抛物线中三角形面积计算方法探索
抛物线中求三角形面积
=½│xA-xB│∙│yC-yD│
模型应用
例: 如图,二次函数
y=1/3x²-4/3x-4与x轴交于 点C,与y轴交于点A,B 为抛物线直线AC下方抛 物线上一点,求△ABC 面积的最大值。
模型拓展
例:如图,二次函数y= 1/3x²-4/3x-4与x轴交于点 C,与y轴交于点 A,直 线AB与x轴平行, 且 点 B在抛物线上,点P 是直 线AC上方抛物线上的动 点,是否 存 在 点 P ,使 S△PAC= 2S△ABC , 若存在, 求出点P的坐标,若不存 在,说明理由。
模型建立
模型建立其基本思
路是将任意三角形转化 为边在坐标轴上或者与 坐标轴平行的三角形, 然后类比上述的办法进 行解决。
三角形面积可表示为
S△ABC=½ab这里用a 代
表水平宽,用h 代表铅 垂高。则a=∣xA-xB∣即 是水平宽,过C作x轴的 垂线,与直线AB的交点 记为D,则h=∣yC-yD∣即 是铅锤高.则有公式:
复习:二次函数抛物
线中的三角形面积的公式:
S = △ABC
½│xA-xB │∙│yC│
S = △ABC
½│xA-xB │∙│yC│
S△ABC=
½│xA-xB │∙│yC│
S△ABபைடு நூலகம்=
½│xA-xB │∙│yC-yA│ 或
½│xA-xB │∙│yC-yB│
问题提出
如果遇到三边均 不与坐标轴平行?三 角形的面积怎么求呢?
中考直击 (2015年深圳中
考23题第3小问) 如图,关于x的 二次函数 y=-x²+bx+c 经过点 A(-3,0),点C(0,3),点D为二次 函数的顶点,DE为二次函数的 对称轴,E在x轴上。(1)求 抛物线的解析式;(2)DE上 是否存在点P到AD的距离与到 x轴的距离相等,若存在求出 点P,若不存在请说明理由。
双曲线抛物线焦点三角形面积公式
双曲线抛物线焦点三角形面积公式1. 概述双曲线和抛物线是数学中常见的曲线类型,它们在几何、物理、工程等领域都有广泛的应用。
而三角形则是几何学中的基本图形之一,研究三角形的性质和面积公式对于理解空间形态和解决实际问题都具有重要意义。
本文将结合双曲线和抛物线的性质,推导出利用焦点和顶点坐标计算三角形面积的公式。
2. 双曲线和抛物线的定义双曲线是平面上满足特定性质的点的集合,它的数学定义是平面上两条直线L1和L2,满足这两条直线的距离的差是一个常数,且常数小于0,那么平面上的点P(x, y)满足L1到P点的距离减去L2到P点的距离等于一个常数。
而抛物线则是平面上满足特定性质的点的集合,它的数学定义是平面上的一个点P(x, y)和一条直线L,使得点P到直线L的距离等于点P到定点F的距离。
其中,定点F称为焦点。
3. 双曲线和抛物线的焦点性质双曲线和抛物线都具有焦点的性质,利用这一性质可以推导出三角形的面积公式。
对于双曲线而言,对于平面上的两点A和B,满足A点到焦点的距离减去B点到焦点的距离等于一个常数。
而对于抛物线而言,对于平面上的三点A、B和C,满足A点到焦点的距离等于B点到焦点的距离等于C点到焦点的距离,并且这个距离等于直线L到焦点的距离。
4. 根据焦点坐标计算三角形面积公式根据双曲线和抛物线的焦点性质,我们可以推导出利用焦点和顶点坐标计算三角形面积的公式。
以双曲线为例,假设A(x1, y1), B(x2, y2)为双曲线上的两个点,F(p, q)为焦点坐标,则三角形FAB的面积可以表示为S = |(x1 - p)(y2 - q) - (x2 - p)(y1 - q)|而以抛物线为例,假设A(x1, y1), B(x2, y2),C(x3, y3)为抛物线上的三个点,F(p, q)为焦点坐标,则三角形ABC的面积可以表示为S = |x1(y2 - y3)+x2(y3 - y1)+x3(y1 - y2)|/25. 应用举例通过以上公式,我们可以快速、准确地计算双曲线和抛物线上任意三角形的面积。
第五讲+抛物线中三角形的面积问题
第五讲抛物线中三角形的面积问题一、抛物线内接三角形的面积问题:例、如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax²+bx+c(a≠0)经过A、B、C三点。
⑴求此抛物线的函数表达式和顶点M坐标;⑵求S△MBC;归纳:怎样求坐标系内任意三角形的面积问题:二、抛物线中三角形的等积变化:1、在抛物线上是否存在点D,使得△ABC和△ABD面积相等,若存在,求出点D的坐标,若不存在,说明理由。
2、在抛物线上是否存在点E,使得△ABC和△BCE面积相等,若存在,求出点E的坐标,若不存在,说明理由。
S△ABC。
若存在,求出点M的坐标;若不存在,请说明理由3、在抛物线上是否存在点M,使S△MBC= 134、(2011成都)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7√?若存在,求出点M的坐标;若不存在,说明理由.5、点P(2,-3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C 运动,(不与点O,C重合),过点M作MH∥BC,交X轴于点H,设点M的运动时间为t秒,试把△PMH 的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值;6、在抛物线的对称轴上有一点P的纵坐标为5,在直线上BC求一点M使得S△PBM∶S△ABC=1:5.7、在直线BC下方抛物线上是否存在一个点F,使得△BCF的面积最大,若存在,求出点F的坐标,并求出最大面积,若不存在,说明理由。
练习:1、如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.(1)求A、B两点坐标;(2)求抛物线的解析式;(3)点M是线段AB上的一个动点(不与A、B两点重合),过点M作MN∥BC,交AC于点N,连接CM,在M点运动时,△CMN的面积是否存在最大值?若存在,求出△CMN面积最大时点M的坐标;若不存在,请说明理由.2、(2010玉溪)如图,在平面直角坐标系中,点A的坐标为(1,△AOB(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD 把△AOB分成两个三角形.使其中一个三角形面积与四边形BPOD面积比为2:3 ?若存在,求出点P的坐标;若不存在,请说明理由.yAB。
抛物线焦点弦三角形的面积(抛物线的弦相关的问题)
抛物线焦点弦三角形的面积本内容主要研究抛物线焦点弦三角形的面积.以抛物线的顶点及其焦点弦的两个端点为顶点的三角形,称为抛物线的焦点弦三角形.给出三种抛物线焦点弦三角形的面积公式,根据已知条件合理选择.例:过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( ) A.22 B.2 C.322 D.22解:抛物线的焦点F 的坐标为(1,0),设A (x 1,y 1),B (x 2,y 2)(y 1>0,y 2<0),因为|AF |=3,所以x 1+1=3,x 1=2,代入抛物线方程得122y =,故A (2,22),所以直线AB 的方程为22(1)=-y x ,由22220,4x y y x⎧--=⎪⎨=⎪⎩得2240y --=. 所以122y y +y 1y 2=-4,则22121219||1()[()4]222AB y y y y ⎡⎤=++-=⎢⎥⎣⎦.又可求得圆点O 到直线AB 的距离为223,故△AOB 的面积为1922322222S =⨯⨯=.[一题多解]设∠AFx =θ(0<θ<π)及|BF |=m ,则点A 到准线l :x =-1的距离为3,得1323cos cos 3θθ=+⇔=,又 232cos()1cos 2,=+π-⇔===+m m BF m m θθ,△AOB 的面积为113||||sin 1(3)22233S OF AB θ=⨯⨯⨯=⨯⨯+⨯=. 答案:C注意:前法是解决此类问题的通法,一般通过求弦长和点到直线的距离进行求解,后法则有一定的技巧性.整理:B AOF过抛物线22(0)y px p =>的焦点F 作直线交抛物线于A ,B 两点,且11(,)A x y ,22(,)B x y ,O 为坐标原点.则△AOB 的面积为(1)121||||2S OF y y =⨯⨯-=; (2) 1||2=⨯⨯S AB d ,d 为点O 到直线AB 的距离; (3)11sin sin 22OAB OBF OAF S S S OF BF OF AF θθ∆∆∆=+=⋅⋅+⋅⋅()11sin sin 22OF AF BF OF AB θθ=⋅+=⋅⋅其中∠AFx =θ(0<θ<π).再看一个例题:例:设F 为抛物线C :y 2=4x 的焦点,过F 且倾斜角为60°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )解:抛物线的焦点F 的坐标为(1,0),设A (x 1,y 1),B (x 2,y 2)(y 1>0,y 2<0), ∠AFx =60°所以直线AB 的方程为3(1)=-y x ,由23(1),4⎧=-⎪⎨=⎪⎩y x y x得231020-+=x x . 所以12103x x +=,则1216||3AB x x p =++=. 又11sin sin 22OAB OBF OAF S S S OF BF OF AF θθ∆∆∆=+=⋅⋅+⋅⋅ ()11sin sin 22OF AF BF OF AB θθ=⋅+=⋅⋅ 故△AOB 的面积为116341=32323∆=⨯⨯⨯OAB S总结:1.根据已知条件合理选择我三种抛物线焦点弦三角形的面积公式.2.掌握抛物线的焦点弦长计算方法.练习:1.已知抛物线C 的顶点在坐标原点O ,焦点为F (1,0),经过点F 的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)求抛物线C 的标准方程;(Ⅱ)若△AOB 的面积为4,求|AB |.2. 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )C.6332D.943. 已知抛物线y 2=2px (p >0)的焦点为F ,准线为l ,过点F 的直线交抛物线于A ,B 两点,过点A 作准线l 的垂线,垂足为E ,当A 点坐标为(3,y 0)时,△AEF 为正三角形,则此时△OAB 的面积为( )A.4C.3D.3。
2017年中考数学复习指导抛物线内接三角形面积的计算通法
抛物线内接三角形面积的计算通法一、问题的提出(2016年酒泉中考题)如图1(1),已知抛物线经过(3,0)A ,(0,3)B 两点.(1)求此抛物线的解析式和直线AB 的解析式;(2)如图1(1),动点E ,从O 点出发,沿着OA 的方向以1个单位/秒的速度向终点A 匀速运动,同时,动点F 从点A 出发,沿着AB /秒的速度向终点B 匀速运动,当EF 中任意一点到达终点时另一点也随之停止运动.连结EF ,设运动时间为t 秒,当t 为何值时,AEF V 为直角三角形?(3)如图1(2),取一根橡皮筋,两端点分别固定在A ,B 处,用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A ,B 两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.本题第(3)问是求抛物线内接不规则三角形的最大面积问题,解这类问题有没有一种通用的方法呢?值得我们探究.二、几种特殊情况1.抛物线内接三角形有一边在x 轴上:(这里约定A 点的横坐标记为A x ,A 点的纵坐 标记为为A y )如图2(1),有1122ABC A B C S AB OC x x y ∆=⨯=-⨯. 如图2(2),有1122ABC A B C S AB DC x x y ∆=⨯=-⨯. 如图2(3),有 1122ABC A B C S AB DC x x y ∆=⨯=-⨯. 2.抛物线内接三角形有一边与x 轴平行:如图3(1),有1122ABC A B C D S AB DC x x y y ∆=⨯=-⨯-, 或1122ABC B A D C S AB OC x x y y ∆=⨯=-⨯-; 如图3(2),有 1122ABC A B C D S AB DC x x y y ∆=⨯=-⨯-, 或1122ABCB A DC S AB OC x x y y ∆=⨯=-⨯-.在以上特殊情况下,只要求出A 、B 、C 、D 的坐标,代入即可以求出抛物线内接三角形的面积.三、建立模型当抛物线内接三角形的三边均不与坐标轴平行时(如图4),三角形的面积又该怎么计算呢?解题的基本思路是将任意三角形转化为上述特殊的三角形,然后类比解决.如图4,过点C 作“轴的垂线交AB 于点D ,则ABC ∆被分成了两个以CD 为一公共边的三角形.过点A 作AE CD ⊥于点E ,过B 作BF CD ⊥于点F ,则11()22ABC CDA ABC S S S CD AE CD BF CD AE BF ∆∆∆=+=⨯+⨯=⨯+,C D CD y y =-,C A B C AE BF x x x x +=-+-.A CB x x x <<Q ,A B AE BF x x ∴+=-,12ABC A B C D S x x y y ∆∴=---. 综合上述,已知三角形三个顶点坐标,可得抛物线内接ABC ∆的面积公式: 设,A B D a x x h y C y =-=-- .a 为两点的横坐标之差,可看成是两点之间的水平距离,可以称为水平宽; h 表示的是两点的纵坐标之差,可称为铅直高.在坐标系中,不规则三角形的面积公式可表示为:12ABC S ah ∆=. 此公式适用于坐标系中的任意三角形,它和一般三角形的面积公式形成了完美的一致. 当三角形的三个顶点都在抛物线上时,点的横坐标不可能州样,不妨设A C B x x x <<. 则A a x x B =--,即是水平宽.过点C 作x 轴的垂线,与直线AB 的交点记为D ,则C D h y y =-,即是铅直高,于是有1122ABC A B C D S ah x x y y ∆==-⋅-. 四、问题解决上述问题中,过点P 作//PN x 轴,垂足为N ,交AB 于点M (如图1(2)),抛物线解析式为223y x x =-++,直线AB 的解析式为3y x =-+.设(,3)N x x -+,则2(,23)M x x x -++.于是有 12ABC A B P M S x x y x ∆=-⋅- 21(30)(23)(3)2x x x ⎡⎤=-⋅-++--+⎣⎦ 23922x x =-+23327()228x =--+, 即当32x =时,ABP V 面积最大,最大面积是278,此时P 点的坐标为327(,)28. 五、模型应用(动点B 在定点A 与C 之内)例1 如图5,二次函数与x 轴交于点C ,与y 轴交于点A ,B 为直线AC 下方抛物线上一点,求ABC V 面积的最大值.解 易得点(0,4)A -,点(6,0)C ,则水平宽6A C a x x =-=.直线AC 的解析式为243y x =-. 设点B 的坐标为213(,4)34x x x --, 则点D 的坐标为2(,4)3x x -. 铅垂高22144(4)323B D h y y x x =-=----2123x x =-+, 故222116(2)6(3)923ABC S x x x x x ∆=⨯⨯-+=-+=--+. 06x <<Q ,当3x =时,即当点(3,5)B -时,ABC ∆面积最大,最大面积是9.评注 题中的ABC ∆满足公式中的,A C 为定点,B 为一动点,但在运动过程中,B 的横坐标介于,A C 的横坐标之间,所以直接套用公式即得.由此题可看出,在这种动点问题中,水平宽是两个定点间的水平跨度,铅直高即是由动点向x 轴作垂线,垂线与两定点的连线交于一点,动点和这个交点在竖直方向的跨度.六、模型拓展(动点P 在定点A 与C 之外)例2 如图6(1),二次函数与x 轴交于点C ,与y 轴交于点A ,直线AB 与x 轴平行,且点B 在抛物线上,点P 是直线AC 上方抛物线上的动点,是否存在点P ,使2P A C A B C S S ∆∆=,若存在,求出点P 的坐标,若不存在,说明理由.解析 由题意不难得出8ABC S ∆=,要使2PAC ABC S S ∆∆=,即求16PAC S ∆=.因为PAC ∆为动点三角形,由通用公式PAC S ah ∆=,其中a 为水平宽,6C A a x x =-=, h 为铅直高,应该过动点P 向x 轴作垂线;交直线AC 于点D ,则P D h y y =-.问题是此时动点P 不在两定点,A C 之间,而是运动到了两定点,A C 之外,那么通用公式还成立吗?由图6(2)可知,当动点P 在两定点,A C 之外时,1122PAC PDC PDA S S S PD CE PD AF ∆∆∆=-=⨯-⨯ 111()()222C A PD CE AF PD x x ah =-=⨯-=. 由此可见,当动点运动到两定点之外时,通用公式依然成立.区别是:动点在两定点之间时,动点图形的面积是两个规则图形的面积之和,用的是加法运算;动点在两定点之外时,动点图形的面积是两个规则图形的面积之差,用的是减法运算.。
抛物线上动点p的三角形面积-定义说明解析
抛物线上动点p的三角形面积-概述说明以及解释1.引言1.1 概述在数学中,抛物线是一种具有特定形状的曲线,其形状类似于开口向上的U形。
它是由一个定点和一条直线(称为准线或直线段)确定的曲线,其中定点被称为焦点,准线表示为直线段AB。
抛物线是一种非常重要的曲线,广泛应用于物理学、工程学等领域。
本文将围绕着抛物线上的动点P展开讨论。
在抛物线上,动点P具有自由运动的能力,并且可以在曲线上任意选择不同的位置。
我们将重点研究动点P所形成的三角形的面积,并探究如何计算这个面积。
通过研究动点P在抛物线上的运动以及三角形的面积计算方法,我们可以深入理解抛物线曲线的几何特征,并且可以应用这些知识解决实际问题。
同时,对抛物线上动点P的三角形面积的意义和应用也将在文章中进行探讨。
最后,在总结部分我们将对本文的内容进行总结,并展望未来对抛物线相关问题的研究方向。
本文旨在提供一个清晰的抛物线上动点P三角形面积的计算方法,并希望读者通过阅读本文能够对抛物线的几何特性有更深入的了解。
【1.2 文章结构】本文将分为以下几个部分来探讨抛物线上动点P的三角形面积的计算方法。
每个部分的内容如下:(1)引言:在引言部分,我们将概述本文的主题和研究对象,并介绍文章的结构和目的。
同时,我们也将对抛物线的定义和性质进行简要介绍。
(2)正文:在正文部分,我们将分为三个小节来详细阐述抛物线上动点P的三角形面积的计算方法。
首先,我们会介绍抛物线的定义和性质,包括其数学表达和几何特征。
然后,我们会讨论动点P在抛物线上的运动规律,这一部分将包括动点P在不同位置的情况下的三角形面积的变化规律。
最后,我们将介绍具体的计算方法,包括利用向量、坐标和参数方程等不同的方法来计算动点P的三角形面积。
(3)结论:在结论部分,我们将对前面的研究结果进行总结,并探讨抛物线上动点P的三角形面积的一些意义和应用。
同时,我们也会展望未来可能的研究方向和可进一步发展的领域。
通过以上的安排,我们旨在全面而系统地介绍抛物线上动点P的三角形面积的计算方法,并探讨其应用的可能性,为相关领域的研究和实践提供一定的参考和指导。
抛物线内接三角形的面积
(3)co sZ P fA
FP •FA \~^P \•\~^A \
(乾 -
( m - l ,n )
1 F P I (2^ + f } ( y2i - p 2 ) ( m - ^ - ) + 2 p ny1
I FP \ (yf + p2 ) (y l - P2)(y- ^ - f ) + 2P - ^ yi
内接三角形的面积满足统一的表达式,现分享给大 家 ,有不正确的地方,请指正.
已知A、B 、C 是抛物线y2 =
> 0) 上三点,
其 纵 坐 标 分 别 为 ;^ 、;>"2、73,则 r 2) (r 2 - y3 ) ( y3 - J i ) I •
4p I (Yi
2
2
2
证 明 :易知 4 ( $ ,:X1) ,B ( . , :X2) ,C( . , ;T3) ,
i y2 - y3 1 2p
/yf + , ,又 厶 尸 舛 中,作 边 上 的 高 为 / ^
, y2 y3
y2 + r 3 y\
——2— - JY1t • ----- 2------- + —2-
/p2 + y\
1 (ri - r2) (ri - r3) 1 2 V p2 + /1
SAPQR
(j l _ j2 )(y2
I r 2 - Ji 1 'f n r
P
-,原 点 0 到 的 距 离 d
I pm I
p 2 + Tl2
I pm I
a//?2 + n2
s AAOB
I j 2 - Ji I
I m I I y2 - y! 2
抛物线中三角形面积最值问题的七种求解策略
图10的正切函数值,则问题便可逐步解决.解析在上找点£,使= 由外角定理,知•①易知直线S C 解析式为y-6.设 £(m ,m -6),由 fi (6,0),D (2, -8),则 B £2 = (m -6)' + (m -6)2, ED 2 = (m - 2)2 + (m + 2)2.由 B £ = £7),知(;n -6)2 +(m -6)2 = (m -2)2 +(m + 2)2,解得 m =|,即 £(夺,-爭)•又易知 C £>2 + fiC 2 = fi /)2,则乙BCD = 90。
.qi n由 C (0, -6),£(|■,-$),Z )(2, -8),知 CD =2^",C £=^,P J lain^CED = j .②由①②和 A C(?B = 2 A CflD ,则 tan Z _ C(?B =当点<?在点B 左侧时,(),( -8,0).当点<?在点B 右侧时,(?2(8,0).综上,(?( -8,0)或(8,0).从上面题目的解答可以发现:抛物线中角的存在 性问题,一般运用角的特殊性及坐标条件构造基本图形,并运用图形的性质,进行推理得出有关相等线段, 并表示出有关点的坐标,代入二次函数或一次函数的 解析式,或运用勾股定理计算作答.在解答过程中,既 要构造几何图形,根据几何直观和几何性质、定理理性分析、推理,还要运用函数与方程知识进行计算和 数据分析.综合运用几何推理、函数与方程思想等多 方面技能,有较强的综合性及创新探究意识,可以很 好地考查学生的综合素养[2].“问题是数学的心脏”,数学的真正组成部分是问 题和解,在学习过程中,在一定学习范围或主题内,围 绕一定目标或某一中心问题,按照一定的逻辑结构精 心设计一组问题,即为“一题多问”,采用“一题多问” 的方式,用同一道题目将多个知识点表现出来,可以 帮助学生梳理旧知,形成网络,将数学技能及方法得 以综合运用.“一题多问”引导学生从不同角度、不同 方位进行不同层次的思考,提高学生分析问题、解决 问题和提出问题的能力,可以让学生跳出“题海”,提 高解题效益,提升数学素养.参考文献:[1 ]罗峻,段利芳.一次函数与反比例函数图象相交的性质 之证明与运用[J ]•数理化学习(初中版),2018(12) :23 -28.[2]罗峻,段利芳.当完美正方形偶遇美丽的45度角[J ]. 理科考试研究(初中),2019,26(22) :29 -32.(收稿日期:2020 -09 -21 )抛物线中三角形面积最值问题的七种求鮮策略段昆山(易县教育局教研室河北保定074200)摘要:以二次函数为栽体,结合几何图形求面积最值问题具有难度大、综合性强,区分度高的特表.本文以某地初 三上学期期末考试试卷最后一题为例,谈一谈此类问题的七种求解策略.关键词:最值问题;转化;面积;求解策略纵观近年各地中考试卷,以二次函数为载体,结 合几何图形求面积最值问题的题型是各地中考的高 频考点之一.这类试题综合运用多种数学思想方法, 不仅考查了二次函数与三角形面积的相关知识,又为后续学习高中知识奠定了基础.1试题呈现题目如图1,在平面直角坐标系中,抛物线y = <M c 2 +心+2(a #0)与.t 轴交于两点(点4在点B作者简介:段昆山(1976 -),男,河北保定人,本科,中学一级教师,研究方向:数学教育.的左侧),与y 轴交于点C ,抛物线经过点£»(- 2,- 3) 和点£(3,2),点P 是第一象限抛物线上的一个动点.(1) 求抛物线的表达式;(2) 当A B P C 的面积取最大值时,求A fiP C 面积 及点P 的坐标.2试题解析 2. 1第(1)问解析将点A £的坐标代人函数表达式,得丄_ 了,3_r故抛物线的表达式为y +2.2.2第(2)问解析 2. 2. 1分割法三角形面积通常用面积公 式(底乘髙的一半)来求,在平面 直角坐标系中求斜三角形的面 积用这个公式难度大,那如何求 呢?那就需要运用转化的方法 把斜三角形分割成底与高分别 与坐标轴平行的三角形,充分利用定点的横纵坐标来求三角形面积•如图2,过点P 作丄;c 轴于点F ,A fiP C 被分 割成两个三角形,即A //P C 和所以SA B P C =S 娜c + SAW ,过点C 作C Z )丄/^于点Z ),过点B 作BE _L PF 于点 E ,S A H P C =夸PH x CD.解法1如图3,连接S C ,过点P 作W ///y 轴交S C 于点//,将点C ,S 代入一次函数表达式,可得直线的表达式为y = -+ 2.设点 P U ,+如 +2),则点+2).所以 S A P C B =-%2 +4%.f 4a -2b +2 =-3, 19a +36+2=2,解得,根据二次函数性质,利用配方法,当* = 2时, S apm 的最大值为4.故当A B P C 的面积取最大值时,点P (2,3),S A P C B 二 4.2.2.2补形法在平面直角坐标系中求斜 三角形的面积不仅可以运用分 割法,也可以转换思路,用补形 的方法把不规则图形转化成规 则图形,将斜三角形面积转化 成矩形面积减去三角形的面 积,再充分利用定点的横纵坐标,就可以求斜三角形面积了 • 图4如图4,过点P 作轴,垂足为点£,过点5作 fiZ )丄/)£,垂足为点£»,贝丨J 四边形为矩形•所以S APCB = S 酿形OBOE - S A P E (: 一 S APDB _ S a (X b .解法2如图5,过点P 作轴,垂足为点£,过点B 作丄/)£;,垂足为点/),所以四边形 OBD £为矩形.所以 s A PC b 二 S 四边形〇B D e : — S A P E (: - S _ s A 0C B 二(-+ ^-x + 2) x 4 - (- -^-x2 + -^-x ) x x x ~y - (4-x) x (- ~^x2 ++ 2) x -^--4=-x ~+ 4x.根据二次函数性质,利用配方法,当x =2时,^ A P C B的最大值为4.故当A B P C的面积取最大值时,点P(2,3),■5而=4_2.2.3铅垂法如图6,过A P S C的顶点分别作出水平线的垂线, 外侧两条垂线间的距离叫做水平宽.中间的垂线与 S C相交于点£,线段就叫做铅垂高.如图7,因为S apcb=S A peb+S&PCE二y PE x EU +j PE x EF =所以铅垂法本质上也是分割法.,铅垂高I图7解法3如图8,过点P作P//丄;c轴交B C于点//,设点 ,-+ 2),则点 //(x,+ 2)•所以11,312^apcb =^2^~^2X+Y"x+2+y*-2)x4=-x+4x.在直线B C上.根据平行线间的距离相等,所以ABPC 和A B fiC的高相等,底是BC.所以厶B P C和A B//C的面积相等.求A B P C的面积就转化成求A//£C的面积.解法4如图10,过点Z3作户////沉交7轴于点 所以 S&P C B= S A C H B-将点c,B代人一次函数表达式,可得直线C B的表达式为y= - 士;':+ 2.因为W///S C,所以设直线P//的表达式为y根据二次函数性质,利用配方法,当x= 2时,S apos的最大值为4.故当A S P C的面积取得最大值时,点P(2,3),^ APCB=^*2.2.4平行线法如图9,W///B C,点//,P在直线W/上,点5,CH E P设点户(%,- y i2 + y x+ 2),所以-2 =-—x +b,b22+ ~z~x + 2 + ~z~x2,//C=-y^2+2x+2-2TT22x.x2 +2x+PJflll S A P C B = ^H C xOB =-x2-t-4x.利用配方法,当x= 2时,S A P(:iB的最大值为4.故当A S P C的面积取得最大值时,点P(2,3),^ APCB=^*2.2.5相似法如图11,求三角形的面积可以用面积公式足为点D.所以BC= VOC2 + OB2 = 7^5.求三角形的 面积只要求出高就可以了.高如何求呢?我 们仔细观察图形发现丄SO,所以™//y轴.所以 APHC= AOCB•因为P E±B C,所以 APEH=厶COB.所以ABOC w•所以g = I I所以= PH^~° .这样就可以求出高了.解法5如图12,过点P作丄BC,垂足为点 £,PD丄50交 SC 于点 由题意,5C= VOC1+ OB2 = 2/5 ,APEH^ABOC.m i0BPH = BC'因为+ 2x,PE PH x BOBC¥(-士解法6如图13,过点P作P£//fiC,因为将点C,B代入一次函数表达式,同理可得直线C Z?的表达式为;^=-士尤+2.所以设直线的表达式为y=-+ 6.1,j=- y x + b-H i2+3+2y= - ~z~x+ ~zrx+1.1/22整理,得-士尤2 +~|~尤+2=-士a:+ 6 一士丨2 +2% +2-6=0.所以 A =4-4 x(-士)x(2 -6) =8 -26 =0.解得6=4_所以点P(2,3),A P C fi最大值为4 .2.2.7中点法如图14,设直线S C与抛物线交于B,C两点,直线B C的解析式可设为y= ^+ n,抛物线解析式可设为y= m2 +心+ C,求其交点坐标就是联立两解析式’所以 ax2 + + c = n w c + n_ 整理,得[y= mx+ n.ax2+ (b- m)x+ c- n= 0. fffVJs x, + x2 = ——因为直a%2 +2a〇,所以 S A P C fl =^^(-士尤2 +2幻x2V^x士 =-x2 + 4x.利用配方法,当* =2时,S A P efl的最大值为4.故当A S P C的面积取得最大值时,点P(2,3),^ APCB-4-2.2.6切线法如图13,若使点P在抛物线上,S A P eB最大,则需 使P£//BC,且与抛物线有且只有一个交点才能使心^8最大.因为底B C确定,只要高最大.因为点P 在抛物线上与抛物线有且只有一个交点时,SC 边上的高才最大.线B C平移到与抛物线只有一个交点时,七即& = 也就是%所以过点P作*轴的垂线,垂足M是O S的中点.所以当抛物线被直线 B C所截,P为抛物线上一动点(此时点P为线段SC 与抛物线所组成的封闭图形上抛物线上一点)丄%轴于点m,交s c于点yv,当点yv为b c中点时,s APC8 的面积有最大值.解法7如图15,过点尸作P////S C,所以& = X B+X C^所以点P 坐标为(2,3).所以=S 四边形"W /Y ;+ S APMB ""SA O R Cx (2+ 3) x 2+冬 x 2x 3_4-x 2x 4=4.' 2 2此法适用于填空、选择或验证.3感悟解法这一类以二次函数为载体,结合几何图形求面积最值问题的题型涉及的知识面多、难度大、综合性强, 要想顺利解答此类问题,必须抓住以下几点.(1)立足转化,抓住动点(设动为定).合理构造辅助线,以转化 思想为基本出发点,抓住动点,根据不同思路过动点 作平行,或作垂直等辅助线,把复杂问题转化为简单问题,把未知问题转换为已知问题.(2)数形结合,设 出动点坐标.充分挖掘已知条件与隐含条件,要明确 角边在数量关系变化中哪些是保持不变的量,哪些是 变化的量.哪些是变化的量.这需要在充分理解的基 础上,进行多方位思考、多角度着手、多层次探索m , 利用相似、面积公式、根与系数的关系等知识,表示出相关的数量关系.(3)根据相关的数量关系,把面积表示成一个含有某未知量的二次函数关系式,然后利用 公式法或配方法求出最值.参考文献:[1] 段昆山.构造图形求准确数形结合找临界一•一类“儿何”型新定义压轴题解法浅析[J ].中学数学教学,2020(01) :79 -80.[2]周威.圆锥曲线中几个特殊三角形面积最值问题探究[J ].理科考试研究,2020(09) :25 - 27.(收稿日期:2020 _08-15)指向“深度学习”的教学课壹教学策略李娜沈南山(合肥师范学院数学与统计学院安徽合肥230601)摘要:从认知结构观点来看,“深度学习”是一种理解性的学习,注重学习思维的批利性、学习内容的整合性、知识体系的建构性和知识学习的迁移性.指向深度学习的数学课堂教学需要深入追问学什么、怎么学、学得怎么样三个教 学本源问题,其教学策略应当注重数学知识对象的多重表征、数学学习脚手架的适时搭建、数学学习问题的逻辑引领、 数学学习方法的积极反思等.关键词:初中数学;深度学习;教学策略1 “深度学习”的基本特征“深度学习”(Deep Learning )最早由美国学者 Marlon 等人于1976年提出的一个比较性学习概念, 是相对于孤立记忆和非批判性接受知识的浅层学习 (Surface Learning )而言的.随后国内外学者对“深度 学习”开展理论与实践研究,其基本内涵是在教师引 领下,学生围绕着具有挑战性的学习主题,全身心积极参与、体验成功、获得发展的有意义的学习过程,并 在这个过程中学生掌握学科的核心知识,理解学习的 过程,把握学科的本质及思想方法,形成积极的内在 学习动机、高级的社会性感情、积极的态度、正确的价 值观等m .“深度学习”的基本特征蕴含理论和实践两个层 面.理论上,从知识结构观点来看,深度学习是基于学基金项目:合肥师范学院研究生创新基金项目“深度学习理念下初中数学课堂问题提出的教学实践研究”(项目编号:2020yjs 033).作者简介:李娜( 1995 -),女,安徽阜阳人,硕士研究生,研究方向:数学教育;沈南山(1964 -),男,安徽六安人,博士,教授,研究方向:数学课程与教学论研究.。
抛物线焦点三角形面积公式二级结论
抛物线焦点三角形面积公式二级结论好的,以下是为您生成的文章:在咱们学习数学的过程中,抛物线可是个常客。
而其中关于抛物线焦点三角形面积公式的二级结论,那更是隐藏在知识丛林中的宝藏。
先来说说什么是抛物线焦点三角形。
它呀,就是以抛物线的焦点和抛物线上的两点为顶点组成的三角形。
这听起来有点抽象,咱们举个例子。
就像有一次,我在课堂上讲这个知识点,看到同学们一脸懵的样子,我就决定用一个简单的例子来帮大家理解。
假设抛物线方程是 y² = 2px(p>0),焦点是 F,抛物线上有两点A(x₁,y₁),B(x₂,y₂)。
我们设直线 AB 的倾斜角为θ。
这时候,这个抛物线焦点三角形的面积公式就登场啦!它的面积 S= p² / (2sinθ) 。
有的同学可能会问,这公式咋来的呀?别着急,咱们慢慢捋一捋。
我们先通过抛物线的定义,把焦点和抛物线上的点的关系搞清楚。
然后利用三角函数和一些几何关系,经过一系列的推导就能得出这个公式。
这个公式在解决一些问题的时候,那可真是太好用啦!比如说,给你一个具体的抛物线方程,让你求某个焦点三角形的面积,直接把相关的数据代入这个公式,答案很快就能算出来。
还记得有一次考试,就有这么一道题,很多同学都用常规方法在那苦苦计算,花费了大量的时间。
但是有几个同学用了这个二级结论,很快就得出了答案,节省了不少时间,最后成绩也很不错。
所以说呀,掌握这个二级结论,就像是在数学的战场上拥有了一件秘密武器,能让我们在解题的时候更加得心应手。
但是同学们要注意哦,不能死记硬背这个公式,得理解它的推导过程,这样才能真正地掌握它,灵活运用。
希望大家在学习抛物线焦点三角形面积公式这个二级结论的时候,都能轻松拿下,让数学成为我们的好朋友,而不是可怕的大怪兽!。
抛物线中焦点弦与原点围成的三角形面积
抛物线中焦点弦与原点围成的三角形面积要计算抛物线中焦点弦与原点围成的三角形的面积,需要先找到抛物线的焦点坐标。
抛物线的方程可以表示为:y=ax^2,其中a为常数。
焦距的定义为p=2a,焦点的坐标为(F,0)。
根据焦点的性质,可以得到焦点的横坐标F=p/2a=1/(4a)。
现在,我们需要找到焦点弦的方程。
由于焦点弦与原点围成的三角形,我们可以将焦点弦表示为y=kx,其中k为斜率。
将弦的方程y=kx和抛物线的方程y=ax^2联立,得到方程ax^2kx=0。
为了找到焦点弦的两个交点,需要将方程ax^2kx=0转化成二次方程,并求解其根。
对方程ax^2kx=0使用求根公式,可以得到两个解x1和x2:x1=0,x2=k/a。
因此,焦点弦与抛物线的交点坐标为(0,0)和(k/a,k),其中k 为任意非零实数。
现在,我们可以计算焦点弦与原点围成的三角形的面积。
三角形的底边长为原点到焦点弦的距离,即x轴上的坐标差值:D=|F0|=F=1/(4a)。
三角形的高为点到直线的距离,即点(0,0)到焦点弦的距离,使用点到直线的公式:d=|ax+by|/√(a^2+b^2),其中直线的一般式方程为ax+by=0。
将焦点弦的方程y=kx代入直线的一般式方程,可以得到bkx=0,即b=kx。
将坐标点(0,0)代入点到直线的公式,可以得到d=|by|/√(a^2+b^2)=|kxy|/√(a^2+k^2)。
此时,我们可以计算出三角形的面积S为底边乘以高的一半:S=1/2*D*d=1/2*(1/(4a))*(|kxy|/√(a^2+k^2))。
最后,我们得到了抛物线中焦点弦与原点围成的三角形的面积公式:S=1/(8a√(a^2+k^2))*|kxy|。
注意:这个公式对于所有非零实数k和常数a都成立,其中k为焦点弦的斜率。
铅垂线法求解抛物线中三角形面积
新教师教学课例研究引题•如图,平面直角坐标系xoy 中,点A 的坐标为(-1,0),点B 的坐标为(3,0),点C 的坐标为(0,-3).(1)求直线BC 的解析式;(2)平移直线BC ,使它经过点A ,与y 轴相交于点D ,求平移后的直线AD 的解析式;(3)若抛物线经过A 、B 、C 三点,与直线AD 相交于点E.求抛物线的解析式及△BCE 的面积;解法:(1)将B (3,0)C (0,-3)代入到中,得到一个二元一次方程组解得,(2)根据BC ∥AD ,即k 相等,∴,将A (-1,0)代入可得m=1,将A (-1,0),B (3,0),C (0,-3)代入到中,得到即,通过计算(3)中△EBC 的面积巩固学生对平行线间距离处处相等这一性质应用即同底等高:.通过引题目的复习巩固平行线的2个基本性质:直线平行即k 相等;平行线间距离处处相等(同底等高求面积)。
问题2:若P 为抛物线第四象限上一动点,当△BCP 面积最大时,求点P 的坐标。
解法一:在△BCP 中,BC 要使△BCP 的面积最大即BC ,作与BC 平行的直线PF ,当直线PF 与抛物线有且PF BC三角形三边均不与坐标轴轴平行,做三角形的铅垂高。
(歪:如图1,过△ABC 的三,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )法:。
坐标系中,三角形出现在抛物线中,们只要确定a ,h 的值代入公式求解即可2.归纳结论:一般地,直线BC :与抛物线交于点C (x C ,y C ),B (x B ,y B ),如果我们把抛物线与直线围成的区域称之为“弓形”,点”的抛物线上的一个动点,则当点P 的横坐标,当△BCP 的面积最大,即点P 的横坐标是点C ,点,“弓形”中的内接三角形的面积最大。
结论证明:要使△CBP 的面积最大,作与y=kx+m 平行且与抛物线y=ax 2+bx+c 相切的直线,切点为P ,此时△CBP 的面积最大,设此直线为y=kx+n ,∴关于x 的方程ax 2+bx+c=kx+n 有且只有一个解,即ax 2+(b-k )x +(c-n )有一解,∴,∴由求根公式.又∵C ,B 的横坐标是方程的两个解,∴问题。
抛物线中三角形面积问题完整版课件
华罗庚
• 今天这节课我们就用数形结合来解决抛物线中的三角形的 面积问题。
引例
• 1、如图,抛物y=线-x2 +2x+3
与x轴交于点A和点B该二次函数的对称轴与X轴交于点D,连接CD,
求ΔBCD的面积
(3)设该二次函数的对称轴与直线BC交于点E,
求ΔCED的面积)
启示一:寻找横向或纵向的边为底是计算三角形面积的基本方法。
: 变式1
• 设该二次函数的顶点为D,连接CD、BD, 求ΔBCD的面积
• 启示二: • 不能直接求出面积时,用割补法进行转化 (构造横向或纵向的边为底是常用的方法)
且点D始终在直线BC的上方,点D运动到什么位置时 ΔBCD的面积最大,求出此时点D的坐标和ΔBCD 的最大面积。
思考
1、当点D在运动时,ΔBCD中是否存在不变的量? 2、以定量BC为底,什么量导致ΔBCD的面积发生变化? 3、观察:以定量BC为底,若使ΔBCD得面积最大,则 点D具体在什么位置?如何求出点D的坐标?
55
y 4 x 4 与x轴交于点A(-5,0),与y轴交于点B.在抛物线上是否
5
存在一点P, 使得△PAB的面积最小?若存在,求△PAB面积的最小值; 若不存在,请说明理由.
小结: (1)今天我们研究了什么? (2)我们得到了哪些启示和解 题思路?
三、自我检测
已知抛物线 y x 2 2x 3 与x轴交于A(-3,0),B(1,0)两点,
与y轴交于点C,直线y=x+1与抛物线交于E,F两点.点P是直线EF 下方抛物线上的动点,求△PEF 面积的最大值及点P的坐标.
抛物线与直线的交点的三角形面积
抛物线与直线的交点的三角形面积说到抛物线和直线交点的三角形面积,很多人第一反应可能就是头大,眼花。
嘿,别急,先别让这几个字把你吓跑!咱们今天要聊的这个问题并不是那么高大上,搞不好你一会儿就能笑着说“原来这么简单!”咋说呢?你要是知道了怎么把这两个看起来“不搭界”的东西凑到一起,你就能轻松搞定所有关于它们的问题。
抛物线啊,咱们平时见得比较多的就是那种“U”形的曲线,像放开手的乒乓球从空中掉下来,轨迹就差不多是个抛物线。
听起来是不是很有画面感?你看那弯弯的形状,真是让人感慨大自然的神奇。
然后就是直线,这个就更简单了,想象一下坐标系里的那条直线,平平的,从左到右,或者从上到下,没啥弯弯曲曲的,简直就是给人一种稳重的感觉。
好,现在问题来了,当这两个看起来风马牛不相及的家伙相遇时,它们会交点,形成一个三角形。
这个三角形的面积就是我们要计算的目标了。
要知道,这个三角形肯定是有面积的,对吧?你想,抛物线是个弯曲的形状,直线又是那么直直的,它们相遇后,必定会在坐标系里“留下痕迹”。
嗯,痕迹不小,肯定会有三角形。
问题是,这个三角形大不大?它的面积又得怎么算?别担心,我们一步一步来,简单清晰,保证让你秒懂。
当抛物线和直线相交时,交点的坐标是非常关键的。
你要知道,如果两者只有一个交点,那么就不成三角形了。
只有当它们有两个交点时,才可能形成三角形。
那两个交点,基本上是两条线的交点,它们在坐标系里“固定”了三角形的底边,底边长得有多长,这个交点之间的距离就有多长。
而要弄清楚三角形的高度。
这个高度可不难理解,毕竟这抛物线就是弯的嘛,咱们只要知道直线到抛物线顶点的垂直距离,嘿,这个高度就出来了。
你看,就这么一琢磨,你是不是觉得问题突然简单了很多?好,现在我们有了底边和高度,三角形的面积公式就出来了。
面积=底边×高度÷2。
这就像做饭一样,材料齐了,火候对了,做出来的菜肯定好吃。
你只要把交点之间的距离算出来,再把抛物线到直线的垂直距离给算出来,然后丢进去这个公式,就能轻松得到三角形的面积了。
《构建模型,一题多解》---抛物线中动点三角形的最大面积问题
——抛物线中动点三角形的最大面积问题
例、已知如图,二次函数 y -x2 2x 3,和x轴交于点A、B 两点(点A在左边),与y轴交于点C
(1)求直线BC的解析式;
(2)若D为直线BC上方二次函数图象上的一个点,当点D
运动到什么位置时,△BCD的面积最大, 求出此时点D的坐标和△BCD的最大面积。
Bx
yD
C E
Ao
(3,0)
Bx
小结:
1、重视归纳整理,提炼模型; 2、敢于一题多解,拓展思维;
解法一 构建函数模型 解法二 巧用几何模型 3、巧用化归思想,事半功倍。
y
C
(0,3)
Ao
(3,0)
Bx
S S S A 铅垂高
ABC
ABD
ACD
C
h
h2
C
1 2
AD h1
1 2Biblioteka ADh2D
B
B
h1
a
1 AD (h h )
2
1
2
a
1
ah
2
水平宽
铅垂高法
三角形面积等于水平宽与铅垂高乘积的一半
解:(构建二次函数模型)
作DE∥y轴,交BC于点E,
设D(m, m2 2m 3), 则E(m,-m+3)(0<m<3)
DE (m2 2m 3) (m 3) m2 3m
SBCD SDCE SDBE = 1 DE OB 2
= 1 3 (m2 3m) 2
yD
=- 3 m2 9 m 22
(0,3)C
当m b 3 时, 2a 2
SBCD最大
=
27 8
,此时D(
抛物线与三角形的面积问题:两定点和一动点
个性化辅导授课案授课目的与考点分析:两定点、一动点的有关面积和最短距离问题授课内容:1、在平面直角坐标系中,已知抛物线经过点A (-4,0)B (0,-4)C (2,0)三点。
(1) 求抛物线的解析式(2) 若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S ,求S 关于m 的函数式,并求出S 的最大值。
(3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.42246105510CBAOM2、(本题14分)如图,已知点A(-4,8)和点B(2,n)在抛物线2=上.y ax(1) 求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;(2) 水平平移抛物线2=,记平移后点A的对应点为A′,点B的对应点为B′,点C(-2,0)和点D(-4,0)y ax是x轴上的两个定点.①当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.4、如图12-2,抛物线顶点坐标为点C(1,4),交x 轴于点A(3,0),交y 轴于点B.(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结PA ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CABS ;(3)是否存在一点P ,使S △PAB=89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.图12-2xCOy ABD1 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变式2
已知:如图,二次函数y=ax2+bx+c的图象与x轴交于 A(-1,0)、B(5,0)两点,交y轴于点C(0,5),M 为它的顶点.抛物线上是否存在点Q,使△QCB的面积等于 △MCB的面积
练习:中考链接
如图,在平面直角坐标系中,已知抛物线的顶点坐标是M (1,2),并且经过点(0,3),抛物线与直线x=2交于点P (1)求抛物线的解析式 (2)在直线x=2上取点A(2,5),求△PAM的面积 (3)抛物线上是否存在点Q,使△QAM的面积与△PAM相等, 求出点Q坐标
抛物线中三角形面积计算方法探索
快速作答:根据图中给出的数据求出三角形 (阴影)面积
你会求这两个三角形(阴影)面积吗?说出你的方法。
探索方法:
已知B(5,0),C(0,5)M(2,9)求△MCB的面积
变式1
已知,二次函数y=ax2+bx+c的图象与x轴交于 A(-1,0)、B(5,0)两点,交y轴于点C(0,5), p为抛