流体力学-06 不可压缩无粘流动流体力学总结
《工程流体力学》第六章 不可压缩流体平面有势流动
3) y = 0 将 y=0 代入
驻点:
把驻点坐标代入流函数y:
过驻点流函数值:y = 0
物体轮廓线方程为:
求物体半宽b/2: 把 x=0 代入物体轮廓线方程:
y:物体半宽b/2
已知流函数 -> 速度场,压强场 在物体前部:附面层很薄 粘性影响大的流动区域:很薄 计算结果:与实验较符合
在物体后部:附面层增厚 形成:尾部旋涡 无粘流势流理论:不再适用
2)在源点左边x轴上,y=0:存在一点s 该点处:源点与直匀流速度:大小相等
方向相反
该点:驻点,复合流场合速度 = 0
求驻点,令: 驻点确在x负轴上
3)从源点流出流体到达驻点s后:不能继续向左流动 被迫分成上下两路 形成绕物体流动轮廓线—— 半无限体
现求半无限体轮廓线方程: 把驻点极坐标: 代入流函数中:
一般称零流线
粘性流体切向速度:0 理想流体切向速度:不受限制
第三节 基本解叠加原理 线性方程叠加原理:两个解的和或差也是该方程的解 平面不可压势流势函数和流函数方程:拉普拉斯方程 拉普拉斯方程:线性方程,可以应用叠加原理
复杂流场的解:可由若干简单流场的解叠加得到
两个有势流动势函数: j1,j2
每一流动都满足拉普拉斯方程:
什么条件? 无旋条件 二维不可压连续方程:
不可压平面有势流动的流函数方程
不可压连续方程和无旋条件 -> 流函数方程 流函数方程-拉普拉斯方程:仅适用于不可压平面有势流 动
不可压平面有旋流动或可压缩平面有势流动: 不存在流函数方程
三、边界条件: 流体:从无穷远流向某物体 条件:不分离 物面法向流体速度:0,即物面是一条流线
都存在流函数
只有无Байду номын сангаас流动:才存在势函数 平面流动:流函数更普遍
流体力学知识重点全
流体力学知识点总结流体力学研究流体在外力作用下的宏观运动规律流体质点:1.流体质点无线尺度,只做平移运动2.流体质点不做随即热运动,只有在外力的作用下作宏观运动;3.将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性;流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元.流体元可看做大量流体质点构成的微小单元.连续介质假设:假设流体是有连续分布的流体质点组成的介质.连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律.分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力.液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力.、流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止.牛顿流体:动力粘度为常数的流体称为牛顿流体.牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的:温度对粘度的影响:温度对流体的粘度影响很大.液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大.压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大.毛细现象:玻璃管内的液体在表面张力的作用下液面升高或降低的现象称为毛细现象;描述流体运动的两种方法拉格朗日法:拉格朗日法又称为随体法.它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌.欧拉法:欧拉法又称当地法.它着眼于空间点,把流体的物理量表示为空间位置和时间的函数.空间点的物理量是指,某个时刻占据空间点的.流体质点的物理量,不同时刻占据该空间点的流体质点不同.速度场:速度场是由流体空间各个坐标点的速度矢量构成的场.速度场不仅描述速度矢量的空间分布,还可描述这种分布随时间的变化.定常流动:流动参数不随时间变化的流动.反之,流体参数随时间变化的流动称为不定长流动.迹线:流体质点运动的轨迹.在流场中对某一质点作标记,将其在不同时刻的所在位置点连成线就是该流体质点的迹线.流线:流线是指示某一时刻流场中各点速度矢量方向的假象曲线.流面:经过一条非流线的曲线上各点的所有流线构成的面.对于定常流场,流线也是迹线.脉线:脉线是相继通过某固定点的流体质点连城的线.流体线:在流场中某时刻标记的一串首尾相连接的流体质点的连线,称为该时刻的流体线.由于这一串流体质点由同一时刻的标记,每一个质点到达下一时刻的流体线位置时间相同,因此又称为时间线.流管:在流场中由通过任意非流线的封闭曲线上每一点流线所围成的管状面称为流管.流束:流管内的流体称为流束.总流:工程上还将管道和管道壁所围成的流体看做无数微元流束的总和,称为总流.恒定流:以时间为标准,若各空间点上的流动参数速度、压强、密度等皆不随时间变化,这样的流动是恒定流,反之为非恒定流.均匀流:若质点的迁移加速度为零,即流动是均匀流,反之为非均匀流.内流:被限制在固体避免之间的粘性流动称为内流.外流:外流通常是指流体对物体的外部绕流,固体壁面对流动的影响通常局限在有限的范围内,流场可以使无限的.按照流场中涡量是否为零,可以讲流体分为无旋流动和有旋流动.系统:是指一群确定的流体质点,在运动过程中系统的形状,体积,表面积可以不断的改变,但是要始终包含这些确定的流体质点.所有流体质点物理量的总和称为系统的物理量,更准确的应称为系统的广延量.系统的广延量随时间的变化率称为系统导数.控制体:流场中人为选定的空间几何区域.它的边界面称为控制面.流体的连续性原理:按照拉格朗日的观点,一个流体系统所包含的流体物质质量在流动过程中始终保持不变;按照欧拉的观点,如果流体的密度不变不可压缩流体,流进控制体的物质质量应该等于流出控制体的物质质量.通常将后者称为连续性原理.伯努力方程的适用条件:1. 无粘性流体.2. 不可压缩流体.3. 定长流动.4. 沿流线;沿总流的伯努力的方程适用条件:1.无粘性流体.2. 不可压缩流体.3. 定常流动.4. 沿流束,并且计算截面符合缓变流条件.非均匀流:分为渐变流和急变流,流体质点的迁移加速度很小的流动或是流线近于平行直线的流动定义为渐变流,反之为急变流均匀流的性质对于渐变流近似成立的原因:1、渐变流的过流断面近于平面,面上各点的速度方向近于平行; 2、渐变流过流断面上的动压强与静压强的分布规律相同湍流:湍流运动是各种大小和不同涡量的涡旋叠加而形成的流动,在湍流运动中随即和逆序运动并存.粘性影响区域:由壁面不滑移条件,在物体周围形成从物体熟读为零到外流速速梯度的区域.空化:液体内局部压强降低到液体的饱和蒸气压时,液体内部或液固交界面上出现的蒸气或气体空泡的形成、发展和溃灭的过程 .空蚀:当流场低压区产生的空泡运动到高压区时,或者局部流场由低压周期性的变为高压时,空泡将发生溃灭;液体中运动物体受空化冲击后,表面出现的变形和材料剥蚀现象,又称剥蚀或气蚀.空蚀的两种破坏形式:1.当空泡离壁面较近时,空泡在溃灭是形成的一股微射流连续打击壁面,造成直接损伤;2.空泡溃灭形成冲击波的同时冲击壁面,无数空泡溃灭造成连续冲击将引起壁面材料的疲劳破坏;边界层:当Re1时,粘性影响区域缩小到壁面区域狭窄的区域内称为边界层.边界层特点:1. 厚度很小;2. 随着沿平板流的深入,边界层的厚度不断增长;边界层分离:边界层分离又称流动分离,是指原来紧贴壁面流动的边界层脱离壁面的现象.声速:声速是弹性介质中微弱扰动传播速度的总称.其传播速度金和仅和戒指的弹性和质量之比有关.激波:理论分析和实验都表明,当一个强烈的压缩扰动在超声速流场中传播是,在一定条件下降形成强压波阵面,称为激波.范诺线:1. 当Ma=1时,ds=0,表示范诺线在最大熵值点上的速度达到声速;2. 当Ma<1,时ds与dT异号,表示温度下降时,比熵增大,状态沿范诺线上半支按顺时针方向进行.亚声速流在绝热摩擦管中加速,但是最多达到声速Ma=1,流动中温度、压强、密度均降低,总压也降低.、3. 当Ma>1时,ds与dT同号,表示温度上升时,比熵也增大,状态沿范诺线的下半支按照逆时针的方向进行.超声速在绝热摩擦管中减速,但是最多达到声速Ma=1,流动中的温度、压强、密度均增大,总压降低.绝热摩擦管中的雍塞现象实际管长L>Lmax时将会发生雍塞现象.1.对于亚声速流,雍塞造成的压强扰动可以向上游传播至入口,使入口发生溢流,直至出口截面正好是临界截面为止.2.对于超声速流,雍塞在管中产生激波,激波后变成亚声速流,使临界截面移至出口截面处.激波的位置视雍塞的严重条件而定,特别严重时激波的位置甚至发生在出口截面之前,形成溢流,是流量减少.瑞利线:1. 对于亚声速流Ma<1, 加热dq>0,将会引起流动加速dV>0,但是最多加速到Ma=1顺时针方向沿瑞利线上半支;2. 对于超声速流Ma>1, 冷却dq<0将会引起流动进一步加速dV>0顺时针方向沿瑞利线下半支,反之亦然.加热造成的雍塞现象:1.对于亚声速流,压强扰动逆向传至进口截面,造成溢流使流量减小;2.对于超声速流,雍塞在管中产生激波,时总压损失更大,激波向上游推移,这个过程直至进口截面前才停止.超声速气流先通过激波变成亚声速流,然后再造成溢流,减少流量后才能通过管道.多普勒效应:由于传来的声波的疏密不同,位于不同位置上的观察着将听到不同频率的声音,这种现象称为多普勒效应.马赫锥:流体以超声速流动时,此时马赫波不再保持平面,而是以O为顶点的向流场速度方向的扩张圆锥面,从点声源发出的球形压强的波阵面均与圆锥相切,该圆锥面称为马赫锥 ,母线称为马赫线,圆锥的半锥角称为马赫角;超声速流场的基本特征:在超声速流场中微弱的扰动波的传播是有界的;水头损失的的构成:1.沿程损失,是沿等截面管流动时管壁切应力引起的摩擦损失;2.局部损失,是由1.截面变化引起的速度的重新分布;2. 流体元相互碰撞和增加摩擦;3.二次流;4,流动分离形成漩涡等原因引起的损失.加速度公式的物理意义:B点加速度=B点速度随时间的变化率B的当地变化率+B因空间位置的差异而引起的变化率B点的沿各个轴方向的迁移变化率N-S方程的物理意义:质量×加速度惯性力=体积力+压差力压强梯度+粘性力粘性切应力的散度伯努力方程的物理意义:速度水头+位置水头+压强水头=总水头位置水头+压强水头=测压水头亥姆霍兹速度分解定律意义:M0点领域的另一点M的速度=M0点的速度+流体旋转+线应变速率+角变形速率引起的相对速度常用的流动分析方法:1.基本的物理定律质量守恒定律、牛顿运动定律动量和动量矩守恒定律、热力学第一定律能量守恒定律2.系统和控制体分析法;3.微分与积分的方法;4.量纲分析法;。
《工程流体力学》第六章 不可压缩流体平面有势流动
粘性流体切向速度:0 理想流体切向速度:不受限制
第三节 基本解叠加原理 线性方程叠加原理:两个解的和或差也是该方程的解 平面不可压势流势函数和流函数方程:拉普拉斯方程 拉普拉斯方程:线性方程,可以应用叠加原理
复杂流场的解:可由若干简单流场的解叠加得到
两个有势流动势函数: j1,j2
无旋流动:才存在势函数 平面流动:流函数更普遍
流函数与势函数一样:可以用来描述整个流场 由流函数:就可求出流速和压强分布
-流线微分方程
y=c曲线,即等流函数线:流线
给定一组常数值:就可得流线族
流体:不能穿越流线,也不能穿越固体表面 固体表面:可看作流线,通常是零流线
即y=0的流线:代替物体表面
2)在源点左边x轴上,y=0:存在一点s 该点处:源点与直匀流速度:大小相等
方向相反
该点:驻点,复合流场合速度 = 0
求驻点,令: 驻点确在x负轴上
3)从源点流出流体到达驻点s后:不能继续向左流动 被迫分成上下两路 形成绕物体流动轮廓线—— 半无限体
现求半无限体轮廓线方程: 把驻点极坐标: 代入流函数中:
过驻点的流函数值: 轮廓线方程:
可见 源的作用:是提前将前方来流的直匀流推开,与物体头部 作用相同
不同强度的源流:沿轴线排列 并:与直匀流叠加 可得到:直匀流绕实际钝头体物体的流动
三、直匀流与一对等强度源汇的叠加:
源:在x轴(-a, 0)处,强度 Q 汇:在x轴(a, 0 )处,强度 -Q 复合流动:直匀流与该源、汇叠加
注意: 三维流动:不存在流函数
不存在等流函数线 但存在流线
流函数与流量关系: 流动:二维 任意曲线:连接a、b两点 某瞬时过微元段ab的流量:
或
流体力学知识点经典总结
流体力学绪论一、流体力学的研究对象流体力学是以流体(包括液体和气体)为对象,研究其平衡和运动基本规律的科学。
主要研究流体在平衡和运动时的压力分布、速度分布、与固体之间的相互作用以及流动过程中的能量损失等。
二、国际单位与工程单位的换算关系21kg 0.102/kgf s m =•第一章 流体及其物理性质 (主要是概念题,也有计算题的出现)一、流体的概念流体是在任意微小的剪切力作用下能发生连续的剪切变形的物质,流动性是流体的主要特征,流体可分为液体和气体二、连续介质假说流体是由空间上连续分布的流体质点构成的,质点是组成宏观流体的最小基元三、连续介质假说的意义四、常温常压下几种流体的密度水-----998 水银-----13550 空气-----1.205 单位3/kg m五、压缩性和膨胀性流体根据压缩性可分为可压缩流体和不可压缩流体,不可压缩流体的密度为常数,当气体的速度小于70m/s 、且压力和温度变化不大时,也可近似地将气体当做不可压缩流体处理。
六、流体的粘性流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现,粘性的大小用粘度来度量,粘度又分为动力粘度μ和运动粘度ν,它们的关系是μνρ=七、牛顿内摩擦定律du dy τμ=八、温度对流体粘性的影响温度升高时,液体的粘性降低,气体的粘性增加。
这是因为液体的粘性主要是液体分子之间的内聚力引起的,温度升高时,内聚力减弱,故粘性降低;而造成气体粘性的主要原因在于气体分子的热运动,温度越高,热运动越强烈,所以粘性就越大流体静力学一、流体上力的分类作用于流体上的力按作用方式可分为表面力和质量力两类。
清楚哪些力是表面力,哪些力是质量力二、流体静压力及其特性(重点掌握)当流体处于静止或相对静止时,流体单位面积的表面力称为流体静压强。
特性一:静止流体的应力只有法向分量(流体质点之间没有相对运动不存在切应力),且沿内法线方向。
特性二 在静止流体中任意一点静压强的大小与作用的方位无关,其值均相等。
流体力学知识点总结
流体力学知识点总结一、流体的物理性质流体区别于固体的主要特征是其具有流动性,即流体在静止时不能承受切向应力。
流体的物理性质包括密度、重度、比容、压缩性和膨胀性等。
密度是指单位体积流体所具有的质量,用符号ρ表示,单位为kg/m³。
重度则是单位体积流体所受的重力,用γ表示,单位为 N/m³,且γ =ρg(g 为重力加速度)。
比容是密度的倒数,它表示单位质量流体所占有的体积。
流体的压缩性是指在温度不变的情况下,流体的体积随压强的变化而变化的性质。
通常用体积压缩系数β来表示,其定义为单位压强变化所引起的体积相对变化率。
对于液体来说,其压缩性很小,在大多数情况下可以忽略不计;而气体的压缩性则较为明显。
膨胀性是指在压强不变的情况下,流体的体积随温度的变化而变化的性质。
用体积膨胀系数α来表示,它是单位温度变化所引起的体积相对变化率。
二、流体静力学流体静力学主要研究静止流体的力学规律。
静止流体中任一点的压强具有以下特性:1、静止流体中任一点的压强大小与作用面的方向无关,只与该点在流体中的位置有关。
2、静止流体中压强的大小沿垂直方向连续变化,即从液面到液体内部,压强逐渐增大。
流体静力学基本方程为 p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,h 为该点在液面下的深度。
作用在平面上的静水总压力可以通过压力图法或解析法来计算。
对于矩形平面,采用压力图法较为简便;对于不规则平面,则通常使用解析法。
三、流体动力学流体动力学研究流体的运动规律。
连续性方程是流体动力学的基本方程之一,它基于质量守恒定律。
对于不可压缩流体,在定常流动中,通过流管各截面的质量流量相等。
伯努利方程则是基于能量守恒定律得出的,它表明在理想流体的定常流动中,单位体积流体的动能、势能和压力能之和保持不变。
其表达式为:p/ρ + 1/2 v²+ gh =常数其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。
《流体力学总结大全》
《流体力学总结大全》2、连续介质假设。
把流体当做是由密集质点构成的、内部无空隙的连续体。
3、相对密度:物体质量与同体积4摄氏度蒸馏水质量比4、体胀系数。
压强不变时每增加单位温度时,流体体积的相对变化率(α),温度越高越大。
5、压缩率。
当流体温度不变时每增加单位压强时,流体体积的相对变化率,压强越大压缩率越小压缩越难(kt)。
6、体积模量。
温度不变,每单位体积变化所需压强变化量,(k),越大越难压缩。
7、不可压缩流体。
体胀系数与压缩率均零的流体。
8、粘性:流体运动时内部产生切应力的性质,是流体的内摩擦特性,或者是流体阻抗剪切变形速度的特性,动力黏度μ:单位速度梯度下的切应力,运动黏度:流体的动力黏度与密度的比值。
9、速度梯度。
速度沿垂直于速度方向y的变化率。
10、牛顿内摩擦定律。
切应力与速度梯度成正比。
符合牛顿内摩擦定律的流体;不符合牛顿内摩擦定律的流体。
11、三大模型:连续介质模型、不可压缩模型、理想流体模型。
连续介质假设是流体力学中第一个带根本性的假设。
连续介质模型:认为液体中充满一定体积时不留任何空隙,其中没有真空,也没有分子间隙,认为液体是连续介质,由此抽象出来的便是连续介质模型。
不可压缩流体模型:在忽略液体或气体压缩性和热胀性时,认为其体积保持不变以简化分析,流体密度随压强变化很小,可视为常数的流体。
理想流体模型。
连续介质模型和不可压缩模型的总和。
12、质量力与表面力之间的区别:①作用点不同质量力是作用在流体的每一个质点上表面力是作用在流体表面上;②质量力与流体的质量成正比(如为均质体与体积成正比)表面力与所取的流体的表面积成正比③质量力是非接触产生的力,是力场的作用表面力是接触产生的力13、简述气体和液体粘度随压强和温度的变化趋势及不同的原因。
答:气体的粘度不受压强影响,液体的粘度受压强影响也很小;液体的粘度随温度升高而减小,气体的粘度却随温度升高而增大,其原因是:分子间的引力是液体粘性的主要因素,而分子热运动引起的动量交换是气体粘性的主要因素。
流体力学-总结复习
流体力学总结+复习第一章 绪论一、流体力学与专业的关系流体力学——是研究流体(液体和气体)的力学运动规律及其应用的学科。
主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。
研究对象:研究得最多的流体是液体和气体。
根底知识:牛顿运动定律、质量守恒定律、动量〔矩〕定律等物理学和高等数学的根底知识。
后续课程:船舶静力学、船舶阻力、船舶推进、船舶操纵等都是以它为根底的。
二、连续介质模型连续介质:质点连续地充满所占空间的流体。
流体质点(或称流体微团) :忽略尺寸效应但包含无数分子的流体最小单元。
连续介质模型:流体由流体质点组成,流体质点连续的、无间隙的分布于整个流场中。
三、流体性质密度:单位体积流体的质量。
以表示,单位:kg/m 3。
0limA V m dmV dVρ∆→∆==∆ 重度:单位体积流体的重量。
以 γ 表示,单位:N/m 3。
0lim A V G dGV dVγ∆→∆==∆ 密度和重度之间的关系为:g γρ=流体的粘性:流体在运动的状态下,产生内摩擦力以抵抗流体变形的性质。
,其中μ为粘性系数,单位:N ·s /m 2=Pa ·sm 2/s 粘性产生的原因:是由流动流体的内聚力和分子的动量交换所引起的。
牛顿流体:内摩擦力按粘性定律变化的流体。
非牛顿流体:内摩擦力不按粘性定律变化的流体。
四、作用于流体上的力质量力〔体积力〕:其大小与流体质量〔或体积〕成正比的力,称为质量力。
例如重000lim,lim,limy xzm m m F F F Y Z mm m→→→=== 外表力:五、流体静压特性特性一:静止流体的压力沿作用面的内法线方向特性二:静止流体中任意一点的压力大小与作用面的方向无关,只是该点的坐标函数。
六、压力的表示方法和单位绝对压力p abs :以绝对真空为基准计算的压力。
相对压力p :以大气压p a 为基准计算计的压力,其值即为绝对压力超过当地大气压的数值。
流体力学总结
流体力学总结第一章流体及其物理性质1. 流体:流体是一种受任何微小剪切力作用都能连续变形的物质,只要这种力继续作用,流体就将继续变形,直到外力停顿作用为止。
流体一般不能承受拉力,在静止状态下也不能承受切向力,在任何微小切向力的作用下,流体就会变形,产生流动 2. 流体特性:易流动(易变形)性、可压缩性、粘性 3. 流体质点:宏观无穷小、微观无穷大的微量流体。
4. 流体连续性假设:流体可视为由无数连续分布的流体质点组成的连续介质。
稀薄空气和激波情况下不适合。
5. 密度0limV m m V V δδρδ→==重度0lim V G Gg V Vδδγρδ→===比体积1v ρ=6. 相对密度:是指*流体的密度与标准大气压下4︒C 时纯水的密度〔1000〕之比w wS ρρρ=为4︒C 时纯水的密度13.6Hg S = 7. 混合气体密度1ni ii ρρα==∑8. 体积压缩系数:温度不变,单位压强增量引起的流体体积变化率。
体积压缩系数的倒数为体积模量1P PK β=9. 温度膨胀系数:压强不变,单位温升引起的流体体积变化率。
10. 不可压缩流体:流体受压体积不减少,受热体积不膨胀,密度保持为常数,液体视为不可压缩流体。
气体流速不高,压强变化小视为不可压缩流体 11. 牛顿内摩擦定律:du dyτμ=黏度du dyτμ=流体静止粘性无法表示出来,压强对黏度影响较小,温度升高,液体黏度降低,气体黏度增加μυρ=。
满足牛顿内摩擦定律的流体为牛顿流体。
12. 理想流体:黏度为0,即0μ=。
完全气体:热力学中的理想气体第二章流体静力学1. 外表力:流体压强p 为法向外表应力,内摩擦τ是切向外表应力〔静止时为0〕。
2. 质量力〔体积力〕:*种力场对流体的作用力,不需要接触。
重力、电磁力、电场力、虚加的惯性力 3. 单位质量力:x y z Ff f i f j f k m==++,单位与加速度一样2m s 4. 流体静压强:1〕流体静压强的方向总是和作用面相垂直且指向该作用面,即沿着作用面的内法线方向2〕在静止流体内部任意点处的流体静压强在各个方向都是相等的。
流体力学-06 不可压缩无粘流动流体力学
不可压缩无粘流动的流体动力学6 不可压缩无粘流动的流体动力学6无粘流动的应力场1 无粘流动的应力场6 1-1, z方向上微元质量应用牛顿第二定律,微元质量应用牛顿第二定律方程两边同除以dxdydz是微小量y方向的牛顿第二定律可以得出对运动的无粘流体而言,点的正应力各向对运动的无粘流体而言一点的正应力各向相同(即是一个标量),无粘流体中正应力等于热力学压强的负值,即等于热力学压强的负值无摩流动动方程欧方程无摩擦流动的动量方程:欧拉方程2 无摩擦流动的动量方程:欧拉方程6-2N S方程N-S方程在无摩擦流动中不存在剪应力,正应力是热力学压强的负值如果重力是唯一的质量力如果z坐标是垂直方向欧拉方程对于重力是唯的质量力的情况,柱对于重力是唯一的质量力的情况,柱坐标形式的分量方程如下:z轴是垂直向上的,因此,g r gθ,g z g=g=-做刚体运动的流体的欧拉方程3 做刚体运动的流体的欧拉方程6-3流体被加速而在相邻流体层之间没有相对运动,即,流体做没有变形的运动时,就不会产生剪应力。
运用合适的自由体动方程我们确定流体内体运动方程,我们可以确定流体内压强的变化。
的变化直线加速运动的流体绕着垂直轴线做稳定旋转运动的流体欧拉方程可以解决非惯性坐标系中做刚体运动的流体内压强分布的问题,可以得到相同的结果。
流线坐标中的欧拉方程6-44 流线坐标中的欧拉方程流线?定常流动中,流体质点的运动轨迹?流线坐标定常流动中,沿着流线:定常流动中,沿着流线的位移是用于描述运动方程较好的坐标坐标。
在非定常流动中,流线可以给出瞬在非定常流动中流线可以给出瞬时速度场的图形表示时速度场的图形表示。
运动方程可以写成沿着流线的位移坐标sn以及流线的法向位移坐标的表达式在流动方向上(即s方向)对体积为dsdndx的微元流体应用牛顿第二定律,并忽略粘性力β是流线的切线和水平方向的夹角αs 是流体质点沿着流线方向的加速度在流动方向上流体质点的随体加速度在具有垂直方向的z轴坐标系中沿着流线方向标系中,沿着流线方向对于定常流动,忽略质量力时,在流动方向上的欧拉方程速度的减小伴随着压强的增加,成反比关系。
流体设计知识点总结高中
流体设计知识点总结高中一、流体概念流体是一种物质状态,在流体力学中指无固定形状的物质。
流体包括液体和气体。
二、流体性质1. 压力:流体对容器壁的压力,是单位面积上的力。
2. 密度:单位体积内的质量。
3. 粘性:流体的阻力。
4. 温度:影响流动性能的重要因素。
三、流体力学基本方程1. 连续方程2. 动量方程3. 能量方程四、流动类型1. 定常流2. 非定常流3. 层流4. 湍流五、流体力学基本定律1. 质量守恒定律2. 动量守恒定律3. 能量守恒定律六、雷诺数雷诺数是描述流体运动状态的重要参数,它是动量、惯性力和粘性力之间的比值。
七、流体中的摩擦力摩擦力是流体在运动中损失的能量,是流体内部分子间相互作用的结果。
八、机械能守恒机械能守恒是指在无外力或无摩擦力的情况下,流体在运动过程中的机械能保持不变。
九、伯努利定理伯努利定理是描述流体运动时,流体的动能、静压力与流体本身的重力势能之间的关系。
十、流体阻力流体阻力是流体在运动中受到的阻碍力,主要包括摩擦阻力和压力阻力。
十一、流体运动的简化假定1. 无粘流2. 不可压缩流十二、流动研究方法1. 实验方法2. 数值模拟方法3. 解析方法十三、计算流体力学计算流体力学是一种通过计算机模拟流体运动的科学方法,主要包括有限体积法、有限元法和有限差分法。
十四、流体力学在工程中的应用流体力学在工程中的应用包括气体动力学、水力学、热力学等,广泛应用于航空航天、能源、环境保护等领域。
十五、流体设计实例1. 管道流体设计2. 汽车空气动力学设计3. 飞机气动设计4. 水利工程设计以上是关于流体设计的相关知识点总结,这些知识点对理解流体的基本运动规律以及在工程中的应用具有重要意义。
希望能够对学习者有所帮助。
6工程流体力学 第六章理想不可压缩流体的定常流动
§6-1 理想不可压缩流体的一元流动(续41)
分别取进口截面与喉部截面为1、2计算截面, 利用伯努利方程可得:
gz——重力场中单位质量流体从z=0上升至z克服重
力所做的功,因此具有的重力势能。
p
——单位质量流体从 p=0至状态p克服压力所做
功,也可以理解为流体相对于p=0的状态所
蕴含的能量,这种能量称为压力能。
§6-1 理想不可压缩流体的一元流动(续9)
引入压力能的概念后,伯努利方程就 可理解为:
在重力场中,当理想不可压缩流体定常 流动时,单位质量流体沿流线的重力势能、 压力能和动能之和为常数,该定理反映了机 械能转化和守恒定理。
表示理论出流射流速度。
上述分析中,忽略了粘性和表面张力的影响。
§6-1 理想不可压缩流体的一元流动(续30)
速度系数定义为:
CV
实 际 平 均 速 度——速度系数 理论速度
Cd
实
际出流的体积流 理论体积流量
量——流量系数
CC
收 缩截 面 面积AC 孔 口 面 积A
——面积收缩系数
§6-1 理想不可压缩流体的一元流动(续31)
Cd
实际体积流量 理 论 体 积 流 量
收
缩 截 面 面 积 孔 口 面 积
实 理
际 论
平 速
均 度
速
度=CcCV
Q CdQth Cd A 2gH CcCV A 2gH
速度系数,体积收缩系数和流量系数均需由实 验确定。对于锐缘圆形孔口,
CV 0.97 0.99, Cc 0.61 0.66
§6-1 理想不可压缩流体的一元流动 一元流动: 所谓一元是指只有一个空间变量。
在流体力学中属于这种性质的流动是指沿流 线的流动。
流体力学知识点总结
流体力学知识点总结流体力学是一门研究流体(包括液体和气体)的运动规律以及流体与固体之间相互作用的学科。
它在许多领域都有着广泛的应用,如航空航天、水利工程、能源开发、生物医学等。
下面将对流体力学的一些重要知识点进行总结。
一、流体的物理性质1、密度和比容密度是指单位体积流体的质量,用ρ 表示。
比容则是单位质量流体所占的体积,是密度的倒数,用ν 表示。
2、压缩性和膨胀性压缩性是指流体在压力作用下体积缩小的性质,通常用体积压缩系数β 来表示。
膨胀性是指流体在温度升高时体积增大的性质,用体积膨胀系数α 来表示。
液体的压缩性和膨胀性通常较小,可视为不可压缩和不可膨胀流体;而气体的压缩性和膨胀性较为显著。
3、粘性粘性是流体内部产生内摩擦力以阻碍流体相对运动的性质。
粘性的大小用动力粘度μ 或运动粘度ν 来表示。
牛顿内摩擦定律指出,相邻两层流体之间的切应力与速度梯度成正比。
4、表面张力液体表面由于分子引力不均衡而产生的沿表面切线方向的拉力称为表面张力。
表面张力会使液体表面有收缩的趋势,在一些涉及小尺度流动的问题中需要考虑。
二、流体静力学1、静压强及其特性静止流体中任一点的压强大小与作用面的方位无关,只与该点的位置有关,即静压强各向同性。
2、欧拉平衡方程在静止流体中,单位质量流体所受的质量力和表面力平衡,由此可以导出欧拉平衡方程。
3、重力作用下的静压强分布在重力作用下,静止液体中的压强随深度呈线性增加,其计算公式为 p = p0 +ρgh,其中 p0 为液面压强,h 为深度。
4、压力的表示方法绝对压强是以绝对真空为基准计量的压强;相对压强是以当地大气压为基准计量的压强。
真空度则是当绝对压强小于大气压时,相对压强为负值,其绝对值称为真空度。
5、作用在平面上的静水总压力对于垂直放置的平面,静水总压力的大小等于受压面面积与形心处压强的乘积,其作用点位于受压面的形心之下。
6、作用在曲面上的静水总压力将曲面所受静水总压力分解为水平方向和垂直方向的分力进行计算。
流体力学知识点总结
流体力学11.1 流体的基本性质1)压缩性流体是液体与气体的总称。
从宏观上看,流体也可看成一种连续媒质。
与弹性体相似,流体也可发生形状的改变,所不同的是静止流体内部不存在剪切应力,这是因为如果流体内部有剪应力的话流体必定会流动,而对静止的流体来说流动是不存在的。
如前所述,作用在静止流体表面的压应力的变化会引起流体的体积应变,其大小可由胡克定律描述。
大量的实验表明,无论气体还是液体都是可以压缩的,但液体的可压缩量通常很小。
例如在500个大气压下,每增加一个大气压,水的体积减少量不到原体积的两万分之一。
同样的条件下,水银的体积减少量不到原体积的百万分之四。
因为液体的压缩量很小,通常可以不计液体的压缩性。
气体的可压缩性表现的十分明显,例如用不大的力推动活塞就可使气缸内的气体明显压缩。
但在可流动的情况下,有时也把气体视为不可压缩的,这是因为气体密度小在受压时体积还未来得与改变就已快速地流动并迅速达到密度均匀。
物理上常用马赫数M来判定可流动气体的压缩性,其定义为M=流速/声速,若M2<<1,可视气体为不可压缩的。
由此看出,当气流速度比声速小许多时可将空气视为不可压缩的,而当气流速度接近或超过声速时气体应视为可压缩的。
总之在实际问题中若不考虑流体的可压缩性时,可将流体抽象成不可压缩流体这一理想模型。
2)粘滞性为了解流动时流体内部的力学性质,设想如图10.1.1所示的实验。
在两个靠得很近的大平板之间放入流体,下板固定,在上板面施加一个沿流体表面切向的力F 。
此时上板面下的流体将受到一个平均剪应力F/A 的作用,式中A 是上板的面积。
实验表明,无论力F 多么小都能引起两板间的流体以某个速度流动,这正是流体的特征,当受到剪应力时会发生连续形变并开始流动。
通过观察可以发现,在流体与板面直接接触处的流体与板有相同的速度。
若图10.1.1中的上板以速度u 沿x 方向运动下板静止,那么中间各层流体的速度是从0(下板)到u (上板)的一种分布,流体内各层之间形成流速差或速度梯度。
流体力学难点分析-知识归纳整理
知识归纳整理粘性切应力的计算粘性切应力的计算常常很复杂。
如果流体作一元运动,速度不太大,粘性系数比较大,边界条件简单,则其速度分布可视为线性变化,这样由式就容易算出。
例如,图(a)表示间隙为δ的两个同心圆柱体,外筒固定,内筒以角速度ω旋转。
内柱表面的粘性切应力为。
图(b)表示两个同轴圆柱体,间隙为δ,内筒以速度U沿轴线方向运动,内筒表面的粘性切应力为。
表面张力的计算在普通工程实际问题中通常不思量表面张力。
但如果涉及到流体计量、物理化学变化等问题,则表面张力通常要加以思量。
(1)空气中的液滴如果不思量重力影响,液体内部压强为常数,由式可知又根据对称性知,两个曲率半径相等,这时液滴必为球体,内外压强差为如果思量重力影响,则液滴不再是球体,越靠近下方,液滴的曲率半径越小。
(2)液体气泡液体气泡有内表面和外表面,其半径分别为R1和R2,如图1所示。
气泡内气体压强为p,外部空气压强为p0,液体的压强为p1,对于内表面和外表面分别应用式有:,液膜很薄,内外半径可视为相等,即R1=R2=R,上面两式相加,得上式也可以这样推证:过球心作一切面将液体球膜分成两部分。
对于其中一具半球面,压强差p-p产生的压力应等于张力,而张力在内外表面均存在,于是:化简后就得到上式。
求知若饥,虚心若愚。
千里之行,始于足下。
(3)毛细液柱将一根细管插入液体中,由于表面张力的影响,管内液柱将上升h,如图2所示。
设液柱,则表面最低处的液体压强为p,外部大气压强为p由流体静力学知所以,毛细液体上升的高度为(4)铅直固壁上的液面如图所示,表面张力将使液面弯曲,其爬升的最大高度为h。
在弯曲液面上的任一点应用式有:式中,R是该点的曲率半径,求知若饥,虚心若愚。
设该点得高度为y,则所以,令,它具有长度的量纲。
上式化为两边同乘,则有,所以(*),所以C=1,所以爬升高度为如果要求液面形状,则可将式(*)变成为积分上式,作变量代换:其积分结果为所以,积分常数x0是千里之行,始于足下。
流体力学知识重点
流体力学知识重点流体连续介质模型:可以认为流体内的每一点都被确定的流体质点所占据,其中并无间隙,于是流体的任一物理参数()都可以表示为空间坐标跟时间的连续函数(),而且是连续可微函数,这就是流体连续介质假说,即流体连续介质模型。
流体的力学特性1,流动性:流体没有固定的形状,其形状取决于限制它的固体边界,流体在受到很小的切应力时,就要发生连续的变形,直到切应力消失为止。
2,可压缩性:流体不仅形状容易发生变化,而且在压力作用下体积也会发生变化。
3,粘滞性:流体在受到外部剪切力作用发生连续变形,即流动的过程中,其内部相应要发生对变形的抵抗,并以内摩擦的形式表现出来,运动一单停止,内摩擦即消失。
牛顿剪切定律:流体层之间单位面积的内摩擦力与流体变形速率(速度梯度)成正比()无滑移条件:流体与固体壁面之间不存在相对滑动,即固体壁面上的流体速度与固体壁面速度相同,在静止的固体壁面上,流体速度为零。
理想流体:及粘度()的流体,或称为无黏流体表面张力:对于与气体接触的液体表面,由于表面两侧分子引力作用的不平衡,会是液体表面处于张紧状态,即液体表面承受有拉伸力,液体表面承受的这种拉伸力称为表面张力。
表面张力系数:液体表面单位长度流体线上的拉伸力称为表面张力系数,通常用希腊字母()表示,单位()毛细现象:如果将直径很小的两只玻璃管分别插入水和水银中,管内外的液位将有明显的高度差,这种现象称为毛细现象,毛细现象是由液体对固体表面的润湿效应和液体表面张力所决定的一种现象。
毛细现象液面上升高度()牛顿流体:有一大类流体,他们在平行层状流动条件下,其切应力()与速度梯度()表现出线性关系,这类流体被称为牛顿型流体,简称牛顿流体。
描述流体运动的两种方法1,拉格朗日法:通过研究流体场中单个质点的运动规律,进而研究流体的整体运动规律,这一种方法称为拉格朗日法2,欧拉法:通过研究流体场中某一空间点的流体运动规律,进而研究流体的整体运动规律,这一种方法称为欧拉法迹线:流体质点的运动轨迹线曲线称为迹线流线:流线是任意时刻流场中存在的一条曲线,该曲线上流体质点的速度方向与其所在点处曲线的切线方向一致。
流体力学中的不可压缩流体流动研究
流体力学中的不可压缩流体流动研究引言流体力学是研究流体运动规律和性质的学科,其中不可压缩流体流动是流体力学中一个重要的研究领域。
不可压缩流体指的是密度在流动过程中基本保持不变的流体,例如水在常温下的流动就可以被近似地看作是不可压缩流体。
不可压缩流体的流动具有许多独特的特点和现象,对不可压缩流体流动规律的研究对于理解自然界中的现象以及应用于工程领域具有重要的意义。
本文将对流体力学中的不可压缩流体流动进行深入的研究,包括流动方程、边界条件和数值模拟方法等内容。
流动方程不可压缩流体的流动可以通过流动方程来描述,其中最基本的方程是质量守恒方程和动量守恒方程。
质量守恒方程对于不可压缩流体,质量守恒方程可以简化为连续性方程:$$ \ abla \\cdot \\mathbf{v} = 0 $$其中,$\\mathbf{v}$表示流体的速度矢量。
动量守恒方程不可压缩流体的动量守恒方程可以写为:$$ \\rho \\left( \\frac{\\partial \\mathbf{v}}{\\partial t} + \\mathbf{v} \\cdot \ abla \\mathbf{v} \\right) = -\ abla p + \\mu \ abla^2 \\mathbf{v} + \\rho\\mathbf{g} $$其中,$\\rho$表示流体的密度,p表示流体的压强,$\\mu$表示流体的动力黏度,$\\mathbf{g}$表示重力加速度。
边界条件在研究不可压缩流体流动时,需要给定适当的边界条件,以确定流体的速度和压强分布。
常见的边界条件有以下几种:固壁边界条件对于流体与固壁接触的情况,通常有以下两种边界条件:•无滑移条件:流体相对于固壁没有相对运动,即速度与固壁表面的切向速度为零。
•粘滞边界条件:流体与固壁表面存在粘滞摩擦,速度的切向分量与固壁表面的切向速度梯度成正比。
入口和出口边界条件对于流体从入口进入系统或从出口离开系统的情况,通常需要给定流体的入口速度或出口压强。
流体力学知识点总结
强分布图的形心,该作用线与受压面的交点便是压心 P。
经典例题 一铅直矩形闸门,已知 h1=1m,h2=2m,宽 b=1.5m,求总压力及其作用点。
梯形形心坐标:
a 上底,b 下底
解: 总压力为压强分布图的体积:
作压强×受压平面面积
合力矩定理:合力对 平行移轴定理
真空:当流体中某点的绝对压强小于大气压时, 则该点为真空,其相对压强必为负值。真
空值与相对压强大小相等,正负号相反(必小于 0)
p pabs pa
相对压强和绝对压强的关系
p pa pabs ( pabs pa ) P
绝对压强、相对压强、真空度之间的关系 ( pabs pa )
压强单位
任P一轴的g力si矩n 等于• 各yc分A力对同g一hc轴A力矩p之c A和
.
.
经典例题 一铅直矩形闸门,已知 h1=1m,h2=2m,宽 b=1.5m,求总压力及其作用点。
解:
hc 1 2 / 2 2 m A 1.5 2 3 m2
P 9.807 2 3 58.84 KN
yc hc 2 m ,
与质量力的合力正交的非水平面。
.
.
3 液体静力学基本方程
z p C
g
p p0 g(H z) p0 gh
P0
P P2 1 Z1 Z2
P—静止液体部某点的压强 h—该点到液面的距离,称淹没深度 Z—该点在坐标平面以上的高度 P0—液体表面压强,对于液面通大气的开口容器,视为
大气 压强并以 Pa 表示 推论
.
.
V
1 dV V dT
1
d dT
单位为“1/K”或“1/℃”
在一定压强下,体积的变化速度与温度成正比。水的压缩系数和热膨胀系数都很小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不可压缩无粘流动的流体动力学
6 不可压缩无粘流动的流体动力学
6
无粘流动的应力场
1 无粘流动的应力场
6 1
-1
, z方向上微元质量应用牛顿第二定律,
微元质量应用牛顿第二定律
方程两边同除以dxdy
dz是微小量
y方向的牛顿第二定律可以得出
对运动的无粘流体而言,点的正应力各向对运动的无粘流体而言一点的正应力各向相同(即是一个标量),无粘流体中正应力等于热力学压强的负值,即
等于热力学压强的负值
无摩流动动方程欧方程
无摩擦流动的动量方程:欧拉方程
2 无摩擦流动的动量方程:欧拉方程
6-2
N S方程
N-S方程
在无摩擦流动中不存在剪应力,正应
力是热力学压强的负值
如果重力是唯一的质量力
如果z坐标是垂直方向
欧拉方程
对于重力是唯的质量力的情况,柱
对于重力是唯一的质量力的情况,柱
坐标形式的分量方程如下:
z轴是垂直向上的,因此,g r gθ,g z g
=g=-
做刚体运动的流体的欧拉方程
3 做刚体运动的流体的欧拉方程
6-3
流体被加速而在相邻流体层之间没有相对运动,即,流体做没有变形的运动时,就不会产生剪应力。
运用合适的自由体动方程我们确定流体内
体运动方程,我们可以确定流体内压强的变化。
的变化
直线加速运动的流体
绕着垂直轴线做稳定旋转运动的流体
欧拉方程可以解决非惯性坐标系中做刚体运动的流体内压强分布的问题,可以得到相同的结果。
流线坐标中的欧拉方程
6-4
4 流线坐标中的欧拉方程
流线?
定常流动中,流体质点的运动轨迹?
流线坐标定常流动中,沿着流线
:定常流动中,沿着流线的位移是用于描述运动方程较好的
坐标
坐标。
在非定常流动中,流线可以给出瞬
在非定常流动中流线可以给出瞬
时速度场的图形表示
时速度场的图形表示。
运动方程可以写成沿着流线的位移坐标s
n
以及流线的法向位移坐标的表达式
在流动方向上(即s方向)对体积为dsdndx的微元流体应用牛顿第二定律,并忽略粘性力
β是流线的切线和水平方向的夹角αs 是流体质点沿着流线方向的加速度
在流动方向上流体质点的随体加速度
在具有垂直方向的z轴坐
标系中沿着流线方向
标系中,沿着流线方向
对于定常流动,忽略质量力时,在流动方
向上的欧拉方程
速度的减小伴随着压强
的增加,成反比关系。
微元流体在n方向上应
用牛顿第二定律
对于水平面内的定常流动,流线法方向上
的欧拉方程变为
在流线曲率中心向外的方向上,压强是增
加的。
在直的流线区域,流线的曲率半径R 加的在直的流线区域流线的曲率半径
是无穷大的,因此,在直的流线的法方向
上没有压强梯度。
6-5 5 伯努利方程伯努利方程———定常流动时欧利方程流动欧拉方程沿着流线方向的积分
6-5.1 5.1 用流线坐标推导用流线坐标推导
沿着流线方向定常流动的欧拉方程为
流体质点沿着流线移动的距离为ds
两端同乘以ds
积分后
压强p和密度ρ之间的关系
沿着s方向不可压缩流动的情况:ρ=const
Bernoulli Equation))伯努利方程(Bernoulli Equation
伯努利方程(
适用条件:
1、定常流动;
2、不可压缩流动
3、无摩擦流动;
4、沿着流线的流动。
沿着流线的流动
•沿着流线方向的压强变化、速度和高度的变化;
的变化
•伯努利常数沿着不同的流线会有差别。
-5.26 5.2 5.2 用直角坐标推导
用直角坐标推导欧拉方程的矢量形式也能沿着流线方向进行积分
对于定常流动,直角坐标系中欧拉方程变为
用沿着流线方向的位移点乘方程中的各
项
沿着s方向
平行于,方程右边的最后一项为零
(沿着s s方向)
(沿着
积分
密度==常数
密度
直角坐标系中推导出的柏努利方程也限定在以下条件内
1、定常流动;
2、不可压缩流动;
3、无摩擦流动;
应用
5.3 应用
6 5.3
-53
伯努利方程可以应用于流线的任意两点
伯努利方程可以应用于流线上的任意两点
对个参考坐标系是非定常流动的情况,经过流对一个参考坐标系是非定常流动的情况,经过流动中的坐标转换,对于另一个坐标系流动可能是定常的。
因为伯努利方程是对流体质点的牛顿第二定律进行积分推导出来的,它可以应用于任何二定律进行积分推导出来的它可以应用于任何的惯性坐标系。
例题6-1
例题6-2
例
6-6 6 静压强、滞止压强和动压强静压强、滞止压强和动压强
•
伯努利方程中所用到的压强p 是热力学压强通常也称为静压强。
压强,通常也称为静压强。
•静压强是用随流体一起运动的仪表所能够测得的压强。
但对于实际情况,这样的测量是相当困难的。
我们如何通过实验测量静压强呢?
•当流线为直线时,在垂直于流线方向上没有压强变化
没有变
•滞止压强是指流体的速度无摩擦地减小为零时所获得的压强值。
•对于不可压缩流动过程,伯努利方程可以把对缩流动过程伯努利方程把沿着流线方向上速度和压强的变化关联在沿着流线方向上速度和压强的变化关联在一起,忽略高度差时
•流动过程中某点的静压强是p,速度为V,滞止压强p
•动压强
如果能够测出点处的滞止压强和静压强,就可如果能够测出一点处的滞止压强和静压强,就可以计算当地的流动速度。
滞止压强探针
(Pitot管
()
6-7 7 热力学第一定律与伯努利方程的关系热力学第一定律与伯努利方程的关系考虑不存在剪应力的定常流动问题,选择的控制体边界沿着流线的外围,这样
的控制体就是通常所谓的流管
(1)
(2)
(3)
(4)定常流动;
均匀流动,每个截面的特性参数也是均匀的。
(5)均匀流动,每个截面的特性参数也是均匀的。
(5)
连续性方程
(6)
不可压缩流动,
,即:(7)不可压缩流动
伯努利方程是从动量方程(牛顿第二定律)的角
度出发导出的,适用于定常的、不可压缩的、无
摩擦的、沿着流线方向的流动。
上面的方程是把摩擦的、沿着流线方向的流动上面的方程是把
热力学第一定律应用于流管控制体得出的,其限
)至(77)所示。
制条件如前(
制条件如前(11)至(
6-8 8 应用于无旋流动的伯努利方程应用于无旋流动的伯努利方程
1、定常流动;;
2、不可压缩流动;
3、无摩擦流动;
沿着流线的流动
4、沿着流线的流动。
•不同的流线,方程右侧的常数值不同。
•无旋流动
旋流动
欧拉方程的矢量形式
无旋流动的欧拉方程:
微小的时间增量d t,流体质点从矢径
的位置运动到的位置
用点乘方程的每一项
积分后
对于不可压缩流动
是任意位移,因此,对于定常的、不可
是任意位移因此对于定常的不可
压缩的、无粘性的、无旋流动,方程适用于压缩的无粘性的无旋流动方程适用于流场中的任意两点。
流场中的任意两点
6-9 9 非定常的伯努利方程非定常的伯努利方程——欧拉方程沿着流线的积分
无摩擦流动的动量方程
后转化成标量方程两边同时点乘后,转化成标量方程,
是沿着流线方向的微元距离
是沿着流线方向的微元距离。
沿着流线方向从点到点进行积分沿着流线方向从11点到22
密度
密度==常数。