《高等数学》线性代数课件
合集下载
高等数学线性代数线性方程组教学ppt(4)
1.2 高斯消元法
对线性方程组消元的三种变换(统称为线性方程组 的初等变换):
(1)交换方程组中某两个方程的位置; (2)以非零常数k乘以方程组中某个方程; (3)用数k乘以方程组中某个方程后加到另一个方程 上去.
定理1 线性方程组经过初等变换后得到的新方程组 与原方程组同解.
例1
解线性方程组
R( A) n;
(2)若R(A) n 1,则 A 0, AA* A E O,
由例5知:R( A) R( A*) n, R( A*) n R( A) n (n 1) 1, 即R( A*) 1.
另一方面,由于R(A) n 1, 因此A存在n 1阶非零子式,即A* O, 从而R( A*) 1.
R( A*) 1;
任一解都可以表示为
x 0 k11 knrnr ,
其中k1, , knr R. 即,当R(A) R(A | b)时,有
Ax b的通解
Ax b的一个特解 Ax 0的通解.
行阶梯形矩阵对应的方程组,叫行阶梯 形方程组;
行阶梯形方程组中,每个方程的第一个 未知量称为主未知量(主变量),其余变量叫 自由未知量(自由变量);
用消元法解线性方程组,就是用初等行 变换将方程组的增广矩阵化为行阶最简形, 得到的行阶梯方程组与原方程组同解.
例2 求解非齐次方程组的通解
x1 x1
3.设0是Ax b的某个解(称为特解),则Ax b 的任一个解向量都可表示成0与对应的 Ax 0的解之和,即有
0 .
证 :由于 0 ( 0 ),记 0,由性质1知 是导出组Ax 0的解,则 0 .
故只要 取遍Ax 0的全部解, 0 就取遍了 Ax b的所有解.
三、Ax b解的结构定理 定理4 若Ax b有解,1, ,nr是对应的Ax 0 的基础解系,0是Ax b的一个特解,则Ax b的
线性代数课件PPT
线性代数课件
目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。
目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。
高等数学课件第8章 线性代数基础
DnT
a12
a22
an2
a1n a2n ann
性质1 行列式与它的转置行列式相等,即:
DnT Dn ➢ 凡是对行成立的性质对列也成立。
8.1.2 行列式的性质与计算(续一)
例8-6 证明上三角行列式
a11 a12 a1n
0 Dn a22 Fra biblioteka2n
a11a22 ann(8-9)
0 0 ann
某校机电系各 专业2004年 在校学生人 数:
2002级 2003级 2004级
制冷工程
96
98
98
机电设备维修 52
55
64
数控与模具
56
52
92
汽车维修
64
92
99
如果用矩形数 表可以简洁 地表示为 :
96 98 98 52 55 64
56 64
52 92
92 99
8.2.1 矩阵的概念(续一)
x2
2
a11b2 b1a21 a11a22 a12 a21
(8-2)
8.1.1 行列式的概念(续二)
二阶行列式 展开式 元素 行 列 三阶行列式
a11 a12 a21 a22
a11a22 a12a21
a11 a12 a13 a21 a22 a23 a31 a32 a33
8.1.1 行列式的概念(续二)
证明
8.1.2 行列式的性质与计算(续二)
性质2 互换行列式的任意两行,行列式仅改变符号。 推论 如果行列式有两行(或两列)的对应元素相等,
则这个行列式等于0。 性质3 将行列式某一行(列)所有元素都乘以相同
的数k,其结果就等于用k乘这个行列式。
《高等数学 线性代数部分》
矩阵空间
矩阵空间的代数维数和几何维数不一定相等。
线性变换的矩阵表示
矩阵作用
矩阵是一种非常方便的表示线性变换的方法, 在 大多数情况下, 矩阵都能表达线性变换。
矩阵元素和变换关系
可以通过矩阵中每个元素的值和与之对应的线性 变换之间的关系, 推导出矩阵的性质。
矩阵运算的动态演示
矩阵运算的乘法可以看作是线性变换的复合, 这种 变换可以使用动态演示来直观地展示。
正交矩阵的应用
正交矩阵在旋转、对称、镜像、奇异值分解等方面 有广泛应用。
2
例子
投影矩阵、旋转矩阵、切比雪夫多项式、求导算子等都是常见的线性变换。
3
作用
线性变换可以用于解决各种数学问题, 如求解微分方程、求解线性代数问题等。
代数维数与几何维数
代数维数
矩阵空间的代数维数是线性无关生成集中向量的数 量。
几何维数
向量空间中基向量的个数就是几何维数。
线性空间
线性空间的代数维数和几何维数是一样的。
矩阵的逆与转置
矩阵的逆
如果存在一个矩阵C, 使得AC=CA=I, 则称矩阵A 是可逆的。
矩阵的转置
将矩阵的行列互换, 得到新的矩阵。
求逆矩阵
使用初等行变换求逆矩阵, 通过计算检验逆矩阵的 正确性。
求转置矩阵
将矩阵的行列互换得到新的矩阵, 解决矩阵的对称 性问题。
向量空间的定义与性质
1
定义
向量空间是一个数域上的向量集合, 满足八个公理。
当向量集中有向量与其他向量 可表示成线性组合, 则该向量 集是线性相关的。
线性无关性
如果向量集中没有任何一个向 量可表示成其他向量的线性组 合, 则该向量集是线性无关的。
线性代数7PPT课件
向量空间的性质
零向量和负向量的存在
在向量空间中,存在一个特殊的向量,称为零向量,它与任何向量进行加法运算结果仍为 该向量本身。同时,对于每个非零向量,都存在一个与其相反的向量,称为该向量的负向 量。
向量的线性组合
对于任意标量和向量,以及任意数量的标量,都可以进行线性组合,得到一个新的向量。
向量的线性无关
二次型的性质
01
实定性
如果一个二次型在某个基下的矩 阵是对称的,那么这个二次型是 实定的。
正定性
02
03
半正定性
如果一个实定的二次型在某个基 下的矩阵是正定的,那么这个二 次型是正定的。
如果一个实定的二次型在某个基 下的矩阵是半正定的,那么这个 二次型是半正定的。
二次型与矩阵的相似性的关系
二次型与矩阵的相似性
07
二次型与矩阵的相似性
二次型的定义
二次型
一个n元二次型是一个n维向量空间上的多 线性函数,其一般形式为$f(x) = sum_{i=1}^{n} sum_{ j=1}^{n} a_{ij} x_i x_j$,其中$a_{ij}$是常数。
二次型的矩阵表示
对于一个二次型$f(x) = x^T A x$,其中 $A$是一个对称矩阵。
特征值和特征向量的性质还包括:如 果λ是A的特征值,那么kλ(k≠0)也 是A的特征值;如果x是A的对应于λ的 特征向量,那么kx也是A的对应于λ的 特征向量。
特征值与特征向量的应用
在物理和工程领域中,特征值和特征向量的应用非常广泛。例如,在振动分析中,系统的固有频率和 振型可以通过求解系统的质量矩阵和刚度矩阵的特征值和特征向量得到。
02
19世纪中叶,德国数学家克罗内克等人开始系统地 研究线性代数,并为其建立了基础。
线性代数课件ppt
aij bij i 1,2,,m; j 1,2,,n,
则称矩阵A与B相等,记作A B.
第12页/共90页
例3: 设 A 1 2 3, 3 1 2
B 1 x 3, y 1 z
已知 A B,求 x, y, z. 解: A B,
x 2, y 3, z 2.
第13页/共90页
0 0 1 a31 a32 a33 a31 a32 a33
a11 x1 a12 x2 a1n xn a21 x1 a22 x2 a2n xn
b1
b2
,
am1 x1 am2 x2 amn xn bm
所以方程组可以用矩阵的乘法来表示.方程组中 系数组成的矩阵A称为系数矩阵,
第28页/共90页
方程组中系数与常数组成的矩阵
3 3 6 2 8 1 6 8 9
第16页/共90页
2、 矩阵加法的运算规律
1 A B B A;
2 A B C A B C .
a11
3
A
a21
a12
a22
am1 am1
称为矩阵A的负矩阵.
a1n a2n amn
aij ,
4 A A 0, A B A B.
主对角线 a11 a12
A
a21
a22
副对角线 am1 am2
a1n
a2n
amn
矩阵A的
m, n元
简记为
A Amn
aij
mn
aij
.
这m n个数称为A的元素,简称为元.
元素是实数的矩阵称为实矩阵,
元素是复数的矩阵称为复矩阵.
第5页/共90页
例1:线性方程组
a11 x1 a12 x2
则称矩阵A与B相等,记作A B.
第12页/共90页
例3: 设 A 1 2 3, 3 1 2
B 1 x 3, y 1 z
已知 A B,求 x, y, z. 解: A B,
x 2, y 3, z 2.
第13页/共90页
0 0 1 a31 a32 a33 a31 a32 a33
a11 x1 a12 x2 a1n xn a21 x1 a22 x2 a2n xn
b1
b2
,
am1 x1 am2 x2 amn xn bm
所以方程组可以用矩阵的乘法来表示.方程组中 系数组成的矩阵A称为系数矩阵,
第28页/共90页
方程组中系数与常数组成的矩阵
3 3 6 2 8 1 6 8 9
第16页/共90页
2、 矩阵加法的运算规律
1 A B B A;
2 A B C A B C .
a11
3
A
a21
a12
a22
am1 am1
称为矩阵A的负矩阵.
a1n a2n amn
aij ,
4 A A 0, A B A B.
主对角线 a11 a12
A
a21
a22
副对角线 am1 am2
a1n
a2n
amn
矩阵A的
m, n元
简记为
A Amn
aij
mn
aij
.
这m n个数称为A的元素,简称为元.
元素是实数的矩阵称为实矩阵,
元素是复数的矩阵称为复矩阵.
第5页/共90页
例1:线性方程组
a11 x1 a12 x2
线性代数 幻灯片PPT
• 定义8 设有两个n
• 如果向量组A中每一个向量都能由向量组B 线性表示,那么称向量组A能由向量组B线 性表示.
53
线性代数
• 定理6 设有两个n维向量组
•证
出版社 科技分社
54
线性代数
出版社 科技分社
• 因为A组可由B组线性表示,所以存在矩阵
• 使 A=KB.
• 推论 等价的线性无关向量组所含向量个数 相等.
• 2.7 方 阵 的 • 定义12 对n阶方阵A,如果存在一个n阶方
阵B,使AB=BA=E,那么称A是可逆阵,称B 为A的逆阵,记为B=A-1. • 性质1 如果A可逆,那么逆阵惟一. • 证明 设A有两个逆阵B,C
43
线性代数
出版社 科技分社
44
线性代数
出版社 科技分社
45
线性代数
出版社 科技分社
• 定义11 由单位阵经过一次初等变换得到的 方阵称为初等方阵.
• 3种初等变换对应了3类初等方阵.
• 第1类初等方阵:对调E
39
线性代数
出版社 科技分社
40
线性代数
出版社 科技分社
41
线性代数
出版社 科技分社
42
线性代数
出版社 科技分社
• 定理3 设A=(aij)m×n,对A施行初等行变换, 相当于对A左乘相应的m阶初等方阵,对A施 行初等列变换,相当于对A右乘相应的n阶 初等方阵.
出版社 科技分社
线性代数 课件
本PPT课件仅供大家学习使用 请学习完及时删除处理 谢谢!
1
线性代数
出版社 科技分社
第1章 行列式
• 1.1 预 备 知 • 设有二元一次方程组
出版社 科技分社
• 如果向量组A中每一个向量都能由向量组B 线性表示,那么称向量组A能由向量组B线 性表示.
53
线性代数
• 定理6 设有两个n维向量组
•证
出版社 科技分社
54
线性代数
出版社 科技分社
• 因为A组可由B组线性表示,所以存在矩阵
• 使 A=KB.
• 推论 等价的线性无关向量组所含向量个数 相等.
• 2.7 方 阵 的 • 定义12 对n阶方阵A,如果存在一个n阶方
阵B,使AB=BA=E,那么称A是可逆阵,称B 为A的逆阵,记为B=A-1. • 性质1 如果A可逆,那么逆阵惟一. • 证明 设A有两个逆阵B,C
43
线性代数
出版社 科技分社
44
线性代数
出版社 科技分社
45
线性代数
出版社 科技分社
• 定义11 由单位阵经过一次初等变换得到的 方阵称为初等方阵.
• 3种初等变换对应了3类初等方阵.
• 第1类初等方阵:对调E
39
线性代数
出版社 科技分社
40
线性代数
出版社 科技分社
41
线性代数
出版社 科技分社
42
线性代数
出版社 科技分社
• 定理3 设A=(aij)m×n,对A施行初等行变换, 相当于对A左乘相应的m阶初等方阵,对A施 行初等列变换,相当于对A右乘相应的n阶 初等方阵.
出版社 科技分社
线性代数 课件
本PPT课件仅供大家学习使用 请学习完及时删除处理 谢谢!
1
线性代数
出版社 科技分社
第1章 行列式
• 1.1 预 备 知 • 设有二元一次方程组
出版社 科技分社
高数第11章 线性代数PPT课件
• 本章重点:
1. 利用行列式的性质计算n阶行列式的方法 2.利用克莱姆法则解线性方程 3.矩阵各种运算,矩阵的初等变换 4.矩阵秩的求法,用初等变换求逆矩阵的方法
5.高斯消元法解线性方程组 6. 层次分析法
• 本章难点:
1. 利用行列式的性质计算n阶行列式的方法
2.用矩阵的初等变换求矩阵的秩,逆矩阵
1111213215321213132111163631316??????????????按第一行展开1612106?????21111226121111111111112111126120211211226120261200313100212????????????1111200011111111111112102110211224261200310031????????????11111111211123001212031031???????按第一行展开211111134131124??????????按第二行展开例例2用行列式的性质计算下列行列式
3.高斯消元法解线性方程组
4.层次分析法
第一节 二、三阶行列式的概念与计算方法
1.引理:
对于二元线性方程组
aa2111xx11
a12x2 a22x2
b1 b2
解得
x1
x
2
b1a 22 b2 a12 a11a22 a12a21 b2 a11 b1a 21 a11a22 a12a21
河北机电职业技术学院
线 性代数课件
整体概述
概述一
点击此处输入
相关文本内容
概述二
点击此处输入
相关文本内容
概述三
点击此处输入
相关文本内容
2
第十一章 线性代数
线性代数第一章ppt
线性代数第一章
目录
CONTENTS
• 绪论 • 线性方程组 • 向量与向量空间 • 矩阵 • 特征值与特征向量
01
绪论
线性代数的定义与重要性
线性代数是数学的一个重要分支,主要研究线性方程组、向量空间、矩阵 等线性结构。它在科学、工程、技术等领域有着广泛的应用。
线性代数的重要性在于其提供了一种有效的数学工具,用于解决各种实际 问题中的线性关系问题,如物理、化学、生物、经济等。
向量空间中的零向量是唯一确定的,且对于任意 向量a,存在唯一的负向量-a。
向量空间的运算与性质
向量空间中的加法满足交换律和结合 律,即对于任意向量a和b,存在唯一 的和向量a+b;且对于任意三个向量a、 b和c,(a+b)+c=a+(b+c)。
向量空间中的数乘满足结合律和分配 律,即对于任意标量k和l,任意向量a 和b,存在唯一的结果k*(l*a)=(kl)*a 和(k+l)*a=k*a+l*a。
圆等。
经济学问题
线性方程组可以用来描述经济现象和 规律,例如供需关系、生产成本、利
润最大化等。
物理问题
线性方程组可以用来描述物理现象和 规律,例如力学、电磁学、热力学等。
计算机科学
线性方程组在计算机科学中有广泛的 应用,例如机器学习、图像处理、数 据挖掘等。
03
向量与向量空间
向量的定义与性质
01 向量是具有大小和方向的量,通常用有向线 段表示。 02 向量具有模长,即从起点到终点的距离。
特征值与特征向量的计算方法
定义法
幂法
谱分解法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特征 值和特征向量。这种方法适用于 较小的矩阵,但对于大规模矩阵 来说效率较低。
目录
CONTENTS
• 绪论 • 线性方程组 • 向量与向量空间 • 矩阵 • 特征值与特征向量
01
绪论
线性代数的定义与重要性
线性代数是数学的一个重要分支,主要研究线性方程组、向量空间、矩阵 等线性结构。它在科学、工程、技术等领域有着广泛的应用。
线性代数的重要性在于其提供了一种有效的数学工具,用于解决各种实际 问题中的线性关系问题,如物理、化学、生物、经济等。
向量空间中的零向量是唯一确定的,且对于任意 向量a,存在唯一的负向量-a。
向量空间的运算与性质
向量空间中的加法满足交换律和结合 律,即对于任意向量a和b,存在唯一 的和向量a+b;且对于任意三个向量a、 b和c,(a+b)+c=a+(b+c)。
向量空间中的数乘满足结合律和分配 律,即对于任意标量k和l,任意向量a 和b,存在唯一的结果k*(l*a)=(kl)*a 和(k+l)*a=k*a+l*a。
圆等。
经济学问题
线性方程组可以用来描述经济现象和 规律,例如供需关系、生产成本、利
润最大化等。
物理问题
线性方程组可以用来描述物理现象和 规律,例如力学、电磁学、热力学等。
计算机科学
线性方程组在计算机科学中有广泛的 应用,例如机器学习、图像处理、数 据挖掘等。
03
向量与向量空间
向量的定义与性质
01 向量是具有大小和方向的量,通常用有向线 段表示。 02 向量具有模长,即从起点到终点的距离。
特征值与特征向量的计算方法
定义法
幂法
谱分解法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特征 值和特征向量。这种方法适用于 较小的矩阵,但对于大规模矩阵 来说效率较低。
高等数学线性代数课件-第一章
2020/9/18
11
§2 全排列与逆序数
定义1:把 n 个不同的元素排成的一列, 称为这 n 个元素的一个全排列, 简称排列。
把 n 个不同的元素排成一列, 共有 Pn个排列。 P3 = 3×2×1 = 6
2020/9/18
12
例如:1, 2, 3 的全排列 123,231,312,132,213,321 共有3×2×1 = 6种,即 P3 = 3×2×1 = 6
26
§5 行列式的性质
a11 a12 a1n
a11 a21 an1
设
D
a21
a22
a2n
则
DT
a12
a22
an2
an1 an2 ann
所确定。
2020/9/18
18
定义1: n! 项(1)t a1 p1 a2 p2 anpn的和
(1)t a1 p1 a2 p2 anpn
称为 n 阶行列式 (n≥1),记作
a11 a12 a1n a21 a22 a2n
an1 an2 ann
2020/9/18
19
例1:写出四阶行列式中含有因子 a11a23 的项。
a 1n
D
a2,n1
n( n1)
(1)
2
a a a 1n 2,n1
n1
an1
2020/9/18
25
行列式的等价定义
a11 a12 a1n
a21 a22 a2n
(1)t a1 j1 a2 j2 anj n
an1 an2 ann
(1)t a a i11 i2 2 ainn
2020/9/18
D2 2
21 1
线性代数全套课件
2
它们的和
j1 jn
J 1 a1 j a2 j
1
2
anjn
称为n阶行列式。
a11 a12 a1n
记为
a21 a22 a2 n an1 an 2 ann a11 a12 a1n a21 a22 a2 n an1 an 2 ann
aij 称为行列式的元素
行列式中,除对角线上的元素以外,其他元素全为 零(即i≠j时元素aij=0)的行列式称为对角行列式, 它等于对角线上元素的乘积。
例 证明
a a n 1 ,1 a n1 a a n 1, 2 an 1
n ( n 1 ) 2
a1n a2,n1 an1, 2 an1
i1 i p i q i n 与 i1 iq i p in 只经过一次对换
a11 a12 a13 a 23 0 0 a 21 a 22 D a 31 a 32 a41 0
n n 1 2
a1na2,n1 an1, 2an1
a14 0 a14a 23a 32a41 0 0
§3 对 换
定义5 排列中,将某两个数对调,其余的数不动, 这种对排列的变换叫对换,将相邻两数对换,叫做 相邻对换(邻换)。 定理1 一个排列中的任意两数对换, 排列改变奇偶性。
此式称为n阶行列式的 展开式或行列式的值
D
j1 jn
1
J
a1 j1 a2 j2 anjn
例
计算4阶行列式
a11 D
0
0 0 a 33 a43
0 0 0 a44
a 21 a 22 a 31 a 32 a41 a42
解: 根据定义,D是4!=24项的代数和,但每一 项的乘积 a1 j1 a2 j 2 a3 j3 a4 j中只要有一个元素为 0,乘积 n 就等于0,所以只需展开式中不明显为0 的项。
它们的和
j1 jn
J 1 a1 j a2 j
1
2
anjn
称为n阶行列式。
a11 a12 a1n
记为
a21 a22 a2 n an1 an 2 ann a11 a12 a1n a21 a22 a2 n an1 an 2 ann
aij 称为行列式的元素
行列式中,除对角线上的元素以外,其他元素全为 零(即i≠j时元素aij=0)的行列式称为对角行列式, 它等于对角线上元素的乘积。
例 证明
a a n 1 ,1 a n1 a a n 1, 2 an 1
n ( n 1 ) 2
a1n a2,n1 an1, 2 an1
i1 i p i q i n 与 i1 iq i p in 只经过一次对换
a11 a12 a13 a 23 0 0 a 21 a 22 D a 31 a 32 a41 0
n n 1 2
a1na2,n1 an1, 2an1
a14 0 a14a 23a 32a41 0 0
§3 对 换
定义5 排列中,将某两个数对调,其余的数不动, 这种对排列的变换叫对换,将相邻两数对换,叫做 相邻对换(邻换)。 定理1 一个排列中的任意两数对换, 排列改变奇偶性。
此式称为n阶行列式的 展开式或行列式的值
D
j1 jn
1
J
a1 j1 a2 j2 anjn
例
计算4阶行列式
a11 D
0
0 0 a 33 a43
0 0 0 a44
a 21 a 22 a 31 a 32 a41 a42
解: 根据定义,D是4!=24项的代数和,但每一 项的乘积 a1 j1 a2 j 2 a3 j3 a4 j中只要有一个元素为 0,乘积 n 就等于0,所以只需展开式中不明显为0 的项。
线性代数ppt课件
VS
线性代数的特点
线性代数具有抽象性、实用性、广泛性等 特点,是数学中重要的分支之一。
线性代数的历史背景
线性代数的起源
线性代数起源于17世纪,主要目的 是为了解决线性方程组的问题。
线性代数的发展
随着数学的发展,线性代数逐渐成为 一门独立的数学分支,并在20世纪得 到了广泛的应用和发展。
线性代数的应用领域
转置矩阵
一个矩阵A的转置矩阵是满足$A^T_{ij}=A_{ ji}$的矩阵
行列式与高斯消元
03
法
行列式的定义及性质
总结词
行列式是线性代数中重要的工具之一,它具有特殊的性质和计算规则。
详细描述
行列式是由一组方阵中的元素按照一定规则组成的,它是一个方阵是否可逆的判断标准,同时也有一 些重要的性质和计算规则,如交换两行或两列、对角线上的元素相乘等。了解行列式的定义和性质是 学习线性代数的基础。
矩阵的运算规则
加法
两个相同大小的矩阵,对应位置的元素相加
数乘
用一个数乘以矩阵的每一个元素
减法
两个相同大小的矩阵,对应位置的元素相减
乘法
要求两个矩阵满足乘法运算的规则,即第一 个矩阵的列数等于第二个矩阵的行数
矩阵的逆与转置
逆矩阵
一个矩阵A的逆矩阵是满足$AA^{-1}=I$的矩阵,其中$I$是单位矩阵
高斯消元法的原理
总结词
高斯消元法是一种解线性方程组的直接方法 ,其原理是将方程组转化为阶梯形矩阵。
详细描述
高斯消元法的基本思想是通过一系列的行变 换将线性方程组转化为阶梯形矩阵,这样就 可以直接求解方程组。高斯消元法包括三种 基本的行变换:将两行互换、将一行乘以非 零常数、将一行加上另一行的若干倍。通过 这些行变换,我们可以将矩阵转化为阶梯形 矩阵,从而求解方程组。
《高等数学》线性代数课件
1 6 4 1 4
r1 r4
3
2
3
6 1
2 0 1 5 3 3 2 0 5 0
3 2 0 5 0
A
3 2
2 0
3 1
6 1 5 3
1 6 4 1 4
r1 r4
1 0
6 4
4 3
1 1
4 1
r2 r4
2 3
0 2
1 0
5 3 5 0
3 2 0 5 0
则称这两个数组成一个逆序.
一个排列中所有逆序的总数称为此排列的逆 序数.
逆序数为奇数的排列称为奇排列,逆序数为 偶数的排列称为偶排列.
n阶行列式的定义
a11 a12 a1n
D
a21 a22 a2n
1 t a1p1 a2 p2 anpnp1Βιβλιοθήκη p2pnan1 an2 ann
其中
p1
p
2
pn
(第 i 行乘 k,记作 ri k)
3 把某一行所有元素的k 倍加到另一行
对应的元素上去(第 j 行的 k 倍加到第 i 行上 记作ri krj).
同理可定义矩阵的初等列变换(所用记号是 把“r”换成“c”).
定义2 矩阵的初等行变换与初等列变换统称为 初等变换.
初等变换的逆变换仍为初等变换, 且变换类型 相同.
c1 2c3 11 1 3 1
c4 c3
0 010
5 5 3 0
5 11 (1)33 11 1 1
5 5 0
r2 r1
5 11 6 2 0 5 5 0
(1)13 6
2 8
2 40.
5 5 0 5
1.8.2 矩阵
(完整版)《大学线性代数》PPT课件
下特页点
结束
a11 a12 … a1n
a21
…
a22 … a2n … ……
=
(-1) N ( j1 j2 jn ) a1 j1 a2 j2 anjn 。
an1 an2 … ann
n阶行列式共有n!项,且冠以正号的项和冠以负号的 项各占一半。
在行列式中,a1 j1 a2 j2 anjn 是取自不同行不同列
结束
例2.计算 n 阶下三角形行列式D的值: a11 0 0 … 0 a21 a22 0 … 0
D = a31 a32 a33 … 0 … … … …… an1 an2 an3 … ann
其中aii0(i=1, 2, , n)。
解:为使取自不同行不同列的元素的乘积不为零,
第一行只能取a11,第二行只能取a22,第三行只能取a33, , 第 n 行只能取ann。 这样不为零的乘积项只有
结束
对换:
在一个排列i1isitin中,将两个数码 is与it对调, 就得到另一个排列 i1 it is in ,这样的变换称为一个 对换,记为对换(is , it)。
例如,排列 21354 经对换(1, 4),得到排列24351。 提问:
排列 21354 经对换 (1, 4),得到的排列是 24351, 排列的奇偶性有无变化? 提示:
的 n 个元素的乘积。
a1 j1 a2 j2 anjn 之前的符号是 (-1) N(j1 j2 jn) 。
行列式有时简记为| a ij |。一阶行列式|a|就是a。
首页
上页
四阶行列式
a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a41 a42 a43 a44
线性代数第一章第一节PPT课件
01递Biblioteka 公式法02递推公式法是根据行列式的性质和结构特点,利用递推公式来
计算行列式的方法。
递推公式法可以大大简化高阶行列式的计算过程,提高计算效
03
率。
行列式的计算方法
分块法
1
2
分块法是将高阶行列式分成若干个小块,然后利 用小块来计算整个行列式的方法。
3
分块法可以简化高阶行列式的计算过程,特别是 当行列式具有特定的结构特点时,分块法可以大 大提高计算效率。
01
向量空间
02
向量空间是线性代数中的一个重要概念,而行列式在向量 空间的定义和性质中也有着重要的应用。例如,通过行列 式可以判断一个向量集合是否构成向量空间,以及向量空 间的一些基本性质。
03
行列式在向量空间中的应用可以帮助我们更好地理解线性 代数的本质和结构特点。
05
特征值与特征向量
特征值与特征向量的定义
转置等特殊运算。
向量与矩阵的关系
关联性
04
向量可以用矩阵来表示,矩 阵中的每一行可以看作是一 个向量。
01 03
•·
02
向量和矩阵在数学中是密切 相关的概念,矩阵可以看作 是向量的扩展。
04
行列式
行列式的定义与性质
基本概念
行列式是由数字组成的方阵,按照一定的规则计 算出的一个数。
行列式具有一些基本的性质,如交换律、结合律、 分配律等。
向量可以用有向线段、坐 标系中的点或有序数对来 表示。
向量有大小和方向两个基 本属性,大小表示向量的 长度,方向表示向量的指 向。
矩阵的定义与运算
•·
02
基础运算
01
03
矩阵是一个由数字组成的矩 形阵列,表示二维数组。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
0
0 0
0 0
0 0
0,
0,
0,
0.
0 0 0 0
(5)单位阵:对角线上全为1的对角阵
1 0 0
E
En
0
1
0
0
0
1
称为单位矩阵(或单位阵).
全为1
(6)对称矩阵
定义 设 A 为 n 阶方阵,如果A的元素满足
aij a ji i , j 1,2,,n
那末 A 称为对称阵.
定理 如果上述齐次线性方程组有非零解,则
它的系数行列式必为零.
4.行列式计算
二阶、三阶行列式用对角线法 利用行列式性质化为上下三角 利用展开定理降阶
P54 例1-49,1-50
11 1 例1 求解方程 2 3 x 0.
4 9 x2 解 方程左端
D 3x2 4x 18 9x 2x2 12 x2 5x 6,
称为行矩阵(或行向量).
只有一列的矩阵
a1
B
a2
,
an
称为列矩阵(或列向量). 不全为0
1
(3)形如
0
0
0
2
0
0
0 的方阵,称为对角
n
矩阵(或对角阵).
记作
(4)元素全为零的矩阵称为零矩阵,m n 零
矩阵记作 omn 或 o .
Hale Waihona Puke 注意 不同阶数的零矩阵是不相等的.
例如 0 0 0 0
3.矩阵的运算
1) 加法
设有两个m n矩阵 A aij , B bij , 那末矩阵
A 与 B 的和记作A B,规定为
a11 b11
A
B
a21 b21
am1 bm1
由 x2 5x 0 解得 x 2 或 x 3.
例2 计算下列排列的逆序数,并讨论它们的奇 偶性.
217986354
解
217986354
0 10 0 1 3 4 4 5
t 5 4 4310010
18
此排列为偶排列.
例3 3 1 1 2 5 1 3 4
D 2 0 1 1 1 5 3 3
5 1 1 1
c1 2c3 11 1 3 1
c4 c3
0 010
5 5 3 0
5 11 (1)33 11 1 1
5 5 0
r2 r1
5 11 6 2 0 5 5 0
(1)13 6
2 8
2 40.
5 5 0 5
1.8.2 矩阵
1.矩阵的概念
定义 由m n个数aij (i 1,2,m; j 1,2,n)排 成的m行n列的数表
1.8 线性代数
一、行列式 二、矩阵
三、n 维向量
四、线性方程组 五、矩阵的特征值和特征向量 六、二次型
1.8.1 行列式
1.阶行列式概念
全排列
把 n 个不同的元素排成一列,叫做这 n 个元
素的全排列(或排列).
n 个不同的元素的所有排列的种数用Pn表示,
且 Pn n!.
逆序数
在一个排列 i1i2 it is in 中,若数 it is,
6)行列式中如果有两行(列) 元素成比例,则此行列 式为零.
7)若行列式的某一列(行) 的元素都是两数之和, 则 此行列式等于两个行列式之和.
8)把行列式的某一列(行) 的各元素乘以同一数, 然 后加到另一列(行) 对应的元素上去,行列式的值不变.
3.克拉默法则
a11 x1 a12 x2 a1n xn b1 , 如果线性方程组a21 x1 a22 x2 a2nxnb2,
2)两个矩阵 A aij 与B bij 为同型矩阵,并且
对应元素相等,即
aij bij i 1,2,,m; j 1,2,,n,
则称矩阵
相等,记作 A B.
2.几种特殊矩阵
(1)行数与列数都等于 n 的矩阵 A ,称为 n 阶 方阵.也可记作 An .
(2)只有一行的矩阵 A a1,a2 ,,an ,
为自然数1,2,,
n的一个排列;
t为这
个排列的逆序数; 表示对1,2,, n的所有排 p1 p2 pn
列取和.
余子式与代数余子式
在n阶行列式中,把元素aij 所在的第i行和第 j 列划去后,留下来的n 1阶行列式叫做元素aij 的余子式,记作M ij;记
Aij (1)i j M ij , Aij 叫做元素a ij 的代数余子式.
2. n阶行列式的性质
1)行列式与它的转置行列式相等,即D DT . 2)互换行列式的两行(列),行列式变号. 3)如 果 行 列 式 有 两 行(列)完 全 相 同, 则 此 行 列 式 等于零. 4)行列式的某一行(列)中所有的元素都乘以同 一数k,等于用数 k 乘此行列式.
5)行列式中某一行(列) 的所有元素的公因子可以 提到行列式符号的外面.
例如
12 A 6
6 8
1 0
为对称阵.
1 0 6
说明 对称阵的元素以主对角线为对称轴对应相
等.
(7)伴随矩阵
定义
行列式 A 的各个元素的代数余子式Aij 所
构成的如下矩阵
A11
A
A12
A1n
A21 A22
An1 An2
A2n Ann
称为矩阵 A 的伴随矩阵.
性质 AA A A A E.
a11 a12 a1n
a21 a22 a2n
am1 am2 amn
称为m行n列矩阵,简称m n矩阵, 记作
a11
A
a21
a12 a22
a1n a2n
am1 am1 amn
简记为
A Amn
aij
mn
aij
.
这m n个数称为A的元素,简称为元.
同型矩阵与矩阵相等 1)两个矩阵的行数相等,列数相等时,称为同型矩阵.
an1 x1 an2 x2 ann xn bn .
的系数行列式 D 0,那么它有唯一解
x
j
Dj D
,
j
1,2,, n.
其中D(j j 1,2,, n)是把系数行列式D中第j列
换成常数项b1 , b2,bn 所得到的行列式.
定理 如果齐次线性方程组
a11 x1 a12 x2 a1n xn 0, a21 x1 a22 x2 a2n xn 0, an1 x1 an2 x2 ann xn 0. 的系数行列式D 0,那么它没有非零解.
则称这两个数组成一个逆序.
一个排列中所有逆序的总数称为此排列的逆 序数.
逆序数为奇数的排列称为奇排列,逆序数为 偶数的排列称为偶排列.
n阶行列式的定义
a11 a12 a1n
D
a21 a22 a2n
1 t a1p1 a2 p2 anpn
p1 p2pn
an1 an2 ann
其中
p1
p
2
pn