数列题型的解题技巧

合集下载

数列题型及解题方法

数列题型及解题方法

数列题型及解题方法数列是数学中常见的一种数学对象,它是按照一定的规律排列的一组数的集合。

在数学中,数列是一个非常重要的概念,它不仅在初等数学中有着广泛的应用,而且在高等数学中也有着重要的地位。

数列题型及解题方法是数学学习中的一个重要内容,下面我们就来详细介绍一下数列的相关知识和解题方法。

一、数列的基本概念。

数列是按照一定的规律排列的一组数的集合,它可以用一个通项公式来表示。

数列中的每一个数称为该数列的项,数列中的第一个数称为首项,数列中的最后一个数称为末项。

数列中的相邻两项之间的差称为公差,如果数列中的相邻两项之间的比值是一个常数,则称这个数列是等比数列,否则称为等差数列。

二、等差数列的求和公式。

对于等差数列来说,如果已知它的首项a1、末项an和项数n,那么可以利用等差数列的求和公式来求出这个等差数列的和。

等差数列的求和公式为Sn=n(a1+an)/2,其中Sn表示等差数列的和,n表示项数,a1表示首项,an表示末项。

利用这个公式可以很方便地求出等差数列的和,从而简化计算过程。

三、等比数列的求和公式。

对于等比数列来说,如果已知它的首项a1、末项an和项数n,那么可以利用等比数列的求和公式来求出这个等比数列的和。

等比数列的求和公式为Sn=a1(1-q^n)/(1-q),其中Sn表示等比数列的和,a1表示首项,q表示公比,n表示项数。

利用这个公式可以很方便地求出等比数列的和,从而简化计算过程。

四、数列题型及解题方法。

1. 求等差数列的和,对于已知的等差数列,如果要求它的和,可以利用等差数列的求和公式来求解。

首先要确定等差数列的首项、末项和项数,然后代入求和公式即可得到结果。

2. 求等比数列的和,对于已知的等比数列,如果要求它的和,可以利用等比数列的求和公式来求解。

首先要确定等比数列的首项、末项和项数,然后代入求和公式即可得到结果。

3. 求等差数列的通项公式,对于已知的等差数列,如果要求它的通项公式,可以利用等差数列的通项公式an=a1+(n-1)d来求解。

数列解题方法大全

数列解题方法大全

数列方法大全一、求通项公式各种数列问题在很多情形下,就是对数列通项公式的求解。

特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。

类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

例1. 已知数列{}n a 满足211=a ,1n n a a n +=+,求n a 。

变式: 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

例2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。

变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。

例3:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .类型4 nn n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。

(或1n n n a pa rq +=+,其中p ,q, r 均为常数) 。

解法:一般地,要先在原递推公式两边同除以1+n q,得:qq a q p q a n n n n 111+•=++引入辅助数列{}n b (其中nnn qa b =),得:qb q p b n n 11+=+再待定系数法解决。

数列运算的一些小技巧

数列运算的一些小技巧

数列运算的一些小技巧1. 等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208, 622,规律为a*3-2=b2.深一点模式,各数之间的差有规律,如1、2、5、10、17。

它们之间的差为1、3、5、7,成等差数列。

这些规律还有差之间成等比之类。

B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。

3、看各数的大小组合规律,做出合理的分组。

如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。

而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。

所以7*7-9=40 , 9*9-7=7 4 , 40*40-74=1526 , 74*74-40=5436</B>,这就是规律。

4、如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数; 7+14=10+11=9+12。

首尾关系经常被忽略,但又是很简单的规律。

B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。

5、各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。

如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。

这组数比较巧的是都是6的倍数,容易导入歧途。

6)看大小不能看出来的,就要看数的特征了。

如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上答:256,269,286,302,(),2+5+6=132+6+9=172+8+6=163+0+2=5,∵256+13=269269+17=286286+16=302 ∴下一个数为302+5=307。

专题 构造法求数列通项的八种技巧

专题  构造法求数列通项的八种技巧

专题 构造法求数列通项的八种技巧【必备知识点】◆构造一:待定系数之1n n a Aa B +=+型构造等比数列求关于1n n a Aa B +=+(其中,A B 均为常数,(1)0AB A -≠)类型的通项公式时,先把原递推公式转化为()1n n a M A a M ++=+,再利用待定系数法求出M 的值,再用换元法转化为等比数列求解.其实对于这类式子,我们只需要记住在等式两侧加上一个常数M ,构造成等比数列.常数M 的值并不需要背诵,我们可以通过待定系数法推导出来.◆构造二:待定系数之1n n a Aa Bn C +=++型构造等比数列求关于1(1,0,0)n n a Aa Bn C A C B +=++≠≠≠类型的通项公式时,与上面讲述的构造一的方法很相似,只不过等式中多了一项Bn ,在构造时我们也保持跟题干一样的结构,加一项pn 再构造等比数列就可以,即令()1(1)n n a p n q A a pn q ++++=++,然后与已知递推式各项的系数对应相等,解,p q ,从而得到{}n a pn q ++是公比为A 的等比数列.◆构造三:待定系数之1n n n a pa q +=+型构造数列求关于1nn n a pa q +=+(其中,p q 均为常数,(1)0pq p -≠)类型的通项公式时,共有3种方法.方法一:先用待定系数法把原递推公式转化为()11n n n n a q p a q λλ+++=+,根据对应项系数相等求出λ的值,再利用换元法转化为等比数列求解. 方法二:先在递推公式两边同除以1n q+,得111n n n n a a p q q q q ++=⋅+,引入辅助数列{}n b (其中n b nna q=),得11n n p b b q q+=⋅+,再利用待定系数法解决; 方法二:也可以在原递推公式两边同除以1n p +,得111nn n n n a a q p p p p ++⎛⎫=+⋅ ⎪⎝⎭,引入辅助数列{}n b (其中n n na b p =),得11n n b b p +-=⋅.nq p ⎛⎫⎪⎝⎭,再利用叠加法(逐差相加法)求解. ◆构造四:同型构造法所谓同型构造法,就是将找因式中的因子和数列项数相同或者相近的部分通过同除或同乘化归成结构相同的形式,形成新的数列,如常数列,等差数列或等比数列.下面让我们来看看有哪些模型结构吧. 模型一:111(1)1n n n n n n a a n a n a n +++−=−−−−→⋅+=⋅+左右同乘,构造n n b n a =⋅,则1n n b b +=,{}n b 为常数数列.模型二:11111n n n n n a a n a a n n n +++−−−−−⋅→+==+左右同除,构造n n a b n=,则1n n b b +=,{}n b 为常数数列. 模型三:()()21112(1)(2)(1)n n n n n n a a n a a n n n n n ++++−−−−+=⋅=+−→++−左右同除,构造(1)n n a b n n =+,则1n n b b +=,{}n b 为常数数列.模型四:()111(1)221n n n n n n n a a na n a n +++−−−−−→=+=+左右同除,构造n n ab n=,则12n n b b +=,{}n b 为等比数列. 模型五:11111222212n n n n n n n n n n n n n a S S S S S n n S S S nn n ++++++++=⋅=⋅=⇒-⇒−−−−−→+⋅=左右同除,构造nn S b n=,则12n n b b +=,{}n b 为等比数列. 模型六:1111111n n n n n a a n a a n n n n ++++=⋅=+++−−−+−−→左右同除,构造n n a b n=,则11n n b b +=+,{}n b 为等差数列.模型七:12111122122n n n n n n n n a a a a +++++−=+=−−−→+−左右同除,构造2nnna b =,则11n n b b +=+,{}n b 为等差数列. 模型八:1111111n n a an n n n n n a a a a a a ++++-−−=-=−−−→左右同除,构造1n nb a=,则11n n b b +-=,{}n b 为等差数列. 看了这么多模型,是不是觉得很多,很难记住呢,其实向大家展示这么多,只是想向大家展示,当看到这类式子,尽量将1n +和1n a +,n 和n a 等因子和数列项数相同的部分划归成结构相同的形式,构造成新数列.◆构造五:取倒数构造等差类型一:数列{}n a 满足:1n n n ba a ka b+=+,则有111n n n n b ka ka ba ab ++==+. 所以1n a ⎧⎫⎨⎬⎩⎭是以11a 为首项,kb 为公差的等差数列,即111(1)n k n a a b =+-.(当分母出现加减时,我们很难将它进行化简运算,所以往往取倒数再运算才能找到突破点). 类型二:数列{}n a 满足:1112n n n n na a a a a -+-=-,则有11111211111n n n n n n n n n a a a a a a a a a -+-+--=⇔-=-. 所以1n a ⎧⎫⎨⎬⎩⎭是等差数列.类型三:若数列{}n a 的前n 项和为n S ,且满足10n n n a kS S -+=,则有110n n n n S S kS S ---+=,两边同除以1n n S S -得:111n n k S S --=,故1n S ⎧⎫⎨⎬⎩⎭是以11a 为首项,k 为公差的等差数列,即111(1)n n k S a =+-,再用1n n n a S S -=-,求{}n a .◆构造六:取对数构造法型如1k n n a ca +=,1n k n a ca -=或者1(),n n kb b b ac a -++=为常数.针对出现这种数列,为方便计算,两边通常取以c 或首项为底的对数,就能找到突破口.什么情况取c 为底,什么情况取首项为底呢?我们来看两道例题.◆构造七:二阶整体构造等比简单的二阶整体等比:关于11n n n a Aa Ba +-=+的模型,可通过构造二阶等比数列求解,大部分题型可转化为()11(1)n n n n a a A a a +--=--,利用{}1n n a a +-成等比数列,以及叠加法求出n a .还有一小部分题型可转化为()11(1)n n n n a a A a a +-=+++,利用{}1+n n a a +成等比数列求出n a .此方法可以解决大多数的11n n n a Aa Ba +-=+,1A B +=模型的试题.当然针对个别试题,单纯构造{}1n n a a +-成等比数列可能解决不了问题.我们需要学习更完整的方法来解决这种类型题.这就需要运用数列的特征方程理念来解决.当然我们不需要详细学习数列的特征方程,用高中的待定系数法也可以解决,接下来我们通过两道例题,来详细解释说明下这种方法.秒杀求法:21(,0)n n n a pa qa p q ++=+≠类通项公式暴力秒杀求法21(,0)n n n a pa qa p q ++=+≠对应的特征方程为:2x px q =+,设其两根为12,x x当12x x ≠时, 2212n n n a Ax Bx --=+,当12x x =时, 21()n n a An B x -=+其中A ,B 的值的求法,用12,a a 的值代入上面的通项公式中,建立方程组解之即可◆构造八:数列不动点构造求数列(较难,能力强的同学可以学习)针对1n n n ax bx cx d++=+这类题型,考题中并不多见,难度比较大,这类题型有特定的解题方法.我们需要学习“数列不动点”的知识点.接下来我们来学习下什么是“数列不动点”,它有什么性质.当然看不懂也没关系,可以通过例题,熟记掌握解题步骤就可以.对于函数()f x ,若存在实数0x ,使得()00f x x =,则称0x x =是函数()f x 的不动点. 在几何上,曲线()y f x =与曲线y x =的交点的横坐标即为函数()f x 的不动点.一般地,数列{}n x 的递推式可以由公式()1n n x f x +=给出,因此可以定义递推数列的不动点:对于递推数列{}n x ,若其递推式为()1n n x f x +=,且存在实数0x ,使得()00f x x =,则称0x 是数列{}n x 的不动点。

数学数列解题技巧

数学数列解题技巧

数学数列解题技巧数列问题在数学中是一个很重要的部分,解决这类问题需要的不仅仅是数学知识,还需要一些技巧和策略。

以下是几种能帮助你迅速解决数列问题的技巧。

第一种技巧:观察序列模式数列问题的解法通常有很多种,但最重要的一种解法就是分析数列中的规律。

有时候,数列的规律并不是那么显然,但如果我们能够仔细观察数列的模式,那么就可以发现一些有用的信息。

例如,考虑这样一个数列:1, 2, 4, 7, 11, 16, ...如果你能够看出这个数列的规律,那么你就能迅速解决这个问题。

观察到第二项减去第一项等于1,第三项减去第二项等于2,第四项减去第三项等于3,以此类推。

因此,你可以猜到,第n项和前n-1项的差等于n-1。

如果我们将这个规律用数学语言表示出来,就是:a_n - a_n-1 = n-1其中,a_n 表示数列的第n项。

有些数列中的规律可能没有上面的数列那样显而易见。

但是,如果你有耐心,仔细观察,你就可能发现一些规律。

例如,你可能需要将数列的项数写下来,然后找出每一项之间的相对关系。

第二种技巧:使用标志数标志数是一种非常有用的数列解题技巧。

标志数是一个虚构的数,用于帮助你推导数列的规律。

标志数通常用字母表示,例如a、b、c等。

标志数可以用于表示某个地方的数列值,或是某个数列的差值等。

例如,考虑这个数列:2, 6, 12, 20, 30, ...如果你能够找到这个数列中的规律,则可以使用标志数帮助你推导答案。

因此,让我们设a为这个数列的第一项,然后逐一找出每个项之间的差值:6-2=4, 12-6=6, 20-12=8, 30-20=10这些差值看上去并不那么有规律,但是我们可以将它们再次相减:6-4=2, 8-6=2, 10-8=2这就让我们立刻看出了规律!相邻项的差值相等。

因此我们可以使用这个规律来生成您的解:a_1=2, a_2=a_1+4=6, a_3=a_2+6=12, a_4=a_3+8=20 以此类推。

高中数学数列方法及技巧

高中数学数列方法及技巧

高中数学数列方法及技巧1高中数学数列方法和技巧一.公式法如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.二.倒序相加法如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.三.错位相减法如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.四.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.五.分组求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.2高中数学数列问题的答题技巧高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。

题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。

题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。

针对这两类,我认为应该积累以下的一些方法。

对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。

总之,每次碰到一道陌生的数列题,要进行总结,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。

3高考数学解题方法解题过程要规范高考数学计算题要保证既对且全,全而规范。

应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。

高考数列解题技巧

高考数列解题技巧

高考数列解题技巧数列是高中数学的重要内容之一,也是高考数学的热点之一。

在解决数列问题时,学生需要掌握一些常用的解题技巧,以提高解题效率和准确性。

1. 公式法公式法是解决数列问题的基本方法之一。

对于等差数列和等比数列,学生需要熟记它们的通项公式和求和公式,以便在解题时能够迅速运用。

例如,对于等差数列{an},其通项公式为a_n=a_1+(n-1)d,其中a_1为首项,d为公差。

求和公式为S_n=n/2(a_1+a_n)。

2. 裂项相消法裂项相消法是一种常用的求和技巧,适用于一些看似复杂的数列求和问题。

通过将每一项都拆分成两个部分,然后抵消掉中间的部分,可以简化计算过程。

例如,对于数列1/2, 2/3, 3/4, ..., n/(n+1),学生可以使用裂项相消法进行求和。

将每一项都拆分成两个部分,即分子和分母,然后抵消掉中间的部分,得到结果为1-1/(n+1)。

3. 错位相减法错位相减法是一种常用的求和方法,适用于一些周期性变化的数列。

通过错位相减法,可以将一个复杂的数列转化为一个简单的数列,从而简化计算过程。

例如,对于数列1, 1/2, 1/3, 1/4, ..., 1/n,学生可以使用错位相减法进行求和。

将每一项都乘以10,得到数列10, 5, 3, 2, ..., 1/n,然后将两个数列相减,得到结果为9+4+2+...+1-1/n。

4. 倒序相加法倒序相加法是一种求解递推关系式的常用方法。

通过将一个数列的顺序倒过来,然后将正序和倒序的两个数列相加,可以得到一个常数列的和,进而求出原数列的和。

例如,对于数列a_n=S_{n-1}+S_n,学生可以使用倒序相加法求解。

将数列a_n的顺序倒过来得到a_n=S_n+S_{n-1}......(B),然后将(A)式和(B)式相加得到2a_n=2S_n+S_{n-1}+S_{n-2}+......+S_2+S_1=S_n+S_{n-1}+......+S_2+S_1+ S_0=2^n-1。

数学中数列题解题技巧与关键知识点

数学中数列题解题技巧与关键知识点

数学中数列题解题技巧与关键知识点数列是数学中一个重要的概念,它在各个数学分支中都有广泛的应用。

解决数列题需要掌握一些关键的技巧和知识点。

本文将介绍数列题的解题技巧,并列举一些数列题的关键知识点。

一、等差数列的解题技巧等差数列是最常见的数列类型之一。

解决等差数列题可以运用以下技巧:1. 找出公差:公差是等差数列中相邻两项的差值,一般表示为d。

通过找出公差,可以帮助我们确定等差数列的规律。

2. 判断首项和通项公式:等差数列的通项公式为an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。

通过已知条件,可以确定首项和公差的值,并利用通项公式解决问题。

3. 利用等差数列的性质:等差数列具有一些特殊的性质,如任意三项的和等于三倍的中间项、前n项和的计算公式等。

在解题过程中,利用这些性质可以简化计算,提高解题效率。

二、等比数列的解题技巧等比数列是另一类常见的数列类型。

解决等比数列题可以运用以下技巧:1. 找出公比:公比是等比数列中相邻两项的比值,一般表示为q。

通过找出公比,可以帮助我们确定等比数列的规律。

2. 判断首项和通项公式:等比数列的通项公式为an = a1 * q^(n-1),其中an表示第n项,a1表示首项,q表示公比。

通过已知条件,可以确定首项和公比的值,并利用通项公式解决问题。

3. 利用等比数列的性质:等比数列具有一些特殊的性质,如任意相邻三项的乘积相等等。

在解题过程中,利用这些性质可以简化计算,提高解题效率。

三、斐波那契数列的解题技巧斐波那契数列是一种特殊的数列,它的每一项都是前两项的和。

解决斐波那契数列题可以运用以下技巧:1. 理解斐波那契数列的定义:斐波那契数列的前两项分别为0和1,后面的每一项都是前两项的和。

通过理解这个定义,可以找出斐波那契数列的规律。

2. 利用递推关系求解:斐波那契数列可以通过递推关系an = an-1 + an-2求解,其中an表示第n项。

数列的题型及解题技巧

数列的题型及解题技巧

数列的题型及解题技巧
数列题型很多,常见的有等差数列、等比数列、递推数列等。

解题技巧也因数列的类型而异,下面以常见的等差数列、等比数列为例,介绍解题技巧。

1. 等差数列:
等差数列是指数列中相邻两项之间的差值都相等的数列。

解题技巧包括:
- 求第n项数值:根据首项a1、公差d和项数n的关系,可以
得到公式an = a1 + (n-1)d,其中an为第n项的值。

- 求前n项和:根据首项a1、公差d和项数n的关系,可以得
到公式Sn = (a1+an)n/2,其中Sn为前n项的和。

2. 等比数列:
等比数列是指数列中相邻两项之间的比值都相等的数列。

解题技巧包括:
- 求第n项数值:根据首项a1、公比r和项数n的关系,可以
得到公式an = a1 * r^(n-1),其中an为第n项的值。

- 求前n项和:当公比r不等于1时,可以利用等比数列的性
质推导出求和公式Sn = a1(1-r^n)/(1-r),其中Sn为前n项的和。

除了等差数列和等比数列,还有一些特殊的数列解题技巧,例如斐波那契数列、等差数列和等比数列的混合数列等。

对于这些数列,需要根据具体的问题特点,选择适当的解题方法和技巧。

另外,数列题的解题思路也常与数学归纳法、逻辑推理等相关,需要通过多做题、经验积累和思维拓展来提高解题能力。

数列题型的解题技巧

数列题型的解题技巧

数列题型的解题技巧近几年高考题可见数列题命题有如下趋势:1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有.2.数列中an与Sn之间的互化关系也是高考的一个热点.3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用.4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等.因此复习中应注意:1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等.4.等价转化是数学复习中常常运用的,数列也不例外.如an与Sn的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果.7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用.【考点透视】1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题.3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题.4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

数列题型及解题方法归纳总结

数列题型及解题方法归纳总结

数列题型及解题方法归纳总结一、等差数列等差数列是指数列中的相邻项之差都相等的数列。

下面对等差数列的题型及解题方法进行归纳总结。

1. 求第n项的值设等差数列的首项为a,公差为d,第n项的值为an,则有公式:an = a + (n-1)d2. 求前n项和设等差数列的首项为a,公差为d,前n项和为Sn,则有公式:Sn = (n/2)(2a + (n-1)d)3. 求公差已知等差数列的首项为a,第m项与第n项的和为s,则公差d的值可以通过以下公式计算得出:d = (sm - sn)/(m - n)4. 求项数已知等差数列的首项为a,公差为d,第n项的值为an,可以通过以下公式求解项数n:n = (an - a)/d + 15. 应用题解题思路在解等差数列应用题时,关键是要找到规律。

可以通过观察数列的特点,列出方程,再解方程求解。

二、等比数列等比数列是指数列中的相邻项之比都相等的数列。

下面对等比数列的题型及解题方法进行归纳总结。

1. 求第n项的值设等比数列的首项为a,公比为q,第n项的值为an,则有公式:an = a * q^(n-1)2. 求前n项和(当公比q不等于1时)设等比数列的首项为a,公比为q,前n项和为Sn,则有公式:Sn = a * (q^n - 1) / (q - 1)3. 求前n项和(当公比q等于1时)当公比q等于1时,等比数列的前n项和为n * a。

4. 求公比已知等比数列的首项为a,第m项与第n项的比为r,则公比q的值可以通过以下公式计算得出:q = (an / am)^(1/(n-m))5. 求项数已知等比数列的首项为a,公比为q,第n项的值为an,可以通过以下公式求解项数n:n = log(an/a) / log(q)6. 应用题解题思路在解等比数列应用题时,关键是要找到规律。

可以通过观察数列的特点,列出方程,再解方程求解。

三、斐波那契数列斐波那契数列是指数列中第一、第二项为1,后续项为前两项之和的数列。

数列解题思路与技巧

数列解题思路与技巧

数列解题思路与技巧数列解题是高中数学中的一个重要内容。

随着中考、高考对数学知识的要求日益提高,我们需要不断提高自己的数列解题能力。

本文将分享一些数列解题的思路与技巧,希望能给大家提供一些帮助。

一、数列的定义与分类数列是一组有序的、按照某种规律排列的数字。

通常用a1、a2、a3……an 表示,其中a1 为首项,an 为末项,n 为项数。

数列可分为等差数列、等比数列、斐波那契数列等多种类型。

在解决数列问题时,要首先确定所给数列的类型。

二、等差数列的解题思路与方法等差数列常见的应用有求和、求公差、求项数等。

其中,求和是最常见的问题。

下面我们将讨论如何解决等差数列求和的问题。

1. 求和公式对于首项为a1,公差为d,末项为an,项数为n 的等差数列,它的前n 项和可以用以下公式表示:Sn=n/2(2 × a1+(n-1) × d)其中,Sn 表示前n 项的和。

这是一个经典的求和公式,掌握之后可以大幅提高求和的效率。

2. 已知首项、末项和项数,求和如果已知首项、末项和项数,我们可以通过求出公差来使用求和公式计算和。

例如,已知首项为1,末项为100,项数为20,求和。

首先,根据公式an=a1+(n-1)×d,可以求出公差为5。

然后,代入公式Sn=n/2(2 × a1+(n-1) × d),得到Sn=20/2(2 ×1+(20-1) × 5)=1010。

因此,所求和为1010。

3. 已知首项、公差和项数,求和如果已知首项、公差和项数,我们可以直接使用求和公式计算和。

例如,已知首项为3,公差为2,项数为10,求和。

代入公式Sn=n/2(2 × a1+(n-1) × d),得到Sn=10/2(2 ×3+(10-1) × 2)=65。

因此,所求和为65。

三、等比数列的解题思路与方法等比数列也是数列中重要的一类。

数列常见题型及解题技巧

数列常见题型及解题技巧

数列常见题型及解题技巧
数列常见题型及解题技巧
一、等差数列
1、求首项:求出首项a1可用公式:a1=Sn−n(d+a2)
2、求末项:求出末项an可用公式:an=Sn−n(d+a1)
3、求和:求出数列前n项和可用公式:Sn=n(a1+an)2
4、求通项公式:求出通项公式可用公式:an=a1+(n-1)d
5、求某项:求出第k项可用公式:ak=a1+(k-1)d
二、等比数列
1、求首项:求出首项a1可用公式:a1=Sn(qn−1)
2、求末项:求出末项an可用公式:an=a1qn−1
3、求和:求出数列前n项和可用公式:
Sn=a1(1−qn)1−q
4、求通项公式:求出通项公式可用公式:an=a1qn−1
5、求某项:求出第k项可用公式:ak=a1qk−1
三、复合数列
1、求和:求出数列前n项和可用公式:
Sn=a1+a2+…+an
2、求某项:求出第k项可用公式:ak=ak−1+ak
解题技巧:
1、利用性质转化:根据所给的条件,尝试将原数列转换成更简单的形式,如等差数列、等比数列或者复合数列。

2、利用关系性:通过对数列中一些特殊项的求出,可以确定整个数列的情况,比如求出第一项和最后一项,就可以确定数列的前n项和。

3、利用规律性:数列中的每一项都有一定的规律性,依靠这一点可以得到数列的通项公式,进而求出数列的其他项。

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结

1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。

数列解题方法技巧汇总

数列解题方法技巧汇总

数列解题方法技巧汇总
1. 找规律:观察数列的前几项并找出它们之间的规律,以此推断出后面的项。

2. 递推法:通过前面的项推导出后面的项,可以采用递推关系式或递推公式来计算。

3. 通项公式:数列中任意一项可以通过通项公式来计算,这要求我们找出数列中的一些特征,例如等差、等比等等。

4. 数列套路:掌握一些数列的套路,例如等差数列的求和公式、等比数列的求和公式、等比数列求通项公式等等。

5. 折线法:将数列的前几项按照一定的规律连接起来,形成一条折线,然后通过这条折线来推导出数列中的规律。

6. 矩阵法:将数列转化成矩阵形式,然后通过矩阵的乘法来计算数列中的每一项。

7. 生成函数法:将数列中的每一项看成某个函数的系数,然后将整个数列转化成一个生成函数,通过对生成函数的展开来求解数列中的每一项。

8. 等差数列和等比数列的转换:将等比数列通过取对数或对数值相乘改为等差
数列,从而可以采用等差数列的求和公式求解。

9. 反向思维:将给出的数列倒序排列,倒推数列的规律。

10. 郝氏减法:将数列中位置相邻的两项作差,将结果构成一个新的数列,这个新的数列往往具有更为明显的规律,容易推算。

处理数列问题的五个常用小技巧

处理数列问题的五个常用小技巧

处理数列问题的五个常用小技巧高考中,解决数列问题的技巧性较强,掌握一些处理数列问题的常用技巧,对寻找切入点,化归数列问题,提高解题的准确性都有所帮助.1、 等差(比)数列的前n 项和公式和与通项公式的快速转化: 大家知道,公差为d 的等差数列{a n }的通项公式是:11(1)()n a a n d dn a d =+-=+-,前n 项和公式是:1111()[(1)](1)222n n n a a n a a n d d S na n n +++-===+-21()22d dn a n =+-.当d ≠0时,通项公式是关于n 的一次函数,前n 项和公式是关于n 的二次函数.对比1()n a dn a d =+-与n S 21()22d dn a n =+-可知:前n 项和公式变成通项公式是把n 降次:22n n s d da n n =+-,可借助导数记为:2n S an bn =+⇒'n n a S a =-,其中'n S 是n S 的导数(把n 看成自变量),用口诀可记为: 二次变一次,求导减二系.通项公式变成前n 项和公式是把n 升次:()22n n d d S a n n =-+. 用口诀记为:一次变二次,一次项减半,加上半系,然后升次如:2223[(3)1]22n n na n S n n n =-⇒=-+=- 22n S n n =-2'1(2)'1n n a S n n ⇒=-=-- 二次项系数=221n --=23n -, 一般地,n a an b =+⇒[()]22n an a S b n =++211()22an b a n =++ 2n S a n b n =+⇒2()'n a a n b n a =+-=2an b a +- 特别地,2(1)2()(2)n n a b c n S an bn c a an b a n ++=⎧=++⇒=⎨+-≥⎩若0c ≠,则数列从第二项起成等差数列.公比为q 的等比数列{a n }的通项公式为:11n n a a q -=,当q 1≠时,前n 项和公式为:1111(1)(1)()1111n n n n a q a q a a S q q q q q --===+-----.由等比数列的通项公式求其前项和公式,公比等于1的比较简单,公比等于2或12比较常用,在后面将要表述.当公比1q ≠时,也可以是1111n n n a a q a q a S q q --==--,可用口诀记为:末项乘以公比减去首项.,再把差除以(公比-1).这是主要描述前n 项和公式变成通项公式.当,0n n s aq b a b =++=且0,1abq q ≠≠()时,对比11()11n n a a S q q q =+---知,11aa q =-,从而1(1)a a q =-.即:,0n n s aqb a b =++=且⇒1(1)n n a a q q -=-.若,0n n s aq b a b =++≠且,则1,1(1),2n n aq b n a a q q n -+=⎧=⎨-≥⎩,此时的1a 不符合1(1)n n a a q q -=-. 2、公比是2或12的等比数列中,序号连续的项的和的求法 对于等比数列{}n a ,当公比1q ≠时,1111n n n a a q a q a S q q --==--,当2q =时,12n n S a a =-,若公比为12,则倒序后变为公比是2,因而可归纳为:公比为2或12的等比数列中,序号连续的项的和,等于绝对值最大的加数的2倍减去绝对值最小的加数. 如:124828115+++=⨯-=(-2)+(—4)+…+(—256)=2(—256)—(-2)=-510111111204722482048220482048++++=⨯-= 3、非常手段求等差、等比数列的公差、公比数列的项的序号应取正整数,若以每项的序号为横坐标,该项的值为纵坐标来描点,则等差数列的图象是一条直线上一系列孤立的点.等比数列的图象是一条指数型函数(不一定是指数函数)图象上一系列孤立的点.因而我们也可以把这两种数列的图象拓展为连续曲线(直线也可以看成是直线),利用曲线上其它的点来确定一次函数或指数型函数中的参数.基于这个观点,可以让数列的项的序号取正整数外的其它数,有时处理起问题来会显得更方便.尤其是在做选择题、填空题时,不需要参考解题过程评分,利用这样的方式来处理更准更快.例1、等差数列n a {}的前n 项和为n S ,且2S =10, 4S =36,则这个数列n a {}的公差是 按常规,列出一个关于首项1a 和公差d 的二元一次一方程组,消去首项1a ,解出公差d 即可. 但如此处理会更快些:2S =10⇒ 1.5a =5,4S =36⇒ 2.5a =9 于是, 2.5 1.59542.5 1.51a a d --===-.公差实质上是直线的斜率.可以利用直线上两个点11,1222(),(,)P x y P x y 的纵坐标之差除以对应的横坐标之差,即:2121y y k x x -=-(12x x ≠),或1212y y k x x -=-(12x x ≠).在数列中,利用两个点2(,),(,)m n M m a N n a 可得mn a y d m n -=-(m n ≠),或n ma a d n m-=-(m n ≠). 与等差数列类似,也可借助曲线来解决相关问题,此处不再赘述.4、递推公式为: 1()n n a qa f n +=+(0q ≠,()f n 是非零常数,或一、二次函数, 或指数型函数)的数列n a {}的通项公式的求法 对数列的考查仍然以等差、等比数列为主线,命题时加上一些加、乘、乘方运算变化,把等差、等比的属性隐盖起来,使得问题出现的面孔有所改变.作为考生要做的事情,就是把隐藏了的等差、等比性质拨离出来,再用处理等差、等比的常规手段来处理. (1)当()f n 是一个非零常数d 时,1n n a qa d +=+例2、已知数列n a {},111,23n n a a a +==+, 求数列n a {}的通项公式. 猜想:把常数3分配成两个数相加到1n a +和n a 上,变成1()n n a c q a c ++=+的形式. 解:123n n a a +=+⇒当2n ≥时,132(3)n n a a -+=+⇒113(3)2n n a a -+=+11a = ∴123n n a +=-,验证知符合 1.n =∴数列na {}的通项公式为:123n na +=-一般地,如果数列n a {}满足:11,n n a a a qa d +==+(0,1)q ≠,可以把这个数列的每项都加上一个常数c ,使它变成公比为q 的等比数列.即:{}n a c +是公比为q 的等比数列.设1()n n a c q a c -+=+(2n ≥),则1(1)n n a qa q c -=+-, 对比当2n ≥时,1n n a qa d -=+,得1d c q =-.可得到:11()()1111n n n n d d d da a q a a q q q q q --+=+⇒=+-----⇒1()1n n n aq d a q d a q -+--=-这种数列是把等比数列的各项加上一个常数后得到的数列.或者说成是等比数列平移后的数列.在通项公式上的表现是,相邻两项是一次函数的关系.(2)1n n a qa an b +=++(1q ≠)型与处理(1)类似,令1(1)()n n a s n t q a sn t ++++=++,则1(1)(1)n n a qa q sn q t s +=+-+--,对比1n n a qa an b +=++,得:(1)(1)q s aq t s b -=⎧⎨--=⎩,可得到,s t 的值.与处理1n n a qa an b +=++(1q ≠)型类似,也可求出21n n a qa an bn c +=+++型(相当于2()f n an bn c =++型的数列的通项公式.(3)1n k n n a qa ap ++=+(相当于()n k f n ap +=)的可先转化成1n n a qa d -=+型的来处理 例3、在数列n a {}中,14a =,1652n n n a a -=-⨯(2n ≥).求数列n a {}的通项公式. 过程略.答案:11526n n n a --=⨯-以上主要分析1q ≠的情形,1q =的情形较简单,后面给出3道题供练习.5、对于含有n S 和n a 的递推公式例4、已知数列{}n a 中,1n 13,S (1)(1)12n a n n a ==++-前项和 (I )求证:数列{}n a 是等差数列;(II )求数列{}n a 的通项公式.(I )证明:由n 1S (1)(1)12n n a =++-,得 当2n ≥时,n 111S (11)(1)12n n a -=-++--=11(1)12n n a -+-1n n S S --=1(1)2n n a +-112n na -+12⇒2n a =(1)n n a +-1n na -+1⇒(1)n n a --1n na -+1=0………. ①又1(1)10n n na n a +-++=………..②②-①,得:1120n n n na na na +--+=⇒11n n n n a a a a +--=- ∴ 数列{}n a 是等差数列.(Ⅱ)解:由n 1S (1)(1)12n n a =++-,得1221(21)(1)12a a a +=++-,联系13a =可得,25a =. 故d =5-3=2 ∴数列{}n a 的通项公式为:21n a n =+练习1、数列{}n a 满足:111,,n n a a a n +==+求数列{}n a 的通项公式.2、已知数列n a {},1111,3(2)n n n a a a n --==+≥, 求数列n a {}的通项公式.(312n n a -=) 3、在数列n a {}中, 1114,(2)2n n n n a a a λλλ++==++-,其中λ>0. 求数列n a {}的通项公式;通项公式为:(1)2n n n a n λ=-+;。

数列解题技巧归纳总结 好(5份)

数列解题技巧归纳总结 好(5份)

数列解题技巧归纳总结好(5份)一、典型题的技巧解法1、求通项公式(1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为an+1=an+d及an+1=qan(d,q为常数)例1、已知{an}满足an+1=an+2,而且a1=1。

求an。

例1、解∵an+1-an=2为常数∴{an}是首项为1,公差为2的等差数列∴an=1+2(n-1)即an=2n-1例2、已知满足,而,求=?(2)递推式为an+1=an+f(n)例3、已知中,,求、解:由已知可知令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a2-a1)+(a3-a2)+…+(an-an-1)★ 说明只要和f (1)+f(2)+…+f(n-1)是可求的,就可以由an+1=an+f(n)以n=1,2,…,(n-1)代入,可得n-1个等式累加而求an。

(3)递推式为an+1=pan+q(p,q为常数)例4、中,,对于n>1(n∈N)有,求、解法一:由已知递推式得an+1=3an+2,an=3an-1+2。

两式相减:an+1-an=3(an-an-1)因此数列{an+1-an}是公比为3的等比数列,其首项为a2-a1=(31+2)-1=4∴an+1-an=43n-1 ∵an+1=3an+2∴3an+2-an=43n-1 即 an=23n-1-1解法二:上法得{an+1-an}是公比为3的等比数列,于是有:a2-a1=4,a3-a2=43,a4-a3=432,…,an-an-1=43n-2,把n-1个等式累加得:∴an=23n-1-1(4)递推式为an+1=p an+q n(p,q为常数)由上题的解法,得:∴ (5)递推式为思路:设,可以变形为:,想于是{an+1-αan}是公比为β的等比数列,就转化为前面的类型。

求。

(6)递推式为Sn与an的关系式关系;(2)试用n表示an。

数学高中数列10种解题技巧

数学高中数列10种解题技巧

数学高中数列10种解题技巧数列是高中数学中一个非常重要且经常被考察的概念。

它在数学和实际应用中都有着广泛的应用。

但是,数列的解题方法非常多,有时候我们可能会感到困惑。

为此,本文总结了数学高中数列10种解题技巧,让我们一起来看看吧。

1. 求和公式有些数列如果求和,使用求和公式可以极大地简化计算。

例如,等差数列和等比数列的求和公式是非常常见和重要的。

2. 递推式递推式是数列的一种描述方法,是一种基于之前项和公式推导下一项的方法。

有些数列通过递推式很容易得到通项公式,进而求解问题。

3. 归纳法归纳法是数列题目解题的常用方法。

通过证明一个命题对于某个特定的数成立,以及每一个下一个数都满足这个性质,我们就可以得到它对于所有数都成立的结论。

4. 图像法有些数列的图像规律比较明显,通过观察它们的图像,我们可以得到一些结论,从而解决一些问题。

5. 交替数列交替数列是一种奇数项和偶数项分别出现不同的项的数列。

有时候,我们可以通过对它进行分割,分别计算奇数项和偶数项的和,然后再将结果相加。

6. 通项公式对于某些数列,如果能够求得它们的通项公式,那么我们就可以很方便地计算出它们的各个项。

常见的数列有等差数列、等比数列、斐波那契数列等等。

7. 变形技巧变形技巧是数列解题过程中常用的一种方法。

它通常用于将原有的数列问题转化为其他已知的数列问题,从而利用已有的知识来解决问题。

8. 逆推法逆推法是一种通过倒向考虑来解决数列问题的方法,通常它可以帮助我们找到某个数列的特定项。

9. 等比数列与等差数列之间的关系等比数列和等差数列是数列中最常见的两种类型,它们之间有着一些重要的关系。

通过研究它们之间的联系,我们可以更加深入的理解它们的性质和规律。

10. 特殊的数列有些数列非常特殊,它们没有通项公式,没有明显的规律,但是它们在实际应用中却有着广泛的应用。

如果我们能够了解这些特殊的数列及其应用,那么在应用数学中会有更多的灵活性和优越性。

(完整)数列题型及解题方法归纳总结,推荐文档

(完整)数列题型及解题方法归纳总结,推荐文档

1 2
5
文德教育
n 2时,a n Sn Sn1 …… 3·4 n1
a n ca n1 d c、d为常数,c 0,c 1,d 0
建议收藏下载本文,以便随时学习! 4、叠乘法
可转化为等比数列,设a n x c a n1 x
例如:数列a n 中,a1
3,
a n1 an
n n 1 ,求an
a n ca n1 c 1x
解: a 2 · a 3 …… a n 1 · 2 …… n 1 ,∴ a n 1
a1 a2
a n1 2 3
n
a1 n
又a 1
3,∴a n
3 n
5、等差型递推公式
由a n a n1 f (n),a1 a 0,求a n ,用迭加法
令(c 1)x d,∴x d c1
(3)形如 an1 ank 的递推数列都可以用对数法求通项。
(7)(理科)数学归纳法。
4
文德教育
建议收藏下载本文,以便随时学习! (8)当遇到 an1
an1
d或 an1 an1
q 时,分奇数项偶数项讨论,结果
求数列通项公式的常用方法:
1、公式法
可能是分段形式。 数列求和的常用方法:
2、 由S n 求a n
∴a n
c
d
1是首项为a
1
c
d ,c为公比的等比数列 1
∴a n
c
d 1
a1
c
d
1
·c
n
1
n
2时,a 2 a3
a1 a2
f (2)
f
(3)
两边相加,得:
…… ……
a n a n1 f (n)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近几年高考题可见数列题命题有如下趋势:1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有.2.数列中a n与S n之间的互化关系也是高考的一个热点.3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用.4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等.因此复习中应注意:1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等.4.等价转化是数学复习中常常运用的,数列也不例外.如a n与S n的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果.7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用.【考点透视】1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题.3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题.4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。

本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法.应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决.【例题解析】考点1 正确理解和运用数列的概念与通项公式理解数列的概念,正确应用数列的定义,能够根据数列的前几项写出数列的通项公式.典型例题 例1.在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4,…堆最底层(第一层)分别按图4所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f (n)表示第n 堆的乒乓球总数,则()f 3_____=;()_____f n =(答案用n 表示).分析:从图中观察各堆最低层的兵乓球数分别是12,3,4, …推测出第n 层的球数。

解:显然()f 310=.第n 堆最低层(第一层)的乒乓球数,()n 12n n n 1a a a a 2+=+++=,第n 堆的乒乓球数总数相当于n 堆乒乓球的低层数之和,即()()22212n n n 111f n a a a (12n ).222+=+++=++++⋅ 所以:()()n n 1n 2f (n)6++=例2.将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行;第61行中1的个数是 . 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1…… ………………………………………分析:计算图形中相应1的数量的特征,然后寻找它们之间的规律。

解:第1次全行的数都为1的是第21-=1行,第2次全行的数都为1的是第221-=3行,第3次全行的数都为1的是第321-=7行,······,第n 次全行的数都为1的是第21n -行;第61行中1的个数是521- =32.应填21n -,32考点2数列的递推关系式的理解与应用在解答给出的递推关系式的数列问题时,要对其关系式进行适当的变形,转化为常见的类型进行解题。

如“逐差法”若n n 1a a n,--=且1a 1=;我们可把各个差列出来进行求和,可得到数列{}n a 的通项.…()()()n n n 1n 1n 2211a a a a a a a a ---=-+-++-+()()n n 1n n 121.2+=+-+++=再看“逐商法”即n 1na n 1a +=+且1a 1=,可把各个商列出来求积。

()()n n 12n 1n 1n 21a a a a a n n 1n 221n!a a a ---==--=另外可以变形转化为等差数列与等比数列,利用等差数列与等比数列的性质解决问题。

例3.数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列.(I )求c 的值;(II )求{}n a 的通项公式.分析:(1)由123a a a ,,成公比不为1的等比数列列方程求c ;(2)可根据递推公式写出数列的前几项,然后分析每一项与该项的序号之间的关系,归纳概括出an 与n 之间的一般规律,从而作出猜想,写出满足前4项的该数列的一个通项公式. 解:(I )12a =,22a c =+,323a c =+,因为123a a a ,,成等比数列,所以2(2)2(23)c c +=+,解得0c =或2c =. 当0c =时,123a aa ==,不符合题意舍去,故2c =. (II )当2n ≥时,由于21a a c -=, 322a a c -=,,1(1)n n a a n c --=-,所以1(1)[12(1)]2n n n a a n c c --=+++-=.又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+=,,. 当1n =时,上式也成立, 所以22(12)n a n n n =-+=,,.小结:从特殊的事例,通过分析、归纳、抽象总结出一般规律,再进行科学地证明,这是创新意识的具体体现,这种探索问题的方法,在解数列的有关问题中经常用到,应引起足够的重视.例4.已知数列{}n x 满足122x x =,()1212n n n x x x --=+,3,4,n =….若lim 2n n x →∞=, 则 ( B )(A) 32(B) 3 (C) 4 (D) 5思路启迪:对递推关系变形,运用叠加法求得,特别注意的是对两边同时运用.解答过程:n n 1n 12x x x --=+, n n 1n 2n x x x x --∴-=-.32134324n 1n 2n 3n 1n n 1n 2n x x x x x x x x x x x x x x x x -------=-⎫⎪-=-⎪⎪⎬⎪-=-⎪-=-⎪⎭相叠加n 212n n 1x x x x x x --=+--. 12x x 2=, n n 112x x 2x -∴+=.()n n 11n n lim 2x x lim 2x -→∞→∞+=, n n lim x 2→∞=,12x 6∴= ,1x 3=.解答过程2:由()1212n n n x x x --=+得:n n 1n 1n 2211111x +x x x x x x 222---=+==+=,n n 11n 1lim x x x 2-→∞⎛⎫+= ⎪⎝⎭,因为n n lim x 2→∞=. 所以:1x 3=.解答过程3:由()1212n n n x x x --=+得:()()2n n 1n 1n 2n 2n 311x x x x x x 22-----⎛⎫⎛⎫-=--=-- ⎪ ⎪⎝⎭⎝⎭…………()n 2n 121111x x x 22--⎛⎫⎛⎫==--=- ⎪ ⎪⎝⎭⎝⎭,从而 23211x x x 2⎛⎫-=- ⎪⎝⎭;34311x x x 2⎛⎫-=- ⎪⎝⎭;……;n 1n n 111x x x 2--⎛⎫-=- ⎪⎝⎭.叠加得:23n 1n 21111x x x 222-⎡⎤⎛⎫⎛⎫⎛⎫-=-+-++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. n 2n 2111x x x 162-⎡⎤⎛⎫=+--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, n 2n 21n n 11lim x lim x x 162-→∞→∞⎧⎫⎡⎤⎪⎪⎛⎫=+--⎢⎥⎨⎬ ⎪⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭. 11x 12x 26=+ , 从而1x 3=. 小结:数列递推关系是近几年高高数学的热点,主要是一些能转化为等差等比数列的递推关系式。

对连续两项递推()n n-1a ka d n 2,k 1=+≥≠,可转化为n n 1d d a k a 1k 1k -⎛⎫-=- ⎪--⎝⎭;对连续三项递推的关系()n 1n n-1a ka da n 2+=+≥如果方程2x kx d=0--有两个根αβ、,则上递推关系式可化为()n 1n n n 1a a a a αβ+--=-或()n 1n n n 1a a a a βα+--=-.考点3 数列的通项n a 与前n 项和n S 之间的关系与应用n a 与n S 的关系:1n n n 1S n=1a S S n 2-⎧=⎨-≥⎩,数列前n 项和n S 和通项n a 是数列中两个重要的量,在运用它们的关系式n n n 1a S S -=-时,一定要注意条件n 2≥,求通项时一定要验证1a 是否适合。

解决含n a 与n S 的式子问题时,通常转化为只含n a 或者转化为只n S 的式子.例5. 在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( ) (A)122n +- (B) 3n (C) 2n (D)31n -点评:本题考查了等比数列的定义和求和公式,着重考查了运算能力。

过程指引因数列{}n a 为等比,则12n n a q -=,因数列{}1n a +也是等比数列,则22121122212(1)(1)(1)22(12)01n n n n n n n n n n n n n a a a a a a a a a a a a a q q q +++++++++=++⇒+=++⇒+=⇒+-=⇒= 即2n a =,所以2n S n =,故选择答案C.例6.已知在正项数列{a n }中,S n 表示前n项和且n a 1+,求a n . 分析:转化为只含n a 或者只含n S 的递推关系式.解1:由已知n a 1=+,得当n=1时,a 1=1;当n ≥2时, a n = S n -S n -1,代入已知有n n 1S S 1--+,n 1n S S 1-=-.)2n 1S 1-=,又n n n 1a 0,S S ->>1.1,是以1为首项,1为公差的等差数列,n =故n a 2n 1=-.解2:由已知n a 1+,得当n=1时,a 1=1;当n ≥2时 因为2n n a 1S 2+⎛⎫= ⎪⎝⎭,所以22n n 1n a 1a 1a 22-++⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.22n n n n 1n 14a a 2a a 2a --=+--,22n n n 1n 1a 2a a 2a 0-----= ()()n n 1n n 1a a a a 20--+--=,因为n a 0>,所以n n 1a a 2--=,所以n a 2n 1=-.考点4 等差、等比数列的概念与性质的理解与应用在等差、等比数列中,已知五个元素1n a ,a ,n,d 或q ,n S 中的任意三个,运用方程的思想,便可求出其余两个,即“知三求二”。

相关文档
最新文档