噪声干扰PCB布线与微小信号的放大

合集下载

PCB设计中的信号处理方法

PCB设计中的信号处理方法

PCB设计中的信号处理方法在PCB(Printed Circuit Board)设计中,信号处理方法是确保电路板正常运行的关键步骤之一。

信号处理的目的是通过采取适当的措施来降低噪声、减小信号干扰以及保证信号传输的可靠性。

本文将介绍几种常用的信号处理方法,并讨论它们在PCB设计中的应用。

一、信号处理方法之滤波器设计滤波器是信号处理中常用的工具,它可以选择性地通过或抑制特定频率的信号。

在PCB设计中,滤波器主要用于去除噪声和干扰信号,以保证电路系统的稳定性和可靠性。

1. 低通滤波器低通滤波器用于通过低频信号,截断高频信号。

在PCB设计中,低通滤波器通常被应用于数字信号和模拟信号的滤波,以减少高频噪声对电路的影响。

2. 高通滤波器高通滤波器则是用于通过高频信号,截断低频信号。

它主要被用于滤除低频噪声和直流偏差,以确保电路的高频传输特性。

3. 带通滤波器带通滤波器可以选择通过一定范围内的频率信号,常用于提取目标频率范围内的信号,滤掉其他频率的干扰信号,例如在收音机调谐中使用的中心频率滤波器。

二、信号处理方法之隔离技术隔离技术在PCB设计中也起着重要的作用,特别是在需要隔离不同信号之间的干扰时。

以下是几种常见的隔离技术:1. 地线隔离在PCB设计中,地线是最常见的信号传输路径之一。

为了防止地线之间的相互影响,需要对不同地线进行隔离。

常见的做法是使用地隔离块或设计地隔离线,减少地线之间的耦合。

2. 电源隔离电源隔离是指将不同电源信号之间进行隔离,避免电源之间的相互影响,保证电路的工作稳定性。

例如,在高频电路设计中,通常使用分离的电源供电,以降低干扰和噪声。

3. 信号隔离有时候,不同信号之间的干扰可能导致系统性能下降。

在这种情况下,需要采用信号隔离技术来将不同信号进行分离,以确保它们之间的相互影响最小化。

常用的信号隔离技术包括磁隔离、光隔离和互电容隔离等。

三、信号处理方法之匹配技术信号的匹配是指将信号源与接收器之间的阻抗进行匹配,以确保信号的最大传输效率。

消除PCB布局带来的噪声问题,这些要点要注意了

消除PCB布局带来的噪声问题,这些要点要注意了

消除PCB布局带来的噪声问题,这些要点要注意了
提到“噪声问题”,往往让每个电子工程师都头痛不已,为了解决这个问题,经常要花费几个小时进行实验室测试,但最终却发现,噪声的元凶竟是
由开关电源的布局不当而引起的……
 今天小编推荐一个ADI的所有电源器件评估板都采用的布局布线指导原则,以帮助大家避免此类噪声问题。

文中的示例开关调节器布局采用双通道同步
开关控制器ADP1850,第一步是确定调节器的电流路径。

然后,电流路径决定了器件在该低噪声布局布线设计中的位置。

 一、确定电流路径
 在开关转换器设计中,高电流路径和低电流路径彼此非常靠近。

交流(AC)
路径携带有尖峰和噪声,高直流(DC)路径会产生相当大的压降,低电流路径
往往对噪声很敏感。

适当PCB布局布线的关键在于确定关键路径,然后安排器件,并提供足够的铜面积以免高电流破坏低电流。

性能不佳的表现是接地
反弹和噪声注入IC及系统的其余部分。

 图1所示为一个同步降压调节器设计,它包括一个开关控制器和以下外部
电源器件:高端开关、低端开关、电感、输入电容、输出电容和旁路电容。

图1中的箭头表示高开关电流流向。

必须小心放置这些电源器件,避免产生
不良的寄生电容和电感,导致过大噪声、过冲、响铃振荡和接地反弹。

 图1. 典型开关调节器(显示交流和直流电流路径)
 诸如DH、DL、BST和SW之类的开关电流路径离开控制器后需妥善安排,避免产生过大寄生电感。

这些线路承载的高δI/δt交流开关脉冲电流可能达到3A以上并持续数纳秒。

高电流环路必须很小,以尽可能降低输出响铃振荡,。

PCB设计中防止串扰的方法有哪些

PCB设计中防止串扰的方法有哪些

PCB设计中防止串扰的方法有哪些串扰(CrossTalk)是指PCB上不同网络之间因较长的平行布线引起的相互干扰,主要是由于平行线间的分布电容和分布电感的作用。

克服串扰的主要措施有:加大平行布线的间距,遵循3W规则。

在平行线间插入接地的隔离线。

减小布线层与地平面的距离。

3W规则为了减少线间串扰,应保证线间距足够大,当线中心间距不少于3倍线宽时,则可保持70%的电场不互相干扰,称为3W规则。

如要达到98%的电场不互相干扰,可使用10W的间距。

在实际PCB设计中,3W规则并不能完全满足避免串扰的要求。

按实践经验,如果没有屏蔽地线的话,印制信号线之间大于lcm 以上的距离才能很好地防止串扰,因此在PCB线路布线时,就需要在噪声源信号(如时钟走线)与非噪声源信号线之间,及受EFTlB、ESD 等干扰的“脏“线与需要保护的“干净”线之间,不但要强制使用3W 规则,而且还要进行屏蔽地线包地处理,以防止串扰的发生。

此外,为避免PCB中出现串扰,也应该从PCB设计和布局方面来考虑,例如:1.根据功能分类逻辑器件系列,保持总线结构被严格控制。

2.最小化元器件之间的物理距离。

3.高速信号线及元器件(如晶振)要远离I/()互连接口及其他易受数据干扰及耦合影响的区域。

4.对高速线提供正确的终端。

5.避免长距离互相平行的走线布线,提供走线间足够的间隔以最小化电感耦合。

6.相临层(微带或带状线)上的布线要互相垂直,以防止层间的电容耦合。

7.降低信号到地平面的距离间隔。

9.尽可能地增大信号线间的距离,这可以有效地减少容性串扰。

10.降低引线电感,避免电路使用具有非常高阻抗的负载和非常低阻抗的负载,尽量使模拟电路负载阻抗稳定在loQ~lokQ之间。

因为高阻抗的负载将增加容性串扰,在使用非常高阻抗负载的时候,由于工作电压较高,导致容性串扰增大,而在使用非常低阻抗负载的时候,由于工作电流很大,感性串扰将增加。

11.将高速周期信号布置在PCB酌内层。

PCB布线_降低噪音与电磁干扰经验谈

PCB布线_降低噪音与电磁干扰经验谈

PCB布线_降低噪音与电磁干扰经验谈PCB布线1,自动布线的优缺点以及模拟电路布线的注意事项设计PCB时,往往很想使用自动布线。

通常,纯数字的电路板(尤其信号电平比较低,电路密度比较小时)采用自动布线是没有问题的。

但是,在设计模拟、混合信号或高速电路板时,如果采用布线软件的自动布线工具,可能会出现一些问题,甚至很可能带来严重的电路性能问题。

图一图二例如,图1中显示了一个采用自动布线设计的双面板的顶层。

此双面板的底层如图2所示,这些布线层的电路原理图如图3a和图3b 所示。

设计此混合信号电路板时,经仔细考虑,将器件手工放在板上,以便将数字和模拟器件分开放置。

采用这种布线方案时,有几个方面需要注意,但最麻烦的是接地。

如果在顶层布地线,则顶层的器件都通过走线接地。

器件还在底层接地,顶层和底层的地线通过电路板最右侧的过孔连接。

当检查这种布线策略时,首先发现的弊端是存在多个地环路。

另外,还会发现底层的地线返回路径被水平信号线隔断了。

这种接地方案的可取之处是,模拟器件(12位A/D转换器MCP3202和2.5V参考电压源MCP4125)放在电路板的最右侧,这种布局确保了这些模拟芯片下面不会有数字地信号经过。

超强PCB布线设计经验谈附原理图工程领域中的数字设计人员和数字电路板设计专家在不断增加,这反映了行业的发展趋势。

尽管对数字设计的重视带来了电子产品的重大发展,但仍然存在,而且还会一直存在一部分与模拟或现实环境接口的电路设计。

模拟和数字领域的布线策略有一些类似之处,但要获得更好的结果时,由于其布线策略不同,简单电路布线设计就不再是最优方案了。

本文就旁路电容、电源、地线设计、电压误差和由PCB布线引起的电磁干扰(EMl)等几个方面,讨论模拟和数字布线的基本相似之处及差别。

模拟和数字布线策略的相似之处旁路或去耦电容在布线时,模拟器件和数字器件都需要这些类型的电容,都需要靠近其电源引脚连接一个电容,此电容值通常为0.1mF。

印制电路板设计原则和抗干扰措施

印制电路板设计原则和抗干扰措施

印制电路板设计原则和抗干扰措施印制电路板(Printed Circuit Board,PCB)设计是电子产品设计中非常关键的一部分,其设计原则和抗干扰措施对于电路性能和可靠性有着重要的影响。

下面将详细介绍印制电路板设计的原则和抗干扰措施。

一、印制电路板设计原则1.合理布局电路元件:在布局电路元件时,要根据电路功能和信号传输的要求,合理放置各元器件,减少信号线的长度,尽量减少信号线之间的交叉和平行布线,以减小串扰和电磁辐射的影响。

2.最短路径布线:信号线的长度对于高频电路尤为重要,因为在较高的频率下,信号线会表现出电感和电容的性质,对信号引起较大的干扰。

因此,对于高频信号线,需要尽量缩短信号路径,减小电感和电容效应。

3.控制传输线宽度和间距:传输线的宽度和间距会影响阻抗和串扰。

准确计算和控制阻抗可以避免发生信号反射和衰减。

而间距的控制可以减小串扰影响。

因此,在设计中应考虑到实际信号需求,计算并确定传输线的宽度和间距。

4.分层布线:对于复杂的电路设计,分层布线可以将不同功能的信号线分隔开,减小相互之间的干扰。

较高频的信号线可能需要从内层电路板层穿过,这时就需要提前规划分层布线,以保证信号的完整性和正常传输。

5.地线设计:地线是电路中非常重要的参考线,用于提供参考电平和回路。

因此,在进行印制电路板设计时,要考虑地线的设计,确保地线的连续性、稳定性和低石英。

6.飞线布线:飞线布线常用于解决布线空间不足、信号线错位等问题。

在进行飞线布线时,要准确把握长度和位置,避免信号串扰和干扰,尽量使飞线短小精悍。

1.控制层间电容和层间电感:层间电容和层间电感会导致电磁干扰,因此,在进行PCB设计时,要注意层间电容和电感的控制,尽量减少干扰的发生。

可以通过减小板厚、增加层间绝缘材料的相对介电常数、增加层间电缝等手段来降低层间电容和层间电感。

2.象限规划:将信号线按照功能和高低频分布到各象限中,可以降低相互之间的干扰。

例如,可以将数字信号和模拟信号放置在不同的象限中,避免信号之间的相互干扰。

PCB及电路抗干扰措施

PCB及电路抗干扰措施

PCB及电路抗干扰措施PCB(Printed Circuit Board,印刷电路板)是电子产品中常见的一种基础组件,用于支撑和连接电子元器件。

在设计和制造PCB时,为了保证电路的稳定性和可靠性,需要采取一系列的抗干扰措施。

首先,对于信号线的定位和布线需要谨慎考虑。

对于高频信号线和低频信号线,应尽量避免在布线过程中产生交叉和平行,同时应尽量使信号线和地线、电源线保持一定的间距,减小相互之间的干扰。

其次,对于电源线的设计,应采取合适的滤波措施。

通过设置电源滤波器,可以有效地滤除电源线上的高频噪声,保证电路的稳定供电。

此外,应尽量避免共地和共电源现象的产生,即将高频和低频电源线分开布局,减少相互之间的相互干扰。

另外,在PCB的设计中,需要合理规划和设置地面层。

地面层在PCB上起到了很重要的作用,可以提供稳定的工作参考电平,同时还可以起到屏蔽和散热的作用。

在地面层设计中,可以采取大面积连接的方式,将地面层与信号层、电源层等连接起来,形成一个完整的电流环路,减少干扰的产生。

此外,在PCB的布局和连接中,还可以采取差分信号传输技术。

差分信号传输是一种通过两个相反但幅度相等的信号进行数据传输的方式,可以有效抵消传输过程中的共模干扰和噪声。

对于差分信号线,需要尽量保持两条信号线的长度、间距和走线方式一致,减小差分信号线之间的不平衡和失配。

此外,在PCB的设计过程中,还可以采用屏蔽罩和屏蔽设备来进行电磁屏蔽。

屏蔽罩通常由导电材料制成,可以用于保护敏感的设备和信号线不受来自外部的电磁干扰。

同时,在PCB上的敏感电路和元器件周围,可以设置合适的屏蔽罩或屏蔽设备,进一步提高电路的抗干扰性能。

最后,还可以通过设计适当的接地和继电器等控制装置来提高PCB的抗干扰能力。

良好的接地设计可以减少接地回路的阻抗,提供稳定的接地参考电平。

通过合理选择和设计继电器,可以实现对敏感电路的切断和隔离,避免干扰源对电路的影响。

综上所述,PCB及电路的抗干扰措施涉及信号线的布线定位、电源线的滤波设计、地面层的设置、差分信号传输、屏蔽设备的应用、接地设计和继电器等。

高速电路PCB设计中串扰问题的抑制1

高速电路PCB设计中串扰问题的抑制1

高速电路PCB设计中串扰问题的抑制耿俊(北京工业职业技术学院,北京100042)摘要:传输信号的串扰问题,在高速电路PCB设计中一直是重点考虑的问题。

特别是电子产品设计的高速化和小型化,如何抑制传输信号的串扰,使其降低到最低,这是每一位高速电路PCB设计者追求的目标。

本文通过对影响传输信号串扰因素的分析,结合多年高速电路PCB设计的经验,对抑制信号串扰的方法做了比较详尽的表述。

为高速电路PCB设计人员提供一些经验,在高速电路PCB设计中少走弯路。

关键词:高速;PCB;串扰;影响因素;抑制The inhibition of crosstalk problems In the design ofhigh-speed circuit PCBGeng Jun(Beijing polytechnic college,Beijing 100042)Abstract:The signal transmission crosstalk problems, in high-speed circuit PCB design has been is the key consideration of problems. Especially the electronic product design of the fast pace and miniaturization, how to suppress the signal transmission of crosstalk, make it down to a minimum, this is every high-speed circuit PCB designer pursuit of the goal. Based on the impact factors of signal transmission link analysis, with many years of experience in high-speed circuit PCB design, to control the signal of the methods of crosstalk compared detailed statement. For high-speed circuit PCB design personnel to provide some experience, in high-speed circuit PCB design less mistakes.Key words:High speed; PCB; Crosstalk; Influencing factors; inhibition引言随着电子设计的飞速发展,其高速化和小型化已成为一种趋势。

如何消除PCB设计中的干扰

如何消除PCB设计中的干扰

环测威官网:/随着信息技术的不断发展,电子产品在功能,类别和结构方面变得越来越复杂,朝着多层方向和高密度方向推动PCB设计。

因此,必须对PCB设计的EMC(电磁兼容性)给予很多关注,因为PCB的EMC设计不仅可以确保板上所有电路的正常和稳定工作,因此它们不会相互干扰。

还有效地减少了辐射传输和PCB的传导发射,以阻止电路受到外部辐射和传导的干扰。

干扰是EMC最重要的敌人。

但是,工程师,你应该不要担心这篇文章了。

PCB干扰的分类PCB干扰可分为三类:1)。

布局干扰是指由于PCB上不适当的元件放置而引起的干扰。

2)。

堆叠干扰是指由不科学的设置引起的噪声干扰。

3)。

路由干扰是指PCB信号线,电源线和接地线之间距离设置不当,线宽或不科学的PCB 布线方法造成的干扰。

在PCB干扰分类方面,可以从布局规则,堆叠策略和布线规则的角度分别采取一些抑制措施,减少甚至消除PCB干扰的影响,以确保与EMC设计标准的兼容性。

基于分类的PCB干扰相应抑制措施•布局干扰的抑制措施停止布局干扰的特权在于合理的PCB布局,应符合以下六条规则:1)。

每个功能模块的电路位置应根据信号电流位置合理设定,其流向应保持尽可能相同。

2)。

模块电路中的核心部件应设置在中心位置,并且应尽可能缩短元件之间的引线,特别是高频元件。

3)。

热敏元件和芯片之间的集成应远离加热元件。

4)。

连接器位置应根据板上的元件位置确定。

连接器应放置在PCB的一侧,以阻止电缆从两侧引出,并减少共模(CM)电流辐射。

5)。

I / O驱动器应紧密靠近连接器,以阻止板上I / O信号的长距离路由。

6)。

热敏元件不能彼此靠得太近,输入和输出元件也应远离它们。

•抑制堆叠干扰的措施首先,PCB设计信息应该通过考虑的综合元素来控制,包括信号线密度,功率和接地分类,以确定功率和确保实现电路功能的层数。

堆叠策略的质量基本上与地平面或电源平面的瞬态电压以及电源和信号的电磁屏蔽相关。

根据实际的堆叠设计经验,堆叠设计应符合以下规则:1)。

噪声干扰PCB布线与微小信号的放大

噪声干扰PCB布线与微小信号的放大

电路中干扰、噪声的应对与微弱信号的测量摘要:微弱信号常常被混杂在大量的噪音中。

噪声的来源多种多样,有来自电路之间的,有电子元器件本身所具有的,也有来自外部环境的。

这其中,又分为了好多不同种类,比如电子元器件的噪声,有低频时的1/f噪声,有高频的热噪声等等。

本文中分别对其进行介绍。

为了消除这些噪声,从而获得正确的信号,就需要对电路采取一些措施。

在PCB布局布线时,就有好多细节非常值得我们注意。

当然,元器件的选择也是很有讲究的。

当然,仅仅对噪声干扰进行抑制并不足以达到检测微弱信号的目的,为此,在设计检测微弱信号的电路时,又有很多重要的方法和注意点值得参考。

只有做好这些,才能从噪声中得到可靠、稳定的信号。

关键词:噪声;PCB布线;微弱信号检测一、电路中的干扰与噪声噪声是电路中相对于信号而言的一些干扰、无用的信号噪声干扰的产生原因有许多,如雷击、周边负载设备的开关机、发电机、无线电通讯等。

在对微弱信号处理时,噪声的影响非常重要,必须对其采取措施,否则有用信号将淹没其中,而无法被检测到。

具体到噪声来源、噪声特点等方面,噪声有许许多多的类别,下面分别简要对其进行介绍。

1.1低频噪声低频噪声主要是由于内部的导电微粒不连续造成的。

特别是碳膜电阻,其碳质材料内部存在许多微小颗粒,颗粒之间是不连续的,在电流流过时,会使电阻的导电率发生变化引起电流的变化,产生类似接触不良的闪爆电弧。

另外,晶体管也可能产生相似的爆裂噪声和闪烁噪声,其产生机理与电阻中微粒的不连续性相近,也与晶体管的掺杂程度有关。

1.2半导体器件产生的散粒噪声由于半导体PN结两端势垒区电压的变化引起累积在此区域的电荷数量改变,从而显现出电容效应。

当外加正向电压升高时,N区的和P区的空穴向耗尽区运动,相当于对电容充电。

当正向电压减小时,它又使电子和空穴远离耗尽区,相当于电容放电。

当外加反向电压时,耗尽区的变化相反。

当电流流经势垒区时,这种变化会引起流过势垒区的电流产生微小波动,从而产生电流噪声。

PCB布线的干扰与抑制处理方法

PCB布线的干扰与抑制处理方法

PCB布线的干扰与抑制处理方法PCB布线的地线干扰与抑制处理方法1.地线的定义4o?~t}t7j0什么是地线?大家在教科书上学的地线定义是:地线是作为电路电位基准点的等电位体。

这个定义是不符合实际情况的。

实际地线上的电位并不是恒定的。

如果用仪表测量一下地线上各点之间的电位,会发现地线上各点的电位可能相差很大。

正是这些电位差才造成了电路工作的异常。

电路是一个等电位体的定义仅是人们对地线电位的期望。

HENRY给地线了一个更加符合实际的定义,他将地线定义为:信号流回源的低阻抗路径。

这个定义中突出了地线中电流的流动。

按照这个定义,很容易理解地线中电位差的产生原因。

因为地线的阻抗总不会是零,当一个电流通过有限阻抗时,就会产生电压降。

因此,我们应该将地线上的电位想象成象大海中的波浪一样,此起彼伏。

u{mi8BqA9X0.AUlN$k`0A!Lc-M02.地线的阻抗1E+cVhJ0m0电子爱好者社区U9L`\h}.u谈到地线的阻抗引起的地线上各点之间的电位差能够造成电路的误动作,许多人觉得不可思议:我们用欧姆表测量地线的电阻时,地线的电阻往往在毫欧姆级,电流流过这么小的电阻时怎么会产生这么大的电压降,导致电路工作的异常。

要搞清这个问题,首先要区分开导线的电阻与阻抗两个不同的概念。

电阻指的是在直流状态下导线对电流呈现的阻抗,而阻抗指的是交流状态下导线对电流的阻抗,这个阻抗主要是由导线的电感引起的。

任何导线都有电感,当频率较高时,导线的阻抗远大于直流电阻,表1给出的数据说明了这个问题。

在实际电路中,造成电磁干扰的信号往往是脉冲信号,脉冲信号包含丰富的高频成分,因此会在地线上产生较大的电压。

对于数字电路而言,电路的工作频率是很高的,因此地线阻抗对数字电路的影响是十分可观的。

电子爱好者社区/B[+c2A,Y,J&kv-I表1导线的阻抗(Ω):D"XL(_P%uQ0频率电子爱好者社区HMb(eAmyHzD=0.65电子爱好者社区V;xXiXG3I~3B10cm1mD=0.27"V:Qe,w,W0s9_4~010cm1mD=0.065vR&AsQ9E!X010cm1mD=0.04/}Ynme(r010cm1m1051.4m517m327m3.28m5.29m52.9m13.3m133m1k429m7.14m632m8.91m 5.34m53.9m14m144m100k42.6m712m54m828m71.6m1.090.3m 1.071M426m7.12540m8.28714m10783m10.65M2.1335.52.741.3 3.57503.865310M4.2671.25.482.87.141007.710650M21.3356274 1435.750038.5530100M42.65471.477150M63.981107115电子爱好者社区K8kZ:h7IlHt6h如果将10Hz时的阻抗近似认为是直流电阻,可以看出当频率达到10MHz时,对于1米长导线,它的阻抗是直流电阻的1000倍至10万倍。

画PCB时常用抗干扰方法

画PCB时常用抗干扰方法

画PCB时常用抗干扰方法在PCB设计中,为了确保电路板的工作稳定性和可靠性,常常需要采取一些抗干扰的措施。

以下是常用的抗干扰方法:1.分离模拟和数字电路:将模拟和数字信号的地线和供电线分开布局和走线,以减少相互干扰。

模拟和数字信号地和电源布局最好分开,尽量采用交错布线的方式,减少回路间的磁耦合和电容耦合。

2.使用屏蔽罩:在感觉到可能会有干扰源的电路周边,使用金属屏蔽罩,以隔离或屏蔽外部干扰。

同时,对需要进行防御的电路进行电磁屏蔽,以提高抗干扰能力。

3.适当增加电源滤波器:在电源输入端增加适当的RC或LC滤波器,以消除电源中的高频噪声,保持电路的稳定工作。

4.细化地面铺设:在PCB设计中,要注重地面铺设,遵循信号地、模拟地和数字地分离的原则。

通过合理铺设地面,可以提高地面的抗干扰能力,减少耦合和共模干扰。

同时,使用整片地面铺设,并增加分割泄露电流引线,以避免地下循环。

5.降低传输线串扰:在高速传输线的设计中,应采取差分传输线或屏蔽传输线的方式,以降低串扰的影响。

差分信号线的布局和走线应保持对称,并尽量减小信号线之间的间距,减少电磁耦合。

6.控制布线的长度和幅度:为了减少信号的串扰和干扰,将控制高频电路的布线长度和幅度尽量减小。

另外,高速信号线的走线要尽量避免与其他信号线平行,并且要尽量远离潜在的干扰源。

7.使用外接滤波元件:在需要进行抗干扰的接口电路中,可以使用外接的滤波元件,如滤波电容器、滤波电感器等,以消除噪声和干扰。

8.合理选择元器件:在设计过程中,选择具有良好抗干扰特性的元器件对于提高抗干扰能力至关重要。

例如,选择具有低噪声系数的放大器,抗干扰性能好的集成电路等。

9.使用屏蔽线材:当信号传输线路易受外界干扰时,可以考虑使用带有屏蔽层的线材进行连接,并合理接地屏蔽层,以达到抗干扰的目的。

10.确保良好的地和电源连接:对于抗干扰设计来说,地和电源连接非常重要。

良好的地和电源连接可以有效降低回路共模干扰和地回流路径的电压降低。

pcb布板时应注意的事项及总结

pcb布板时应注意的事项及总结

pcb布板时应注意的事项及总结作为PCB工程师,在Lay PCB,应重点注意那些事项?1、电源进来之后,先到滤波电容,从滤波电容出来之后,才送给后面的设备。

因为PCB上面的走线,不是理想的导线,存在着电阻以及分布电感,如果从滤波电容前面取电,纹波就会比较大,滤波效果就不好了。

2、线条有讲究:有条件做宽的线决不做细,不得有尖锐的倒角,拐弯也不得采用直角。

地线应尽量宽,最好使用大面积敷铜,这对接地点问题有相当大的改善。

3、电容是为开关器件(门电路)或其它需要滤波/退耦的部件而设置的,布置这些电容就应尽量靠近这些元部件,离得太远就没有作用了。

4.Y 电容通用脚距10mm,留出焊盘,中间空隙是8mm,中间最好不要走线,中间不走线,放置的地方当然是板子的上下,左为强电,右为弱电。

强电端的GND最好为功率地,右边的弱电最好是靠近变压器的GND引脚。

5.再往大功率的,遵循的是两点:(1)主回路最好不要使用跳线,若一定要用就需加套管,跳线的上面若有元器件的话,还需点胶。

(2)在有限的平面积里及安全间距内尽可能的加粗,若不能加粗,就需要加铺焊层。

Lay PCB(电源板)时,结合安规要求,重点注意那些事项?1、交流电源进线,保险丝之前两线最小安全距离不小于6MM,两线与机壳或机内接地最小安全距离不小于8MM。

2、保险丝后的走线要求:零、火线最小爬电距离不小于3MM。

3、高压区与低压区的最小爬电距离不小于8MM,不足8MM或等于8MM的。

须开2MM的安全槽。

4、高压区须有高压示警标识的丝印,即有感叹号在内的三角形符号;高压区须用丝印框住,框条丝印须不小于3MM5、高压整流滤波的正负之间的最小安全距离不小于2MM6.按照先大后小,先难后易的原则,即重要的单元电路,核心元件应当优先布局。

7.布局应参考原理图,根据主板的主信号流向规律安排主要元器件。

8.布局尽量满足总的连线尽可能短,关键信号线最短,高电压,大电流信号与小电流,低电压的弱信号完全分开,模拟信号与数字信号分开,高频和低频信号分开,高频元器件间隔要充分。

PCB布线设计中降低噪声与电磁干扰经验总结

PCB布线设计中降低噪声与电磁干扰经验总结

PCB布线设计中降低噪声与电磁干扰经验总结PCB布线设计中降低噪声与电磁干扰的一些经验。

(1)能用低速芯片就不用高速的,高速芯片用在关键地方。

(2)可用串一个电阻的办法,降低控制电路上下沿跳变速率。

(3)尽量为继电器等提供某种形式的阻尼。

(4)使用满足系统要求的最低频率时钟。

(5)时钟产生器尽量*近到用该时钟的器件。

石英晶体振荡器外壳要接地。

(6)用地线将时钟区圈起来,时钟线尽量短。

(7)I/O驱动电路尽量*近印刷板边,让其尽快离开印刷板。

对进入印制板的信号要加滤波,从高噪声区来的信号也要加滤波,同时用串终端电阻的办法,减小信号反射。

(8)MCD无用端要接高,或接地,或定义成输出端,集成电路上该接电源地的端都要接,不要悬空。

(9)闲置不用的门电路输入端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端。

(10)印制板尽量使用45折线而不用90折线布线以减小高频信号对外的发射与耦合。

(11)印制板按频率和电流开关特性分区,噪声元件与非噪声元件要距离再远一些。

(12)单面板和双面板用单点接电源和单点接地、电源线、地线尽量粗,经济是能承受的话用多层板以减小电源,地的容生电感。

(13)时钟、总线、片选信号要远离I/O线和接插件。

(14)模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟。

(15)对A/D类器件,数字部分与模拟部分宁可统一下也不要交*。

(16)时钟线垂直于I/O线比平行I/O线干扰小,时钟元件引脚远离I/O电缆。

(17)元件引脚尽量短,去耦电容引脚尽量短。

(18)关键的线要尽量粗,并在两边加上保护地。

高速线要短要直。

(19)对噪声敏感的线不要与大电流,高速开关线平行。

(20)石英晶体下面以及对噪声敏感的器件下面不要走线。

(21)弱信号电路,低频电路周围不要形成电流环路。

(22)任何信号都不要形成环路,如不可避免,让环路区尽量小。

(23)每个集成电路一个去耦电容。

每个电解电容边上都要加一个小的高频旁路电容。

PCB布线时如何处理干扰问题

PCB布线时如何处理干扰问题

PCB布线时如何处理干扰问题
1、电源滤波器的选择:依据理论计算或测试结果,电源滤波器应达
到的插损值为IL,实际选型时应选择插损为IL+20dB大小的电源滤
波器。

2、交流滤波器和支流滤波器在实际产品中不可替换使用,临时性样
机中,可以用交流滤波器临时替代直流滤波器使用;但直流滤波器
绝对不可用于交流场合,直流滤波器对地电容的滤波截止频率较低,交流电流会在其上产生较大损耗。

3、避免使用静电敏感器件,选用器件的静电敏感度一般不低于
2000V,否则要仔细推敲、设计抗静电的方法。

在结构方面,要实现
良好的地气连接及采取必要的绝缘或屏蔽措施,提高整机的抗静电
能力。

4、带屏蔽的双绞线,信号电流在两根内导线上流动,噪声电流在屏
蔽层里流动,因此消除了公共阻抗的耦合,而任何干扰将同时感应
到两根导线上,使噪声相消。

5、非屏蔽双绞线抵御静电耦合的能力差些。

但对防止磁场感应仍有
很好作用。

非屏蔽双绞线的屏蔽效果与单位长度的导线扭绞次数成
正比。

6、同轴电缆有较均匀的特性阻抗和较低的损耗,使从直流到甚高频
都有较好特性。

7、凡是能不用高速逻辑电路的地方就不要用高速逻辑电路。

8、在选择逻辑器件时,尽量选上升时间比5ns长的器件,不要选比电路要求时序快的逻辑器件。

9、多个设备相连为电气系统时,为消除地环路电源引起的干扰,采用隔离变压器、中和变压器、光电耦合器和差动放大器共模输入等措施来隔离。

10、识别干扰器件和干扰电路:在启停或运行状态下,电压变化率dV/dt、电流变化率di/dt较大的器件或电路,为干扰器件或干扰电路。

高频PCB干扰问题和解决方法

高频PCB干扰问题和解决方法

在实际的研究中,我们归纳起来,主要有四方面的干扰存在,主要有电源噪声、传输线干扰、耦合、电磁干扰(EMI)四个方面。

通过分析高频PCB的各种干扰问题,结合工作中实践,提出了有效的解决方案。

一、电源噪声高频电路中,电源所带有的噪声对高频信号影响尤为明显。

因此,首先要求电源是低噪声的。

在这里,干净的地和干净的电源同样重要,为什么呢?电源特性如图1所示。

很明显,电源是具有一定阻抗的,并且阻抗是分布在整个电源上的,因此,噪声也会叠加在电源上。

那么我们就应该尽可能地减小电源的阻抗,所以最好要有专有的电源层和接地层。

在高频电路设计中,电源以层的形式设计,在大多数情况下都比以总线的形式设计要好得多,这样回路总可以沿着阻抗最小的路径走。

此外电源板还得为PCB上所有产生和接受的信号提供一个信号回路,这样可以最小化信号回路,从而减小噪声,这点常常为低频电路设计人员所忽视。

PCB设计中消除电源噪声的方法有如下几种。

1、注意板上通孔:通孔使得电源层上需要刻蚀开口以留出空间给通孔通过。

而如果电源层开口过大,势必影响信号回路,信号被迫绕开,回路面积增大,噪声加大。

同时如果一些信号线都集中在开口附近,共用这一段回路,公共阻抗将引发串扰。

2、连接线需要足够多的地线:每一信号需要有自己的专有的信号回路,而且信号和回路的环路面积尽可能小,也就是说信号与回路要并行。

3、模拟与数字电源的电源要分开:高频器件一般对数字噪音非常敏感,所以两者要分开,在电源的入口处接在一起,若信号要跨越模拟和数字两部分的话,可以在信号跨越处放置一条回路以减小环路面积。

4、避免分开的电源在不同层间重叠:否则电路噪声很容易通过寄生电容耦合过去。

5、隔离敏感元件:如PLL。

6、放置电源线:为减小信号回路,通过放置电源线在信号线边上来实现减小噪声。

二、传输线在PCB中只可能出现两种传输线:带状线和微波线,传输线最大的问题就是反射,反射会引发出很多问题,例如负载信号将是原信号与回波信号的叠加,增加信号分析的难度;反射会引起回波损耗(回损),其对信号产生的影响与加性噪声干扰产生的影响同样严重:1、信号反射回信号源会增加系统噪声,使接收机更加难以将噪声和信号区分开来;2、任何反射信号基本上都会使信号质量降低,都会使输入信号形状上发生变化。

PCB串扰分析及抑制方法

PCB串扰分析及抑制方法

PCB串扰分析及抑制方法XXX摘要:技术进步带来设计的挑战,在高速、高密度 PCB设计中,串扰问题日益突出。

本文就串扰原理和对信号完整性影响进行分析,在此基础上提出了PCB设计中抑制串扰的多种方法,并针对利用微分电路减小PCB串扰的方法进行深入分析,同时给出了该方法中微分电路R、C取值的近似计算公式,此方法代价低,易于实现。

关键词:PCB串扰;抑制方法;微分电路The analysis of PCB crosstalk and its cinhibition methodsXXXAbstract: Technological advances bring design challenges. In high speed, high density PCB designing, crosstalk problem increasingly prominents. This paper analysis the principle of crosstalk and impact on signal integrity, based on this, raises a variety of ways to suppress crosstalk in the PCB design, analysis the method of using differential circuit reduce PCB crosstalk in-depth, and presents the method of differential circuit R, C values approximate calculation formula, the cost of this method is low, and it’s easy to implement.Keywords: PCB crosstalk; Inhibition method; Differential circuit1 引言随着电子产品功能的日益复杂和性能的不断提高,印刷电路板的密度和其相关器件的频率都不断攀升,保持并提高系统的速度与性能成为设计者面前的一个重要课题。

PCB板抗干扰设计技巧

PCB板抗干扰设计技巧

PCB板抗干扰设计技巧在PCB(Printed Circuit Board,印制电路板)的设计中,抗干扰是非常重要的一项技术。

干扰是指外界电磁场的影响,可能导致电路的工作不稳定或者出现不正常的现象。

为了提高PCB板的抗干扰能力,设计人员需要采取一系列的技巧和措施。

以下是PCB板抗干扰设计的一些技巧:1.地线的设计:地线的设计是非常重要的,它能够提供一个回流路径,将干扰电流引导到地上,避免对其他电路的干扰。

在PCB板的设计过程中,应该将地线设置宽一些,并且减少地线的走线弯曲,以减小电流的回流电阻。

2.电源线和信号线的布置:在PCB板的布局过程中,电源线和信号线的布置也是非常重要的。

应该避免电源线和信号线交叉布置,以减小干扰的可能性。

同时,在布置过程中也应该尽量将高频信号线和低频信号线分开布置,避免高频信号对低频信号的干扰。

3.模拟和数字信号的分离:PCB板上通常存在模拟信号和数字信号。

由于它们的工作方式和频率差异较大,应该将它们分离开来布局。

在布局时,应该避免模拟和数字信号线靠得太近,以减小干扰的可能性。

4.良好的地与电源分离:为了减小干扰,应该将地和电源之间分离开来。

地和电源的分离可以通过独立设计地层和电源层来实现。

5.适当的屏蔽:对于一些对干扰非常敏感的电路,可以考虑使用屏蔽来减小干扰。

屏蔽可以是金属屏蔽罩、屏蔽盖或者使用屏蔽材料包裹。

6.适当的过滤:在PCB板的设计中,可以使用适当的过滤电路来减小干扰。

过滤电路可以通过在电源和信号线之间添加滤波器来实现。

滤波器可以起到消除高频噪声和干扰的作用。

7.接地的选择:选择适当的地点进行接地是非常重要的。

过长的接地线会增加电阻,造成导致干扰的电流无法顺利地流回。

因此,应该选择距离电路最近的地点进行接地。

8.PCB板的敷铜:适当的敷铜可以起到抗干扰的作用。

通过在PCB板上增加一层敷铜,可以减小电路板的串扰和对外界电磁场的敏感性。

总之,PCB板的抗干扰设计是非常重要的一项技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路中干扰、噪声的应对与微弱信号的测量摘要:微弱信号常常被混杂在大量的噪音中。

噪声的来源多种多样,有来自电路之间的,有电子元器件本身所具有的,也有来自外部环境的。

这其中,又分为了好多不同种类,比如电子元器件的噪声,有低频时的1/f噪声,有高频的热噪声等等。

本文中分别对其进行介绍。

为了消除这些噪声,从而获得正确的信号,就需要对电路采取一些措施。

在PCB布局布线时,就有好多细节非常值得我们注意。

当然,元器件的选择也是很有讲究的。

当然,仅仅对噪声干扰进行抑制并不足以达到检测微弱信号的目的,为此,在设计检测微弱信号的电路时,又有很多重要的方法和注意点值得参考。

只有做好这些,才能从噪声中得到可靠、稳定的信号。

关键词:噪声;PCB布线;微弱信号检测一、电路中的干扰与噪声噪声是电路中相对于信号而言的一些干扰、无用的信号噪声干扰的产生原因有许多,如雷击、周边负载设备的开关机、发电机、无线电通讯等。

在对微弱信号处理时,噪声的影响非常重要,必须对其采取措施,否则有用信号将淹没其中,而无法被检测到。

具体到噪声来源、噪声特点等方面,噪声有许许多多的类别,下面分别简要对其进行介绍。

1.1低频噪声低频噪声主要是由于内部的导电微粒不连续造成的。

特别是碳膜电阻,其碳质材料内部存在许多微小颗粒,颗粒之间是不连续的,在电流流过时,会使电阻的导电率发生变化引起电流的变化,产生类似接触不良的闪爆电弧。

另外,晶体管也可能产生相似的爆裂噪声和闪烁噪声,其产生机理与电阻中微粒的不连续性相近,也与晶体管的掺杂程度有关。

1.2半导体器件产生的散粒噪声由于半导体PN结两端势垒区电压的变化引起累积在此区域的电荷数量改变,从而显现出电容效应。

当外加正向电压升高时,N区的和P区的空穴向耗尽区运动,相当于对电容充电。

当正向电压减小时,它又使电子和空穴远离耗尽区,相当于电容放电。

当外加反向电压时,耗尽区的变化相反。

当电流流经势垒区时,这种变化会引起流过势垒区的电流产生微小波动,从而产生电流噪声。

其产生噪声的大小与温度、频带宽度△f成正比。

1.3高频热噪声高频热噪声是由于导电体内部电子的无规则运动产生的。

温度越高,电子运动就越激烈。

导体内部电子的无规则运动会在其内部形成很多微小的电流波动,因其是无序运动,故它的平均总电流为零,但当它作为一个元件(或作为电路的一部分)被接入放大电路后,其内部的电流就会被放大成为噪声源,特别是对工作在高频频段内的电路高频热噪声影响尤甚。

通常在工频内,电路的热噪声与通频带成正比,通频带越宽,电路热噪声的影响就越大。

以一个1kΩ的电阻为例,如果电路的通频带为1MHz,则呈现在电阻两端的开路电压噪声有效值为4μV(设温度为室温T=290K)。

看起来噪声的电动势并不大,但假设将其接入一个增益为106倍的放大电路时,其输出噪声可达4V,这时对电路的干扰就很大了。

1.4电路板上的电磁元件的干扰许多电路板上都有、线圈等电磁元件,在电流通过时其线圈的电感和外壳的分布电容向周围辐射能量,其能量会对周围的电路产生干扰。

像继电器等元件其反复工作,通断电时会产生瞬间的反向高压,形成瞬时浪涌电流,这种瞬间的高压对电路将产生极大的冲击,从而严重干扰电路的正常工作。

1.5晶体管的噪声晶体管的噪声主要有热噪声、散粒噪声、闪烁噪声。

热噪声是由于载流子不规则的热运动通过BJT内3个区的体电阻及相应的引线电阻时而产生。

其中rb所产生的噪声是主要的。

通常所说的BJT中的电流,只是一个平均值。

实际上通过发射结注入到基区的载流子数目,在各个瞬时都不相同,因而发射极电流或集电极电流都有无规则的波动,会产生散粒噪声。

由于半导体材料及制造工艺水平使得晶体管表面清洁处理不好而引起的噪声称为闪烁噪声。

它与半导体表面少数载流子的复合有关,表现为发射极电流的起伏,其电流噪声谱密度与频率近似成反比,又称1/f噪声。

它主要在低频(kHz以下)范围起主要作用。

1.6电阻器的噪声电阻噪声的来源分为两大类----热噪声与过剩噪声1.热噪声电阻的机构以及在电路中的工作状态模式,决定了电阻在通电的的过程中必然会产生热效应,所有的元器件都会发热。

这种热效应表现为,当温度升高时候,电阻中的电导流子会做无规则的热运动,使电流的定向流动产生起伏变化,从而形成了热噪声电流,此噪声电流将通过电阻产生噪声电压,称为电阻的热噪声。

2.过剩噪声现阶段业界常常使用的电阻为:A.插件电阻,B.晶圆电阻,C.贴片电阻等特殊电阻产品。

电阻在电路的运行过程中除了会产生热噪声之外还会产生另外一种噪声就是过剩噪声。

过剩噪声的来源:(1)电阻在有电流通过的情况下,由于电阻薄膜并不均匀,所以电流就不会均匀的流经电阻的每一个区域,其中必然某一个区域会较为密集,所以会产生过剩噪声。

(2)电阻柱体实质上是由无数个导电微粒组合而成,在外加电压的作用下产生不规则没有定性的运动,阻值就会发生相应的变化,对电流起限制作用从而产生过剩电流过剩电流=电阻的电流噪声,他与阻值、流过的电流、电流强度有关。

1.7集成电路的噪声集成电路的噪声干扰一般有两种:一种是辐射式,一种是传导式。

这些噪声尖刺对于接在同一交流电网上的其他电子设备会产生较大影响。

噪声频谱扩展至100MHz以上。

在实验室中,可以用高频示波器(100MHz以上)观察一般系统板上某个集成电路与地引脚之间的波形,会看到噪声尖刺峰- 峰值可达数百毫伏甚至伏级。

1.8电源的干扰大多数电子电路的直流电源是由电网交流电源经滤波、稳压后提供的。

如果电源系统没有经过净化,会对测试系统产生干扰。

同时,在传感器测试系统附近的大型交流设备的启停将产生频率很高的浪涌电压叠加在电网电压上。

此外,雷电感应也会在电网上产生幅值很高的高频浪涌电压。

如果这些干扰信号沿着交流电源线进入传感器接口电路内部,将会干扰其正常工作,影响系统的测试精度。

1.9地线的干扰传感器接口各电路往往共用一个直流电源,或者虽然不共用一个电源,但不同电源之间往往共一个地,因此,当各部分电路的电流均流过公共地电阻(地线导体阻)时便会产生电压降,该电压降便成为各部分之间相互影响的噪声干扰信号。

同时,在远距离测量中,传感器和检测仪表在两处分别接地,于是在两“地” 之间就存在较大的接地电位差,在仪表的输入端易形成共模干扰电压。

共模干扰的来源一般是设备对地漏电、地电位差、线路本身具有对地干扰等。

由于线路的不平衡状态,共模干扰会转换成常模干扰,较难除掉。

对于很长的信号传输线,信号在传输的过程中很容易受到干扰,导致所传输的信号发生畸变或失真。

长线信号传输所遇到的干扰有:(1)周围空间电磁场对长线的电磁感应干扰。

(2)信号线间的串扰。

当强信号线(或信号变化速度很快的线)与弱信号线靠得很近时,通过线间分布电容和互感产生线间干扰。

(3)长线信号的地线干扰。

信号线越长,则信号地线也越长,即地线电阻较大,形成较大的电位差。

二、干扰与噪声的抑制对于一直电路中的噪声与干扰,可以从以下几个方面进行考虑:2.1根据不同工作频率合理选择噪声低的半导体元器件在低频段,晶体管由于存在势垒电容和扩散电容等问题,噪声较大。

而结型场效应管因为是多数载流子导电,不存在势垒区的电流不均匀问题。

而且栅极与导电沟间的反向电流很小,产生的散粒噪声很小。

故在中、低频的前级电路中应采用场效应管,不但可以降低噪声还可以有较高的输入阻抗。

另外如果需要更换晶体管等半导体元件,一定要经过对比选择,即使型号相同的半导体器件参数也是有差别的。

同样,电路中的碳膜电阻与金属膜电阻的噪声系数也是不一样的,金属膜电阻的噪声比碳膜的要小,特别是在前级小信号输入时,可以考虑用噪声小的金属膜电阻。

2.2根据不同的工作频段、参数选择适当的放大电路选择适当的放大电路不仅对本级电路有直接影响,对整个电路的工作参数、工作状态都会产生重要影响。

如共射组态连接时,电路有较高的放大增益,同时它的噪声对后级的影响较小。

而共集组态时有较高的输入阻抗同时也有较好的频响。

因此根据不同的电路对参数应有不同要求,选择好的电路,不仅可以简化线路结构,同时也可以减少噪声对整个电路的干扰。

在电路性能参数允许的条件下,尽可能采用抗干扰能力较好的数字电路。

2.3 PCB板的布局需注意(1)要有合理的走向:如输入/输出,交流/直流,强/弱信号,高频/低频,高压/低压等...,它们的走向应该是呈线形的(或分离),不得相互交融。

其目的是防止相互干扰。

最好的走向是按直线,但一般不易实现,最不利的走向是环形,所幸的是可以设隔离带来改善。

对于是直流,小信号,低电压PCB设计的要求可以低些。

所以“合理”是相对的。

(2)选择好接地点:小小的接地点不知有多少工程技术人员对它做过多少论述,足见其重要性。

一般情况下要求共点地,如:前向放大器的多条地线应汇合后再与干线地相连等等...。

现实中,因受各种限制很难完全办到,但应尽力遵循。

这个问题在实际中是相当灵活的。

每个人都有自己的一套解决方案。

如能针对具体的电路板来解释就容易理解。

(3)合理布置电源滤波/退耦电容:一般在原理图中仅画出若干电源滤波/退耦电容,但未指出它们各自应接于何处。

其实这些电容是为开关器件(门电路)或其它需要滤波/退耦的部件而设置的,布置这些电容就应尽量靠近这些元部件,离得太远就没有作用了。

有趣的是,当电源滤波/退耦电容布置的合理时,接地点的问题就显得不那么明显。

(4)线条有讲究:有条件做宽的线决不做细;高压及高频线应园滑,不得有尖锐的倒角,拐弯也不得采用直角。

地线应尽量宽,最好使用大面积敷铜,这对接地点问题有相当大的改善。

(5)有些问题虽然发生在后期制作中,但却是PCB设计中带来的,它们是:过线孔太多,沉铜工艺稍有不慎就会埋下隐患。

所以,设计中应尽量减少过线孔。

同向并行的线条密度太大,焊接时很容易连成一片。

所以,线密度应视焊接工艺的水平来确定。

焊点的距离太小,不利于人工焊接,只能以降低工效来解决焊接质量。

否则将留下隐患。

所以,焊点的最小距离的确定应综合考虑焊接人员的素质和工效。

焊盘或过线孔尺寸太小,或焊盘尺寸与钻孔尺寸配合不当。

前者对人工钻孔不利,后者对数控钻孔不利。

容易将焊盘钻成“c”形,重则钻掉焊盘。

导线太细,而大面积的未布线区又没有设置敷铜,容易造成腐蚀不均匀。

即当未布线区腐蚀完后,细导线很有可能腐蚀过头,或似断非断,或完全断。

所以,设置敷铜的作用不仅仅是增大地线面积和抗干扰。

以上诸多因素都会对电路板的质量和将来产品的可靠性大打折扣。

(6)金属化过孔镀层厚度只有20几到几微米,经不起大电流!因此电源线、地线、有大电流的线非得通过过孔到另一面时可在此处多加几个过孔,或通过一个穿过两面的原件。

(7)脚较粗且多的器件如CD型插座,应尽可能少从原件面出线。

如非出不可有条件可在器件脚边加一过孔。

相关文档
最新文档