动量守恒定律典型模型PPT课件
合集下载
《动量守恒定律》课件ppt
例题3教学回顾: 例题 教学回顾: 教学回顾 (1)明确系统、内力和外力,判断是否满足守恒条件。 )明确系统、内力和外力,判断是否满足守恒条件。 (2)明确研究过程,分析碰撞过程的初末状态。画出初末 )明确研究过程,分析碰撞过程的初末状态。 态的情景图 (3)分析初、末状态的总动量,最后列方程。 )分析初、末状态的总动量,最后列方程。 (4)解题过程的表述力求清楚、规范。 )解题过程的表述力求清楚、规范。 可以引导学生从例题总结出解决这类问题的分析思路, 可以引导学生从例题总结出解决这类问题的分析思路,以 便学生更好地掌握和运用动量守恒定律分析和解决问题。 便学生更好地掌握和运用动量守恒定律分析和解决问题。
• 【例2】一个质量是0.1kg的钢球,以6m/s的 速度水平向右运动,碰到一个坚硬的障碍物 后被弹回,沿着同一直线以6m/s的速度水平 向左运动,碰撞前后钢球的动量有没有变化? 变化了多少?
• 二、系统、内力和外力 系统、 • 1.系统:存在相互作用的几个物体所 .系统: 组成的整体称为系统, 组成的整体称为系统,系统可按解决问题 的需要灵活选取。 的需要灵活选取。 • 2.内力:系统内各个物体间相互作用 .内力: 力称为内力。 力称为内力。 • 3.外力:系统外其他物体作用在系统 .外力: 内任何一个物体上的力称为外力。 内任何一个物体上的力称为外力。 • 内力和外力的区分依赖于系统的选取,只 内力和外力的区分依赖于系统的选取, 有在确定了系统后,才能确定内力和外力。 有在确定了系统后,才能确定内力和外力。
2 ②相对性:这是由于速度与参考系的选择有关,通常以地 相对性:这是由于速度与参考系的选择有关, 即地面)为参考系。 球(即地面)为参考系。 矢量性:动量的方向与速度方向一致。 ③矢量性:动量的方向与速度方向一致。运算遵循矢量运 算法则(平行四边形定则)。 算法则(平行 例题 的功能:建立矢量运算的概念,强化矢量运算 的功能 的方法。 的方法。
动量守恒定律 (共19张PPT)
B
A
总
结
F外 0
F x =0
F y =0
5、斜面B置于光滑水平面上,物体A沿 光滑斜面滑下,则AB组成的系统动量守 恒吗? 光滑
x
光滑
F外 0
F x =0
F y 0
空中爆炸
F外 0
但是F 内 ?
F x 0
F y 0
F
外
3. 成立条件
(1) 系统不受外力或所受外力的矢量和为零。
4、动量的变化P
1、表达式:
P2
P1
△P
P=P2-P1 =mv2-mv1=m(v2-v1)
2、运算:
(1)成θ角,平行四边形定则 (2)在一条直线上,确定正方向后,用正 负表示方向,就转化为代数运算
3、方向:与速度变化量的方向相同。
预 学
理解三个概念:
(请自主阅读教材P12)
1. 系统:相互作用的 两个或多个物体 组成的整体。系统可按 解决问题的需要灵活选取。
这个系统的总动量保持不变。
m11 m2 2 m11 m2 2
二、动量守恒定律成立的条件 1. 系统不受力,或者 F外合 = 0 2. F内 >> F外合
3. 若系统在某一方向上满足上述 1 或 2,则在该方向上系
统的总动量守恒。
三、应用动量守恒定律解决问题的基本步骤
定系统
判条件
2. 动量守恒定律是一个 独立的实验定律 ,它适用于目前为 止物理学研究的 一切 领域。
3. 与牛顿运动定律相比较,动量守恒定律解决问题优越性表 现在哪里? 动量守恒定律只涉及始末两个状态,与过程中力的 细节无关,往往能使问题大大简化。
课 堂 总 结
A
总
结
F外 0
F x =0
F y =0
5、斜面B置于光滑水平面上,物体A沿 光滑斜面滑下,则AB组成的系统动量守 恒吗? 光滑
x
光滑
F外 0
F x =0
F y 0
空中爆炸
F外 0
但是F 内 ?
F x 0
F y 0
F
外
3. 成立条件
(1) 系统不受外力或所受外力的矢量和为零。
4、动量的变化P
1、表达式:
P2
P1
△P
P=P2-P1 =mv2-mv1=m(v2-v1)
2、运算:
(1)成θ角,平行四边形定则 (2)在一条直线上,确定正方向后,用正 负表示方向,就转化为代数运算
3、方向:与速度变化量的方向相同。
预 学
理解三个概念:
(请自主阅读教材P12)
1. 系统:相互作用的 两个或多个物体 组成的整体。系统可按 解决问题的需要灵活选取。
这个系统的总动量保持不变。
m11 m2 2 m11 m2 2
二、动量守恒定律成立的条件 1. 系统不受力,或者 F外合 = 0 2. F内 >> F外合
3. 若系统在某一方向上满足上述 1 或 2,则在该方向上系
统的总动量守恒。
三、应用动量守恒定律解决问题的基本步骤
定系统
判条件
2. 动量守恒定律是一个 独立的实验定律 ,它适用于目前为 止物理学研究的 一切 领域。
3. 与牛顿运动定律相比较,动量守恒定律解决问题优越性表 现在哪里? 动量守恒定律只涉及始末两个状态,与过程中力的 细节无关,往往能使问题大大简化。
课 堂 总 结
微专题6:动量守恒定律的典型模型(共33张PPT)优秀课件
对系统应用能量转化和守恒定律:
力对空间的积累效应是功, 功是能量发生变化的原因
根本模型:
S2 L
S1
根本模型:
S2 L
S1
子弹射穿木块的条件:
①假设共速,相对位移d>L ②假设到木板最右端,那么子弹速度大于木板速 度
动量关系 :
能量关系 :
变式一:图像应用
S1、S2、S相对的大小与m、 M的关系?
假设m1= m2物块m1从圆弧面滑下后,二者速度
m1 v0
m2
v
m
m
0
1
2
v0
1
2
完全非弹性碰撞: 二者共速;动能
损失最大即转化为其它形式能最多
E=12m1v12 12m2v2212m1 m2v2 2m m11m1m2v1 v22
二.子弹打木块的模型
1.运动性质:子弹对地在滑动摩擦力作用下匀减
速直线运动;木块在滑动摩擦力作用下做匀加速 运动。
〔1〕木块A的最终速度; 〔2〕滑块C离开A时的速度。
变式训练3:如下图,A、B是静止在水平地面上完全 相同的两块长木板,A的左端和B的右端相接触,两板 的质量均为,长度均为l =1.0m,C 是一质量为的木 块.现给它一初速度v0,使它从B板的左端开始向右运 动.地面是光滑的,而C与A、B之间的动摩擦因数皆 为.求最后A、B、C各以多大的速度做匀速运动.取 重力加速度g=10m/s2.
m=1.0kg
C
.0kg M=2.0kg
根本知识
根本概念:与动量有关:冲量、动量、弹性碰撞、非弹性碰撞 与能量有关:功、功率、动能、势能、内能
根本规律:与动量有关:
动量定理、 动量守恒
定律
与能量有关:
力对空间的积累效应是功, 功是能量发生变化的原因
根本模型:
S2 L
S1
根本模型:
S2 L
S1
子弹射穿木块的条件:
①假设共速,相对位移d>L ②假设到木板最右端,那么子弹速度大于木板速 度
动量关系 :
能量关系 :
变式一:图像应用
S1、S2、S相对的大小与m、 M的关系?
假设m1= m2物块m1从圆弧面滑下后,二者速度
m1 v0
m2
v
m
m
0
1
2
v0
1
2
完全非弹性碰撞: 二者共速;动能
损失最大即转化为其它形式能最多
E=12m1v12 12m2v2212m1 m2v2 2m m11m1m2v1 v22
二.子弹打木块的模型
1.运动性质:子弹对地在滑动摩擦力作用下匀减
速直线运动;木块在滑动摩擦力作用下做匀加速 运动。
〔1〕木块A的最终速度; 〔2〕滑块C离开A时的速度。
变式训练3:如下图,A、B是静止在水平地面上完全 相同的两块长木板,A的左端和B的右端相接触,两板 的质量均为,长度均为l =1.0m,C 是一质量为的木 块.现给它一初速度v0,使它从B板的左端开始向右运 动.地面是光滑的,而C与A、B之间的动摩擦因数皆 为.求最后A、B、C各以多大的速度做匀速运动.取 重力加速度g=10m/s2.
m=1.0kg
C
.0kg M=2.0kg
根本知识
根本概念:与动量有关:冲量、动量、弹性碰撞、非弹性碰撞 与能量有关:功、功率、动能、势能、内能
根本规律:与动量有关:
动量定理、 动量守恒
定律
与能量有关:
1.3.1动量守恒定律课件共13张PPT
小试牛刀
2.(多选)下列四幅图所反映的物理过程中,系统动量守恒的是 ( ACD )
小试牛刀
3、如图所示的装置中,木块B与水平桌面间的接触是光滑的,子 弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将
子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子
弹开始射入木块到弹簧压缩至最短的整个过程中( B )A.动量
二、动量守恒定律
1.内容:物体在碰撞时,如果系统所受的合外力为零,则系统的 总动量保持不变
2.表达式(:1)m1v1+m2v2=m1v1′+m2v2′ 或 p=p′
(系统作用前的总动量等于作用后的总动量).
(2)Δp1=-Δp2 或 m1Δv1=-m2Δv2
(系统内一个物体的动量变化与另一物体的动量变化等大反向)
核心素养
➢ 知道什么是内力、外力,理解动量守恒的条件, 掌握动量守恒定律的内容
➢ 验证动量守恒定律 ➢ 体会将不易测量的物理量转换为易测量的物理量
的实验设计思想
温故知新
动量定理:物体所受合力的冲量等于物体动量的改变量
V0 F m
光滑
V1 F
t 表达式:F·t= mv1– mv0=Δp
由动量定理知,若物体所受合力为零,则其动量不发生改变
对于物体2,根据动量定理:F2t m2v2' m2v2
根据牛顿第三定律: F1 F2
得到: m1v1' m2v2' m1v1 m2v2 0
整理得:m1v1' m2v2' m1v1 m2v2
结论:物体在碰撞时,如果系统所受的合外力为零, 则系统的总动量保持不变,这就是动量守恒定律
和为物v1体,v22的,质碰量撞分后别,为物m体1,1m和2物,体碰2撞的前速,度物分体别1为和物v1'体,v22' 的。速度分别
动量守恒定律的典型应用PPT课件
及空气阻力均可忽略不计,设球与挡板
碰撞后,反弹速率与碰撞前速率相等,
人接住球后再以同样的速度(相对于地
面)将球沿冰面向正前方推向挡板,求 人推多少次后才能不再接到球?
•解:人在推球的
•过程中动量守恒,
•只要人往后退的
vv
•速度小于球回来
•的速度,人就会继续推,直到人后退
的速度跟球的速度相等或者比球回来 的速度小。设向右为正方向。则:
解答:选向右为正方向,铜块在木板
上滑动时木块与铜块组成系统的动量
守恒,mv0=(M+m)v 根据能量守恒:
v=1.5m/s
例3:在光滑的水平 轨道上有两个半径 都是r的小球A和B, 质量分别为m和2m,
V
A
B
L
当两球心间的距离大于L(L比2r大的多)
时,两球间无相互作用力,当两球心距
离等于或小于L时两球间有恒定斥力F,
•0∴=mVv1=-mMvV/1M
•0∴=mVv2=cmovscθos-θMV/2M
4.动量守恒定律与归纳法专题:
•例:人和冰车的总质量为M,另有一木
球,质量为m.M:m=31:2,人坐在静止于水
平冰面的冰车上,以速度v(相对于地面)
将原来静止的木球沿冰面推向正前方的
固定挡板,球与冰面、车与冰面的摩擦
•m为3在系m统2上,移由动功的能距关离系为可L得,以三物体
SUCCESS
THANK YOU
8/1/2024
第1次推时:
第2次推时:
第3次推时:
…
…
第n次推时:
•把等式的两边分别相加就会得到: •要想不接到球,Vn=v •所以:
•当推了8次,球回来时,人的速度还 达不到v,因此人需要推9次。
碰撞后,反弹速率与碰撞前速率相等,
人接住球后再以同样的速度(相对于地
面)将球沿冰面向正前方推向挡板,求 人推多少次后才能不再接到球?
•解:人在推球的
•过程中动量守恒,
•只要人往后退的
vv
•速度小于球回来
•的速度,人就会继续推,直到人后退
的速度跟球的速度相等或者比球回来 的速度小。设向右为正方向。则:
解答:选向右为正方向,铜块在木板
上滑动时木块与铜块组成系统的动量
守恒,mv0=(M+m)v 根据能量守恒:
v=1.5m/s
例3:在光滑的水平 轨道上有两个半径 都是r的小球A和B, 质量分别为m和2m,
V
A
B
L
当两球心间的距离大于L(L比2r大的多)
时,两球间无相互作用力,当两球心距
离等于或小于L时两球间有恒定斥力F,
•0∴=mVv1=-mMvV/1M
•0∴=mVv2=cmovscθos-θMV/2M
4.动量守恒定律与归纳法专题:
•例:人和冰车的总质量为M,另有一木
球,质量为m.M:m=31:2,人坐在静止于水
平冰面的冰车上,以速度v(相对于地面)
将原来静止的木球沿冰面推向正前方的
固定挡板,球与冰面、车与冰面的摩擦
•m为3在系m统2上,移由动功的能距关离系为可L得,以三物体
SUCCESS
THANK YOU
8/1/2024
第1次推时:
第2次推时:
第3次推时:
…
…
第n次推时:
•把等式的两边分别相加就会得到: •要想不接到球,Vn=v •所以:
•当推了8次,球回来时,人的速度还 达不到v,因此人需要推9次。
动量守恒定律 (共30张PPT)
系统之外与系统发生相互作用的 其他物体统称为外界。
碰撞 系统Leabharlann 重力势能属于地面附近 的物体与地球组成的系统。
弹簧具有的弹性势能 属于构成它的许多小小 的物质单元(这些物质单 元之间有弹力的作用)组 成的系统。
研究炸弹的爆炸时,它的 所有碎片及产生的燃气也要作 为一个系统来。
2、内力:属于同一个系统内,它们之间的力。 系统以外的物体施加的力,叫做外力。
解得:v共=88.2m/s正值,方向不变。
解: ①以子弹木块系统为研究对象,取右为正方向。
②碰撞前子弹的动量P子=mv,木块的动量P2=0
碰撞后不粘一起,P'子=mv',P'木=Mv'木
③列表带入公式:系统初动量=系统末动量
碰撞前
碰撞后
物块1 物块2 = 物块1 物块2
mv 0
mv' Mv'木
所以:mv=mv'+Mv'木
解:动量问题只与初末状态有关。
①以第一节车厢和把剩余车厢看为整体的系统为研究
对象,取右为正方向。
②碰撞前的动量P=mv,剩余车厢的动量P余=0
碰撞后粘一起,P共=(m+15m)v共
③列表带入公式:系统初动量=系统末动量
碰撞前
碰撞后
物块1 物块2 = 物块1 物块2
mv 0
(m+15m) v共
所以:mv=(m+15m)v共
解得:v'B=7.4m/s
带数据得:5×9+4×6=5v'1+4×10 正值,方向不变。
3、质量是10g的子弹,以300m/s的速度射入质量是24g、静止在光滑水平桌面上的木 块,并留在木块中。子弹留在木块中以后,木块运动的速度是多大?如果子弹把木块 打穿,子弹穿过后的速度为100ms,这时木块的速度又是多大?
碰撞 系统Leabharlann 重力势能属于地面附近 的物体与地球组成的系统。
弹簧具有的弹性势能 属于构成它的许多小小 的物质单元(这些物质单 元之间有弹力的作用)组 成的系统。
研究炸弹的爆炸时,它的 所有碎片及产生的燃气也要作 为一个系统来。
2、内力:属于同一个系统内,它们之间的力。 系统以外的物体施加的力,叫做外力。
解得:v共=88.2m/s正值,方向不变。
解: ①以子弹木块系统为研究对象,取右为正方向。
②碰撞前子弹的动量P子=mv,木块的动量P2=0
碰撞后不粘一起,P'子=mv',P'木=Mv'木
③列表带入公式:系统初动量=系统末动量
碰撞前
碰撞后
物块1 物块2 = 物块1 物块2
mv 0
mv' Mv'木
所以:mv=mv'+Mv'木
解:动量问题只与初末状态有关。
①以第一节车厢和把剩余车厢看为整体的系统为研究
对象,取右为正方向。
②碰撞前的动量P=mv,剩余车厢的动量P余=0
碰撞后粘一起,P共=(m+15m)v共
③列表带入公式:系统初动量=系统末动量
碰撞前
碰撞后
物块1 物块2 = 物块1 物块2
mv 0
(m+15m) v共
所以:mv=(m+15m)v共
解得:v'B=7.4m/s
带数据得:5×9+4×6=5v'1+4×10 正值,方向不变。
3、质量是10g的子弹,以300m/s的速度射入质量是24g、静止在光滑水平桌面上的木 块,并留在木块中。子弹留在木块中以后,木块运动的速度是多大?如果子弹把木块 打穿,子弹穿过后的速度为100ms,这时木块的速度又是多大?
《动量动量守恒》PPT课件
(3)测量小车碰撞前后的速度,计算碰撞前后两小车的总动量
定
律
Go
2、数据分析 (已知:m1=250g,L1=0.870cm;m2=60g,L2=0.510cm)
滑片1宽度
第
滑块1质量m
一 章
时间1
碰
碰前速度v
撞
碰前1的动量
与
动
滑片2宽度
量 守
滑块2质量m
恒
时间1
定
律
碰前速度v
碰前2的动量
系统总动量
F
F
v =v t
F
v =—v0 —— F 作用了时间 t — v =v t
F
F
分析:
由牛顿第二定律知:F = m a
而加速度: a vt v0
t
F m vt v0 t
整理得: Ft mvvt mvv00 可以写成:I p
动量定理
——物体所受合外力的冲量等于物体的动量变化。即: I合=△p
3、动量守恒m定1v律1 成立m的2v条2 件是m1:v1'系统m不2v受2' 外力
守 恒
或者所受外力之和为零.
定 律
4、动量守恒定律是自然界普遍适用的基本规律
之一.它即适用于宏观、低速物体,也适用于微
观、高速物体
总结:
mv—0 —— F 作用了时间 t — mvtt
F
F
动量定理:合外力的冲量等于物体动量的改变。
动量定理
——物体所受合外力的冲量等于物体的动量变化。即: I合=△p
F合 t=mvt-mv0
【说明】
⑴公式中F合是物体所受合外力,t是物体从初动量变化到末动
量所需时间, vt是末速度,v0是初速度。
《动量守恒定律 》课件
03
动量守恒定律的应用
碰撞问题
总结词
碰撞问题中动量守恒定律的应用
VS
详细描述
在碰撞问题中,动量守恒定律是一个重要 的应用。当两个物体发生碰撞时,它们的 总动量在碰撞前后保持不变。通过应用动 量守恒定律,可以解决一系列碰撞问题, 例如确定碰撞后的速度、计算碰撞过程中 的能量损失等。
火箭推进原理
总结词
《动量守恒定律》 PPT课件
目录
• 动量守恒定律的概述 • 动量守恒定律的推导 • 动量守恒定律的应用 • 动量守恒定律的实验ቤተ መጻሕፍቲ ባይዱ证 • 动量守恒定律的意义与价值
01
动量守恒定律的概述
定义与公式
总结词
动量守恒定律的定义和公式是理解该定律的基础,通过 定义和公式可以明确动量的概念和计算方法。
详细描述
未来科技
随着科技的不断进步和创新,动量 守恒定律将继续发挥其重要的理论 价值,为未来的科技发展提供有力 支持。
THANKS
感谢观看
04 结果四
总结实验结论,并提出改
进意见和建议。
05
动量守恒定律的意义与价值
在物理学中的地位与作用
01 基础性原理
动量守恒定律是物理学中的基础性原理,是理解 和分析力学系统运动规律的重要工具。
02 理论基石
为其他物理理论如牛顿第三定律、动能定理等提 供了理论支持,是整个经典力学体系的基石之一 。
动量守恒定律的定义为系统内动量的总和在不受外力作 用或合外力为零的情况下保持不变。公式表示为: m₁v₁+m₂v₂=m₃v₃+m₄v₄,其中m和v分别代表质量和 速度,下标表示不同的参考系。
动量的矢量性
总结词
动量具有矢量性,方向与速度方向相同,通过了解动量的矢量性可以更好地理解动量守恒定律 的应用。
动量守恒定律的典型模型黄肖斌课件
量守恒。
弹性碰撞
两个弹性球发生碰撞时,由于球 之间的相互作用力是弹性的,因 此碰撞前后两球的动量之和保持
不变,即动量守恒。
火箭推进
火箭推进器喷射燃料时,燃料燃 烧产生的气体以高速向反方向喷 出,根据动量守恒定律,火箭获 得向前的动量,从而推动火箭前
进。
REPORT
CATALOG
DATE
ANALYSIS
REPORT
CATALOG
DATE
ANALYSIS
SUMMARY
动量守恒定律的典型 模型黄肖斌课件
目录
CONTENTS
• 动量守恒定律的概述 • 理想气体动量守恒的模型 • 弹性碰撞的动量守恒模型 • 非弹性碰撞的动量守恒模型 • 系统动量守恒的模型
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
弹性碰撞的动量守恒模 型
弹性碰撞的定义
弹性碰撞
在两个物体碰撞过程中,没有能量损 失,碰撞后两物体以与碰撞前相同的 速度反向弹回。
非弹性碰撞
在两个物体碰撞过程中,存在能量损 失,碰撞后两物体的速度与碰撞前不 同。
弹性碰撞的动量守恒公式
动量守恒定律
在封闭系统中,没有外力作用时,系统的总动量保持不变。 即,m1v1 + m2v2 = m1v1' + m2v2'。
动量守恒定律的重要性
基础性
动量守恒定律是物理学中的基础 性定律之一,对于理解力学、碰 撞、火箭技术等领域的问题具有
重要意义。
广泛应用
动量守恒定律在日常生活、工业、 军事等领域有广泛的应用,如车辆 设计、火箭发射、天体运动等。
理论基石
弹性碰撞
两个弹性球发生碰撞时,由于球 之间的相互作用力是弹性的,因 此碰撞前后两球的动量之和保持
不变,即动量守恒。
火箭推进
火箭推进器喷射燃料时,燃料燃 烧产生的气体以高速向反方向喷 出,根据动量守恒定律,火箭获 得向前的动量,从而推动火箭前
进。
REPORT
CATALOG
DATE
ANALYSIS
REPORT
CATALOG
DATE
ANALYSIS
SUMMARY
动量守恒定律的典型 模型黄肖斌课件
目录
CONTENTS
• 动量守恒定律的概述 • 理想气体动量守恒的模型 • 弹性碰撞的动量守恒模型 • 非弹性碰撞的动量守恒模型 • 系统动量守恒的模型
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
弹性碰撞的动量守恒模 型
弹性碰撞的定义
弹性碰撞
在两个物体碰撞过程中,没有能量损 失,碰撞后两物体以与碰撞前相同的 速度反向弹回。
非弹性碰撞
在两个物体碰撞过程中,存在能量损 失,碰撞后两物体的速度与碰撞前不 同。
弹性碰撞的动量守恒公式
动量守恒定律
在封闭系统中,没有外力作用时,系统的总动量保持不变。 即,m1v1 + m2v2 = m1v1' + m2v2'。
动量守恒定律的重要性
基础性
动量守恒定律是物理学中的基础 性定律之一,对于理解力学、碰 撞、火箭技术等领域的问题具有
重要意义。
广泛应用
动量守恒定律在日常生活、工业、 军事等领域有广泛的应用,如车辆 设计、火箭发射、天体运动等。
理论基石
动量守恒定律 课件(18张)
小结:动量守恒
动量守恒定律是自然界最重要的 最普遍的规律之一,它不仅适用于宏 观系统,也适用于微观系统;不仅适 用于低速运动,也适用于高速运动。 还适用于由任意多个物体组成的系统, 以及各种性质的力之间。这一定律已 成为人们认识自然、改造自然的重要 工具。
布置作业:
后,两球速度变为v1’和v2’,仍在原来直 线上运动。试分析碰撞中,两球动量变
化有什么关系?
v1
m1
v2
m2
隔离法:
1、对两个球碰撞的时候受力分析:
2、如果碰撞时间为t,那么 v1 m1 v2 m2
一球和二球的动量变化是多
少呢?(以向左为正方向)
F1
对一球:m1v1' m1v1 F1t
对二球:m2v2' m2v2 F2t
牛顿摆
X射线的散射是单个电子和单个光子发生弹性碰撞的 结果
从科学实践的角度来看,迄今为止,人们尚未发现 动量守恒定律有任何例外。相反,每当在实验中观察 到似乎是违反动量守恒定律的现象时,物理学家们就 会提出新的假设来补救,最后总是以有新的发现而胜 利告终。如静止的原子核发生β衰变放出电子时,按 动量守恒,反冲核应该沿电子的反方向运动。但云室 照片显示,两者径迹不在一条直线上。为解释这一反 常现象,1930年泡利提出了中微子假说。由于中微子 既不带电又几乎无质量,在实验中极难测量,直到 1956年人们才首次证明了中微子的存在。
车,发射炮弹)
应用动量守恒定律解题的步骤
一般步骤 (1)分析题意,明确研究对象。 (2)受力分析,判断是否动量守恒。 (3)规定正方向,确定始、末状态;
(4)列方程求解。
例一:
光滑水平面上,质量为m的小球A以速 率v运动时,和静止的小球B发生碰撞, 碰后A球的速率变为v/2,已知B球的 质量为3m。求B球的速度。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碰撞后:
在前面运动的物体的速度一定不
小于在后面运动的物体的速度
.
4
例1、质量相等的A、B两球在光滑水平 面上沿一直线向同一方向运动,A球的动 量 为 PA = 7kg·m / s , B 球 的 动 量 为 PB =5kg·m/s,当A球追上B球发生碰撞,则 碰撞后A、B两球的动量可能为( )
A. pA'6kgmpB /'s6kgm
v0
.
19
总结: 子弹打木块的模型具有下列力学规律:
1、动力学的规律:构成系统的两物体在相 互作用时,收到大小相等,方向相反的一 对恒力的作用,他们的加速度大小与质量 成反比,方向相反。
2、运动学的规律:在子弹进入木块的过程中, 可以看成是匀减速运动追击匀加速运动,子弹的 进入深度就是他们的相对位移。
因此: QEfL
.
11
问题5 要使子弹不穿出木块,木块至少多长? (v0、m、M、f一定)
子弹不穿出木块的长度:
dS相S1S22fM Mm m v0 2
.
12
例1、 子弹以一定的初速度射入放在光滑水平面 上的木块中,并共同运动下列说法中正确的是:
( ACD)
A、子弹克服阻力做的功等于木块动能的增加与摩 擦生的热的总和
问题1 子弹、木块相对静止时的速度v
问题2 子弹在木块内运动的时间 问题3 子弹、木块发生的位移以及子弹打进木块的深度 问题4 系统损失的机械能、系统增加的内能
问题5 要使子弹不穿出木块,. 木块至少多长?
7
(v0、m、M、f一定)
问题1 子弹、木块相对静止时的速度v
解:从动量的角度看,以m和M组成的系统为研究对象,根
(1)求子弹和木块的共同的速度以及它们在此过程中 所增加的内能。
(2)若要使子弹刚好能够穿出木块,其初速度v0应有 多大?
v0
.
14
变形
物体A以速度V0滑到静止在光滑水平面 上的小车B上,当A在B上滑行的距离最 远时,A、B相对静止, A、B两物体的 速度必相等。
A V0
B
.
15
课堂练习
3、质量为M的木板静止在光滑的水平面 上,一质量为m的木块(可视为质点)以初 速度V0向右滑上木板,木板与木块间的动 摩擦因数为μ ,求:木板的最大速度?
f
s2
1 Mv2 2
……②
①、②相减得: fL1 2m 0 2 v1 2M m v22 M M m m v0 2……③
故子弹打进 木块的深度:
LS1S2.2fM Mm mv02
10
问题4 系统损失的机械能、系统增加的内能
系统损失的机械能 E1 2m0 2v1 2(mM)v2 系统增加的内能 QE
据动量守恒 mv0Mmv
v mv0
Mm .
8
问题2 子弹在木块内运动的时间
以子弹为研究对象,由牛顿运动定律和运动学公式可得:
t
vv0 a
Mm0 v
fMm
.9Leabharlann 问题3 子弹、木块发生的位移以及子弹打进木块的深度 v0
s2
L
s1
对子弹用动能定理: f s1 12m02v12m2v……①
对木块用动能定理:
B.p A ' 3 kg /smp B ' 9 kg /sm
C. p A ' 2 kg /sm p B ' 1k4 g /sm
D.p A ' 4 kg /s. m p B ' 1k7 g /s5 m
子弹打木块模型
.
6
[题1]设质量为m的子弹以初速度v0射向静止在光滑水平面上 的质量为M的木块并留在其中,设木块对子弹的阻力恒为f。
m V0 M
.
16
(1)光滑水平面上的A物体以速度V0去撞 击静止的B物体,A、B物体相距最近时,两
物体速度必相等(此时弹簧最短,其压缩量最
大)。
.
17
课堂练习
2、质量均为2kg的物体A、B,在B物 体上固定一轻弹簧,则A以速度6m/s碰上弹 簧并和速度为3m/s的B相碰,则碰撞中AB相 距最近时AB的速度为多少?弹簧获得的最大 弹性势能为多少?
B、木块对子弹做功的绝对值等于子弹对木块做的功 C、木块对子弹的冲量大小等于子弹对木块的冲量 D、系统损失的机械能等于子弹损失的动能和子弹
对木块所做的功的差
.
13
如图示,在光滑水平桌面上静置一质量为M=980克的 长方形匀质木块,现有一颗质量为 m=20克的子弹以 v0 = 300m/s 的水平速度沿其轴线射向木块,结果子弹 留在木块中没有射出,和木块一起以共同的速度运动。 已知木块的长度为L=10cm,子弹打进木块的深度为 d=6cm,设木块对子弹的阻力保持不变。
如图所示,质量为M的小船长L,静止于水面,质量 为m的人从船左端走到船右端,不计水对船的运动 阻力,则这过程中船将移动多远?
m M
L
.
21
物理过程分析
S1 S2
.
22
条件: 系统动量守衡且系统初动量为零.
第四节 动量守恒定律的应用
.
1
知识回—顾—动量守恒的条件
1、系统不受外力(理想化)或系统所受合 外力为零。
2、系统受外力的合力虽不为零,但系统外 力比内力小得多,如碰撞问题中的摩擦力, 爆炸过程中的重力等外力比起相互作用的 内力来要小得多,且作用时间极短,可以忽 略不计。
3、系统所受外力的合力虽不为零,但在 某个方向上所受合外力为零,则系统在这
.
18
将质量为 m = 2 kg 的物块,以水平速度 v0 = 5m/s 射到静止在光滑水平面上的平板车上 , 小 车的质量为M = 8 kg ,物块与小车间的摩擦因数μ = 0.4 ,取 g = 10 m/s2.
(1)物块抛到小车上经过多少时间两者相对静止? (2)在此过程中小车滑动的距离是多少? (3)整个过程中有多少机械能转化为内能?
个方向上动量守恒。.
2
动量守恒定律的典型应用
几个模型:
(一)碰撞中动量守恒 (二)子弹打木块类的问题: (三)人船模型:平均动量守恒 (四)反冲运动、爆炸模型
.
3
解决碰撞问题须同时遵守的三个原则:
一. 系统动量守恒原则
二. 能量不增加的原则
三. 物理情景可行性原则
例如:追赶碰撞:
碰撞前: V追赶 V被追
3、动量和能量规律:系统的动量守恒,系统和物 体的动能发生变化,力对子弹做的功等于子弹动 能的变化,力对木块做的功等于木块动能的变化, 一对恒力做的功等于系统动能的改变,其大小等 于该恒力的大小与相对位移的乘积。
.
20
人船模型
适用条件:初状态时人和船都处于静止状态
解题方法:画出运动过程示意图,找出速度、位移 关系。