概率论与数理统计第三章测试题
概率论与数理统计第三章习题及答案
概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
概率论与数理统计-第三章作业及答案
习题3-11.而且12{P X X . 求X 1和X 2的联合分布律.解 由12{0}1P X X ==知12{0}0P X X ≠=. 因此X 1和X 2的联合分布于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律(2) 注意到12{0,0}0P X X ===, 而121{0}{0}04P X P X =⋅==≠, 所以X 1和X 2不独立.2. 设随机变量(X ,Y )的概率密度为(,)(6),02,24,0,.f x y k x y x y =--<<<<⎧⎨⎩其它 求: (1) 常数k ; (2) {1,3}P X Y <<; (3) { 1.5}P X <; (4) {4}P X Y +≤.解 (1) 由(,)d d 1f x y x y +∞+∞-∞-∞=⎰⎰, 得2424222204211d (6)d (6)d (10)82y k x y x k y x x y k y y k =--=--=-=⎡⎤⎢⎥⎣⎦⎰⎰⎰, 所以 18k =. (2) 31201,31{1,3}d (6)d 8(,)d d x y P X Y y x y x f x y x y <<<<==--⎰⎰⎰⎰1322011(6)d 82y x x y =--⎡⎤⎢⎥⎣⎦⎰321113()d 828y y =-=⎰. (3) 1.51.5{ 1.5}d (,)d ()d X P X x f x y y f x x +∞-∞-∞-∞<==⎰⎰⎰4 1.521d (6)d 8y x y x --=⎰⎰1.5422011(6)d 82y x x y =--⎡⎤⎢⎥⎣⎦⎰ 421633()d 882y y =-⎰ 2732=. (4) 作直线4x y +=, 并记此直线下方区域与(,)0f x y ≠的矩形区域(0,2)(0,4)⨯的交集为G . 即:02,0G x y <<<≤4x -.见图3-8. 因此{P X Y +≤4}{(,)}P X Y G =∈(,)d d Gf x y x y =⎰⎰4421d (6)d 8x y x y x -=--⎰⎰4422011(6)d 82xy x x y -=--⎡⎤⎢⎥⎣⎦⎰ 42211[(6)(4)(4)]d 82y y y y =----⎰ 42211[2(4)(4)]d 82y y y =-+-⎰ 423211(4)(4)86y y =----⎡⎤⎢⎥⎣⎦23=. 图3-8 第4题积分区域3. 二维随机变量(,)X Y 的概率密度为2(,),1,01,0,f x y kxy x y x =⎧⎨⎩≤≤≤≤其它.试确定k , 并求2{(,)},:,01P X Y G G x y x x ∈≤≤≤≤.解 由2111401(,)d d d (1)d 26xk k f x y xdy x kxy y x x x +∞+∞-∞-∞====-⎰⎰⎰⎰⎰,解得6=k .因而 2112401{(,)}d 6d 3()d 4x xP X Y G x xy y x x x x ∈==-=⎰⎰⎰. 4. 设二维随机变量(X , Y )概率密度为4.8(2),01,0,(,)0,.y x x y x f x y -=⎧⎨⎩≤≤≤≤其它 求关于X 和Y 边缘概率密度.解 (,)X Y 的概率密度(,)f x y 在区域:0G ≤x ≤1,0≤y ≤x 外取零值.因而, 有24.8(2)d ,01,()(,)d 0,2.4(2),01,0,x X y x y x f x f x y y x x x +∞-∞-<<==-<<=⎧⎪⎨⎪⎩⎧⎨⎩⎰⎰其它.其它. 124.8(2)d ,01,()(,)d 0,2.4(34),01,0,y Y y x x y f y f x y x y y y y +∞-∞-<<==-+<<=⎧⎪⎨⎪⎩⎧⎨⎩⎰⎰其它.其它.5. 假设随机变量U 在区间[-2, 2]上服从均匀分布, 随机变量 1,1,1,1,U X U --=>-⎧⎨⎩若≤若 1,1,1, 1.U Y U -=>⎧⎨⎩若≤若试求:(1) X 和Y 的联合概率分布;(2){P X Y +≤1}.解 (1) 见本章第三节三(4).(2){P X Y +≤1}1{1}P X Y =-+>1{1,1}P X Y =-==13144=-=. 习题3-21. 设(X , Y )的分布律为求: (1) 在条件X =2下Y 的条件分布律;(2){22}P X Y ≥≤.解 (1) 由于6.02.01.003.0}2{=+++==X P ,所以在条件X =2下Y 的条件分布律为216.03.0}2{}1,2{}2|1{========X P Y X P X Y P ,06.00}2{}2,2{}2|2{========X P Y X P X Y P ,616.01.0}2{}3,2{}2|3{========X P Y X P X Y P ,316.02.0}2{}4,2{}2|4{========X P Y X P X Y P ,{P Y ≤2}{1}{2}P Y P Y ==+==0.10.3000.20.6++++=. 而{2,2}{2,1}{2,2}{3,1}{3,2}P X Y P X Y P X Y P X Y P X Y ===+==+==+==≥≤0.3000.20.5=+++=.因此{2,2}{22}{2}P X Y P X Y P Y =≥≤≤≥≤0.550.66==. 2. 设二维随机变量(X , Y )的概率密度为(,)1,01,02,0,.f x y x y x =<<<<⎧⎨⎩其它求:(1) (X , Y )的边缘概率密度(),()X Y f x f y ;(2)11{}.22P Y X ≤≤ 解 (1) 当01x <<时,20()(,)d d 2xX f x f x y y y x +∞-∞===⎰⎰;当x ≤0时或x ≥1时, ()0X f x =. 故 2,01,()0,其它.X x x f x <<=⎧⎨⎩当0<y <2时,12()(,)d d 12y Y y f y f x y x x +∞-∞===-⎰⎰;当y ≤0时或y ≥2时, ()0Y f y =.故 1,02,()20,.Y yy f y -<<=⎧⎪⎨⎪⎩其它(2) 当z ≤0时,()0Z F z =; 当z ≥2时,1)(=z F Z ;当0<z <2时, (){2Z F z P X Y =-≤2}(,)d d x y zz f x y x y -=⎰⎰≤2x12202-2d 1d d 1d zxz x zx y x y =⋅+⋅⎰⎰⎰⎰24z z =-.故 1,02,()20,.()其它Z z zz f z F z -<<'==⎧⎪⎨⎪⎩(3) {}{}11311322161122442≤,≤≤≤≤P X Y P Y X P X ===⎧⎫⎨⎬⎩⎭. 3. 设G 是由直线y =x , y =3,x =1所围成的三角形区域, 二维随机变量(,)X Y 在G 上服从二维均匀分布.求:(1) (X , Y )的联合概率密度;(2) {1}P Y X -≤;(3) 关于X 的边缘概率密度. 解 (1)由于三角形区域G 的面积等于2, 所以(,)X Y 的概率密度为⎪⎩⎪⎨⎧∉∈=.),(,0,),(,21),(G y x G y x y x f (2)记区域x y y x D -=|),{(≤}1与G 的交集为0G ,则{1}P Y X -≤0011113d d (2)22224G G x y S ===-=⎰⎰.其中0G S 为G 0的面积.(3) X 的边缘概率密度()(,)d X f x f x y y +∞-∞=⎰. 所以,当]3,1[∈x 时, 311()d (3)22X xf x y x ==-⎰. 当1<x 或3>x 时, 0)(=x f X .因此 ⎪⎩⎪⎨⎧∈-=.,0],3,1[),1(21)(其它x x x f X习题3-31. 设X 与Y 相互独立, 且分布律分别为下表:求二维随机变量(,)X Y 的分布律.解 由于X 与Y 相互独立, 所以有}{}{},{j i j i y Y P x X P y Y x X P =⋅====,6,5,2,0;0,21,1=--=j i .因此可得二维随机变量(,)X Y 的联合分布律2. 设(X , Y )的分布律如下表:问,αβ为何值时X 与Y 相互独立? 解由于边缘分布满足23111,1i j i j p p ⋅⋅====∑∑, 又X , Y 相互独立的等价条件为 p ij = p i . p .j (i =1,2; j =1,2,3).故可得方程组 21,3111().939αβα++==⋅+⎧⎪⎪⎨⎪⎪⎩解得29α=,19β=.经检验, 当29α=,19β=时, 对于所有的i =1,2; j =1,2,3均有p ij = p i . p .j 成立.因此当29α=,19β=时, X 与Y 相互独立..3. 设随机变量X 与Y 的概率密度为()e (,)0,.,01,0,x y b f x y x y -+=⎧<<>⎨⎩其它 (1) 试确定常数b .(2) 求边缘概率密度()X f x , ()Y f y . (3) 问X 与Y 是否相互独立? 解 (1) 由11()101(,)d d ed de d e d (1e )x y yx f x y x y b y x b y x b +∞+∞+∞+∞-+----∞-∞====-⎰⎰⎰⎰⎰⎰,得 111e b -=-.(2) ()(,)d X f x f x y y ∞-∞=⎰1e ,01,1e 0,xx --<<=-⎧⎪⎨⎪⎩其它.()(,)d Y f y f x y x ∞-∞=⎰e ,0,0,y y ->=⎧⎨⎩其它.(3) 由于(,)()()X Y f x y f x f y =⋅,所以X 与Y 相互独立.4. 设X 和Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布, Y 的概率密度为21e ,0,()20Y yy f y y ->=⎧⎪⎨⎪⎩,≤0.(1) 求X 和Y 的联合概率密度.(2) 设关于a 的二次方程为220a Xa Y ++=, 试求a 有实根的概率.解 (1) 由题设知X 和Y 的概率密度分别为1,01,()0,X x f x <<=⎧⎨⎩其它, 21e ,0,()20,.yY y f y ->=⎧⎪⎨⎪⎩其它 因X 和Y 相互独立, 故(X , Y )的联合概率密度为21e ,01,0(,)()()20,.yX Y x y f x y f x f y -<<>==⎧⎪⎨⎪⎩其它(2) 方程有实根的充要条件是判别式大于等于零. 即244X Y ∆=-≥20X ⇔≥Y .因此事件{方程有实根}2{X =≥}Y .下面计算2{P X ≥}Y (参见图3-3).2{P X ≥}Y 2211221(,)d d e d (1e)d 2yxx Df x y xdy x y x --===-⎰⎰⎰⎰⎰2121ed 12[(1)(0)]0.1445xx πΦΦ-=-=--≈⎰.图3-3 第6题积分区域 习题3-41. 设二维随机变量(X ,Y )的概率分布为YX 0 10 0.4 a 1 b 0.1若随机事件{X =0}与{X +Y =1}相互独立, 求常数a , b .解 首先, 由题设知0.40.11a b +++=. 由此得0.5a b +=. 此外,{0}0.4P X a ==+,{1}{0,1}{1,0}0.5P X Y P X Y P X Y a b +====+===+=, {0,1}{0,1}P X X Y P X Y a =+=====. 根据题意有{0,1}{0}{1}P X X Y P X P X Y =+===+=,即(0.4)0.5a a =+⨯. 解得0.4,0.1a b ==.2. 设两个相互独立的随机变量X ,Y 的分布律分别为X 1 3 Y 2 4 P X 0.3 0.7 P Y 0.6 0.4求随机变量Z = X + Y 的分布律. 解 随机变量Z = X + Y 的可能取值为7,5,3.Z 的分布律为18.06.0.03}2,1{}3{=⨯=====Y X P Z P , {5}{1,4}{3,2}0.30.4070.60.54P Z P X Y P X Y ====+===⨯+⨯=,28.04.07.0}4,3{}7{=⨯=====Y X P Z P ,或写为Z 3 57 P Z0.180.540.283. 设X 和Y 是两个相互独立的随机变量, 且X 服从正态分布N (μ, σ2), Y 服从均匀分布U (-a , a )( a >0), 试求随机变量和Z =X +Y 的概率密度.解 已知X 和Y 的概率密度分别为22()2()e2x X f x μσπσ--=, ),(+∞-∞∈x ; ⎪⎩⎪⎨⎧-∉-∈=).,(,0),,(,21)(a a y a a y ay f Y .由于X 和Y 相互独立, 所以22()21()()()d e d 22z y a Z X Y a f z f z y f y y y a μσπσ---+∞-∞-=-=⎰⎰=1[()()]2z μa z μa ΦΦa σσ-+---. 4. 设随机变量X 和Y 的联合分布是正方形G={(x,y )|1≤x ≤3, 1≤y ≤3}上的均匀分布, 试求随机变量U=|X -Y|的概率密度f (u ).解 由题设知, X 和Y 的联合概率密度为111,3,3,(,)40,.x y f x y =⎧⎪⎨⎪⎩≤≤≤≤其它记()F u 为U 的分布函数, 参见图3-7, 则有 当u ≤0时,(){||F u P X Y =-≤u }=0; 当u ≥2时,()1F u =;当0< u <2时, 图3-7 第8题积分区域||(){}(,)d d x y uF u P U u f x y x y -==⎰⎰≤≤21[42(2)]412u =-⨯- 211(2)4u =--.故随机变量||U X Y =-的概率密度为1(2),02,()20,u u p u -<<=⎧⎪⎨⎪⎩其它..总习题三1. 设随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧<<<=.,0,10,||,1),(其它x x y y x f 求条件概率密度)|()|(||y x f x y f Y X X Y 和.解 首先2,01,()0,.(,)其它X x x f x f x y dy +∞-∞<<==⎧⎨⎩⎰1,01,()1,10,0,(,)≤其它.Y y y f y y y f x y dx +∞-∞-<<==+-<⎧⎪⎨⎪⎩⎰图3-9第1题积分区域当01y <<时, |1,1,1(|)0,X Y y x y f x y x <<-=⎧⎪⎨⎪⎩取其它值.当1y -<≤0时, |1,1,1(|)0,X Y y x y f x y x -<<+=⎧⎪⎨⎪⎩取其它值.当10<<x 时, |1,||,(|)20,Y X y x f y x x y <=⎧⎪⎨⎪⎩取其它值.2. 设随机变量X 与Y 相互独立, 下表列出二维随机变量(,)X Y 的分布律及关于X 和关于Y 的边缘分布律中部分数值, 试将其余数值填入表中空白处 .解 首先, 由于11121{}{,}{,}P Y y P X x Y y P X x Y y ====+==, 所以有11121111{,}{}{,}6824P X x Y y P Y y P X x Y y ====-===-=.在此基础上利用X 和Y 的独立性, 有11111{,}124{}1{}46P X x Y y P X x P Y y =======.于是 2113{}1{}144P X x P X x ==-==-=.再次, 利用X 和Y 的独立性, 有12211{,}18{}1{}24P X x Y y P Y y P X x =======.于是 312111{}1{}{}1623P Y y P Y y P Y y ==-=-==--=.最后, 利用X 和Y 的独立性, 有2222313{,}{}{}428P X x Y y P X x P Y y ======⨯=; 2323311{,}{}{}434P X x Y y P X x P Y y ======⨯=;1313111{,}{}{}4312P X x Y y P X x P Y y ======⨯=.因此得到下表3. (34)e (,)0,.,0,0,x y k f x y x y -+=⎧>>⎨⎩其它(1) 求常数k ;(2) 求(X ,Y )的分布函数;(3) 计算{01,02}P X Y <<≤≤; (4) 计算(),x f x ()y f y ;(5) 问随机变量X 与Y 是否相互独立? 解 (1)由3401(,)d d e d e d 12xy kf x y x y k x y +∞+∞+∞+∞---∞-∞===⎰⎰⎰⎰,可得12=k .(2) (X ,Y )的分布函数(,)(,)d d x y F x y f u v x y -∞-∞=⎰⎰.当x ≤0或y ≤0时,有 0),(=y x F ; 当0,0>>y x 时, 34340(,)12e d e d (1e )(1e )x yuv x y F x y u v ----==--⎰⎰.即 34(1e )(1e ),0,0,(,)0,.其它x y x y F x y --⎧-->>=⎨⎩(3) {01,02}P X Y <<≤≤38(1,2)(0,0)(1e )(1e )F F --=-=--.(4) (34)012ed ,0,()(,)d 0,其它.x y X y x f x f x y y +∞-++∞-∞⎧>⎪==⎨⎪⎩⎰⎰所以 33e ,0,()0,其它.x X x f x -⎧>=⎨⎩类似地, 有44e ,0,()0,其它.y Y y f y -⎧>=⎨⎩ 显然2),(),()(),(R y x y f x f y x f Y X ∈∀⋅=, 故X 与Y 相互独立. 4.解 已知),(Y X 的分布律为注意到41260}1{}1{=++====Y P X P , 而0}1,1{===Y X P ,可见P {X =1, Y =1}≠P {X =1}P {Y =1}. 因此X 与Y 不相互独立.(2) Z X Y =+的可能取值为3, 4, 5, 6, 且316161}1,2{}2,1{}3{=+===+====Y X P Y X P Z P ,}1,3{}2,2{}3,1{}4{==+==+====Y X P Y X P Y X P Z P3112161121=++=, 316161}2,3{}3,2{}5{=+===+====Y X P Y X P Z P . 即Z X Y =+(3) max{,}V X Y =的可能取值为2, 3, 且21}2,2{}1,2{}2,1{}2{===+==+====Y X P Y X P Y X P V P , 21}2{1}3{==-==V P V P . 即max(,)V X Y =的分布律为(4) min{U =}3,1{}2,1{}1{==+====Y X P Y X P U P}1,2{}1,3{==+==+Y X P Y X P 21=, 21}1{1}2{==-==U P U P . 即min{,}U X Y =的分布律为(5) W U V =+31}1,2{}2,1{}2,1{}3{===+=======Y X P Y X P V U P W P ,}2,2{}3,1{}4{==+====V U P V U P W P31}2,2{}1,3{}3,1{===+==+===y X P Y X P Y X P ,31}2,3{}3,2{}3,2{}5{===+=======Y X P Y X P V U P W P .5. 2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其它.(1) 求P {X >2Y }; (2) 求Z = X +Y 的概率密度f Z (z ).解 (1) 1120227{2}(,)d d d (2)d 24yx yP X Y f x y x y y x y x >>==--=⎰⎰⎰⎰. (2) 方法一: 先求Z 的分布函数:()()(,)d d Z x y zF z P X Y Z f x y x y +=+=⎰⎰≤≤.当z <0时, F Z (z )<0; 当0≤z <1时, 1()(,)d d d (2)d z z yZ D F z f x y x y y x y x -==--⎰⎰⎰⎰= z 2-13z 3; 当1≤z <2时, 2111()1(,)d d 1d (2)d Z z z yD F z f x y x y y x y x --=-=---⎰⎰⎰⎰= 1-13(2-z )3; 当z ≥2时, F Z (z ) = 1.故Z = X +Y 的概率密度为222,01,()()(2),12,0,Z Z z z z f z F z z z ⎧-<<⎪'==-<⎨⎪⎩≤其它.方法二: 利用公式()(,)d :Z f z f x z x x +∞-∞=-⎰2(),01,01,(,)0,x z x x z x f x z x ---<<<-<⎧-=⎨⎩其它 2,01,1,0,.z x x z x -<<<<+⎧=⎨⎩其它当z ≤0或z ≥2时, f Z (z ) = 0; 当0<z <1时, 0()(2)d (2);zZ f z z x z z =-=-⎰当1≤z <2时, 121()(2)d (2).Zz f z z x z -=-=-⎰故Z = X +Y 的概率密度为222,01,()(2),12,0,.Z z z z f z z z ⎧-<<⎪=-<⎨⎪⎩≤其它.6. 设随机变量(X , Y )得密度为21,01,02,(,)30,.其它x xy x y x y ϕ⎧+⎪=⎨⎪⎩≤≤≤≤试求: (1) (X , Y )的分布函数; (2) (X , Y )的两个边缘分布密度; (3) (X , Y )的两个条件密度; (4) 概率P {X +Y >1}, P {Y >X }及P {Y <12|X <12}.解 (1) 当x ≤0或y ≤0时, φ(x , y ) = 0, 所以 F (x , y ) = 0.当0<x ≤1, 0<y ≤2时, φ(x , y ) = x 2+13xy ,所以 201(,)(,)d d [()d ]d 3x yx yF x y u v u v u uv v u -∞-∞==+⎰⎰⎰⎰ϕ32211312x y x y =+. 当0<x ≤1, y >2时,2(,)(,)d d [(,)d ]d [(,)d ]d xyx y x F x y u v u v u v v u u v v u -∞-∞===⎰⎰⎰⎰⎰⎰ϕϕϕ22001[()d ]d 3xu uv v u =+⎰⎰21(21)3x x =+. 当x >1, 0<y ≤2时,1(,)(,)d d [(,)d ]d xyyF x y u v u v u v v u -∞-∞==⎰⎰⎰⎰ϕϕ12001[()d ]d 3y u uv v u =+⎰⎰1(4)12y y =+. 当x >1, y >2时,122001(,)[()d ]d 13F x y u uv v u =+=⎰⎰.综上所述, 分布函数为220,00,1(),01,02,341(,)(21),01,2,31(4),1,02,121,1, 2.或≤≤≤≤≤≤x y y x y x x y F x y x x x y y y x y x y ⎧⎪⎪+<<⎪⎪⎪=+<>⎨⎪⎪+><⎪⎪>>⎪⎩(2) 当0≤x ≤1时,22202()(,)d ()d 2,33X xy x x y y x y x x ϕϕ+∞-∞==+=+⎰⎰ 故 222,01,()30,.其它≤≤X x x x x ϕ⎧+⎪=⎨⎪⎩当0≤y ≤2时,12011()(,)d ()d ,336Y xy y x y x x x y ϕϕ+∞-∞==+=+⎰⎰ 故 11,02,()360,.其它≤≤Y y y y ϕ⎧+⎪=⎨⎪⎩(3) 当0≤y ≤2时, X 关于Y = y 的条件概率密度为2(,)62(|).()2Y x y x xy x y y yϕϕϕ+==+当0≤x ≤1时, Y 关于X = x 的条件概率密度为(,)3(|).()62X x y x yy x y x ϕϕϕ+==+(4) 参见图3-10.图3-10 第9题积分区域 图3-11 第9题积分区域1{1}(,)d d x y P X Y x y x y ϕ+>+>=⎰⎰12201165d ()d .372xx x xy y -=+=⎰⎰ 同理, 参见图3-11.{}(,)d d y xP Y X x y x y ϕ>>=⎰⎰122117d ()d .324xx x xy y =+=⎰⎰ 1111{,}(,)112222{|}1122{}()22X P X Y F P Y X P X F <<<<==<211(,)22121()534.32()d |Xy x y x x x ϕ+==⎰。
最新概率论与数理统计第三章习题及答案
概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
概率论与数理统计第三章习题及答案
概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
《概率论与数理统计》习题及答案第三章
《概率论与数理统计》习题及答案第 三 章1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。
解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以11()(1)(1),2,3,.k k P X k p p p p k --==-+-=2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个数X 的分布列。
解 从a b +个球中任取r 个球共有ra b C +种取法,r 个球中有k 个黑球的取法有kr kb aC C -,所以X 的分布列为()k r kb ara bC C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+,此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。
3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。
解 设i A =‘第i 个零件是合格品’1,2,3i =。
则1231111(0)()23424P X P A A A ===⋅⋅=, 123123123(1)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++111121113623423423424=⋅⋅+⋅⋅+⋅⋅=, 123123123(2)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++1211131231123423423424=⋅⋅+⋅⋅⋅+⋅⋅=,1231236(3)()23424P X P A A A ===⋅⋅=. 即X 的分布列为01231611624242424XP. 4.一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为12,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布。
概率论与数理统计第三章自测题与答案
第三章 多维随机变量及其分布 自测题(90分钟)一、单项选择题(每题3分,共15分)1.设),1,0(~,21N X X 则21X X Y += ( )(A ))2,0(~N Y (B ))1,0(~N Y (C ))2,0(~N Y (D )Y 不一定服从正态分布 2.设Y X ,相互独立,都服从区间[0,1]上的均匀分布,则服从区间或区域上的均匀分布的是( )(A )()Y X , (B )Y X + (C )2X (D )Y X -3.设随机变量X 和Y , 已知,73}0{}0{,71}0,0{=≤=≤=≤≤Y P X P Y X P =≤}0),{min(Y X P 则( ) (A )73 (B )72 (C )75 (D )49164.设Y X ,相互独立,且都服从标准正态分布,则( )(A )41}0{=≥+Y X P (B )41}0{=≥-Y X P (C )41}0),{max(=≥Y X P (D )41}0),{min(=≥Y X P5.设两个随机变量Y X ,相互独立,且5.0}1{}1{}1{}1{=====-==-=Y P X P Y P X P ,则下列各式中正确的是( )(A )1}{==Y X P (B )5.0}{==Y X P (C )25.0}0{==+Y X P (D )25.0}0{==XY P 二、填空题(每空3分,共24分)1.设()Y X ,的联合分布律如下,且事件{X=0}与{X+Y=1}相互独立,则a= , b= .2.设Y X ,相互独立,表中列出()Y X ,的联合分布律和关于X 和Y 的边缘分布律的部分数值,3.设Y X ,相互独立,且均服从区间[0,3]上的均匀分布,则=≤}1),{max(Y X P 。
4.设随机变量X 和Y 相互独立都服从b (2,p ),且95}1{=≥X P ,则}1{=+Y X P = 。
5.已知()Y X ,的概率密度为⎩⎨⎧<<=-其他,00,),(yx e y x f y ,则=≤+}1{Y X P ,}21{≤Y X P = 。
概率论与数理统计习题库-第三章
长沙理工大学二手货QQ 交易群146 808 417#00001,与*00001解:作下表,表中第一行是自变量(X,Y)的全部可能取值点;第二行是第一行各取值相应的概率;第三、第四行分别是第一行各取值点相应的Z 、W 的取值。
从上表可以确定Z 的取值域为{0,1},W 的取值域为{-1,0,1,函数变量取某值的概率等于该值在表中相应概率之和。
例如P{Z=0}=0.12+0.18=0.3于是,Z 、W 的分布律分别为:#00002袋中有两只红球,三只白球,现不放回摸球二次,令(1)求(X,Y)的分布律。
(2)求X 与Y 的相关系数 *00002 解:(1)显然X 、Y 的全部可能取值为X=1,0;Y=1,0而P{X=1,Y=1}=P{两次均摸到红球}=2522C C ,同理计长沙理工大学二手货QQ 交易群146 808 417ij(2)256)(256)(52)(52)(====Y D X D Y E X E#00003设(X,Y)具有概率密度⎩⎨⎧<<<=其它01||0},{y x c y x f ,1)求常数c ;2)求P{Y>2X} ; 3)求F(0.5,0.5)*00003解:1) 如图所示区域D 为(X,Y)的非0定义域由归一性 图3)由F(x,y)的几何意义,可将F(0.5,0.5)理*00004解为(X,Y)落在{X ≤0.5,Y ≤0.5}区域(见如图G 1)上的概率。
故有 #00004已知(X,Y)的分布函数为⎪⎩⎪⎨⎧≤≤--≤≤--=----其它00101),(x y ye e yx xe e y x F yy y x (1)求X 与Y 的边缘概率密度。
(2)问X 与Y 是否相互独立? *00004解:(1)⎩⎨⎧<≥-=∞=-0x 00x e 1)F(x,(x)F xX(2)不独立与Y X y x F y F x F Y X ∴≠),()()(#00005(X,Y)的分布函数为⎪⎩⎪⎨⎧≤≤--≤≤--=----其它00101),(x y ye e yx xe e y x F yy y x .(1)求X 与Y 的联合概率密度及边缘概率密度。
概率论与数理统计第3章复习题(含解答)
《概率论与数理统计》第三章复习题解答1. 设Y X ,的分布律分别为且已知0)(=<Y X P ,4)1(=+>Y X P .(1)求),(Y X 的联合分布律;(2)判定Y X ,独立否;(3)求),min(),,max(,321Y X Z Y X Z Y X Z ==+=的分布律.解:(1) 由0)(=<Y X P 知0)1,1()0,1(==-=+=-=Y X P Y X P ,故0)1,1()0,1(==-===-=Y X P Y X P ;由41)1(=+>Y X P 知41)1,1(=-==Y X P .于是可以填写出如下不完整的联合分布律、边缘分布律表格:再由联合分布律、边缘分布律的关系可填出所余的3个空, 得到(2) 41)1,1(=-=-=Y X P ,而2141)1()1(⋅=-=-=Y P X P ,故Y X ,不独立. (3) 在联合分布律中增加0=X 的一行,该行ij p 均取为0,分别沿路径:对ij p 相加, 得2. 设平面区域G 由曲线xy 1=, 直线2,1,0e x x y ===所围成. ),(Y X 在G 上服从均匀分布, 求)2(X f .解:区域G 的面积.2][ln 12211===⎰e e G x dx xS 故),(Y X 的联合概率密度为⎪⎩⎪⎨⎧><<<=其它 ,0 10,1,21),(2x y e x y x f . ⎪⎩⎪⎨⎧<<===⎰⎰∞∞-其它 ,0 1 ,2121),()(210e x x dy dy y x f x f x X , .41)2( =∴Xf 3. 一个电子仪器由两个部件构成,Y X ,分别表示两个部件的寿命(单位:千小时),已知),(Y X 的联合分布函数为⎩⎨⎧>>---=+---其它 0,0 0 ,1),()(5.05.05.0y ,x e e e y x F y x y x(1) 问Y X ,是否独立;(2)求两个部件的寿命都超过0.1千小时的概率.解:(1) ⎪⎩⎪⎨⎧>-=∞+=-其它 0, 0 ,1),()(5.0x e x F x F x X , ⎪⎩⎪⎨⎧>-=+∞=-其它 0, 0 ,1),()(5.0y ey F y F y Y , 从而有)()(),(y F x F y x F Y X =, 所以Y X ,相互独立.(2) 由Y X ,相互独立知)]1.0(1)][1.0(1[)1.0()1.0()1.0,1.0(≤-≤-=>>=>>Y P X P Y P X P Y X P.)]1.0(1)][1.0(1[1.005.005.0---==--=e e e F F Y X4. 设),(Y X 的联合概率密度⎪⎩⎪⎨⎧><+=其它,0 0,1,2),(22y y x y x f π,⎩⎨⎧≥<=Y X Y X U ,1,0,⎪⎩⎪⎨⎧<≥=Y X Y X V 3 ,13,0,求:(1) ),(V U 的联合分布律;(2))0(≠UV P .解:(1) 0)()3,()0,0(00=Φ=≥<====P Y X Y X P V U P p ;432),()3,()1,0(01===<<====⎰⎰OCD OCDS dxdy y x f Y X Y X P V U P p 扇形扇形π; 612),()3,()0,1(10===≥≥====⎰⎰OAB OABS dxdy y x f Y X Y X P V U P p 扇形扇形π; 1212),()3,()1,1(11===<≥====⎰⎰OBC OBCS dxdy y x f Y X Y X P V U P p 扇形扇形π. 于是有联合分布律:(2) 121)0(11==≠p UV P . 5. 设),(Y X 的联合概率密度为⎩⎨⎧<<<<=其它,010,10 ,1),(y x y x f求:(1))21,21(≤≤Y X P ;(2))21(>+Y X P ;(3))31(≥Y P ;(4))21(>>Y Y X P .解:(1)4121211),()21,21(21,21=====≤≤⎰⎰⎰⎰≤≤G Gy x S dxdy dxdy y x f Y X P ;(2)=>+)21(Y X P 8721212111),(21=-===⎰⎰⎰⎰>+G Gy x S dxdy dxdy y x f ;(3)=≥)31(Y P 32)311(11),(31=-===⎰⎰⎰⎰≥G Gy S dxdy dxdy y x f ;(4)41211212121)21()21,()21(=⋅=>>>=>>Y P Y Y X P Y Y X P .6. 设),(Y X 的联合概率密度为⎪⎩⎪⎨⎧<<<<-=其它 ,0 2,2010 ,20),(x y x x x xcy x f求:(1) 常数c ;(2) )(x f X ;(3) )(x y f X Y ;(4) )128(=≥X Y P .解:(1) ,25)210(20),(1201020102c dx xcdy xx c dx dxdy y x f xx =-=-==⎰⎰⎰⎰⎰∞∞-∞∞-.251 =∴c(2) ⎪⎩⎪⎨⎧<<-=-==⎰⎰∞∞-else x x dy x xdy y x f x f x x X0, 2010 ,50202520),()(2.(3) 2010 <<x 时,0)(≠x f X ,)(x y f X Y 有定义,且⎪⎪⎩⎪⎪⎨⎧<<=--==elsex y xx x x x x f y x f x y f X X Y 0, 2,250202520)(),()( (4) )20,10 (12∈=x ,⎪⎩⎪⎨⎧<<==∴elsey X y f XY 0,126 ,61)12( ,从而 3261)12()128(1288=====≥⎰⎰∞dy dy X y f X Y P X Y .7. 设Y X ,相互独立且都服从]1,0[上的均匀分布, 求Y X Z +=的概率密度.解:⎰∞∞--=dx x z f x f z f Y X Z )()()(, 其中⎩⎨⎧<<=其它x x f X ,0 10 ,1 )(, ⎩⎨⎧<-<=-其它 x z x z f Y ,0 10 ,1 )(. ⎩⎨⎧<<-<<⇔⎩⎨⎧<-<<<⇔≠-z x z x x z x x z f x f Y X 11010100)()(. (区域见图示)(1)10<<z 时, zdx z f zZ =⋅=⎰011)(;(2) 21<≤z 时, z dx z f z Z -=⋅=⎰-211)(11;(3) )2,0(∉z 时, 0)(=z f Z .综上知⎪⎩⎪⎨⎧<≤-<<=其它 z z z z z f Z ,0 21 ,210 , )(.8*. 设),(Y X 的联合概率密度⎩⎨⎧<<=-其它 ,0 0 ,),(yx xe y x f y ,求(1) )21(<<Y X P ,)21(=<Y X P ;(2)Y X Z +=的概率密度;(3) )1),(min(<Y X P .解:(1) ① 102142512121)()()2()2,1()21(22221202102202102---=---=--==<<<=<<-------⎰⎰⎰⎰⎰⎰e e e e e e dxe e x dx e e x dy xe dx dyxe dxY P Y X P Y X P x x xy x y; ②⎪⎩⎪⎨⎧≤>===--∞∞-⎰⎰0 0, 0,21),()(20y y e y dx xe dx y x f y f y y yY , 02)2( 2≠=∴-e f Y ,于是 ⎪⎩⎪⎨⎧<<====--elsex xe xef x f Y x f Y Y X 0, 20 ,22)2()2,()2(22 ,从而 412)2()21(101=====<⎰⎰∞-dy x dx Y x f Y X P Y X . (2) ⎰∞∞--=dx x z x f z f Z ),()(, 其中2000),(zx xx z x x z x f X <<⇔⎩⎨⎧>->⇔≠-. (区域见图示)(1) 0>z 时, ⎰⎰---==2020)()(z xzz x z Z dx xe edx xez f 2)12(zze ze---+=; (2)0≤z 时, 0)(=z f Z .综上知⎪⎩⎪⎨⎧≤>-+=--0 ,0 0,)12()(2z z e ze zf z z Z .(3))1,1(1)1),(min(1)1),(min(≥≥-=≥-=<Y X P Y X P Y X P1111,12111),(1-∞-∞∞-≥≥-=-=-=-=⎰⎰⎰⎰⎰e dx xe dy xe dxdxdy y x f x xyy x .9*. 设),(Y X 的联合概率密度⎩⎨⎧>>=+-其它 ,0 0,0,),()(y x e y x f y x ,求Y X Z -=的概率密度.解:)()()(z Y X P z Z P z F Z ≤-=≤= (1) 0<z 时, 0)()(=Φ=P z F Z ;(2) 0=z 时, 0),()()(0====⎰⎰>=x y Z dxdy y x f X Y P z F(3)0>z 时, 如图⎰⎰⎰⎰⎰⎰∞+---+--+<<-+==zz x zx y x zz x y x zx y z x Z dy e e dxdy e e dxdxdy y x f z F 0),()(⎰⎰∞--+------+-=zz x z x x z zx x dx e e e dx ee )()1(0z zx z z z xz xe dx e e e dx ee e-∞------=-+-=⎰⎰1)()(202综上知⎪⎩⎪⎨⎧≤>-=-0 ,0 0 ,1)(z z e z F z Z , 求导得⎩⎨⎧≤>=-0,0 0,)(z z e z f z Z .10. 设B A ,是两个随机事件, 且,41)(,21)(,41)(===B A P A B P A P 引进随机变量 ⎩⎨⎧=⎩⎨⎧=不发生当发生当 不发生当发生当 B B Y A A X ,0 ,1 , ,0 ,1.判断下列结论的正误, 并给予分析:(1)B A ,互不相容;(2)B A ,相互独立;(3)Y X ,相互独立;(4)1)(==Y X P ;(5)41)1(22==+Y X P . 解:(1)检验0)(=AB P 是否成立. 事实上0812141)()()(≠=⋅==A B P A P AB P , 故B A ,相容, 原结论错. (2)检验)()()(B P A P AB P =是否成立. 事实上由于41)(,41)(==B A P A P ,.)()()()()( A P B P B A P B P AB P ==∴ 即)()()(B P A P AB P =成立, 故B A ,独立, 原结论对.(3)检验Y X ,的联合分布律与边缘分布律之积是否都相等. 事实上81)(11==AB P p ;838121)()()()(01=-=-=-==AB P B P AB B P B A P p ; 818141)()()()(10=-=-=-==AB P A P AB A P B A P p ;83818381100=---=p . 于是有经检验, Y X ,的联合分布律与边缘分布律之积都相等, 故原结论对.(4)只需正确求出)(Y X P =的值. 事实上0218183)(1100≠=+=+==p p Y X P , 故原结论错. (5)只需正确求出)1(22=+Y X P 的值. 事实上41218183)1(100122≠=+=+==+p p Y X P , 故原结论错.。
概率论与数理统计教材第三章习题
方差的计算公式: 方差的计算公式:
DX = E X [E( X )]
2
( )
( x EX) ∞
+∞
2
f ( x)dx
2
有关方差的定理: 定理1 有关方差的定理: 定理1
推论: 推论:Db = 0;
D( X + b) = DX; D(aX) = a2 DX.
6
D(aX + b) = a2 DX
定理2 定理2: 若X与Y 独立, D( X +Y ) = DX + DY 与 独立,
E[g( X,Y )] = ∫
+∞ +∞
∞ ∞
∫ g( x, y) f ( x, y)dxdy,
4
假定这个积分是绝对收敛的. 假定这个积分是绝对收敛的
五、关于数学期望的定理
定理1 定理1
E(a + bX ) = a + bEX
(3)E(bX ) = bEX ) (2)E(a + X ) = a + EX )
+∞ ∞
EY = Eg( X ) = ∫ g( x) f ( x) dx
3
四、二维随机变量的函数的数学期望
的联合概率函数为p(x (1)设二维离散随机变量 )设二维离散随机变量(X,Y)的联合概率函数为 i , yj),则 的联合概率函数为 , 随机变量函数g(X,Y)的数学期望如下: 的数学期望如下: 随机变量函数 的数学期望如下
10
2、X与Y 的相关系数 与 定义 R( X,Y ) = cov( X ,Y )
R( X,Y ) =
定理3 定理3
cov( X,Y ) D( X) D(Y )
R( X,Y ) ≤ 1
《概率论与数理统计答案》第三章
习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
1.设随机变量 X 的概率分布为
X
-3 0.1
0 0.2
1 0.3
5 0.4
pk 试求 EX 。
答案与提示: EX = 2 。 2.已知随机变量 X 的分布列为
X
0 0.1
1
p
2 0.4
3 0.2
Pk
答案与提示:(1)由归一性, p = 0.3 ; (2) EX = 1.7 ; (3) DX = 0.81 3.已知随机变量 X 的分布列为
后
答
D X −Y = 1−
26.设灯管使用寿命 X 服从指数分布,已知其平均使用寿命为 3000 小时,现有
—5—
案
若一周 5 个工作日里无故障可获利 10 万元,发生一次故障仍获利 5 万元,发生二次2π网
。
ww w
3 ; 2
.k
hd a
EZ =
1 , DZ = 3 ; 2
w. c
解:(1)由数学期望、方差的性质及相关系数的定义( ρ XY =
第三章
习题参考答案与提示
求:(1) Y = 2 X 的数学期望;(2) Y = e −2 X 的数学期望。 答案与提示:(1) EY = E 2 X = 2 ;(2) EY = Ee −2 X = 1/ 3 。
1 11.试证明事件在一次试验中发生的次数的方差不超过 。 4
答案与提示:事件在 n 次独立重复试验中发生的次数服从参数为 n , p 的二项分 布 B ( n, p ) ,当然在一次试验中发生的次数应服从 B (1, p ) ,即为(0-1)分布。
f ( x) = 1 − x− β e 2α
概率论与数理统计期末测试(新)第三章练习题
概率论与数理统计期末测试(新)第三章练习题一、选择题1、随机变量X 和Y 相互独立,且方差21()Var X σ=,22()Var Y σ=,(120,0σσ>>),12,k k 是已知常数,则12()Var k X k Y -等于( )。
(A) 221122k k σσ- (B) 221122k k σσ+ (C)22221122k k σσ- (D) 22221122k k σσ+2、随机变量X 与Y 相互独立,且方差()2Var X =,() 1.5Var Y =,则(321)Var X Y --等于( )。
(A) 9 (B) 24 (C) 25 (D) 23、已知随机变量X 与Y 的方差,()4Var X =,()9Var Y =,协方差cov(,)2X Y =,则(2)V a r X Y -等于( )。
(A) 25 (B) 13 (C) 17 (D) 214、已知随机变量X 与Y 的方差,()9Var X =,()16Var Y =,相关系数(,)0.5corr X Y =,则()Var X Y -等于( )。
(A) 19 (B)13 (C) 37 (D) 255、5个灯泡的寿命12345,,,,X X X X X 相互独立同分布且()i E X a =,()i Var X b =(1,2,3,4,5i =),则5个灯泡的平均寿命123451 ()5Y X X X X X =++++的方差()Var Y =( )。
(A) 5b (B) b (C) 0.2b (D) 0.04b6、如果随机变量X 与Y 不相关,则正确的是( )。
(A) ()()()Var aX bY aVar X bVar Y +=+ (B) ()()()Var X Y Var X Var Y -=- (C)()()()Var XY Var X Var Y = (D) ()()()E XY E X E Y =7、如果随机变量X 与Y 独立,则正确的是( )。
概率论与数理统计答案 第三章习题
解
f
X
(
x)
fY
(
y)
2x(1
0,
|
y |),0
x 1,| y|1 其它
f (x, y)
故X和Y不相互独立.
14.设X和Y是相互独立的随机变量,X在(0,1)上服从均匀分布,
Y的概率密度为
fY
(
y)
1 2
e
y
2
,
y
0
(1)求X和Y的联合概率密度;
0, y 0
(2)设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率.
(X,Y)关于Y的边缘分布律可用Y= j时 X取所有可能取的值的概率相加而得. 也可以单独列表如下:
X0 1 2
pk 1 2 1
4 44
Y0 1 2 3
pk 1 3 3 1
8 88 8
X Y0123
012
1 10 0 88
0 220
88
00 11
88
1 P{Y=j} 8
3 8
3 8
1 8
P{X=i}
0 25/36 5/36 5/6
0 45/66 10/66 5/6
1 5/36 1/36 1/6
1 10/66 1/66 1/6
P{X=i} 5/6 1/6 1
P{X=i} 5/6 1/6 1
13(1)问第1题中的随机变量X和Y是否相互独立?(需说明理由) 解 (1)P{X=i,Y=j}=P{X=i}P{Y=j}对(X,Y)所有可能取值 (i,j)( i ,j =0,1)都成立,故放回抽样X和Y相互独立.
y)dy y (4)
4
(2)
2
《概率论与数理统计》习题及答案 第三章
《概率论与数理统计》习题及答案第 三 章1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。
解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以 11()(1)(1),2,3,.k k P X k pp p p k --==-+-=2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个数X 的分布列。
解 从a b +个球中任取r 个球共有ra b C +种取法,r 个球中有k 个黑球的取法有kr kb aC C -,所以X 的分布列为()kr kb ar a bC C P X k C -+==,m a x (0,),m a x (0,)1,,m in (,)k r a r a b r =--+ ,此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。
3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。
解 设i A =‘第i 个零件是合格品’1,2,3i =。
则 1231111(0)()23424P X P A A A ===⋅⋅=, 123123123(1)()P X P A A A A A A A A A ==++ 123123123()()()P A A A P A A A P A A A =++ 111121113623423423424=⋅⋅+⋅⋅+⋅⋅=, 123123123(2)()P X P A A A A A A A A A ==++ 123123123()()()P A A A P A A A P A A A =++ 1211131231123423423424=⋅⋅+⋅⋅⋅+⋅⋅=,1231236(3)()23424P X P A A A ===⋅⋅=.即X 的分布列为01231611624242424XP. 4.一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为12,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布。
概率论与数理统计第三章测试题
第3章 多维随机变量及其分布一、选择题1.设,X Y 是相互独立的随机变量,其分布函数分别为()(),X Y F x F y ,则()min ,Z X Y =的分布函数是( )(A) ()()()max ,Z X Y F z F z F z =⎡⎤⎣⎦ (B) ()()()min ,Z X Y F z F z F z =⎡⎤⎣⎦ (C) ()()()111Z X Y F z F z F z =---⎡⎤⎡⎤⎣⎦⎣⎦ (D) ()()Z Y F z F y =2.设两个相互独立的随机变量X 和Y 分别服从正态分布N(0,1) 和 N(1,1),则(A )21)0(=≤+Y X P (B )21)1(=≤+Y X P (C )21)0(=≤-Y X P (D )21)1(=≤-Y X P3.设二维随机变量(),X Y 服从于二维正态分布,则下列说法不正确的是( ) (A) ,X Y 一定相互独立 (B) ,X Y 的任意线性组合12l X l Y +服从于一维正态分布 (C) ,X Y 分别服从于一维正态分布 (D) 当参数0ρ=时,,X Y 相互独立4.,ξη相互独立且在[]0,1上服从均匀分布,则使方程220x x ξη++=有实根的概率为( ) (A) 13 (B) 12 (C) 0.4930 (D) 4 5.设随机变量,X Y 都服从正态分布,则( )(A) X Y +一定服从正态分布 (B) ,X Y 不相关与独立等价 (C) (),X Y 一定服从正态分布 (D) (),X Y -未必服从正态分布6.设随机变量X, Y 相互独立,且X 服从正态分布),0(21σN ,Y 服从正态分布),0(22σN ,则概率)1|(|<-Y X P(A )随1σ与2σ的减少而减少 (B )随1σ与2σ的增加而减少 (C )随1σ的增加而减少,随2σ的减少而增加 (D )随1σ的增加而增加,随2σ的减少而减少7.设),(Y X 的联合概率密度为: ⎩⎨⎧<+=,,0;1,/1),(22他其y x y x f π 则X 与Y 为(A ) 独立同分布 (B )独立不同分布 (C )不独立同分布 (D )不独立不同分布 8.设X i ~ N (0 , 4), i =1, 2, 3, 且相互独立, 则 ( ) 成立。
概率论与数理统计 第三章习题
x1
1 8
x2
1 8
( ) P Y = y j = p j
1 6
1
【思路】
利用边缘分布律的求法及独立性来进行,例如,从
p11
+
1 8
=
1 6
,
求得
p11
=
1 24
,
再
利用独立性知 p11 =
p1
1 6
.
从而知
p1
= 1 , 等等. 4
【解】 利用 pi = pij ; p j = pij 以及
所以
f
( x, y) =
fX
(x)
fY
(
y
)
=
1, 0
0
x 1, 0 其他
y 1
6、设相互独立的随机变量 X , Y 分别服从参数为 1 的 0 −1分布和参数为 1 的 0 −1分布,
2
3
则 t2 + 2Xt + Y = 0 中 t 有相同实根的概率为( B )
A、 1 3
B、 1 2
而且 P{XY = 0} = 1
Y0 1 P1 1
22
(1)求随机变量 X 和 Y 的联合分布;(2)判断 X 与Y 是否相互独立?
解:因为 PXY = 0 = 1 ,所以 PXY 0 = 0
(1)根据边缘概率与联合概率之间的关系得出
Y
X -1
1
0
1
0
1
1
4
1
4
2
1
0
4
0
1
2
1
1
1
4
2
球,设 X ,Y 分别表示黑球和红球的个数,求( X ,Y )的联合分布概率
概率论与数理统计第三章测验题答案更新
第三章测验题答案(2010-05-11)班级______ 姓名______ 学号______ 做题时间____分钟********************************************************************************************一. 填空(共17分) 1. (5分)设随机变量()X P λ且{2}{4}P X P X ===,则λ= 解:因为()X P λ,属离散型随机变量,故{},0,1,2 0kP X k e k k λλλ-===>.由题设条件{2}{4}P X P X ===可知242!4!ee λλλλ--=,所以212.λ=又因为0,λ>所以λ=2. (12分,每空2分)根据定义完成下列各式:()()()(,(11)(,))1;(12)(,)1;(21);(22)(31)(,);(32)(,;()(.))X xxy X X xY Xx dx x dx x f f x y dxdy f F f f x y dx x y dx f dx f x y dy F dy F x y y x +∞+∞+∞-∞-∞-∞-∞-∞-∞+∞+∞-∞-∞-∞-=-=-=--===-⎰⎰⎰⎰⎰⎰⎰⎰⎰二. 选择(共20分,每题5分)1. 设随机变量X 的绝对值不大于1,且{1}1,8P X =-=1{1}4P X ==,则{11}P X -<<=[ A ](A) (B) (C) (D)解:因为随机变量X 的绝对值不大于1,所以必定有X 的所有取值只可能在-1到1之间,即{||1}1P X ≤=,所以{11}{||1}{1}{1}P X P X P X P X -<<=≤-=--=1151.848=--=2. 设X 与Y 相互独立且同分布,1{1}{1}2P X P Y =-==-=,1{1}{1}2P X P Y ====,在下列各式中成立的是 [ A ] (A) 1{}2P X Y ==(B) {}1P X Y == (C)1{0}4P X Y +==(D) 1{1}4P XY == 解:因为111,22+=所以X 和Y 的取值只能是1或-1,因此利用X 与Y 的边缘分布律和两者独立性的条件可知(X , Y )的联合分布律,如下表所示:{1}{1}P X Y P X Y ===-+==111442=+=,故选项(A)正确,(B)错误;(){0}{1,1}{1,1}P X Y P X Y X Y +===-=⋃==- {1,1}{1,1}P X Y P X Y ==-=+==-111442=+=,故选项(C)错误;(){1}{1}{1}P XY P X Y X Y ====⋃==- {1}{1}P X Y P X Y ===+==-111442=+=,故选项(D)错误.3. 已知3{0,0}7P X Y ≥≥=,且4{0}{0}7P X P Y ≥=≥=,则{max(,)0}P X Y ≥=[ C ].(A)37 (B)47 (C)57 (D) 1649解:本题关键是分析max 函数的含义,从而利用概率的加法公式来解. 具体过程如下:{max(,)0}{00}P X Y P X Y ≥=≥≥或者(){0}{0}P X Y =≥⋃≥(){0}{0}{0}{0}P X P Y P X Y =≥+≥-≥⋂≥({0}{0})X Y ≥≥因为事件和事件不互斥,所以只能利用加法公式{0}{0}{0,0}P X P Y P X Y =≥+≥-≥≥ 44357777=+-=4. 设随机变量2(,)XN μσ,则随着σ的增大,{}P X μσ-<[ ].(A)增大 (B)减小 (C)保持不变 (D)增减不定 解:||{||}{1}{11}(1)(1)2(1)1X X P X P P μμμσσσ---<=<=-<<=Φ-Φ-=Φ-,与σ无关,所以选(C).(0,)σσ>因为两边同时除以以后不等号不变号 三. 解答题(请写明求解过程,共63分)1. (18分,每小题6分)已知随机变量X 的分布函数为0,0()sin ,0,21,2x F x A x x x ππ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩求(1) A ; (2){||}6P X π<; (3)()f x .解:(1)利用分布函数的右连续性可知,在2x π=点,右连续性表现为2lim (x))2(x F F ππ→+=,根据(x)F 定义可知,当1x >时,()1F x =,所以左边=2lim (x)x F π→+=2lim 11x π→+=,右边(si 22)n F A A ππ===,故A =1.所以得到0,0()sin ,02,1,2x F x x x x ππ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩(2) 注意到这个(x)F 在整个实轴都是连续的,根据第二章的结论:只要分布函数是连续函数,那么随机变量在单点处的概率就为0,因此有{||}{}{}66666X X P X P P πππππ<=-<=≤-<<()()66F F ππ=--0sin 6π=-=12=.(3)已知分布函数求概率密度,只需要在密度函数的连续点处对x 求导即可:因此有cos ,0().20,x x f x π⎧≤≤⎪=⎨⎪⎩其它(此题没有()f x 无定义的点,否则需要修改相应区间,例如第二章测验解答题第一题.)2. (15分)某元件寿命X 服从参数为11000λ=的指数分布,则三个这样的元件使用1000小时后,都没有损坏的概率是多少解:随机变量X表示元件寿命,由题意可知其概率密度为1000,01(),.1000xxothe sfeexrwi->⎧⎪=⎨⎪⎩又因为11000100010001{1000}()1000.xP X f x dx e dx e-+∞+∞-≥===⎰⎰即元件能够使用超过1000小时的概率是1e-,又因为三个元件的寿命是相互独立的,所以最后所求概率值即为()313e e--=.3.(10分)已知二维随机向量(X, Y)的联合密度函数为8,01(,)0,xy x yf x y≤≤≤⎧=⎨⎩其它求(X, Y)的关于Y的边缘密度函数.解:通过以下四个步骤求边缘密度:①写定义:()(,)Yf y f x y dx∞-∞+=⎰②定区间: ____,001,y <<⎧=⎨⎩其它③化积分: 08,0,10y y xydx ⎧⎪=⎨⎪⎩<<⎰其它④求积分: 34,00,1y y <<⎧=⎨⎩其它.4. (10分)设(1,2),XU 求2X Y e =的概率密度函数.解:因为(1,2),XU 所以有1,12().0,X x f x <<⎧=⎨⎩其它因为函数2x y e =是严格单调函数,所以可以利用书中第52页定理直接求Y 的密度函数.21ln ()2x y h y y e ==是的原函数,且242412,,,x e y e e e αβ<<<=<=当时则有即定理中的;1ln (2)2(,)1y h y ∈=所以(())1X f h y =. 又注意到'()12h y y=, 所以由定理可知·|'((()|)),0,()X Y h y h y f y y f αβ<<⎧=⎨⎩其它241,0,2e y e y⎧<<⎪=⎨⎪⎩其它(10分)已知(X , Y )的概率密度为1(),0(,,)810x y f x y x y ≤≤⎧≤+⎪=⎨⎪⎩其它求1{}P X Y +≤.解:本题所求的是二维随机变量(X , Y )落在某区域中的概率,则{}(,)1GP X Y f x y dxdy ≤+=⎰⎰现要将此二重积分化成累次积分,则要确定这个区域{}(,)|1G x y x y =+≤与0(,)f x y ≠的区域的交集,如下图所示故{}(,)1GP X Y f x y dxdy ≤+=⎰⎰11201()8y ydy x y dx -=+⎰⎰1.48= 四. 选做题(10分,100分以外)设(X , Y )的分布函数为(,)(arctan 2)(arctan 3)F x y A B C x y=++,求(1) A,B,C; (2)(,)f x y ; (3)X 和Y 是否相互独立 解:(1)法一:利用二维随机变量的分布函数的性质:(,)0,(,)0,(,)1F y F x F -∞=-∞=+∞+∞=得到()(arctan )0(1)23(arctan )()0(2)22()()1(3)22y A B C x A B C A B C ππππ⎧-+=⎪⎪⎪+-=⎨⎪⎪++=⎪⎩式式式.由(3)式可知,0A ≠. 又因为(,)1F +∞+∞=, 所以(,)(arctan )(arctan )023x F x y A B C y=++≠故00.23arctanarctan B y C x ++≠≠并且 则又(1)(2)式可知21,2B C A ππ===. 因此21(,)(arctan )(arctan )2223x yF x y πππ=++. 法二:利用一维随机变量的分布函数的性质()0,()1F F -∞=+∞=来做:因为边缘分布()(,)lim (,)(arctan )()22X y x F x F x F x y A B C π→+∞=+∞==++()(,)lim (,)()(arcta )23n Y x F y F y F x y A B C yπ→+∞=+∞==++作为一维随机变量的分布函数是满足上述性质的,故1()lim (,)lim (arctan )(arctan 23)()()22X x x y F F x A B B x C A C y ππ→+∞→+∞→+∞=+∞=+∞=++=++0()lim (,)lim (arctan )(arctan 23)()()22X x x y F F x A B B x C A C y ππ→-∞→-∞→+∞=-∞=+∞=++=-+0()lim (,)lim (arctan )(arctan )3()22()2Y y x y F F y A B B x C A C y ππ→-∞→+∞→-∞=-∞=+∞=++=+-解此方程组得到21,2B C A ππ===.(2)22222222222(,)(,)1(arctan )(arctan )2211(arct 2313an )2111246.(4)(921213119)F x y f x y x yx y yx x y y x x y y πππππππ∂=∂∂⎡⎤∂++⎢⎥⎣⎦=∂∂⎡⎤⎢⎥⎢⎥∂⨯+⨯⨯⎢⎥⎛⎫⎢⎥ ⎪⎝⎭⎣⎦=∂=⨯⨯⨯=+++++(3)要判断独立性,就要先求边缘分布;法一:因为此题给出的条件是分布函数,所以这里我们先求X 和Y 的边缘分布函数. 根据分布函数的定义,我们有1()(,)lim (,)(arctan )()(arctan )2222X y x x F x F x F x y A B C πππ→+∞=+∞==++=+1()(,)lim (,)()(arctan )(arctan )3322Y x F y F y F x y A B C y yπππ→+∞=+∞==++=+所以对任意的x, y , 有(,)()()X Y F x y F x F y =成立,故X 与Y 独立. 法二:利用第(2)题联合密度求边缘密度后,判断是否独立.()(,)X f x f x y dy +-∞∞=⎰222222222222226(4)(9)61(4)9611(4)91arct 3613|(4)93613(4)924an 22()dyx y dy x y dy x y y x x x ππππππππ+-+-+-∞∞∞∞∞∞+∞-∞=++=++=⨯⨯+⎛⎫+ ⎪⨯⨯⎛⎫⨯⨯+ ⎪⎝⎭=⨯+=⎝⎭⨯+=+⎰⎰⎰ ()(,)Y f y f x y dx +-∞∞=⎰222222222222226(4)(9)61(9)4611(9)41arct 2612|(9)42612(9)439an 22()dxx y dx y xdy y x x y y y ππππππππ+-+-+-∞∞∞∞∞∞+∞-∞=++=++=⨯⨯+⎛⎫+ ⎪⨯⨯⎛⎫⨯⨯+ ⎪⎝⎭=⨯+=⎝⎭⨯+=+⎰⎰⎰ 22222623(,)(),(4)(9)(4)(9)()X Y f x y f y x y x y x f πππ==⨯=++++x y 对任意,均成立, 故X 与Y 独立.。
概率论与数理统计习题库,第三章
长沙理工大学二手货QQ 交易群146 808 417#00001已知随机变量X 与Y 独立,其分布律分别为,与*00001解:作下表,表中第一行是自变量(X,Y)的全部可能取值点;第二行是第一行各取值相应的概从上表可以确定Z 的取值域为{0,1},W 的取值域为{-1,0,1,函数变量取某值的概率等于该值在表中相应概率之和。
例如 P{Z=0}=0.12+0.18=0.3于是,Z 、W 的分布律分别为:#00002袋中有两只红球,三只白球,现不放回摸球二次,令⎩⎨⎧=⎩⎨⎧=第二次摸到白球第二次摸到红球第一次摸到白球第一次摸到红球0101Y X(1)求(X,Y)的分布律。
(2)求X 与Y 的相关系数 *00002 解:(1)显然X 、Y 的全部可能取值为X=1,0;Y=1,0而P{X=1,Y=1}=P{两次均摸到红球}=2522C C ,同理计长沙理工大学二手货QQ 交易群146 808417ij (2)256)(256)(52)(52)(====Y D X D Y E X E503254101),(101)(-=-==Y X COV XY E41256256503-=-=∴XY ρ#00003设(X,Y)具有概率密度⎩⎨⎧<<<=其它01||0},{y x c y x f ,1)求常数c ;2)求P{Y>2X} ; 3)求F(0.5,0.5)*00003解:1) 如图所示区域D 为(X,Y)的非0定义域由归一性 图⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰====>∴>=⇒=⇒=--GG GGyDyyG S Sdxdy dx dy dxdy X Y P GX Y c cdx dy Cdxdy y 的面积是其中或见如图区域14311}2{}2){21111123)由F(x,y)的几何意义,可将F(0.5,0.5)理*00004解为(X,Y)落在{X ≤0.5,Y ≤0.5}区域(见如图G 1)上的概率。
概率论与数理统计课程第三章练习题及解答
第三章 多维随机变量及其分布一、判断题(在每题后的括号中 对的打“√”错的打“×” )1、若X ,Y 均服从正态分布,则(X ,Y )服从二维正态分布 ( × )2、随机变量(X ,Y )的概率密度为22,1(,)0,k x y f x y ⎧+≤=⎨⎩其它,则π1=k (√ )3、有限个相互独立的正态随机变量的线性组合仍然服从正态分布。
(√) 二、单选题1、随机变量X ,Y 相互独立且~(0,1)X N ,~(1,1)Y N ,则下列各式成立的是( B )A .21}0{=≤+Y X P ; B .21}1{=+≤Y X P ; C .21}0{=≥+Y X P ; D .-≤=1{1}2P X Y 。
分析 因X ,Y 相互独立,它们又都服从正态分布,因此X +Y 与X -Y 也都服从正态分布,且(1,2)X Y N + ,(1,2)X Y N --,由于1{1}(0)2P X Y +≤=Φ=Φ=,选B2、设随机变量21,X X 的分布律为:101111424iX p- i =1,2且满足1}0{21==X X P ,则==}{21X X P ( A )A .0;B .41;C .21; D .1。
分析 从1}0{21==X X P ,可知12{0}0P X X ≠=,即12121212{1,1}{1,1}{1,1}{1,1}0P X X P X X P X X P X X =-=-==-====-==== 根据联合分布与边缘分布的关系,求出21,X X 的联合概率分布12121212{}{1,1}{0,0}{1,1}0P X X P X X P X X P X X ===-=-+==+===,选A 3、设随机变量X ,Y 相互独立且同分布:1{1}{1}2P X P Y =-==-=,1{1}{1}2P X P Y ====,则下列各式成立的是( A )A .1{}2P X Y ==; B .{}1P X Y ==; C .1{0}4P X Y +==; D .1{1}4P XY ==。
概率论与数理统计第三章测验题
第三章测验题(2010-05-11)班级______ 姓名______ 学号______ 做题时间____分钟********************************************************************* 说明:a) 5月13日(本周四)上课打铃前交;b) 如果有困难可以相互讨论,但是不能抄袭; c) 请用A4或B5大小的纸来做,与作业分开写.d) 请大家记录完成此次测验题的总时间,如果在50-60分钟左右做完第一、二和三道大题,说明知识内容掌握较好,基本满足期末考试的做题速度要求。
e) 总分100分,另有选做题10分********************************************************************* 一. 填空(共17分)1. (5分)设随机变量()X P λ 且{2}{4}P X P X ===,则λ= _______.2. (12分,每空2分)根据定义完成下列各式:(11)_____;(12)(,)_____;(21)_____;(22()()(,)__)(31)(,)_____;(32)(,)______.;__X xxy X xx dx x dx f f x y dxdy f f f x y dx dx f x y dy x y dxdy +∞+∞+∞-∞-∞-∞-∞-∞-∞+∞+∞-∞-∞-∞-=-=-=--==-=⎰⎰⎰⎰⎰⎰⎰⎰⎰二. 选择(共20分,每题5分)1. 设随机变量X 的绝对值不大于1,且{1}1,8P X =-=1{1}4P X ==,则{11}P X -<<=[ ](A) 0.625 (B) 0.5 (C) 0.425 (D)0.3752. 设X 与Y 相互独立且同分布,1{1}{1}2P X P Y =-==-=,1{1}{1}2P X P Y ====,在下列各式中成立的是 [ ] (A) 1{}2P X Y ==(B) {}1P X Y == (C)1{0}4P X Y +== (D) 1{1}4P XY ==3. 已知3{0,0}7P X Y ≥≥=,且4{0}{0}7P X P Y ≥=≥=,则{max(,)0}P X Y ≥=[ ]. (A)37 (B)47 (C)57 (D) 16494. 设随机变量2(,)X N μσ ,则随着σ的增大,{}P X μσ-<[ ]. (A)增大 (B)减小 (C)保持不变 (D)增减不定三. 解答题(请写明求解过程,共63分)1. (18分,每小题6分)已知随机变量X 的分布函数为0,0()sin ,0,21,2x F x A x x x ππ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩求(1) A; (2){||}6P X π<; (3)()f x .2. (15分)某元件寿命X 服从参数为11000λ=的指数分布,则三个这样的元件使用1000小时后,都没有损坏的概率是多少?3. (10分)已知二维随机向量(X , Y )的联合密度函数为8,01(,)0,xy x y f x y ≤≤≤⎧=⎨⎩其它求(X , Y )的关于Y 的边缘密度函数.4. (10分)设(1,2),X U 求2X Y e =的概率密度函数.5. (10分)已知(X , Y )的概率密度为1(),0(,,)810x y f x y x y ≤≤⎧≤+⎪=⎨⎪⎩其它求1{}P X Y +≤. 四. 选做题(10分,100分以外)设(X , Y )的分布函数为(,)(arctan 2)(arctan 3)F x y A B C x y=++,求(1) A,B,C; (2)(,)f x y ; (3)X 和Y 是否相互独立?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 多维随机变量及其分布一、选择题1.设,X Y 是相互独立的随机变量,其分布函数分别为()(),X Y F x F y ,则()min ,Z X Y =的分布函数是( )(A) ()()()max ,Z X Y F z F z F z =⎡⎤⎣⎦ (B) ()()()min ,Z X Y F z F z F z =⎡⎤⎣⎦ (C) ()()()111Z X Y F z F z F z =---⎡⎤⎡⎤⎣⎦⎣⎦ (D) ()()Z Y F z F y =2.设两个相互独立的随机变量X 和Y 分别服从正态分布N(0,1) 和 N(1,1),则(A )21)0(=≤+Y X P (B )21)1(=≤+Y X P (C )21)0(=≤-Y X P (D )21)1(=≤-Y X P3.设二维随机变量(),X Y 服从于二维正态分布,则下列说法不正确的是( ) (A) ,X Y 一定相互独立 (B) ,X Y 的任意线性组合12l X l Y +服从于一维正态分布 (C) ,X Y 分别服从于一维正态分布 (D) 当参数0ρ=时,,X Y 相互独立4.,ξη相互独立且在[]0,1上服从均匀分布,则使方程220x x ξη++=有实根的概率为( ) (A) 13 (B) 12 (C) 0.4930 (D) 4 5.设随机变量,X Y 都服从正态分布,则( )(A) X Y +一定服从正态分布 (B) ,X Y 不相关与独立等价 (C) (),X Y 一定服从正态分布 (D) (),X Y -未必服从正态分布6.设随机变量X, Y 相互独立,且X 服从正态分布),0(21σN ,Y 服从正态分布),0(22σN ,则概率)1|(|<-Y X P(A )随1σ与2σ的减少而减少 (B )随1σ与2σ的增加而减少 (C )随1σ的增加而减少,随2σ的减少而增加 (D )随1σ的增加而增加,随2σ的减少而减少7.设),(Y X 的联合概率密度为: ⎩⎨⎧<+=,,0;1,/1),(22他其y x y x f π 则X 与Y 为(A ) 独立同分布 (B )独立不同分布 (C )不独立同分布 (D )不独立不同分布 8.设X i ~ N (0 , 4), i =1, 2, 3, 且相互独立, 则 ( ) 成立。
(A ))1,0(~41N X (B ))1,0(~832N X X + (C ))8,0(~321N X X X ++ (D )X 1+X 2 –X 3 ~N (0, 4)9.已知随机变量 (X, Y) 在区域 D={(x,y)|-1<x<1,-1<y<1} 上服从均匀分布,则 (A )41)0(=≥+Y X P (B )41)0(=≥-Y X P (C )41)0),(max(=≥Y X P (D )41)0),(min(=≥Y X P10. 设两个随机变量 X 与 Y 相互独立同分布:21)1()1(=-==-=Y P X P ,21)1()1(====Y P X P ,则下列各式中成立的是 (A )21)(==Y X P (B )1)(==Y X P (C )41)0(==+Y X P (D )41)1(==XY P11.设随机变量⎪⎪⎭⎫⎝⎛-412141101~i X (i=1,2),且满足1)0(21==X X P ,则)(21X X P =等于(A) 0 (B) 41 (C) 21(D) 1二、填空题1.设,X Y 是两个随机变量,且{}30,07P X Y ≥≥=,{}{}4007P X P Y ≥=≥=,则(){}max ,0P X Y ≥=2.设平面区域D 由曲线1xy =及直线20,1,y x x e ===所围成,二维随机变量(),X Y 在区域D 上服从于均匀分布,则(),X Y 关于X 的边缘概率密度函数在2x =处的值为3.设随机变量,X Y 同分布,X 的概率密度为()230280x x f x ⎧ <<⎪=⎨⎪ ⎩其它,已知事件{}{},A X a B Y a =>=>相互独立,且()34P A B +=,则a =4.设二维随机变量(X, Y)的分布律为已知21)0|1(===X Y P ,31)0|1(===Y X P ,则a= , b= ,c= 。
5.已知X, Y 概率分布分别为21)0()1(====X P X P ,43)1(==Y P ,41)0(==Y P ,且21)0(==XY P ,则P(X=Y)= 。
6.将一枚硬币掷3次,以X 表示前2次中出现正面的次数,以Y 表示3次中出现正面的次数,则 P(Y=2|X=2) = 。
7.设X 与Y 相互独立,均服从[1, 3]上的均匀分布,记A={X ≤a },B={Y>a},且97)(=⋃B A P ,则a= 。
8.)设随机变量X 和Y 相互独立,下表列出二维随机变量(X, Y)的联合分布律记关于X 和关于Y 的边缘分布律中的部分数值,试将其余数值填入表中的空白处:三、简答题1.设二维随机变量(,X Y )的概率分布为其中a 、b 、c 为常数,且X 的数学期望EX=- 0.2, P{Y ≤0 / X ≤0}=0.5,记Z=X+Y 求:(1)a 、b 、c 的值;(2)Z 的概率分布;(3)P{X=Z}。
2.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求: (1)在发车时有n 位乘客的条件下,中途有m 人下车的概率;(2)二维随机变量 (X, Y) 的概率分布; (3)求关于Y 的边缘分布。
3.设A ,B 为两个随机事件,且41)(=A P ,31)|(=A B P ,21)|(=B A P ,令⎩⎨⎧=,不发生,发生A ,0A ,1X ⎩⎨⎧=,不发生,发生B ,0B ,1Y(1)求(X, Y)的概率分布;(2)求22Y X Z +=的概率分布。
4.设二维随机变量(X, Y)的概率密度为⎩⎨⎧<<<<--=,,0;10,10,2),(他其y x y x y x f(1)求P(X>2Y); (2)求Z=X+Y 的概率密度。
5.设随机变量X 和Y 的联合分布是正方形}31,31|),{(≤≤≤≤=y x y x G 上的均匀分布,试求随机变量U=|X-Y|的概率密度p(u)。
6.设二维随机变量(X,Y)在矩形}10,20|),{(≤≤≤≤=y x y x G 上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率密度f(s)。
7.已知随机变量X 1,X 2的概率分布⎪⎪⎭⎫⎝⎛-412141101~1X ,⎪⎪⎭⎫⎝⎛212110~2X ,而且1)0(21==X X P ,(1) 求X 1和X 2 的联合分布;(2 ) 问X 1和X 2 是否独立?为什么?8.设随机变量X 与Y 相互独立,其中X 的概率分布为⎪⎪⎭⎫⎝⎛7.03.021~X ,而Y 的概率密度为f(x),求 Z=X +Y 的概率密度g(u)。
参 考 答 案一、选择题1.C 2.B 3.A 4.A 5.D 6.B 7.C 8.B 9.D 10.A 11.A 二、填空题1.57 2.1/4 34.1/6,1/6,1/6 5.3/4 6.1/2 7.5/3或7/3 8.三、简答题1.解:(1)由二维离散型随机变量联合分布律的性质可得,a+b+c=0.4, 由已知条件,EX=-(a+0.2)+(c+0.1)=-0.2,可得-a+c=-0.1,5.05.01.0)0()0,0()0|0(=++++=≤≤≤=≤≤b a b a X P X Y P X Y P ,从而解得a=0.2,b=0.1,c=0.1;(2) Z 的所有可能取值为-2, -1, 0, 1, 2,其分布律为(3) P(X=Z)=P(Y=0)=0.2。
2.解:(1)n m p p C n X m Y P mn m m n ,...,1,0,)1()|(=-===-; (2) )|()(),(n X m Y P n X P m Y n X P ======,.....1,0;,...,1,0,)1(!==-⋅=--n n m p p C e n m n mm n nλλ;(3)∑∑∞=--∞=-⋅=====mn m n m mnnmn p p Ce n m Y n X P m Y P )1(!),()(λλ,...1,0,!)(==-m e m p p m λλ。
3.解:(1)由已知条件,得到 1214131)()|()(=⨯==A P A B P AB P ;612/112/1)|()()(===B A P AB P B P ;从而有121)()1,1(====AB P Y X P ;6112141)()0,1(=-====B A P Y X P ; 12112161)()1,0(=-====B A P Y X P ; 3212161411)()0,0(=+--====B A P Y X P ;(2)Z 的分布律为4.解:(1)2417)2(1)2(1)2(12/0=---=≤-=>⎰⎰x dy y x dx Y X P Y X P ; (2)先计算 ⎩⎨⎧<-<<<-=-,,0;10,10,2),(他其x z x z x z x f故当0<z<1时,有)2()2(),()(0z z dx z dx x z x f z f zZ -=-=-=⎰⎰∞∞-;当1<z<2时,有211)2()2(),()(z dx z dx x z x f z f z Z -=-=-=⎰⎰-∞∞-;其他情形,均有0)(=z f Z 。
5.解:由有条件知X 和Y 的联合密度为 ⎩⎨⎧≤≤≤≤=,,0,31,31,4/1),(others y x y x f以)()(u U P u F ≤=表示随机变量U 的分布函数。
显然,当0≤u 时,F(u)=0;当2≥u 时F(u)=1。
设0<u<2,则])2(4[41),()(2||u dxdy y x f u F uy x --==⎰⎰≤-。
于是,随机变量的密度为⎪⎩⎪⎨⎧<<-=.,0,20),2(21)(others u u u p6.解:二维随机变量(X,Y)的概率密度为⎩⎨⎧≤≤≤≤=,,0,10,20,2/1),(others y x y x f以)()(s S P s F ≤=表示随机变量S 的分布函数。