2)正多边形 :所有多边形各边相等,各内角也相等,那么就称它为正多边形。
(3)多边形的对角线
1)对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。
2)从n 边形的一个顶点出发,可以引出(n-3)对角线。
所有对角线的数量是
()
23-n n 。
(4)n 边形的内角和是()o 1802⋅-n 。
(5)任意多边形的外角和是o
360。
7.用正多边形拼地板
(1)镶嵌 由形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠的铺成一片,叫做平面图形的镶嵌。
(2)铺满平面的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就拼成了一个平面图形。
用相同的正多边形进行镶嵌时,可以实现镶嵌的正多边形有正方形、正三角形、正六边形。