2018年中考数学综合能力提升 相似三角形在圆中的应用专题练习卷(无答案)
2018年中考数学圆的综合题试题
2018年中考数学圆的综合题试题(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--圆的综合题1.如图,AB是⊙O的弦,AB=4,过圆心O的直线垂直AB于点D,交⊙O于点C和点E,连接AC、BC、OB,cos∠ACB=13,延长OE到点F,使EF=2OE.(1)求证:∠BOE=∠ACB;(2)求⊙O的半径;(3)求证:BF是⊙O的切线.2. 如图,AB为⊙O的直径,点C为圆外一点,连接AC、BC,分别与⊙O相交于点D、点E,且AD DE,过点D作DF⊥BC于点F,连接BD、DE、AE.(1)求证:DF是⊙O的切线;(2)试判断△DEC的形状,并说明理由;(3)若⊙O的半径为5,AC=12,求sin∠EAB的值.3. (2016长沙9分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O 的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=25DE,求tan∠ABD的值.4. (2016德州10分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E作直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.5. (2015永州)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC 于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.6 (2017原创)如图,AB切⊙O于点B,AD交⊙O于点C和点D,点E 为DC的中点,连接OE交CD于点F,连接BE交CD于点G.(1)求证:AB=AG;(2)(2)若DG=DE,求证:GB2=GC·GA;(3)在(2)的条件下,若tan D=34,EG=10,求⊙O的半径.7.(2015达州)在△ABC的外接圆⊙O中,△ABC的外角平分线CD交⊙O于点D,F为AD上一点,且AF BC,连接DF,并延长DF交BA的延长线于点E. (1)判断DB与DA的数量关系,并说明理由;(2)求证:△BCD≌△AFD;(3)若∠ACM=120°,⊙O的半径为5,DC=6,求DE的长.8. 如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为点D.(1)求证:△ACD∽△ABC;(2)求证:∠PCA=∠ABC;(3)过点A作AE∥PC交⊙O于点E,交CG于点F,连接BE,若sin P=35,CF=5,求BE的长.9、(2016大庆9分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB 于点M,若H是AC的中点,连接MH。
2018年中考数学专题复习卷 图形的相似(含解析)
图形的相似一、选择题1.已知,下列变形错误的是()A. B.C.D.【答案】B【解析】由得,3a=2b,A. 由得,所以变形正确,故不符合题意;B. 由得3a=2b,所以变形错误,故符合题意;C. 由可得,所以变形正确,故不符合题意;D.3a=2b变形正确,故不符合题意.故答案为:B.【分析】根据已知比例式可得出3a=2b,再根据比例的基本性质对各选项逐一判断即可。
2.如图,已知直线a∥b∥c,直线m分别交直线a、b、c于点A,B,C,直线n分别交直线a、b、c于点D,E,F,若, ,则的值应该()A. 等于B. 大于C. 小于D. 不能确定【答案】B【解析】:如图,过点A作AN∥DF,交BE于点M,交CF于点N∵a∥b∥c∴AD=ME=NF=4(平行线中的平行线段相等)∵AC=AB+BC=2+4=6∴设MB=x,CN=3x∴BE=x+4,CF=3x+4∵∵x>0∴故答案为:B【分析】过点A作AN∥DF,交BE于点M,交CF于点N,根据已知及平行线中的平行线段相等,可得出AD=ME=NF=4,再根据平行线分线段成比例得出BM和CN的关系,设MB=x,CN=3x,分别表示出BE、CF,再求出它们的比,利用求差法比较大小,即可求解。
3.在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A. (5,1)B. (4,3) C. (3,4) D. (1,5)【答案】C【解析】:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故答案为:C.【分析】根据位似图形的性质,位似图形上一个点的坐标等于原图形上对应点的横纵坐标分别乘以位似比,或位似比的相反数。
4.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1, S2,()A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】 :如图,过点D作DF⊥AC于点F,过点B作BM⊥AC于点M∴DF∥BM,设DF=h1, BM=h2∴∵DE∥BC∴∴∵若∴设=k<0.5(0<k<0.5)∴AE=AC∙k,CE=AC-AE=AC(1-k),h1=h2k∵S1= AE∙h1= AC∙k∙h1, S2= CE∙h2= AC(1-k)h2∴3S1= k2ACh2, 2S2=(1-K)∙ACh2∵0<k<0.5∴k2<(1-K)∴3S1<2S2故答案为:D【分析】过点D作DF⊥AC于点F,过点B作BM⊥AC于点M,可得出DF∥BM,设DF=h1, BM=h2,再根据DE∥BC,可证得,若,设=k<0.5(0<k<0.5),再分别求出3S1和2S2,根据k的取值范围,即可得出答案。
2018年安徽中考数学复习考试试题:相似三角形(无答案)
相似三角形安徽中考2017年中考1.(2017•安徽23)已知正方形ABCD ,点M 为边AB 的中点. (1)如图1,点G 为线段CM 上的一点,且∠AGB=90°,延长AG 、BG 分别与边BC 、CD 交于点E 、F . ①求证:BE=CF ;②求证:BE 2=BC•CE .(2)如图2,在边BC 上取一点E ,满足BE 2=BC•CE ,连接AE 交CM 于点G ,连接BG 并延长交CD 于点F ,求tan ∠CBF 的值.【解】2016年中考1.(2016•安徽8)如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段AC 的长为( ) A .4 B .4 2 C .6D .4 32.(2016•安徽23)如图1,A ,B 分别在射线OM ,ON 上,且∠MON 为钝角,现以线段OA ,OB 为斜边向∠MON 的外侧作等腰直角三角形,分别是△OAP ,△OBQ ,点C ,D ,E 分别是OA ,OB ,AB 的中点. (1)求证:△PCE ≌△EDQ ; (2)延长PC ,QD 交于点R . ①如图2,若∠MON=150°,求证:△ABR 为等边三角形;②如图3,若△ARB ∽△PEQ ,求∠MON大小和ABPQ 的值.【解】2015年中考1.(2015•安徽)如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD=∠BGC . (1)求证:AD=BC ;(2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求ADEF 的值.【解】考点演练考点一、比例线段1.(2017•兰州)已知2x=3y (y≠0),则下面结论成立的是( )A .x y =32B .x 3=2yC .x y =23D .x 2=y 32.(2017•娄底)湖南地图出版社首发的竖版《中华人民共和国地图》,将南海诸岛与中国大陆按同比例尺1:6700000表示出来,使读者能够全面、直观地认识我国版图,若在这种地图上量得我国南北的图上距离是82.09厘米,则我国南北的实际距离大约是 千米(结果精确到1千米).3.(2017•六盘水)矩形的长与宽分别为a 、b ,下列数据能构成黄金矩形的是( ) A .a=4,b=5+2 B .a=4,b=5-26.(2017•重庆)已知△ABC ∽△DEF ,且相似比为1:2,则△ABC 与△DEF 的面积比为( )A .1: 4B .4:1C .1:2D .2:1考点二、相似三角形7.(2017•枣庄)如图,在△ABC 中,∠A=78°,AB=4,AC=6,将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .8.(2017•包头)如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .若AC=3,AB=5,则CE 的长为( ) A .32 B .43 C .53 D .85(第8题图) (第10题图)9.(2017•重庆)若△ABC ∽△DEF ,相似比为3:2,则对应高的比为( )A .3:2B .3:5C .9:4D .4:9 10.(2017•连云港)如图,已知△ABC ∽△DEF ,AB :DE=1:2,则下列等式一定成立的是( ) A .BC DF =12B .∠A 的度数∠D 的度数度数=12C .△ABC 的面积△DEF的面积=12D .△ABC 的周长△DEF 的周长=1211.(2017•齐齐哈尔)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A=46°,则∠ACB 的度数为 .上的一点,若∠ACD=∠B ,AD=1,AC=2,△ADC 的面积为1,则△BCD 的面积为( ) A .1 B .2 C .3 D .4(第13题图)(第14题图)14.(2017•青海)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交DB于点F,则△DEF的面积与△BAF的面积之比为()A.1:3 B.3:4 C.1:9 D.9:1615.(2017•深圳)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=1316,其中正确结论的个数是()A.1 B.2 C.3 D.4(第15题图)(第16题图)16.(2017•泰安)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18 B.1095C.965D.25317.(2017•随州)如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()A.1个B.2个C.3个D.4个(第17题图)(第18题图)18.(2017•牡丹江)如图,在正方形ABCD 中,点E,F分别在边BC,DC上,AE、AF分别交BD于点M,N,连接CN、EN,且CN=EN.下列结论:①AN=EN,AN⊥EN;②BE+DF=EF;③∠DFE=2∠AMN;④EF2=2BM2+2DN2;⑤图中只有4对相似三角形.其中正确结论的个数是()A.5 B.4 C.3 D.219.(2017•东营)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC.其中正确的是()A.①②③④B.②③C.①②④D.①③④(第19题图)(第20题图)20.(2017•淄博)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.52B.83C.103D.15421.(2017•眉山)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺B.57.5尺C.6.25尺D.56.5尺(第21题图)(第22题图)22.(2017•绥化)如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①AFFD=12;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③④D.①②③23.(2017•朝阳)如图,在矩形ABCD中,DE平分∠ADC交BC于点E,点F是CD边上一点(不与点D重合).点P为DE上一动点,PE<PD,将∠DPF 绕点P逆时针旋转90°后,角的两边交射线DA于H,G两点,有下列结论:①DH=DE;②DP=DG;③DG+DF=2DP;④DP•DE=DH•DC,其中一定正确的是()A.①②B.②③C.①④D.③④(0第23题图)(第24题图)24.(2017•云南)如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,ADAB=13,则AD+DE+AEAB+BC+AC= .25.(2017•湘潭)如图,在△ABC中,D、E分别是边AB、AC的中点,则△ADE与△ABC的面积比S△ADE:S△ABC= .(第25题图)(第26题图)26.(2017•深圳)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP= .27.(2017•柳州)如图,在△ABC中,D,E分别为AB,AC的中点,BE交CD于点O,连接DE.有下列结论:①DE=12BC;②△BOD∽△COE;③BO=2EO;④AO的延长线经过BC的中点.其中正确的是(填写所有正确结论的编号)28.(2017•鞍山)如图,在△ABC中,AB=AC=6,∠A=2∠BDC,BD交AC边于点E,且AE=4,则BE•DE=.(第28题图)(第29题图)29.(2017•杭州)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于.30.(2017•绵阳)将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AD:AB=1:3,则MD+12MA•DN的最小值为.(第30题图)(第31题图)31.(2017•绵阳)如图,过锐角△ABC的顶点A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延长线于点F.在AF上取点M,使得AM=13AF,连接CM并延长交直线DE于点H.若AC=2,△AMH的面积是112,则1tan∠ACH的值是.32.(2017•六盘水)如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF= .(第32题图)(第34题图)33.(2017•随州)在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=时,以A、D、E为顶点的三角形与△ABC相似.34.(2017•桂林)如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,过点A 作EA ⊥CA 交DB 的延长线于点E ,若AB=3,BC=4,则AOAE 的值为 .35.(2017•莱芜)如图,在矩形ABCD 中,BE ⊥AC 分别交AC 、AD 于点F 、E ,若AD=1,AB=CF ,则AE= .(第35题图) (第36题图)36.(2017•内江)如图,正方形ABCD 中,BC=2,点M 是边AB 的中点,连接DM ,DM 与AC 交于点P ,点E 在DC 上,点F 在DP 上,且∠DFE=45°.若PF=56,则CE= .37.(2017•阿坝州)如图,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P 为射线BD ,CE 的交点. (1)求证:BD=CE ;(2)若AB=2,AD=1,把△ADE 绕点A 旋转,当∠EAC=90°时,求PB 的长;【解】考点三、位似变换38.(2017•绥化)如图,△A′B′C′是△ABC 以点O 为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC 的面积比是4:9,则OB′:OB 为( A ) A .2:3 B .3:2 C .4:5 D.4:9(第38题图) (第39题图)39.(2017•成都)如图,四边形ABCD 和A′B′C′D′是以点O 为位似中心的位似图形,若OA :OA′=2:3,则四边形ABCD 与四边形A′B′C′D′的面积比为( A )A .4:9B .2:5C .2:3D .2: 3 40.(2017•兰州)如图,四边形ABCD 与四边形EFGH 位似,位似中心点是O ,OE OA =35,则FG BC = 35.(0第40题图) (第41题图) 41.(2017•阿坝州)如图,在平面直角坐标系中,已知A (1,0),D (3,0),△ABC 与△DEF 位似,43.(2017•枣庄)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,-4).(1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.【解】中考预测一、选择题(每小题4分满分40分)1.(2017•杭州)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,若BD=2AD ,则( ) A .AD AB =12 B .AE EC =12C .AD EC =12 D .DE BC =122.(2016•山西)宽与长的比是5–12(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD 、BC 的中点E 、F ,连接EF :以点F 为圆心,以FD 为半径画弧,交BC 的延长线于点G ;作GH ⊥AD ,交AD 的延长线于点H ,则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH3.(2017•通辽)志远要在报纸上刊登广告,一块10cm×5cm 的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( ) A .540元 B .1080元 C .1620元 D .1800元4.(2017•贺州)如图,在△ABC 中,点D 、E 分别为AB 、AC 的中点,则△ADE 与四边形BCED 的面积比为( )A .1:1B .1:2C .1:3D .1:4(第4题图) (第5题图)5.(2017•哈尔滨)如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,点F 为BC 边上一点,连接AF 交DE 于点G ,则下列结论中一定正确的是( )A .AD AB =AE EC B .AG GF =AE BDC .BD AD =CE AE D .AG AF =AC EC6.(2017•恩施州)如图,在△ABC 中,DE ∥BC ,∠ADE=∠EFC ,AD :BD=5:3,CF=6,则DE 的长为( )A .6B .8C .10D .12(第6题图) (第7题图)7.(2017•遵义)如图,△ABC 中,E 是BC 中点,AD 是∠BAC 的平分线,EF ∥AD 交AC 于F .若AB=11,AC=15,则FC 的长为( ) A .11 B .12 C .13 D .148.(2017•常州)如图,已知矩形ABCD 的顶点A ,D 分别落在x 轴、y 轴上,OD=2OA=6,AD :AB=3:1,则点C 的坐标是( ) A .(2,7) B .(3,7) C .(3,8) D.(4,8)(第8题图) (第9题图)9.(2017•仙桃)如图,矩形ABCD 中,AE ⊥BD 于点E ,CF 平分∠BCD ,交EA 的延长线于点F ,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD ;②∠DBC=30°;③AE=455;④AF=25,其中正确结论的个数有( )A .1个B .2个C .3个D .4个 10.(2017•贵港)如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),CN ⊥DM ,CN 与AB 交于点N ,连接OM ,ON,MN.下列五个结论:①△CNB ≌△DMC ; ②△CON ≌△DOM ; ③△OMN ∽△OAD ; ④AN 2+CM 2=MN 2;⑤若AB=2,则S △OMN 的最小值是12.其中正确结论的个数是( )A .2B .3C .4D .5二、填空题(每小题5分,满分20分)11.(2017•北京)如图,在△ABC 中,M 、N 分别为AC ,(第11题图) (第12题图)12.(2017•长沙)如图,△ABO 三个顶点的坐标分别为A (2,4),B (6,0),O (0,0),以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到△A′B′O ,已知点B′的坐标是(3,0),则点A′的坐标是 .13.(2017•攀枝花)如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CFCE=.(第13题图) (第14题图)14.(2017•广元)如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为F ,连结DF ,下列四个结论:①△AEF ∽△CAB ;②tan ∠CAD=2;③DF=DC ;④CF=2AF ,正确的是 .三、计算题(每小题8分,满分16分)15.如图,已知:∠BAC=∠EAD ,AB=20.4,AC=48,AE=17,AD=40.求证:△ABC ∽△AED . 【解】16.(2017•雅安)如图,△ABC 中,A (-4,4),B (-4,-2),C (-2,2).(1)请画出将△ABC 向右平移8个单位长度后的△A 1B l C 1;(2)求出∠A 1B l C 1的余弦值;(3)以O 为位似中心,将△A 1B l C 1缩小为原来的12,得到△A 2B 2C 2,请在y 轴右侧画出△A 2B 2C 2. 【解】四、(每小题8分,满分16分)17.(2017•毕节市)如图,在▱ABCD 中 过点A 作AE ⊥DC ,垂足为E ,连接BE ,F 为BE 上一点,且∠AFE=∠D .(1)求证:△ABF ∽△BEC ;(2)若AD=5,AB=8,sinD=45,求AF 的长.【解】18.(2017•宿迁)如图,在△ABC 中,AB=AC ,点E 在边BC 上移动(点E 不与点B ,C 重合),满足∠DEF=∠B ,且点D 、F 分别在边AB 、AC 上. (1)求证:△BDE ∽△CEF ; (2)当点E 移动到BC 的中点时,求证:FE平分∠DFC.【解】五、(每小题10分,满分20分)19.(2017•泰安)如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.【解】20.(2017•来宾)如图,在正方形ABCD中,H为CD的中点,延长AH至F,使AH=3FH,过F作FG⊥CD,垂足为G,过F作BC的垂线交BC的延长线于点E.(1)求证:△ADH∽△FGH;(2)求证:四边形CEFG是正方形.【解】六、(本题满分12分)21.(2017•天水)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E 与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.【解】七、(本题满分12分)22.(2017•绥化)如图,在矩形ABCD中,E为AB 边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.(1)求证:DE=DC;(2)求证:AF⊥BF;(3)当AF•GF=28时,请直接写出CE的长.【解】八、(本题满分14分)23.(2017•常德)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG 交AD于M,求证:①GM=2MC;②AG2=AF•AC.【解】。
2018中考专题相似三角形
2020中考数学专题相似形(共40题)1.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;2.如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.3.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.4.如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF ⊥DE,垂足为F,BF分别交AC于H,交CD于G.(1)求证:BG=DE;(2)若点G为CD的中点,求的值.5.(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.6.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.7.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.8.如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.(1)求证:DE=DC;(2)求证:AF⊥BF;(3)当AF•GF=28时,请直接写出CE的长.9.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图1,当∠ABC=45°时,求证:AD=DE;(2)如图2,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由.10.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD 于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.11.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.12.将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图2中,若AP1=a,则CQ等于多少?(3)将图2中△A1B1C绕点C顺时针旋转到△A2B2C(如图3),点P2是A2C与AP1的交点.当旋转角为多少度时,有△AP1C∽△CP1P2?这时线段CP1与P1P2之间存在一个怎样的数量关系?.13.把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F 在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;(3)当t为何值时,△APQ是等腰三角形.14.△ABC,∠A、∠B、∠C的对边分别是a、b、c,一条直线DE与边AC相交于点D,与边AB相交于点E.(1)如图①,若DE将△ABC分成周长相等的两部分,则AD+AE等于多少;(用a、b、c表示)(2)如图②,若AC=3,AB=5,BC=4.DE将△ABC分成周长、面积相等的两部分,求AD;(3)如图③,若DE将△ABC分成周长、面积相等的两部分,且DE∥BC,则a、b、c满足什么关系?15.已知:如图,四边形ABCD是正方形,∠PAQ=45°,将∠PAQ绕着正方形的顶点A旋转,使它与正方形ABCD的两个外角∠EBC和∠FDC的平分线分别交于点M和N,连接MN.(1)求证:△ABM∽△NDA;(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.16.如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;(2)在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.17.△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,∠EDF=∠B.(1)如图1,求证:DE•CD=DF•BE(2)D为BC中点如图2,连接EF.①求证:ED平分∠BEF;②若四边形AEDF为菱形,求∠BAC的度数及的值.18.如图,在△ABC 中,点P是AC边上的一点,过点P作与BC平行的直线PQ,交AB于点Q,点D在线段BC上,联接AD交线段PQ于点E,且=,点G 在BC延长线上,∠ACG的平分线交直线PQ于点F.(1)求证:PC=PE;(2)当P是边AC的中点时,求证:四边形AECF是矩形.19.如图,已知△ABC中,AC=BC,点D、E、F分别是线段AC、BC、AD的中点,BF、ED的延长线交于点G,连接GC.(1)求证:AB=GD;(2)如图2,当CG=EG时,求的值.20.如图,在△ABC中,D、E分别为AB、AC上的点,线段BE、CD相交于点O,且∠DCB=∠EBC=∠A.(1)求证:△BOD∽△BAE;(2)求证:BD=CE;(3)若M、N分别是BE、CE的中点,过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?21.如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC 交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).(1)当t=1时,KE=,EN=;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?22.如图(1),在△ABC中,AD是BC边的中线,过A点作AE∥BC与过D点作DE∥AB交于点E,连接CE.(1)求证:四边形ADCE是平行四边形.(2)连接BE,AC分别与BE、DE交于点F、G,如图(2),若AC=6,求FG的长.23.已知:在正方形ABCD中,点E、F分别是CB、CD延长线上的点,且BE=DF,联结AE、AF、DE、DE交AB于点M.(1)如图1,当E、A、F在一直线上时,求证:点M为ED中点;(2)如图2,当AF∥ED,求证:AM2=AB•BM.24.已知,如图1,点D、E分别在AB,AC上,且=.(1)求证:DE∥BC.(2)已知,如图2,在△ABC中,点D为边AC上任意一点,连结BD,取BD中点E,连结CE并延长CE交边AB于点F,求证:=.(3)在(2)的条件下,若AB=AC,AF=CD,求的值.25.已知△ABC,AC=BC,点E,F在直线AB上,∠ECF=∠A.(1)如图1,点E,F在AB上时,求证:AC2=AF•BE;(2)如图2,点E,F在AB及其延长线上,∠A=60°,AB=4,BE=3,求BF的长.26.如图,正方形ABCD,∠EAF=45°.交BC、CD于E、F,交BD于H、G.(1)求证:AD2=BG•DH;(2)求证:CE=DG;(3)求证:EF=HG.27.如图,C为线段BD上一动点,过B、D分别作BD的垂线,使AB=BC,DE=DB,连接AD、AC、BE,过B作AD的垂线,垂足为F,连接CE、EF.(1)求证:AC•DF=BF•BD;(2)点C运动的过程中,∠CFE的度数保持不变,求出这个度数;(3)当点C运动到什么位置时,CE∥BF?并说明理由.28.如图,在△ABC中,点D在边AB上(不与A,B重合),DE∥BC交AC于点E,将△ADE沿直线DE翻折,得到△A′DE,直线DA′,EA′分别交直线BC于点M,N.(1)求证:DB=DM.(2)若=2,DE=6,求线段MN的长.(3)若=n(n≠1),DE=a,则线段MN的长为(用含n的代数式表示).29.如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DC上,点A、D、G在同一直线上,且AD=3,DE=1,连接AC、CG、AE,并延长AE交OG于点H.(1)求证:∠DAE=∠DCG.(2)求线段HE的长.30.如图,△ABC中,点E、F分别在边AB,AC上,BF与CE相交于点P,且∠1=∠2=∠A.(1)如图1,若AB=AC,求证:BE=CF;(2)若图2,若AB≠AC,①(1)中的结论是否成立?请给出你的判断并说明理由;②求证:=.31.如图1,在锐角△ABC中,D、E分别是AB、BC的中点,点F在AC上,且满足∠AFE=∠A,DM∥EF交AC于点M.(1)证明:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图2,求证:△DEG∽△ECF;(3)在图2中,取CE上一点H,使得∠CFH=∠B,若BG=5,求EH的长.32.如图,正方形ABCD中,边长为12,DE⊥DC交AB于点E,DF平分∠EDC 交BC于点F,连接EF.(1)求证:EF=CF;(2)当=时,求EF的长.33.如图,已知在△ABC中,P为边AB上一点,连接CP,M为CP的中点,连接BM并延长,交AC于点D,N为AP的中点,连接MN.若∠ACP=∠ABD.(1)求证:AC•MN=BN•AP;(2)若AB=3,AC=2,求AP的长.34.如图,已知AC、EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°,当四边形ABCD和EFCG均为正方形时,连接BF.(1)求证:△CAE∽△CBF;(2)若BE=1,AE=2,求CE的长.35.如图①,矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°,将∠MPN绕点P 从PB处开始按顺时针方向旋转,PM交边AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC处时,∠MPN的旋转随即停止.(1)特殊情形:如图②,发现当PM过点A时,PN也恰巧过点D,此时,△ABP △PCD(填“≌”或“~”);(2)类比探究:如图③,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由.36.如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1、4、25.则△ABC的面积是.37.如图,△ABC中,∠ACB=90°,AC=5,BC=12,CO⊥AB于点O,D是线段OB 上一点,DE=2,ED∥AC(∠ADE<90°),连接BE、CD.设BE、CD的中点分别为P、Q.(1)求AO的长;(2)求PQ的长;(3)设PQ与AB的交点为M,请直接写出|PM﹣MQ|的值.38.尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.39.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.40.如图,四边形中ABCD中,E,F分别是AB,CD的中点,P为对角线AC延长线上的任意一点,PF交AD于M,PE交BC于N,EF交MN于K.求证:K是线段MN的中点.参考答案与试题解析(共40题)1.(2017•阿坝州)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;【解答】解:(1)∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE.∴△ADB≌△AEC.∴BD=CE.(2)解:①当点E在AB上时,BE=AB﹣AE=1.∵∠EAC=90°,∴CE==.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=.∴=.∴PB=.②当点E在BA延长线上时,BE=3.∵∠EAC=90°,∴CE==.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC.∴=.∴=.∴PB=.综上所述,PB的长为或.2.(2017•常德)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF ⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.【解答】证明:(1)在Rt△ABE和Rt△DBE中,,∴△ABE≌△DBE;(2)①过G作GH∥AD交BC于H,∵AG=BG,∴BH=DH,∵BD=4DC,设DC=1,BD=4,∴BH=DH=2,∵GH∥AD,∴==,∴GM=2MC;②过C作CN⊥AC交AD的延长线于N,则CN∥AG,∴△AGM∽△NCM,∴=,由①知GM=2MC,∴2NC=AG,∵∠BAC=∠AEB=90°,∴∠ABF=∠CAN=90°﹣∠BAE,∴△ACN∽△BAF,∴=,∵AB=2AG,∴=,∴2CN•AG=AF•AC,∴AG2=AF•AC.3.(2017•杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG ⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=4.(2017•眉山)如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交CD于G.(1)求证:BG=DE;(2)若点G为CD的中点,求的值.【解答】解:(1)∵BF⊥DE,∴∠GFD=90°,∵∠BCG=90°,∠BGC=∠DGF,∴∠CBG=∠CDE,在△BCG与△DCE中,∴△BCG≌△DCE(ASA),∴BG=DE,(2)设CG=1,∵G为CD的中点,∴GD=CG=1,由(1)可知:△BCG≌△DCE(ASA),∴CG=CE=1,∴由勾股定理可知:DE=BG=,∵sin∠CDE==,∴GF=,∵AB∥CG,∴△ABH∽△CGH,∴=,∴BH=,GH=,∴=5.(2017•河池)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AE=BF,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴=,∴AE=BF.6.(2017•泰安)如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.【解答】(1)证明:∵AB=AD,AC平分∠BAD,∴AC⊥BD,∴∠ACD+∠BDC=90°,∵AC=AD,∴∠ACD=∠ADC,∴∠ADC+∠BDC=90°,∵PD⊥AD,∴∠ADC+∠PDC=90°,∴∠BDC=∠PDC;(2)解:过点C作CM⊥PD于点M,∵∠BDC=∠PDC,∴CE=CM,∵∠CMP=∠ADP=90°,∠P=∠P,∴△CPM∽△APD,∴=,设CM=CE=x,∵CE:CP=2:3,∴PC=x,∵AB=AD=AC=1,∴=,解得:x=,故AE=1﹣=.7.(2017•天水)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴=,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3,∴BC=6.8.(2017•绥化)如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F 为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.(1)求证:DE=DC;(2)求证:AF⊥BF;(3)当AF•GF=28时,请直接写出CE的长.【解答】解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠DCE=∠CEB,∵EC平分∠DEB,∴∠DEC=∠CEB,∴∠DCE=∠DEC,∴DE=DC;(2)如图,连接DF,∵DE=DC,F为CE的中点,∴DF⊥EC,∴∠DFC=90°,在矩形ABCD中,AB=DC,∠ABC=90°,∴BF=CF=EF=EC,∴∠ABF=∠CEB,∵∠DCE=∠CEB,∴∠ABF=∠DCF,在△ABF和△DCF中,,∴△ABF≌△DCF(SAS),∴∠AFB=∠DFC=90°,∴AF⊥BF;(3)CE=4.理由如下:∵AF⊥BF,∴∠BAF+∠ABF=90°,∵EH∥BC,∠ABC=90°,∴∠BEH=90°,∴∠FEH+∠CEB=90°,∵∠ABF=∠CEB,∴∠BAF=∠FEH,∵∠EFG=∠AFE,∴△EFG∽△AFE,∴=,即EF2=AF•GF,∵AF•GF=28,∴EF=2,∴CE=2EF=4.9.(2017•雨城区校级自主招生)在Rt△ABC中,∠BAC=90°,过点B的直线MN ∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图1,当∠ABC=45°时,求证:AD=DE;(2)如图2,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由.【解答】(1)证明:如图1,过点D作DF⊥BC,交AB于点F,则∠BDE+∠FDE=90°,∵DE⊥AD,∴∠FDE+∠ADF=90°,∴∠BDE=∠ADF,∵∠BAC=90°,∠ABC=45°,∴∠C=45°,∵MN∥AC,∴∠EBD=180°﹣∠C=135°,∵∠BFD=45°,DF⊥BC,∴∠BFD=45°,BD=DF,∴∠AFD=135°,∴∠EBD=∠AFD,在△BDE和△FDA中,∴△BDE≌△FDA(ASA),∴AD=DE;(2)解:DE=AD,理由:如图2,过点D作DG⊥BC,交AB于点G,则∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠BAC=90°,∠ABC=30°,∴∠C=60°,∵MN∥AC,∴∠EBD=180°﹣∠C=120°,∵∠ABC=30°,DG⊥BC,∴∠BGD=60°,∴∠AGD=120°,∴∠EBD=∠AGD,∴△BDE∽△GDA,∴=,在Rt△BDG中,=tan30°=,∴DE=AD.10.(2017•深圳模拟)如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.【解答】(1)证明:如图,在正方形ABCD中,AD=AB=2,∵AE=AB,∴AD=AE,∴∠AED=∠ADE=45°,又∵FG⊥DE,∴在Rt△EGR中,∠GER=∠GRE=45°,∴在Rt△ARF中,∠FRA=∠AFR=45°,∴∠FRA=∠RFA=45°,∴AF=AR;(2)解:①如图,当四边形PRBC是矩形时,则有PR∥BC,∴AF∥PR,∴△EAF∽△ERP,∴,即:由(1)得AF=AR,∴,解得:或(不合题意,舍去),∴,∵点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,∴(秒);②若PR=PB,过点P作PK⊥AB于K,设FA=x,则RK=BR=(2﹣x),∵△EFA∽△EPK,∴,即:=,解得:x=±﹣3(舍去负值);∴t=(秒);若PB=RB,则△EFA∽△EPB,∴=,∴,∴BP=AB=×2=∴CP=BC﹣BP=2﹣=,∴(秒).综上所述,当PR=PB时,t=;当PB=RB时,秒.11.(2017•江汉区校级模拟)如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.【解答】解:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,∵BD=,∴AB=1,∴正方形ABCD的边长为1;(2)CN=2EM证明方法一、理由:∵四边形ABCD是正方形,∴AC⊥BD,OA=OC∵CF=CA,CE是∠ACF的平分线,∴CE⊥AF,AE=FE∴EO为△AFC的中位线∴EO∥BC∴∴在Rt△AEN中,OA=OC∴EO=OC=AC,∴CM=EM∵CE平分∠ACF,∴∠OCM=∠BCN,∵∠NBC=∠COM=90°,∴△CBN∽△COM,∴,∴CN=CM,即CN=2EM.证明方法二、∵四边形ABCD是正方形,∴∠BAC=45°=∠DBC,由(1)知,在Rt△ACE中,EO=AC=CO,∴∠OEC=∠OCE,∵CE平分∠ACF,∴∠OCE=∠ECB=∠OEC,∴EO∥BC,∴∠EOM=∠DBC=45°,∵∠OEM=∠OCE∴△EOM∽△CAN,∴,∴CN=2CM.12.(2017•济宁二模)将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图2中,若AP1=a,则CQ等于多少?(3)将图2中△A1B1C绕点C顺时针旋转到△A2B2C(如图3),点P2是A2C与AP1的交点.当旋转角为多少度时,有△AP1C∽△CP1P2?这时线段CP1与P1P2之间存在一个怎样的数量关系?.【解答】(1)证明:∵∠B1CB=45°,∠B1CA1=90°,∴∠B1CQ=∠BCP1=45°;又B1C=BC,∠B1=∠B,∴△B1CQ≌△BCP1(ASA)∴CQ=CP1;(2)解:如图:作P1D⊥AC于D,∵∠A=30°,∴P1D=AP1;∵∠P1CD=45°,∴=sin45°=,∴CP1=P1D=AP1;又AP1=a,CQ=CP1,∴CQ=a;(3)解:当∠P1CP2=∠P1AC=30°时,由于∠CP1P2=∠AP1C,则△AP1C∽△CP1P2,所以将图2中△A1B1C绕点C顺时针旋转30°到△A2B2C时,有△AP1C∽△CP1P2.这时==,∴P1P2=CP1.13.(2017•惠阳区模拟)把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s 的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A 出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;(3)当t为何值时,△APQ是等腰三角形.【解答】(1)解:AP=2t∵∠EDF=90°,∠DEF=45°,∴∠CQE=45°=∠DEF,∴CQ=CE=t,∴AQ=8﹣t,t的取值范围是:0≤t≤5;(2)过点P作PG⊥x轴于G,可求得AB=10,SinB=,PB=10﹣2t,EB=6﹣t,∴PG=PBSinB=(10﹣2t)∴y=S△ABC ﹣S△PBE﹣S△QCE==∴当(在0≤t≤5内),y有最大值,y最大值=(cm2)(3)若AP=AQ,则有2t=8﹣t解得:(s)若AP=PQ,如图①:过点P作PH⊥AC,则AH=QH=,PH∥BC ∴△APH∽△ABC,∴,即,解得:(s)若AQ=PQ,如图②:过点Q作QI⊥AB,则AI=PI=AP=t∵∠AIQ=∠ACB=90°∠A=∠A,∴△AQI∽△ABC∴即,解得:(s)综上所述,当或或时,△APQ是等腰三角形.14.(2017•庐阳区一模)△ABC,∠A、∠B、∠C的对边分别是a、b、c,一条直线DE与边AC相交于点D,与边AB相交于点E.(1)如图①,若DE将△ABC分成周长相等的两部分,则AD+AE等于多少;(用a、b、c表示)(2)如图②,若AC=3,AB=5,BC=4.DE将△ABC分成周长、面积相等的两部分,求AD;(3)如图③,若DE将△ABC分成周长、面积相等的两部分,且DE∥BC,则a、b、c满足什么关系?【解答】解:(1)∵DE将△ABC分成周长相等的两部分,∴AD+AE=CD+BC+BE=(AB+AC+BC)=(a+b+c);(2)设AD=x,AE=6﹣x,=AD•AE•sinA=3,∵S△ADE即:x(6﹣x)•=3,解得:x1=(舍去),x2=,∴AD=;(3)∵DE∥BC,∴△ADE∽△ABC,∴,∵=,∴AD=b,AE=c,∴b c=(a+b+c),∴=﹣1.15.(2017•嘉兴模拟)已知:如图,四边形ABCD是正方形,∠PAQ=45°,将∠PAQ绕着正方形的顶点A旋转,使它与正方形ABCD的两个外角∠EBC和∠FDC 的平分线分别交于点M和N,连接MN.(1)求证:△ABM∽△NDA;(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,∵BM、DN分别是正方形的两个外角平分线,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM=∠AND=45°﹣∠DAN,∴△ABM∽△NDA;(2)解:当∠BAM=22.5°时,四边形BMND为矩形;理由如下:∵∠BAM=22.5°,∠EBM=45°,∴∠AMB=22.5°,∴∠BAM=∠AMB,∴AB=BM,同理AD=DN,∵AB=AD,∴BM=DN,∵四边形ABCD是正方形∴∠ABD=∠ADB=45°,∴∠BDN=∠DBM=90°∴∠BDN+∠DBM=180°,∴BM∥DN∴四边形BMND为平行四边形,∵∠BDN=90°,∴四边形BMND为矩形.16.(2017•肥城市三模)如图,在锐角△ABC中,D,E分别为AB,BC中点,F 为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;(2)在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.【解答】(1)证明:如图1所示,∴D,E分别为AB,BC中点,∴DE∥AC∵DM∥EF,∴四边形DEFM是平行四边形,∴DM=EF,如图2所示,∵D、E分别是AB、BC的中点,∴DE∥AC,∴∠BDE=∠A,∠DEG=∠C,∵∠AFE=∠A,∴∠BDE=∠AFE,∴∠BDG+∠GDE=∠C+∠FEC,∵∠BDG=∠C,∴∠GDE=∠FEC,∴△DEG∽△ECF;∴,∴,∴,∴DG•CF=DM•EG;(2)解:如图3所示,∵∠BDG=∠C=∠DEB,∠B=∠B,∴△BDG∽△BED,∴,∴BD2=BG•BE,∵∠AFE=∠A,∠CFH=∠B,∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,又∵∠FEH=∠CEF,∴△EFH∽△ECF,∴=,∴EF2=EH•EC,∵DE∥AC,DM∥EF,∴四边形DEFM是平行四边形,∴EF=DM=DA=BD,∴BG•BE=EH•EC,∵BE=EC,∴EH=BG=1.17.(2017•肥城市模拟)△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,∠EDF=∠B.(1)如图1,求证:DE•CD=DF•BE(2)D为BC中点如图2,连接EF.①求证:ED平分∠BEF;②若四边形AEDF为菱形,求∠BAC的度数及的值.【解答】(1)证明:∵△ABC中,AB=AC,∴∠B=∠C.∵∠B+∠BDE+∠DEB=180°,∠BDE+∠EDF+∠FDC=180°,∠EDF=∠B,∴∠FDC=∠DEB,∴△BDE∽△CFD,∴,即DE•CD=DF•BE;(2)解:①由(1)证得△BDE∽△CFD,∴,∵D为BC中点,∴BD=CD,∴=,∵∠B=∠EDF,∴△BDE~△DFE,∴∠BED=∠DEF,∴ED平分∠BEF;②∵四边形AEDF为菱形,∴∠AEF=∠DEF,∵∠BED=∠DEF,∴∠AEF=60°,∵AE=AF,∴∠BAC=60°,∵∠BAC=60°,∴△ABC是等边三角形,∴∠B=60°,∴△BED是等边三角形,∴BE=DE,∵AE=DE,∴AE=AB,∴=.18.(2017•长宁区二模)如图,在△ABC 中,点P是AC边上的一点,过点P作与BC平行的直线PQ,交AB于点Q,点D在线段BC上,联接AD交线段PQ于点E,且=,点G在BC延长线上,∠ACG的平分线交直线PQ于点F.(1)求证:PC=PE;(2)当P是边AC的中点时,求证:四边形AECF是矩形.【解答】(1)证明:∵PQ∥BC,∴△AQE∽△ABD,△AEP∽△ADC,∴=,,∴=,∵=,∴=,∴PC=PE;(2)∵PF∥DG,∴∠PFC=∠FCG,∵CF平分∠PCG,∴∠PCF=∠FCG,∴∠PFC=∠FCG,∴PF=PC,∴PF=PE,∵P是边AC的中点,∴AP=CP,∴四边形AECF是平行四边形,∵PQ∥CD,∴∠PEC=∠DCE,∴∠PCE=∠DCE,∴∠PCE+∠PCF=(∠PCD+∠PCG)=90°,∴∠ECF=90°,∴平行四边形AECF是矩形.19.(2017•安徽模拟)如图,已知△ABC中,AC=BC,点D、E、F分别是线段AC、BC、AD的中点,BF、ED的延长线交于点G,连接GC.(1)求证:AB=GD;(2)如图2,当CG=EG时,求的值.。
全国2018年中考数学真题分类汇编第18讲相似三角形无答案
第 18 讲相像三角形知识点 1比率线段知识点 2平行线分线段成比率知识点 3相像三角形的性质知识点 4相像三角形的判断知识点 5相像多边形知识点 1 比率线段(2018 ·白银)已知a b(a 0,b0) ,以下变形错误的选项是()2 3A.a 2B . 2a 3b C.b 3D.3a 2bb 3 a 2(2018 ·成都)已知,且,则的值为 ___12_____ .知识点 2平行线分线段成比率(2018 ·嘉兴)(2018 ·哈尔滨)答案: D知识点 3相像三角形的性质A .1:1B . 1:3C .1:6D .1: 9(2018 ·重庆 A 卷)要制作两个形状同样的三角形框架 , 此中一个三角形的三边长分别为5cm , 6cm 和9cm ,另一个三角形的最短边长为 2.5cm ,则它的最长边为 CA. 3cmB. 4cmC. 4.5cmD. 5cm(2018 ·铜仁)( 2018 ·重庆 B 卷)(2018 ·自贡)如图,在⊿ ABC 中,点 D 、E 分别是 AB 、AC 的中点,若⊿ ADE 的面积为 4,则是⊿ ABC 的面积为 ( )A.8B.12C.14D.16( 2018 ·玉林)(2018 ·广东) 7. 在△ ABC 中, D 、 E 分别为边 AB 、 AC 的中点,则△ ADE 与△ ABC 的面积之比为( )A.1B.1 C.1 D.1 2346( 2018·乌鲁木齐)答案:D( 2018 ·河北)(2018 ·兰州)(2018 ·宜宾)如图,将△ABC沿 BC边上的中线AD平移到△ A' B' C'的地点,已知△ ABC的面积为9,阴影部分三角形的面积为 4. 若 AA'=1,则 A' D等于()A. 2B.32 3C. D.3 2(2018 ·随州)答案: C (2018 ·荆门)答案: C(2018 ·达州)如图,E, F是平行四边形ABCD 对角线 AC 上两点, AE CF 1AC.连结DE,DF 4并延伸,分别交AB, BC 于点 G, H ,连结GH,则SADC的值为()SBGHA.1B.2C.3D.1 2 3 4(2018 ·毕节)如图, 在平行四边形ABCD中 ,E 是 DC上的点 ,DE:EC=3:2, 连结 AE交 BD于点 F, 则△ DEF与△BAF的面积之比为( )A.2:5B.3:5C.9:25D.4:25 (2018 ·包头)(2018 ·连云港)(2018 ·赤峰)(2018 ·资阳)知识点 4相像三角形的判断(2018 ·德阳)(2018 ·枣庄)答案: A(2018 ·泸州)如图 4,正方形 ABCD中,E,F 分别在边 AD,CD上,AF,BE订交于点 G,若 AE=3ED,DF=CF,则AG的值是(C)GFA.4B.5C.6D.7 345 6(2018 ·恩施)如下图,在正方形ABCD 中, G 为 CD 边中点,连结AG 并延伸交 BC 边的延伸线于 E 点,对角线 BD 交 AG 于 F 点,已知 FG 2 ,则线段 AE 的长度为(D)A.6 B . 8 C . 10 D . 12(2018 ·黄冈)如图,在Rt△ ABC 中,ACB 90 ,CD为AB边上的高,CE为AB边上的中线,AD 2,CE 5,则 CD ( C )A.2B.3 C.4D.2 3(2018·扬州)(2018·永州)(2018 ·淄博)如图,在Rt ABC中,CM均分ACB交AB于点 M ,过点 M 作 MN //BC交 AC于点 N ,且 MN 均分 AMC ,若 AN 1,则 BC 的长为()A.4B.6C. 4 3 D . 8(2018 ·南通)正方形ABCD的边长AB 2 , E 为 AB 的中点, F 为 BC 的中点, AF 分别与 DE、BD 相交于点 M 、N ,则 MN 的长为( C )A.5 5B . 2 5 1C . 4 5D . 36 3 15 3( 2018·威海)矩形ABCD 与 CEFG 如图搁置,点B,C , E 共线,点 C, D ,G 共线,连结AF,取AF的中点 H ,连结 GH ,若 BC EF 2, CD CE 1,则 GH ( C )A. 1B. 2C. 2D. 53 2 2(2018 ·巴中)(2018 ·南充)(2018 ·上海)(2018 ·柳州)(2018 ·盐城)如图,在直角ABC 中, C 90 ,AC 6 , BC8, P 、Q分别为边 BC 、 AB 上的两个动点,若要使APQ 是等腰三角形且BPQ 是直角三角形,则AQ.(2018 ·云南)(2018 ·北京)如图,在矩形ABCD中,E是边AB的中点,连结DE交对角线AC于点F,若AB 4 ,AD 3 ,则 CF 的长为。
【精编版】数学中考专题训练——相似三角形与圆的综合
中考专题训练——相似三角形与圆的综合1.如图,AB是⊙O的直径,C是⊙O上一点,D是的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F.(1)求证:AE是⊙O的切线;(2)若⊙O的半径10,,求线段DH的长.2.如图,AD是⊙O的弦,PO交⊙O于点B,∠ABP=∠ABD,且AB2=PB•BD,连接P A.(1)求证:P A是⊙O的切线;(2)若P A=2PB=4,求BD的长.3.如图,在⊙O中,直径AB与弦CD相交于点H,点B是弧CD的中点,过点A作AE∥CD,交射线DO于点E,DE与⊙O交于点F,BF与CD交于点G.(1)求证:AE是⊙O的切线.(2)已知AO=5,AE=,求BG的长.4.如图,AB是⊙O的直径,C、D是⊙O上两点,且,过点D的直线DE⊥AC交AC的延长线于点E,交AB的延长线于点F,连接AD、OE交于点G.(1)求证:DE是⊙O的切线;(2)若,⊙O的半径为2,求阴影部分的面积.5.某数学小组在研究三角形的内切圆时,遇到了如下问题:如图①,已知等腰△ABC的底边AB为12,底边上的高CD为8,如何在这个等腰三角形中画出其内切圆?小红同学经过计算,在高CD上截取DO=3,以点O为圆心,以3为半径作的圆即为所求.(1)小红的方法是否正确?如果正确,给出理由;如果不正确,请给出你的方法.(2)如图②,在图①的基础上,以AB为边作一个正方形ABEF,连接FC并延长与BE 交于点G,则BG:GE的值为.6.如图,AB是⊙O的直径,CD是一条弦.过点A作DC延长线的垂线,垂足为点E.连接AC,AD.(1)证明:△ABD∽△ACE.(2)若,BD=5,CD=9.①求EC的长.②延长CD,AB交于点F,点G是弦CD上一点,且∠CAG=∠F,求CG的长.7.如图,△ABC内接于⊙O,BC是直径,AD平分∠BAC交于点D,EF切⊙O于D,BF ⊥AB交EF于F.(1)求证:四边形BCEF为平行四边形.(2)若BF=,AB=4,求AE的长.8.如图,AB为⊙O的直径,四边形ABCD内接于⊙O.点D为的中点,对角线AC,BD 交于点E,⊙O的切线AF交BD的延长线于点F,切点为A.(1)求证:AE=AF;(2)若AB=4,BF=5,求sin∠BDC的值.9.如图,在矩形ABCD中,以AB的中点O为圆心,以OA为半径作半圆,连接OD交半圆于点E,在上取点F,使=,连接BF,DF.(1)求证:DF与半圆相切;(2)如果AB=10,BF=6,求矩形ABCD的面积.10.如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P在OE延长线上,且满足∠PCA=∠ABC,连接P A,PC,AF.(1)求证:PC是⊙O的切线;(2)证明:PE•OD=DE•OE.11.如图,在Rt△ABC中,∠ACB=90°,以AB为直径作⊙O,过点B的切线交AC延长线于点D,点E为上一点,且BC=EC,连接BE交AC于点F.(1)求证:BC平分∠DBE;(2)若AB=2,tan E=,求EF的长.12.如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠F AC=∠BDC.(1)求证:AF是⊙O的切线;(2)若BC=6,sin B=,求⊙O的半径及OD的长.13.如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.14.如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC的角平分线AF交BC于点D,交⊙O于点E,连接BE和BF,∠F=∠ABE.(1)求证:BF是⊙O的切线;(2)若AC=5,AB=13,求CD的长.15.如图,在△ABC中,AD平分∠BAC交BC于点D,以AD为直径作⊙O交AC于点F,点B恰好落在⊙O上,过D点作⊙O的切线DE交AC于点E,连接DF.(1)求证:∠FDE=∠CDE;(2)若AB=12,tan∠C=,求线段DE的长.16.如图,以△ABC的一边AB为直径作⊙O,交BC于点D,交AC于点E,点D为BE的中点.(1)试判断△ABC的形状,并说明理由;(2)若直线l切⨀O于点D,与AC及AB的延长线分别交于点F、点G.∠BAC=45°,求的值.17.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.求证:(1)BC是⊙O的切线;(2)CD2=CE•CA.18.如图,AB是⊙O的直径,点C,D在⊙O上,且弧CD=弧CB,过点C作CE∥BD,交AB的延长线于点E,连接AC交BD于F.(1)求证:CE是⊙O的切线;(2)过点C作CH⊥AE于H点,CH交BD于M,若CA=CE=6,求CH和BF的长.19.如图,⊙O上有A,B,C三点,AC是直径,点D是的中点,连接CD交AB于点E,点F在AB延长线上且FC=FE.(1)若∠A=40°,求∠DCB的度数;(2)求证:CF是⊙O的切线;(3)若,BE=6,求⊙O的半径长.20.已知:如图,AB、AC是⊙O的两条弦,AB=AC,点M、N分别在弦AB、AC上,且AM=CN,AM<AN,联结OM、ON.(1)求证:OM=ON;(2)当∠BAC为锐角时,如果AO2=AM•AC,求证:四边形AMON为等腰梯形.21.如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O的直径.22.如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.(1)求证:△CED∽△BAD;(2)当DC=2AD时,求CE的长.23.如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AE=12,,求⊙O的半径和EF的长.参考答案与试题解析1.如图,AB是⊙O的直径,C是⊙O上一点,D是的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F.(1)求证:AE是⊙O的切线;(2)若⊙O的半径10,,求线段DH的长.【分析】(1)由垂径定理得出OD⊥AC,进而得出∠F AO+∠AOF=90°,由圆周角定理结合已知条件得出∠AOF=∠CAE,得出∠F AO+∠CAE=90°,即∠OAE=90°,即可证明AE是⊙O的切线;(2)连接AD,利用解直角三角形得出tan B==,设AD=3x,则BD=4x,AB=5x,由⊙O的半径10,得出AB=5x=20,求出x=4,求出AD=12,BD=16,继而证明△ADH∽△BDA,利用相似三角形的性质即可求出DH的长.【解答】(1)证明:如图1,∵D是的中点,∴OD⊥AC,∴∠AFO=90°,∴∠F AO+∠AOF=90°,∵∠AOF=2∠C,∠CAE=2∠C,∴∠AOF=∠CAE,∴∠F AO+∠CAE=90°,即∠OAE=90°,∵OA是半径,∴AE是⊙O的切线;(2)解:如图2,连接AD,∵∠C=∠B,,tan B=,∵AB是直径,∴∠ADB=90°,∴tan B==,设AD=3x,则BD=4x,AB=5x,∵⊙O的半径10,∴AB=5x=20,∴x=4,∴AD=3×4=12,BD=4×4=16,∵D是的中点,∴AD=CD=12,∴∠DAC=∠C,∵∠B=∠C,∴∠DAC=∠B,∵∠ADH=∠BDA∴△ADH∽△BDA,∴,即,∴DH=9.2.如图,AD是⊙O的弦,PO交⊙O于点B,∠ABP=∠ABD,且AB2=PB•BD,连接P A.(1)求证:P A是⊙O的切线;(2)若P A=2PB=4,求BD的长.【分析】(1)延长BO交⊙O于点E,连接AE,先证明△PBA∽△ABD,得出∠P AB=∠ADB,由圆周角定理得出∠P AB=∠E,由等腰三角形的性质得出∠OAE=∠E,进而得出∠P AB=∠OAE,由圆周角定理得出∠BAE=∠BAO+∠OAE=90°,进而得出∠BAO+∠P AB=∠P AO=90°,即可证明P A是⊙O的切线;(2)延长BO交⊙O于点E,连接AE,DE,利用勾股定理列方程求出⊙O的半径为3,进而得出OA=3,OP=5,BE=6,再证明△P AO∽△EDB,利用相似三角形的性质即可求出BD的长度.【解答】(1)证明:如图1,延长BO交⊙O于点E,连接AE,∵AB2=PB•BD,∴,∵∠ABP=∠ABD,∴△PBA∽△ABD,∴∠P AB=∠ADB,∵∠ADB=∠E,∴∠P AB=∠E,∵OA=OE,∴∠OAE=∠E,∴∠P AB=∠OAE,∵BE为直径,∴∠BAE=∠BAO+∠OAE=90°,∴∠BAO+∠P AB=∠P AO=90°,∵OA是半径,∴P A是⊙O的切线;(2)解:如图2,延长BO交⊙O于点E,连接AE,DE,∵P A=2PB=4,∴PB=2,设OA=OB=x,则OP=x+2,∵∠P AO=90°,∴P A2+AO2=OP2,即42+x2=(x+2)2,解得:x=3,∴OA=3,OP=2+3=5,BE=3+3=6,∵△PBA∽△ABD,∴∠P=∠BAD,∵∠BAD=∠BED,∴∠P=∠BED,∵BE为直径,∴∠BDE=90°,∴∠P AO=∠EDB=90°,∴△P AO∽△EDB,∴,即,∴BD=.3.如图,在⊙O中,直径AB与弦CD相交于点H,点B是弧CD的中点,过点A作AE∥CD,交射线DO于点E,DE与⊙O交于点F,BF与CD交于点G.(1)求证:AE是⊙O的切线.(2)已知AO=5,AE=,求BG的长.【分析】(1)利用垂径定理的推论得到AB⊥CD,利用平行线的性质和圆的切线的判定定理解答即可;(2)过点F作FM⊥AB于点M,利用勾股定理和相似三角形的判定与性质求出线段OE,OM,MF的长,利用全等三角形的判定与性质求得线段BH的长,利用勾股定理和相似三角形的判定与性质得出比例式即可求得结论.【解答】(1)证明:∵点B是弧CD的中点,AB为⊙O的直径,∴AB⊥CD,∵AE∥CD,∴AE⊥OA.∵OA为⊙O的半径,∴AE是⊙O的切线;(2)解:过点F作FM⊥AB于点M,如图,∵AO=5,AE=,AE⊥OA,∴OE==.∵AE⊥AB,FM⊥AB,∴FM∥AE,∴△OMF∽△OAE,∴,∴,∴OM=3,MF=4.∴BM=OB+OM=5+3=8,∴BF==4.在△OFM和△ODH中,,∴△OFM≌△ODH(AAS),∴OM=OH=3,∴BH=OB﹣OH=2.∵FM⊥AB,AB⊥CD,∴CD∥FM,∴△BGH∽△BFM,∴,∴,∴BG=.4.如图,AB是⊙O的直径,C、D是⊙O上两点,且,过点D的直线DE⊥AC交AC的延长线于点E,交AB的延长线于点F,连接AD、OE交于点G.(1)求证:DE是⊙O的切线;(2)若,⊙O的半径为2,求阴影部分的面积.【分析】(1)连接OD,证明DE是⊙O的切线,关键是证明OD⊥DE;(2)连接BD,根据(1)中OD∥AE得△OGD∽△AEG,从而求出AE的长,再根据△AED∽△ADB求出AD的长,再利用三角函数求出DF的长,利用S阴影=S△DOF﹣S扇形DOB求出阴影部分的面积.【解答】(1)证明:如图所示,连接OD,∵,∴∠CAD=∠DAB,∵OA=OD,∴∠DAB=∠ODA,∴∠CAD=∠ODA,∴OD//AE,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图所示,连接BD,∵OD//AE,∴△OGD∽△EGA,∴,∵,⊙O的半径为2,∴,∴AE=3.∵AB是⊙O的直径,DE⊥AE,∴∠AED=∠ADB=90°,∵∠CAD=∠DAB,∴△AED∽△ADB,∴,即,∴,在Rt△ADB中,,∴∠DAB=30°,∴∠EAF=60°,∠DOB=60°,∴∠F=30°,∵OD=2,∴,∴.5.某数学小组在研究三角形的内切圆时,遇到了如下问题:如图①,已知等腰△ABC的底边AB为12,底边上的高CD为8,如何在这个等腰三角形中画出其内切圆?小红同学经过计算,在高CD上截取DO=3,以点O为圆心,以3为半径作的圆即为所求.(1)小红的方法是否正确?如果正确,给出理由;如果不正确,请给出你的方法.(2)如图②,在图①的基础上,以AB为边作一个正方形ABEF,连接FC并延长与BE 交于点G,则BG:GE的值为.【分析】(1)过点O作OH⊥AC于点H,由等腰三角形的性质得出AD=BD=6,OC=5,由勾股定理得出AC=10,证明△CHO∽△CDA,,由相似三角形的性质得出OH=3,继而得出AC是⊙O的切线,同理,BC是⊙O的切线,AB是⊙O的切线,即可得出⊙O是等腰△ABC的内切圆;(2)延长DC交FE于点M,由正方形的性质得出BE=AB=12,EF∥AB,由CA=CB,CD⊥AB,得出AD=BD=6,DM⊥EF,继而得出FM=ME=6,DM=BE=12,由三角形中位线的性质得出GE=8,进而得出BG=4,即可求出BG:GE的值.【解答】解:(1)小红的方法正确,理由如下:如图①,过点O作OH⊥AC于点H,∵等腰△ABC的底边AB为12,底边上的高CD为8,OD=3,∴AD=BD=6,OC=CD﹣OD=8﹣3=5,∴AC===10,∵∠CHO=∠CDA=90°,∠HCO=∠DCA,∴△CHO∽△CDA,∴,即,∴OH=3,∵OH⊥AC,∴AC是⊙O的切线,同理,BC是⊙O的切线,∵OD⊥AB,OD=3,∴AB是⊙O的切线,∴⊙O是等腰△ABC的内切圆;(2)如图②,延长DC交FE于点M,∵四边形ABEF是正方形,AB=12,∴BE=AB=12,EF∥AB,∵CA=CB,CD⊥AB,∴AD=BD=6,DM⊥EF,∴FM=ME=6,DM=BE=12,∴MC是△EFG的中位线,MC=DM﹣CD=12﹣8=4,∴GE=2CM=2×4=8,∴BG=BE﹣GE=12﹣8=4,∴,故答案为:.6.如图,AB是⊙O的直径,CD是一条弦.过点A作DC延长线的垂线,垂足为点E.连接AC,AD.(1)证明:△ABD∽△ACE.(2)若,BD=5,CD=9.①求EC的长.②延长CD,AB交于点F,点G是弦CD上一点,且∠CAG=∠F,求CG的长.【分析】(1)利用圆内接四边形的性质求得∠ACD+∠ABD=180°,推出∠ABD=∠ACE,即可证明;(2)①由△ABD∽△ACE,推出AE=3CE,在Rt△ADE中,利用勾股定理求解即可;②证明△EAG∽△EDA,利用三角形的性质求解即可.【解答】(1)证明:∵AB是⊙O的直径,AE⊥CE,∴∠AEC=∠ADB=90°,∵四边形ABDC是圆内接四边形,∴∠ACD+∠ABD=180°,又∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD∽△ACE;(2)解:①在Rt△BDA中,AB=5,BD=5,∴AD==15,∵△ABD∽△ACE,∴,即,∴AE=3CE,在Rt△ADE中,AD2=AE2+DE2,∴152=(3CE)2+(9+CE)2,解得:CE=﹣(舍去)或CE=3;∴EC的长为3;②∵△ABD∽△ACE,∴∠BAD=∠CAE,∵∠CAG=∠F,∠EAG=∠CAE+∠CAG,∠EDA=∠BAD+∠F,∴∠EAG=∠EDA,∴△EAG∽△EDA,∴,∴AE2=GE•ED,即AE2=(EC+CG)•ED,∵CE=3,∴AE=3CE=9,∴92=(3+CG)×12,∴CG=.7.如图,△ABC内接于⊙O,BC是直径,AD平分∠BAC交于点D,EF切⊙O于D,BF ⊥AB交EF于F.(1)求证:四边形BCEF为平行四边形.(2)若BF=,AB=4,求AE的长.【分析】(1)连接OD,证明BF∥AE,BC∥EF,可得结论;(2)根据平行四边形的性质可得CE=BF=,如图,连接OD,过点C作CG⊥EF于G,证明四边形CODG是正方形,△ABC∽△GCE,列比例式可得AE的长.【解答】(1)证明:连接OD,∵BF⊥AB,∴∠ABF=90°,∵BC是⊙O的直径,∴∠BAC=90°,∴∠BAC+∠ABF=180°,∴BF∥AE,∵AD平分∠BAC,∴∠BAD=∠CAD,∴=,∴BC⊥OD,∵EF切⊙O于D,∴EF⊥OD,∴BC∥EF,∴四边形BCEF为平行四边形;(2)解:由(1)知:四边形BCEF为平行四边形,∴CE=BF=,如图,连接OD,过点C作CG⊥EF于G,∴∠COD=∠ODG=∠CGD=90°,∵OC=OD,∴四边形CODG是正方形,∴CG=OC,∠BCG=90°,∴∠ACB+∠ECG=90°,∵∠ACB+∠ABC=90°,∴∠ECG=∠ABC,∵∠CGE=∠BAC=90°,∴△ABC∽△GCE,∴=,设⊙O的半径是r,则BC=2r,∴=,∴r=(负值舍),∴BC=2,∴AC===2,∴AE=AC+CE=2+=.8.如图,AB为⊙O的直径,四边形ABCD内接于⊙O.点D为的中点,对角线AC,BD 交于点E,⊙O的切线AF交BD的延长线于点F,切点为A.(1)求证:AE=AF;(2)若AB=4,BF=5,求sin∠BDC的值.【分析】(1)由点D为的中点,可得∠CBD=∠ABD,根据AB为⊙O的直径,有∠AEF=∠BEC=90°﹣∠CBD,又AF是⊙O的切线,AB为⊙O的直径,有∠F=90°﹣∠ABD,即得∠AEF=∠F,AE=AF;(2)证明△ADF≌△ADE,得AE=AF,DE=DF,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明△BEC∽△AED,得BC,进而求得sin∠BAC 便可.【解答】(1)证明:∵点D为的中点,∴=,∴∠CBD=∠ABD,∵AB为⊙O的直径,∴∠ACB=90°,∴∠AEF=∠BEC=90°﹣∠CBD,∵AF是⊙O的切线,AB为⊙O的直径,∴∠BAF=90°,∴∠F=90°﹣∠ABD,∴∠AEF=∠F,∴AE=AF;(2)∵AF是⊙O的切线,∴∠F AB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠F AD=90°,∴∠ABD=∠F AD,∵∠ABD=∠CAD,∴∠F AD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF=AE,DF=DE,在Rt△ADE中,AB=4,BF=5,∴AF==3,∴AE=AF=3,∵S△ABF=AB•AF=BF•AD,∴AD===,∴DE===,∴BE=BF﹣2DE=,∵∠AED=∠BEC,∠ADE=∠BCE=90°,∴△BEC∽△AED,∴=,∴BC==,∴sin∠BAC==,∵∠BDC=∠BAC,在Rt△ACB中,∠ACB=90°∴sin∠BDC=.9.如图,在矩形ABCD中,以AB的中点O为圆心,以OA为半径作半圆,连接OD交半圆于点E,在上取点F,使=,连接BF,DF.(1)求证:DF与半圆相切;(2)如果AB=10,BF=6,求矩形ABCD的面积.【分析】(1)连接OF,证明△DAO≌△DFO(SAS),可得∠DAO=90°=∠DFO,即可得DF与半圆O相切;(2)连接AF,证明△AOD∽△FBA,可得=,DO=,在Rt△AOD中,AD==,即可得矩形ABCD的面积是.【解答】(1)证明:连接OF,如图:∵=,∴∠DOA=∠FOD,∵OA=OF,OD=OD,∴△DAO≌△DFO(SAS),∴∠DAO=∠DFO,∵四边形ABCD是矩形,∴∠DAO=90°=∠DFO,∴OF⊥DF,又OF是半圆O的半径,∴DF与半圆O相切;(2)解:连接AF,如图:∵AO=FO,∠DOA=∠DOF,∴DO⊥AF,∵AB为半圆直径,∴∠AFB=90°,∴BF⊥AF,∴DO∥BF,∴∠AOD=∠ABF,∵∠OAD=∠AFB=90°,∴△AOD∽△FBA,∴=,即=,∴DO=,在Rt△AOD中,AD===,∴矩形ABCD的面积为AD•AB=×10=,答:矩形ABCD的面积是.10.如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P在OE延长线上,且满足∠PCA=∠ABC,连接P A,PC,AF.(1)求证:PC是⊙O的切线;(2)证明:PE•OD=DE•OE.【分析】(1)连接OC,根据等腰三角形性质及圆周角定理可得∠PCO=90°,然后由切线的判定定理可得结论;(2)连接EC,FC,OC,证明Rt△ECD∽Rt△CFD,得出CD2=DE•DF,继而得出CD2=DE•OD+DE•OE,同理得出CD2=OD•DE+OD•PE,进而得出DE•OD+DE•OE=OD•DE+OD•PE,即可证明PE•OD=DE•OE.【解答】证明:(1)如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵∠PCA=∠ABC,∴∠PCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°,∴∠ACO+∠PCA=90°,即∠PCO=90°,∵OC是圆O的半径,∴PC是圆O的切线;(2)如图2,连接EC,FC,OC,∵EF是直径,∴∠ECF=90°,∴∠CEF+∠CFE=90°,∵D是AC的中点,EF是直径,∴AC⊥EF,∴∠CEF+∠ECD=90°,∠EDC=∠CDF=90°,∴∠ECD=∠CFD,∴Rt△ECD∽Rt△CFD,∴,∴CD2=DE•DF,∴CD2=DE(OD+OF)=DE(OD+OE)=DE•OD+DE•OE,同理Rt△PCD∽Rt△COD,∴,∴CD2=OD•PD=OD(PE+DE)=OD•DE+OD•PE,∴DE•OD+DE•OE=OD•DE+OD•PE,∴PE•OD=DE•OE.11.如图,在Rt△ABC中,∠ACB=90°,以AB为直径作⊙O,过点B的切线交AC延长线于点D,点E为上一点,且BC=EC,连接BE交AC于点F.(1)求证:BC平分∠DBE;(2)若AB=2,tan E=,求EF的长.【分析】(1)因为BD是⊙O的切线,所以∠∠CBD=∠A,因为BC=EC,所以∠E=∠EBC,由同弧所对的圆周角相等可得,∠A=∠E,所以∠EBC=∠CBD,即BC平分∠DBE.(2)由(1)可知,tan E=tan A=tan∠EBC=,因为AB为⊙O的直径,所以∠ACB=90°,所以tan A==,即AC=2BC,由AB=2结合勾股定理可得,BC2+AC2=AB2,即BC2+4BC2=AB2,解得BC=2,AC=4,又因为tan∠EBC==,所以CF=1,AF=3,BF=,易证△ABF∽△ECF,所以AF:EF=BF:CF,即3:EF=:1,解之即可.【解答】(1)证明:∵BD是⊙O的切线,∴∠∠CBD=∠A,∵BC=EC,∴∠E=∠EBC,∵∠A=∠E,∴∠EBC=∠CBD,即BC平分∠DBE.(2)解:由(1)知,∠A=∠E=∠EBC,∴tan E=tan A=tan∠EBC=,∵AB为⊙O的直径,∴∠ACB=90°,∴tan A==,即AC=2BC,∵AB=2,∴BC2+AC2=AB2,即BC2+4BC2=AB2,∴BC=2,AC=4,∵tan∠EBC==,∴CF=1,AF=3,BF=,∵∠A=∠E,∠ABF=∠ECF,∴△ABF∽△ECF,∴AF:EF=BF:CF,即3:EF=:1,解得EF=.12.如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠F AC=∠BDC.(1)求证:AF是⊙O的切线;(2)若BC=6,sin B=,求⊙O的半径及OD的长.【分析】(1)作OH⊥F A,垂足为H,连接OE,利用直角三角形斜边上中线的性质得AD =CD,再通过导角得出AC是∠F AB的平分线,再利用角平分线的性质可得OH=OE,从而证明结论;(2)根据BC=6,sin B=,可得AC=8,AB=10,设⊙O的半径为r,则OC=OE=r,利用Rt△AOE∽Rt△ABC,可得r的值,再利用勾股定理求出OD的长.【解答】(1)证明:如图,作OH⊥F A,垂足为H,连接OE,∵∠ACB=90°,D是AB的中点,∴CD=AD=,∴∠CAD=∠ACD,∵∠BDC=∠CAD+∠ACD=2∠CAD,又∵∠F AC=,∴∠F AC=∠CAB,即AC是∠F AB的平分线,∵点O在AC上,⊙O与AB相切于点E,∴OE⊥AB,且OE是⊙O的半径,∴OH=OE,OH是⊙O的半径,∴AF是⊙O的切线;(2)解:如图,在△ABC中,∠ACB=90°,BC=6,sin B=,∴可设AC=4x,AB=5x,∴(5x)2﹣(4x)2=62,∴x=2,则AC=8,AB=10,设⊙O的半径为r,则OC=OE=r,∵Rt△AOE∽Rt△ABC,∴,即,∴r=3,∴AE=4,又∵AD=5,∴DE=1,在Rt△ODE中,由勾股定理得:OD=.13.如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【分析】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.【解答】(1)证明:∵AD与⊙O相切于点A,∴∠DAO=90°,∴∠D+∠ABD=90°,∵AB是⊙O的直径,∴∠AEB=90°,∴∠BEC=180°﹣∠AEB=90°,∴∠ACB+∠EBC=90°,∵AB=AC,∴∠ACB=∠ABC,∴∠D=∠EBC;(2)解:∵CD=2BC,∴BD=3BC,∵∠DAB=∠CEB=90°,∠D=∠EBC,∴△DAB∽△BEC,∴==3,∴AB=3EC,∵AB=AC,AE=3,∴AE+EC=AB,∴3+EC=3EC,∴EC=1.5,∴AB=3EC=4.5,∴⊙O的半径为2.25.14.如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC的角平分线AF交BC于点D,交⊙O于点E,连接BE和BF,∠F=∠ABE.(1)求证:BF是⊙O的切线;(2)若AC=5,AB=13,求CD的长.【分析】(1)由圆周角定理得出∠ACB=∠AEB=90°,进而得出∠F+∠FBE=90°,由∠F=∠ABE,得出∠ABE+∠FBE=90°,即∠ABF=90°,即可证明BF是⊙O的切线;(2)连接OE交BC于点G,由∠ACB=∠AEB=90°,AC=5,AB=13,得出BC=12,,由圆周角定理得出,进而得出OE垂直平分BC,即可求出,OG是△ABC的中位线,得出,求出EG=4,由∠CAE=∠CBE,得出tan∠CAD=tan∠EBG,得出,即可求出.【解答】(1)证明:如图1,∵AB是直径,∴∠ACB=∠AEB=90°,∴∠F+∠FBE=90°,∵∠F=∠ABE,∴∠ABE+∠FBE=90°,即∠ABF=90°,∴AB⊥BF,∵AB是⊙O的直径,∴BF是⊙O的切线;(2)解:如图2,连接OE交BC于点G,∵∠ACB=∠AEB=90°,AC=5,AB=13,∴BC===12,,∵AF平分∠BAC,∴∠CAE=∠BAE,∴,∴OE垂直平分BC,∴,OG是△ABC的中位线,∴,∴EG=OE﹣OG=﹣=4,∵∠CAE=∠CBE,∴tan∠CAD=tan∠EBG,∴,即,∴.15.如图,在△ABC中,AD平分∠BAC交BC于点D,以AD为直径作⊙O交AC于点F,点B恰好落在⊙O上,过D点作⊙O的切线DE交AC于点E,连接DF.(1)求证:∠FDE=∠CDE;(2)若AB=12,tan∠C=,求线段DE的长.【分析】(1)由切线的性质及圆周角定理得出∠ADF+∠FDE=90°,∠ADB+∠CDE=90°,证明△F AD≌△BAD,得出∠ADF=∠ADB,即可证明∠FDE=∠CDE;(2)由解直角三角形得出BC=16,由勾股定理得出AC=20,由全等三角形的性质得出AF=AB=12,进而得出CF=8,由解直角三角形得出DF=6,进而得出BD=DF=6,由勾股定理得出AD=6,证明△EAD∽△DAB,由相似三角形的性质得出AE=15,再利用勾股定理即可求出DE=3.【解答】(1)证明:∵DE是⊙O的切线,AD为直径,∴AD⊥DE,∴∠ADF+∠FDE=90°,∠ADB+∠CDE=90°,∵AD是直径,∴∠AFD=∠ABD=90°∵AD平分∠BAC,∴∠F AD=∠BAD,在△F AD和△BAD中,,∴△F AD≌△BAD(AAS),∴∠ADF=∠ADB,∴∠FDE=∠CDE;(2)解:在Rt△ABC中,AB=12,tan∠C=,∴BC===16,∴AC===20,∵△F AD≌△BAD,∴AF=AB=12,∴CF=AC﹣AF=20﹣12=8,在Rt△CDF中,DF=CF•tan∠C=8×=6,∴BD=DF=6,∴AD===6,∵∠ABD=∠ADE=90°,∠EAD=∠DAB,∴△EAD∽△DAB,∴,即,∴AE=15,∴DE===3.16.如图,以△ABC的一边AB为直径作⊙O,交BC于点D,交AC于点E,点D为BE的中点.(1)试判断△ABC的形状,并说明理由;(2)若直线l切⨀O于点D,与AC及AB的延长线分别交于点F、点G.∠BAC=45°,求的值.【分析】(1)连接AD,由AB为⊙O的直径可得出AD⊥BC,由点D为弧BE的中点利用圆周角定理可得出∠BAD=∠DAC,利用等角的余角相等可得出∠ABD=∠ACD,进而可证出△ABC为等腰三角形;(2)连接OD,则OD⊥GF,由OA=OD可得出∠ODA=∠BAD=∠DAC,利用“内错角相等,两直线平行”可得出OD∥AC,根据平行线的性质可得出=、∠GOD =∠BAC=45°,根据等腰直角三角形的性质可得出GO=DO=BO,进而可得出===.【解答】解:(1)△ABC是等腰三角形,理由如下:连接AD,如图1所示.∵AB为⊙O的直径,∴AD⊥BC.∵点D为弧BE的中点,∴=,∴∠BAD=∠DAC,∴∠ABD=∠ACD,∴△ABC为等腰三角形.(2)连接OD,如图2所示.∵直线l是⊙O的切线,点D是切点,∴OD⊥GF.∵OA=OD,∴∠ODA=∠BAD=∠DAC,∴OD∥AC,∴=,∠GOD=∠BAC=45°,∴△GOD为等腰直角三角形,∴GO=DO=BO,∴===.∴=.17.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.求证:(1)BC是⊙O的切线;(2)CD2=CE•CA.【分析】(1)连接OD,证DO∥AB,得出∠ODB=90°即可得出结论;(2)连接DE,证△CDE∽△CAD,根据线段比例关系即可得出结论.【解答】证明:(1)连接OD,∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,∴∠DAO=∠ADO,∴DO∥AB,而∠B=90°,∴∠ODB=90°,∵OD是⊙O的半径,∴BC是⊙O的切线;(2)连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴,∴CD2=CE•CA.18.如图,AB是⊙O的直径,点C,D在⊙O上,且弧CD=弧CB,过点C作CE∥BD,交AB的延长线于点E,连接AC交BD于F.(1)求证:CE是⊙O的切线;(2)过点C作CH⊥AE于H点,CH交BD于M,若CA=CE=6,求CH和BF的长.【分析】(1)连接OC,由垂径定理的推论得出OC⊥BD,由CE∥BD,得出OC⊥CE,即可证明CE是⊙O的切线;(2)连接OC,BC,由等腰三角形的性质得出∠CAB=∠E,由圆周角定理得出∠BOC =2∠E,由OC⊥CE,得出∠BOC+∠E=90°,求出∠E=30°,进而求出CH=3,EH =3,由等腰三角形的性质得出∠CAB=30°,AE=6,由圆周角定理得出∠ACB =90°,由解直角三角形求出AB=4,由CE∥BD,得出,代入计算即可求出BF=4,得出答案.【解答】(1)证明:如图1,连接OC,∵弧CD=弧CB,OC是半径,∴OC⊥BD,∵CE∥BD,∴OC⊥CE,∵OC是半径,∴CE是⊙O的切线;(2)解:如图2,连接OC,BC,∵CA=CE=6,∴∠CAB=∠E,∵∠BOC=2∠BAC,∴∠BOC=2∠E,∵OC⊥CE,∴∠BOC+∠E=90°,∴2∠E+∠E=90°,∴∠E=30°,∵CH⊥AE,∴CH=CE=×6=3,EH===3,∵CA=CE=6,CH⊥AE,∴∠CAB=∠E=30°,AE=2EH=6,∵AB为直径,∴∠ACB=90°,∴cos∠CAB=,∴AB====4,∵CE∥BD,∴,即,∴BF=4,∴CH的长为3,BF的长为4.19.如图,⊙O上有A,B,C三点,AC是直径,点D是的中点,连接CD交AB于点E,点F在AB延长线上且FC=FE.(1)若∠A=40°,求∠DCB的度数;(2)求证:CF是⊙O的切线;(3)若,BE=6,求⊙O的半径长.【分析】(1)由圆周角定理得出∠ABC=90°,由∠A=40°,得出∠ACB=50°,由点D是的中点,即可求出∠DCB=∠ACB=25°;(2)由圆周角定理得出∠BCD+∠CEF=90°,由点D是的中点,得出∠DCB=∠DCA,由等腰三角形的性质得出∠FCE=∠FEC,进而得出∠ACF=90°,即可证明CF 是⊙O的切线;(3)由解直角三角形得出=,设BC=4x,则CF=5x,BF=5x﹣6,由勾股定理得出方程(4x)2+(5x﹣6)2=(5x)2,解方程求出x=3,得出BC=12,CF=15,BF=9,再证明△CFB∽△AFC,利用相似三角形的性质求出AC=20,即可求出⊙O的半径长为10.【解答】(1)解:∵AC是直径,∴∠ABC=90°,∵∠A=40°,∴∠ACB=90°﹣∠A=90°﹣40°=50°,∵点D是的中点,∴∠DCB=∠DCA=∠ACB=×50°=25°;(2)证明:∵AC是直径,∴∠ABC=90°,∴∠BCD+∠CEF=90°,∵点D是的中点,∴∠DCB=∠DCA,∵FC=FE,∴∠FCE=∠FEC,∴∠DCA+∠FCE=90°,即∠ACF=90°,∴AC⊥CF,∵AC是直径,∴CF是⊙O的切线;(3)解:在Rt△CBF中,sin∠F=,∵,BE=6,∴=,∴设BC=4x,则CF=5x,BF=5x﹣6,∵BC2+BF2=CF2,∴(4x)2+(5x﹣6)2=(5x)2,解得:x=3或(不符合题意,舍去),∴BC=12,CF=15,BF=9,∵∠CBF=∠ACF=90°,∠CFB=∠AFC,∴△CFB∽△AFC,∴,即,∴AC=20,∴OA=AC=×20=10,∴⊙O的半径长为10.20.已知:如图,AB、AC是⊙O的两条弦,AB=AC,点M、N分别在弦AB、AC上,且AM=CN,AM<AN,联结OM、ON.(1)求证:OM=ON;(2)当∠BAC为锐角时,如果AO2=AM•AC,求证:四边形AMON为等腰梯形.【分析】(1)过点O作OE⊥AB于点E,OF⊥AC于点F,利用圆心角,弦,弧,弦心距之间的关系定理可得OE=OF,AE=CF=AB,利用等式的性质可得EM=FN,再利用全等三角形的判定与性质解答即可;(2)连接OB,利用相似三角形的判定与性质得到∠AOM=∠B,利用同圆的半径线段,等腰三角形的性质和角平分线性质定理的逆定理得到∠AOM=∠OAC,则得OM∥ON,利用等腰梯形的定义即可得出结论.【解答】证明:(1)过点O作OE⊥AB于点E,OF⊥AC于点F,如图,∵AB=AC,OE⊥AB,OF⊥AC,∴OE=OF,AE=CF=AB.∵AM=CN,∴AE﹣AM=FC﹣CN,即:EM=FN.在△OEM和△OFN中,,∴△OEM≌△OFN(SAS).∴OM=ON;(2)连接OB,如图,∵AO2=AM•AC,AC=AB,∴AO2=AM•AB,∴.∵∠MAO=∠OAB,∴△OAM∽△BAO,∴∠AOM=∠B.∵OA=OB,∴∠OAB=∠B,∴∠OAB=∠AOM,∴OM=AM.∵OM=ON,∴AM=ON.∵OE=OF,OE⊥AB,OF⊥AC,∴∠OAB=∠OAC,∴∠AOM=∠OAC,∴OM∥AN.∵AM<AN,∴OM<AN,∴四边形AMON为梯形,∵AM=ON,∴四边形AMON为等腰梯形.21.如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O的直径.【分析】(1)连接OE,利用圆的切线的性质定理,平行线的判定与性质,同圆的半径相等和等腰三角形的判定定理解答即可;(2)连接BE,利用直径所对的圆周角为直角,直角三角形的边角关系定理和相似三角形的判定与性质解答即可.【解答】(1)证明:连接OE,如图,∵AC是⊙O的切线,∴OE⊥AC.∵AC⊥BC,∴OE∥BC,∴∠OED=∠F.∵OD=OE,∴∠ODE=∠OED,∴∠BDE=∠F,∴BD=BF;(2)解:连接BE,如图,∵∠BDE=∠F,∴tan∠BDE=tan∠F=2,∵CF=1,tan∠F=,∴CE=2.∵BD是⊙O直径,∴∠BED=90°,∴BE⊥EF.∵EC⊥BF,∴△ECF∽△BCE,∴,∴EC2=BC•CF.∴BC=4.∴BF=BC+CF=5.∴BD=BF=5,即⊙O的直径为5.22.如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.(1)求证:△CED∽△BAD;(2)当DC=2AD时,求CE的长.【分析】(1)由对顶角的性质,圆周角定理得出∠CDE=∠BDA,∠A=∠E,即可证明△CED∽△BAD;(2)过点D作DF⊥EC于点F,由等边三角形的性质得出∠A=60°,AC=AB=6,由DC=2AD,得出AD=2,DC=4,由相似三角形的性质得,得出EC=3DE,由含30°角的直角三角形的性质得出DE=2EF,设EF=x,则DE=2x,DF=x,EC=6x,进而得出FC=5x,利用勾股定理得出一元二次方程(x)2+(5x)2=42,解方程求出x的值,即可求出EC的长度.【解答】(1)证明:如图1,∵∠CDE=∠BDA,∠A=∠E,∴△CED∽△BAD;(2)解:如图2,过点D作DF⊥EC于点F,∵△ABC是边长为6等边三角形,∴∠A=60°,AC=AB=6,∵DC=2AD,∴AD=2,DC=4,∵△CED∽△BAD,∴,∴EC=3DE,∵∠E=∠A=60°,DF⊥EC,∴∠EDF=90°﹣60°=30°,∴DE=2EF,设EF=x,则DE=2x,DF=x,EC=6x,∴FC=5x,在Rt△DFC中,DF2+FC2=DC2,∴(x)2+(5x)2=42,解得:x=或﹣(不符合题意,舍去),∴EC=6x=.23.如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AE=12,,求⊙O的半径和EF的长.【分析】(1)连接OE,根据直径所对的圆周角是直角可得∠AEB=90°,从而可得∠AEO+∠OEB=90°,再利用角平分线和等腰三角形的性质可得∠CAE=∠AEO,从而可得∠BEF=∠AEO,然后可得∠BEF+∠OEB=90°,从而求出∠OEF=90°,即可解答;(2)利用(1)的结论可得∠BEF=∠EAO,从而可证△FEB∽△F AE,然后利用相似三角形的性质可求出BE的长,再在Rt△ABE中利用勾股定理求出AB的长,从而求出EF 的长,即可解答.【解答】(1)证明:连接OE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠AEO+∠OEB=90°,∵OA=OE,∴∠EAO=∠AEO,∵AE平分∠CAB,∴∠EAO=∠CAE,∴∠CAE=∠AEO,∵∠BEF=∠CAE,∴∠BEF=∠AEO,∴∠BEF+∠OEB=90°,∴∠OEF=90°,∵OE是⊙O的半径,∴EF是⊙O的切线;(2)解:∵∠BEF=∠AEO,∠EAO=∠AEO,∴∠BEF=∠EAO,∵∠F=∠F,∴△FEB∽△F AE,∴==,∴==,∴BE=6,∴AB===30,∴=,∴EF=20,∴⊙O的半径为15,EF的长为20.。
2018届中考数学第一轮复习第35讲 相似三角形的应用(无答案)
考点跟踪练35相似三角形的应用A组基础巩固练一、选择题1. 如图,小李打网球时,球恰好打过网,且落在离网4m的位置上,则球拍击球的高度h 为()A. 0.6mB. 1.2mC. 1.3mD. 1.4m2. 如图,铁道口的栏杆短臂OA长1m,长臂OB长8m.当短臂外端A下降0.5m时,长臂外端B升高()A. 2mB. 4mC. 4.5mD. 8m3. 某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是()A. 1.25mB. 10mC. 20mD. 8m4. 某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为()A. 6米B. 7米C. 8.5米D. 9米5. (2017·通辽)志远要在报纸上刊登广告,一块10cm×5cm的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费()A. 540元B. 1080元C. 1620元D. 1800元二、填空题6. 如图,晚上小亮站在与路灯底部M相距3米的A处,测得此时小亮的影长AP为1米,已知小亮的身高是1.5米,那么路灯CM高为________米.7. (2017·天水)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为________米.8. (2017·吉林)如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD 作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为________m.9. 如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5m,CD=4.5m,点P到CD的距离为2.7m,则AB与CD间的距离是________m.10. 如图是小玲设计用手电来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A出发经平面镜反射后,刚好射到古城墙CD的顶端C处.已知AB⊥BD,CD ⊥BD.且测得AB=1.4米,BP=2.1米,PD=12米.那么该古城墙CD的高度是________米.三、解答题11. 如图,某测量工作人员与标杆顶端F、电视塔顶端E在同一直线上,已知此人眼睛A距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,则电视塔的高ED.12. 在一次数学测验活动中,小明到操场测量旗杆AB的高度.他手拿一支铅笔MN,边观察边移动(铅笔MN始终与地面垂直).如示意图,当小明移动到D点时,眼睛C与铅笔、旗杆的顶端M、A共线,同时,眼睛C与它们的底端N、B也恰好共线.此时,测得DB=50m,小明的眼睛C到铅笔的距离为0.65m,铅笔MN的长为0.16m,请你帮助小明计算出旗杆AB的高度(结果精确到0.1m).B组能力提升练13. (2017·东营)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH·PC.其中正确的是()A. ①②③④B. ②③C. ①②④D. ①③④14. (2017·内江)如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=56,则CE=________.15. 如图,A、B两点分别位于一个池塘的两端,由于受条件限制无法直接度量A、B间的距离.小明利用学过的知识,设计了如下三种测量方法,如图①、②、③所示(图中a,b,c表示长度,α,β,θ表示角度).(1)请你写出小明设计的三种测量方法中AB的长度:图①:AB=________;图②:AB=________;图③:AB=________;(2)请你再设计一种不同于以上三种的测量方法,画出示意图(不要求写画法),用字母标注需测量的边或角,并写出AB的长度.C组创新应用练16. (2017·永州)已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.求证:①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使DEDO=AFAB=13,请判断△EFC的形状,并说明理由;(3)如图3,若E 是OD 上的动点(不与O ,D 重合),连接CE ,过E 点作EF ⊥CE ,交AB 于点F ,当DE DB =m n 时,请猜想AF AB的值(请直接写出结论).。
2018中考相似三角形经典练习试题和的答案解析
相似三角形分类练习题(1)一、填空题1、如图,DE 是9BC 的中位线,那么4ADE 面积与z\ABC 面积之比是AD 12、如图,4ABC 中,DE//BC, AS 2且£但「8加,那么凡的= _________________________ 邮.3、如图,z^ABC 中,ZACB = 90° CD±AB,D 为垂足,AD = 8cm ,DB = 2cm ,那么 CD =cm4、如图,4ABC 中,D 、E 分别在 AC 、AB 上,且 AD:AB = AE:AC = 1:2 , BC = 5cm , WJ DE =题一 1国 颗一 2国 褒一 M 图 埋一 4图 墨一 b 图 思一 6图 题一 10国5、如图,AD 、BC 相交于点 O, AB//CD, OB = 2cm , OC=4cm , ^AOB 面积为 4.5cm 2,那么4 DOC 面积为 cm 2.6、如图,4ABC 中,AB = 7, AD =4, /B=/ACD,那么 AC =7、如果两个相似三角形对应高之比为 4:5,那么它们的面积比为 o 8、如果两个相似三角形面积之比为 1:9,那么它们对应高之比为 o9、两个相似三角形周长之比为 2:3,面积之差为10cm 2,那么它们的面积之和为 cm?.口 -S10、如图,4ABC 中,DE//BC, AD:DB=2:3,那么 皿-橙荒此前= 二、选择题1、两个相似三角形对应边之比是 1:5,那么它们的周长比是(). (A) 1:君;(B) 1:25; (C) 1:5; (D) B1.2、如果两个相似三角形的相似比为 1:4,那么它们的面积比为().(A) 1:16; (B) 1:8; (C) 1:4; (D) 1:2.锐角三角形ABC 的高CD 和高BE 相交于O,那么与ADOB 相似的三角形个数是().(B) 2; (C) 3; (D) 4.(A) 1:9; (B) 1:81 ; (C) 3:1 ; (D) l:3o三、如图,4ABC 中,DE//BC, BC = 6,梯形DBCE 面积是z\ADE 面积的2倍,求DE 长.3、如图,(A) 1;4、如图, 梯形 ABCD , AD //BC, AC 和BD 相交于O 点, 共同£皿“:品3 = 1:9,那么%8:为叼=甄二4四、如图,4ABE 中,AD:DB=5:2, AC:CE=4:3,求BF:FC的值.五、如图,直角梯形ABCD 中,ABXBC, BC //AD , BC<AD , BC = q , AB = 8 , AC LCD,求AD 〔用的式子表示〕六、如图,4ABC 中,点D 在BC 上,/DAC = /B, BD = 4, DC=5, DE//AC 交AB 于点E,求DE长.七、如图,ABCD是矩形,AH =2, HD =4, DE = 2, EC= 1 , F是BC上任一点〔F与点B、点C不重合〕,过F作EH的平行线交AB于G,设BF为# ,四边形HGFE面积为,写出?与彳的函数关系式,并指出自变量A的取值范围.相似三角形分类练习题〔2〕一、填空题ace._ = =__ =41、:b d丁,且那么&十八/=2、在一张比例尺为1:5000的地图上,某校到果园的图距为8cm ,那么学校到果园的实际距离为_______ m3、如图,4ABC 中,/ACB = 90° ,CD 是斜边AB 上的高,AD=4cm, BD = 16cm,那么CD =_______ c mo4、如图,/ACD = /B, AC= 6, AD =4,那么AB5、如图ABCD是平行四边形,F是DA延长线上一点,连CF交BD于G,交AB于E,那么图中相似三角形〔包括全等三角形在内〕共有________ 对.6、如图,MBC中,BC=15cm ,DE、FG均平行于BC且将9BC面积分成三等分,那么FG =cm.7、如图,AF //BE//CD, AF=12, BE=19, CD =28,那么FE:ED 的值等于s • s8、如图,AABC, DE //GF//BC,且AD = DG = GB,那么 '樟度翎10、如图,4ABC 重心为G, 3BC 和为BC 在BC 边上高之比为 (A) /1 = /2; (B) /2 = /C; (C) /1 = /BAC; (D) /2 =/B3、如图,AB//A' B' , BC//B' C' , AC//A' C',那么图中相似三角形组数为( (A) 5; (B) 6; (C) 7; (D) 8. BE 和CD 相交于点F, DF:FC=1:3,那么叫理:'©c = ( ) 0 三、?BC 中,AB = AC, AD 是底边BC 上高,BE 是AC 上中线,BE 和AD 相交于F, BC = 10 , AB= 13,求 BF 长.四、如图,ABFE 、EFCD 是全等的正方形,M 是CF 中点,DM 和AC 相交于N ,正方形边长为口, 求AN 的长.(用仪的式子表示)五、如图,AABC 中,AD ±BC, D 是垂足,E 是 BC 中点,FE± BC 交 AB 于 F, BD = 6, DC = 4, AB=8,求 BF 长.h p …A儿 _____ 口B zik — £ I P I Cc B t n .: n F 'MIEN*3晒 + S JI 兆V = ~~T六、如图,^ABC 中,〃 = 90° ,DEFG 是*BC 中内接矩形,AB = 3,AC = 4, 匕,求矩形DEFG 周长.AD = 3cm , BC = 6cm , CD = 4cm ,现要截出矩形 EFCG, ,设BE=x ,矩形EFCG 周长为y ,(1)写出?与工的(2)才取何值,矩形EFCG 面积等于直角梯形ABCD 的相似形〔3〕一、填空题1、如果两个相似三角形的周长比为 2:3,那么面积比为9、如图,ABCD 是正方形,E 是DC 上一点,DE:EC= 5:3, AELEF, WJ AE:EF=二、选择题1、两个相似三角形的相似比为 4:9, (A) 2:3; (B) 4:9; (C) 4:81 ;2、如图,D 是?BC 边BC 上一点, 那么这两个相似三角形的面积比为( (D) 16:81.△ABDsWAB,那么(). 4、如图,AABC 中,DE //BC, (A) 1:3; (B) 1:世 1:9; (D) 1:18.题六国七、如图,有一块直角梯形铁皮ABCD, (E 点在AB 上,与点A 、点B 不重合) 函数关系式,并指出自变量了取值范围; 5分O;(C) BE D C 0S-fE32、两个相似三角形相似比为2:3,且面积之和为13cm2,那么它们的面积分别为L3、三角形的三条边长分别为5cm , 9cm , 12cm ,那么连结各边中点所成三角形的周长为cm4、如图,PQ//BA, PQ = 6, BP=4, AB = 8,那么PC 等于AD _15、如图,4ABC 中,DE//BC, 万,、F=2cm2,贝〔J % 用地5=cm2.题T图题T图圈一6困6、如图,C为线段AB上一点,AACM > 3BN都是等边三角形,假设AC = 3, BC = 2,那么WCD与9ND面积比为7、AABC 中,〃ACB = 90° ,CD 是斜边AB 上的高,AB=4cm , AC = 2>^cm ,那么AD =cm.8、如图,平行四边形ABCD的对角线AC与BD相交于O, E是CD的中点,AE交BD于F,那么DF:FO=9、如图,AF //BE//CD, AB:BC=1:2, AF = 15, CD = 21,贝U BE=10、如图,DC //MN //PQ //AB, DC = 2, AB = 3.5 , DM =MP =PA,那么MN =; PQ =二、选择题1、如图,要使△ACD S/BCA,必须满足().AC _ AB CD _BC(A) CD AC; (B) AD AC; (C)AD2 = CDBD; (D)AC2=CDBC.2、如图,9BC中,CD LAB于D, DELAC于E, ZACB = 90°,那么与ABC相似的三角形个数为().(A) 2; (B) 3; (C) 4; (D) 5.3、如图,4ABC中,D是AC中点,AF//DE,工^濡皿的小飞,那么5但;“皿=().(A) 1:2; (B) 2:3; (C) 3:4; (D) 1:1.4、如图,平行四边形ABCD中,O i、02、03为对角线BD上三点,且BO i = 01.2 = 02.3 =03D,连结AO i并延长交BC于点E,连结E03并延长交AD于F,那么AD:FD等于().(A) 19:2 ; (B) 9:1 ; (C) 8:1 ; (D) 7:1.三、如图,矩形ABCD中,AB = 10cm , BC = 12cm , E为DC中点,AFLBE于点F,求AF长.四、如图,D、E分别是9BC边AB和AC上的点,/1 = /2,求证:ADAB=AEAC.五、如图,ABCD是平行四边形,点E在边BA延长线上,连CE交AD于点F, /ECA=/D,求证:ACBE=CEAD.六、如图,4ABC 中,/ACB=90° ,BC=8, AC=12, /BCD = 30°,求线段CD 长.七、如图,等腰梯形ABCD 中,AD //BC, AB=DC = 5, AD=6, BC=12, E 在AD 上,AE = 2, F为AB上任一点(点F与点A、点B不重合),过F作EC平行线交BC于G,设BF=k,四边形EFGC面积为,,(1)写出,与二的函数关系式;(2) K取何值,EGXBCo相似三角形分类练习题(3)一、填空题1、假设纱一加二°,贝U▼=x-y _ y_ _ + ♦2、I3彳,那么丁=3、如图,/B=/ACD, u旧= 2:1,那么AC:AB =4、如图,DE//BC, AD=4cm , DE = 2cm , BC = 5cm ,贝U AB =cm5、如图,DE//BC, AD:DB=1:2,那么小DE与?BC面积之比为6、如图,梯形ABCD 中,DC //EF//AB, DE = 4, AE = 6, BC = 5,那么BF =7、如图,平行四边形 ABCD 中,对角线AC 、BD 相交于O, BC=18, E 为OD 中点,连结CE 并延长交AD 于F,那么DF =AD _BC _ AC _ 58、如图,AABC 和ABED 中,假设砧 1 BS DE 弓,且3BC 和z^BED 周长之差为10cm ,那么4 ABC 周长为 cm9、如图,△ACB S /ECD, AC:EC = 5:3, 1诚c = i8,那么 Me =510、如图,AABC 中,BE 平分/ABC, BD = DE, AD =万 cm , BD = 2cm,那么 BC =cm11、如图,ABCD 是平行四边形,BC = 2CE,那么用厘〜凡^^二12、如图,AABC 中,DE//BC, BE 、CD 相交于F,且用"^ =变心用,那么$山:氏皿=13、如图,4ABC 中,BC=15cm , DE 、FC 平行于BC,且将z\ABC 面积三等分,那么 DE+FC = _______ c m14、将长为^cm 的线段进行黄金分割,那么较长线段与较短线段之差为 cm115、如图,平行四边形 ABCD 中,延长AB 至ij E,使BE= 2 AB,延长CD 至U F,使DF = DC, EF 交BC 于G ,交AD 于H ,那么又期:“斑抹= 二、选择题1、如图,4ABC 中,DE//BC,那么以下等式中不成立的是〔〕2、两个相似三角形周长分别为 8和6,那么它们的面积比为〔(A) 4:3;(B) 16:9; (C) 2:仃;(D) 仃:及.3、如图,DE//BC, AB = 15 , AC = 9, BD = 4,那么 AE 长是()(A)AD _ AE AD _ AE AB = AC. g DB = EC. AD = DE DB BC .AD(D) 1-1" DEBCA题一 5图 蛊- 6徙一 i"2 22- 6-(A) 5;⑻(A) 2:1 ; (B) 2:3; (C) 4:9; (D) 5:4.5、如图,在边长为"的正方形ABCD 的一边BC 上,任取一点E,彳EF±AE 交CD 于点F,如 果BE= x , CF= ,那么用x 的代数式表示产是().y = - 一 + z y = - - x y ~x 2 + -j = x 2 + -(A) g ; (B) 口 ; (C)鼻;(D)阴.1、:3 4 6 ,求+ £的值.2、如图,菱形ABCD 边长为3 ,延长AB 至ij E 使BE=2AB ,连结EC 并延长交AD 延长线于点F, 求AF 的长.3、如图,4ABC 中,DE//BC,心皈 :端心用觉:时=1:2 , BC =2^ ,求DE 长.4、如图,直角梯形 ABCD 中,DALAB, AB //DC , ZABC = 60° , ABC 平分线 BE 交 AD 于 E, CEXBE, BE=2,求 CD 长.5、如图,ABCD 是边长为"的正方形,E 是CD 中点,AE 和BC 的延长线相交于F, AE 垂直平 分线交AE 、BC 于H 、G,求线段FG 长.6、如图,z\ABC 中,AB>AC,边AB 上取一点D,在边AC 上取一点E,使AD=AE,直线DE BP BD=_ 的延长线和BC 延长线交于点P,求证:°尹CE o 四、(此题8分)如图,AABC 中,AB = AC, AD ±BC, D 为垂足,E 为 AC 中点,BE 交 AD 于 G, AD = 18cm , BE=15cm ,求小BC 面积.17工4、如图,DE//BC,11-B DC B控五图五、如图,4ABC中,点M在BC边上移动〔不与点B、C重合〕,作ME//CA交AB于E,作BM = xMF //BA交AC于F, S©c = 10cm2,设BC ,四边形AEMF面积为y,写出尸与x的函数关系式,并指出工取值范围.。
中考数学总复习《相似三角形与圆结合综合问题》专项提升练习题及答案(人教版)
中考数学总复习《相似三角形与圆结合综合问题》专项提升练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________1.如图,已知AB 为O 的直径30A ∠=︒,且另一边交O 于点,C OD AB ⊥交AC 于点D ,如果10cm OD =,求CD 的长度.2.如图,AB 是O 的直径,点D 在直径AB 上(D 与,A B 不重合),CD AB ⊥且CD AB =,连接CB ,与O 交于点F ,在CD 上取一点E ,使EF 与O 相切.(1)求证:EF EC =;(2)若D 是OA 的中点,AB=4,求BF 的长.3.如图,AB 是O 的直径,点C ,D 在O 上,且AD 平分CAB ∠,过点D 作AC 的垂线,与AC 的延长线相交于点E ,与AB 的延长线相交于点F .(1)求证:EF 与O 相切;(2)若45AB =,AD=8,求EF 的长.4.如图,I 是ABC 的内心,AI 的延长线交边BC 于点D ,交ABC 的外接圆于点E ,连接BE ,求证:(1)BE IE =(2)2IE AE DE =⋅5.如图,O 是ABC 的外接圆,AB 是O 的直径,点D 在O 上,AC=CD ,连接AD ,延长DB 交过点C 的切线于点E .(1)求证:ABC CAD ∠=∠;(2)求证:BE CE ⊥;(3)若4AC =,BC=3,CE 的长为 .6.已知O 的半径为2cm ,P 是O 外一点4m PO =,点A 、B 在O 上,在PAB 中,BP=BA .(1)如图①,PB 是O 的切线,当PA PB =时,求证:PA 是O 的切线;(2)如图①,PA 、PB 分别交O 于点C 、D ,当点C 为PA 中点时,求PD 的长;(3)线段PA 的取值范围是______.7.如图,AB 是半圆O 的直径,,C D 是半圆O 上不同于点,A B 的两点,且BD 平分,ABC DE ∠是圆O 的切线,与BC 的延长线交于点E .(1)求证:DE BE ⊥;(2)若3,4DE BE ==,求直径AB 的长.8.如图,在ABC 中,AB=AC ,以AC 为直径的O 交AB 于点D ,交BC 于点E .(1)求证:DE CE =;(2)若23BD BE ==,,求AD 的长.9.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理:如图(1),其原理是利用流动的河水,推动水车转动,水斗舀满河水,将水提升,等水斗转至顶空后再倾入接水槽,水流源源不断,流入田地,以利灌溉.如图(2),筒车圆O 与水面分别交于点A 、B ,筒车上均匀分布着若干盛水筒,P 表示筒车的一个盛水筒,接水槽MN 所在的直线是圆O 的切线,且与直线AB 交于点M ,当点P 恰好在MN 所在的直线上,P 、O 、C 三点共线,PC 是圆O 的直径时,解决下面的问题:(1)求证:BAP MPB ∠=∠;(2)求证:2MP MA MB =⋅;(3)若AB AP =,MB=8,MP=12,求BP 的长.10.如图,已知ABC 中,AB=AC ,以AB 为直径的O 交BC 于点D ,交AC 于点E ,连接AD ,BE 相交于点F .为直径的O与BC交于点是O的切线.BD=5,求.如图,ABC中,以为直径的O交BC是O的切线,且交O于点F.=求证:AB AC是O的直径,点在O上.中的O上作一点A 作BC 的垂线交BM 于点G ;(作图使用没有刻度的直尺和圆规,不写作法,保留作图痕迹,并在图中标注必要的字母) (2)在(1)中所作的图形中,若12,9AB AC ==,则AG 的长为______.(如需画草图,请使用图2) 14.如图,AB 是O 的直径,E 是AB 上一点,C 是O 外一点,连接AC 交O 于点D ,连接BC BD ,连接DE 交AB 于点M ,连接AE ,且60E C ∠=∠=︒.(1)求证:ABD ACB ∽△△;(2)求证:BC 是O 的切线;(3)当AE DE =,23BC =时,求AE 的长.15.如图,O 是ABC 的外接圆,AE 平分ABC 的外角DAC ∠,OM AB ⊥和ON AC ⊥,垂足分别是点M 、N ,且OM ON =.(1)求证:AE BC ∥;(2)如图,延长ON 交AE 于E 点,若7OE =,ON=1,求O 的半径长.16.如图,在ABC 中,AD 是BC 边上的中线,以AB 为直径的O 交BC 于点D ,过点D 作MN AC ⊥于点M ,交AB 的延长线于点N ,过点B 作BG MN ⊥于点G .(1)求证:BGD DMA △△∽;(2)求证:直线MN 是O 的切线.17.如图,BC 是O 的直径,A 是O 上异于B 、C 的点.O 外的点E 在射线CB 上,直线EA 与CD 垂直,垂足为D ,且••DA AC DC AB =.设ABE 的面积为1S ,ACD 的面积为2S .(1)判断直线EA 与O 的位置关系,并证明你的结论;(2)若BC BE =,21S mS =求常数m 的值.18.如图,ABC 中,以BC 边为直径的O 交AC 于D ,AE 平分BAC ∠,交BD 于F ,且BE BF =(1)求证:AB 是O 的切线;(2)若31BD DF ==,,求CF 的长.参考答案:1.10cm2.125 BF=.3.64515 4.45.12 56.3;236PA≤≤7.254 AB=8.79.203.10.35 1211.6013 DF=.12.2013.1014.3315.716.617.(1)EA与O相切(2)2318.27.答案第1页,共1页。
中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)
中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.三个等角的顶点在同一条直线上,称一线三等角模型(角度有锐角、直角、钝角,若为直角,则又称一线三垂直模型).解决此模型问题的一般方法是利用三等角关系找全等或相似三角形所需角的相等条件,利用全等或相似三角形解决问题.【证明体验】如图1,在四边形ABCD 中点P 为AB 上一点90DPC A B ∠=∠=∠=︒,求证:AD BC AP BP ⋅=⋅. 【思考探究】(2)如图2,在四边形ABCD 中点P 为AB 上一点,当DPC A B β∠=∠=∠=时,上述结论是否依然成立?说明理由. 【拓展延伸】(3)请利用(1)(2)获得的经验解决问题:如图3,在ABC 中22AB =45B ∠=︒以点A 为直角顶点作等腰Rt ADE △,点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =CD 的长.2.综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在ABC 中90,4B AB BC ∠=︒==分别取AB ,AC 的中点D ,E ,作ADE .如图2所示,将ADE 绕点A 逆时针旋转,连接BD ,CE .(1)探究发现旋转过程中线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明. (2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长. (3)延伸思考如图4,在Rt ABC △中90,8,6ABC AB BC ∠=︒==,分别取AB ,BC 的中点D ,E .作BDE ,将BDE 绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求tan ECB ∠的值.3.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=且DM 交AC 于F ,ME 交BC 于G .(1)写出图中两对相似三角形;(2)连接FG ,如果45α=︒,42AB =3AF =,求FG 的长.4.如图,在ABC 中6cm AB =,12cm BC =和90B .点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 分别从A 、B 同时出发,设移动时间为()s t .(1)当2t =时,求PBQ 的面积; (2)当t 为多少时,PBQ 的面积是28cm ? (3)当t 为多少时,PBQ 与ABC 是相似三角形?5.下面是小新同学在“矩形折叠中的相似三角形”主题下设计的问题,请你解答.如图,已知在矩形ABCD 中点E 为边AB 上一点(不与点A 、点B 重合),先将矩形ABCD 沿CE 折叠,使点B 落在点F 处,CF 交AD 于点H .(1)观察发现:写出图1中一个与AEG △相似的三角形:______.(写出一个即可)(2)迁移探究:如图2,若4AB =,6BC =当CF 与AD 的交点H 恰好是AD 的中点时,求阴影部分的面积. (3)如图③,当点F 落在边AD 上时,延长EF ,与FCD ∠的角平分线交于点M ,CM 交AD 于点N ,当FN AF ND =+时,请直接写出ABBC的值.6.【阅读】如图1,若ABD ACE ∽,且点B 、D 、C 在同一直线上,则我们把ABD △与ACE △称为旋转相似三角形.(1)【理解】如图2,ABC 和ADE 是等边三角形,点D 在边BC 上,连接CE .求证:ABD △与ACE △是旋转相似三角形.(2)【应用】如图3,ABD △与ACE △是旋转相似三角形AD CE ,求证:③ABC ADE △△∽;③AC DE =;(3)【拓展】如图4,AC 是四边形ABCD 的对角线90,D B ACD ∠=︒∠=∠,25,20BC AC ==和16AD =,试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.7.综合与实践如图1,已知纸片Rt ABC △中90BAC ∠=︒,AD 为斜边BC 上的高(AD BC ⊥于点D ). 观察发现(1)请直接写出图中的一组相似三角形.(写出一组即可)实践操作第一步:如图2,将图1中的三角形纸片沿BE 折叠(点E 为AC 上一点),使点A 落在BC 边上的点F 处; 第二步:BE 与AD 交于点G 连接GF ,然后将纸片展平. 猜想探究(2)猜想四边形AEFG 是哪种特殊的四边形,并证明猜想. (3)探究线段GF ,BE ,GE 之间的数量关系,并说明理由.8.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=.证明思路是如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明AB BDAC CD=.(1)利用图2证明AB BDAC CD=; (2)如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,AB=2,求DE 的长.9.【教材原题】如图③,在ABC 中DE BC ∥,且3AD =,2DB =图中的相似三角形是__________,它们的相似比为__________ ;【改编】将图③中的ADE 绕点A 按逆时针方向旋转到如图③所示的位置,连接BD 、CE .求证:ABD ACE ∽△△;【应用】如图③,在ABC 和ADE 中90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒点D 在边BC 上,连接CE ,则ACE △与ABD △的面积比为__________.10.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=小慧的证明思路是:如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明.(1)尝试证明:请参照小慧提供的思路,利用图2证明AB BDAC CD=; (2)基础训练:如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,2AB =求DE 的长;(3)拓展升华:如图4,ABC 中6AB = ,AC=4,AD 为BAC ∠的角平分线,AD 的中垂线EF 交BC 延长线于F ,当3BD =时,求AF 的长.11.定义:两个相似三角形,如果它们的一组对应角有一个公共的顶点,那么把这两个三角形称为“阳似三角形”、如图1,在ABC 与AED △中ABC AED ∽△△.所以称ABC 与AED △为“阳似三角形”,连接EB DC ,,则DCEB为“阳似比”.(1)如图1,已知R ABC 与Rt AED △为“阳似三角形”,其中90CBA DEA ∠=∠=︒,当30BAC ∠=︒时,“阳似比”DCEB=______; (2)如图2,二次函数234y x x =-++交x 轴于点A 和B 两点,交y 轴于点C .点M 为直线12y x =在第一象限上的一个动点,且OMB △与CNB 为“阳似三角形”,连接CM ③当点N 落在二次函数图象上时,求出线段OM 的长度; ③若32CN =34BM MC +的最小值.12.已知在Rt ABC △中90ACB ∠=︒,CD AB ⊥于点D .(1)在图1中写出其中的两对相似三角形.(2)已知1BD =,DC=2,将CBD △绕着点D 按顺时针方向进行旋转得到C BD ',连接AC ',BC . ③如图2,判断AC '与BC 之间的位置及数量关系,并证明; ③在旋转过程中当点A ,B ,C '在同一直线上时,求BC 的长.13.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“和谐四边形”,这条对角线叫“和谐线”.(1)如图1,在44⨯的正方形网格中有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“和谐四边形”的是______.(2)如图2,BD 平分ABC ∠,43BD =10BC =,四边形ABCD 是被BD 分割成的“和谐四边形”,求AB 长; (3)如图3,A 为抛物线24y x =-+的顶点,抛物线与x 轴交于点B ,C .在线段AB 上有一个点P ,在射线BC 上有一个点Q .P 、Q 5/秒,5个单位/秒的速度同时从B 出发分别沿BA ,BC 方向运动,设运动时间为t ,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M ,使得四边形BQMP 是以PQ 为和谐线分割的“和谐四边形”,若存在,请直接写出t 的值;若不存在,请说明理由.14.【阅读理解】小白同学遇到这样一个问题:ABC 中D 是BC 的中点,E 是AB 上一点,延长DE 、CA 交于点F ,DE=EF ,AB=5,求AE 的长.小白的想法是:过点E 作EH BC ∥交AC 于H ,再通过相似三角形的性质得到AE 、BE 的比,从而得出AE 的长.请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:ABC 中AD 平分BAC ∠交BC 于D ,E 为AB 边上一点,AE=AD ,H 、Q 为BC 上两点,CQ DH =和DQ mDH =,G 为AC 上一点,连接EQ 交HG 、AD 于F 、P ,180EFG EAD ∠+∠=︒猜想并验证EP 与GH的数量关系.15.【温故知新】(1)九(1)班数学兴趣小组认真探究了课本P 91第13题:如图1,在正方形ABCD 中E 是AD 的中点,F 是CD 上一点,且3CF DF =,图中有哪几对相似三角形?把它们表示出来,并说明理由.③小华很快找出ABE DEF △△∽,他的思路为:设正方形的边长4AB a =,则2,AE DE a DF a ===,利用“两边分别成比例且夹角相等的两个三角形相似”即可证明,请你结合小华的思路写出证明过程; ③小丽发现图中的相似三角形共有三对,而且可以借助于ABE 与DEF 中的比例线段来证明EBF △与它们都相似.请你根据小丽的发现证明其中的另一对三角形相似;【拓展创新】(2)如图2,在矩形ABCD 中E 为AD 的中点,EF EC ⊥交AB 于F ,连结FC .()AB AE > ③求证:AEF ECF ∽△△;③设2,BC AB a ==,是否存在a 值,使得AEF △与BFC △相似.若存在,请求出a 的值;若不存在,请说明理由.参考答案:1.(3)52.(1)2BD CE =(2)6CE =(3)1tan 2ECB ∠=3.(1)DMG ③DBM △,EMF ③EAM △ (2)53FG =4.(1)8(2)2秒或4秒(3)当t 为3或1.2秒钟,使PBQ 与ABC 相似.5.(1)FHG △或DHC (写出一个即可)(2)阴影部分的面积是23 (3)AB BC 的值为357.(1)ABC DBA ∽ ABC CAD ∽ DBA DAC ∽(其中一个即可,答案不唯一);(2)四边形AEFG是菱形,(3)212GF GE BE =⋅ 8. 5 9.【教材原题】ADE ABC △△∽,35【应用】13 10.5(3)611.23105337 12.(1)BCD ACD ∽ BCD BAC ∽△△ CAD BAC △∽△(任写两对即可)(2)③2AC BC '= AC BC '⊥ ③BC 2595+2595-+13.(1)四边形ABCE ;(2)10AB =或245; (3)1118t = 2881t = 1825t = 180169t =.14.阅读理解 54AE =;解决问题,猜想:12EP m GH m +=+. 15.③存在 3。
(完整版)2018中考专题相似三角形
9.在 Rt△ABC中,∠ BAC=90°,过点 B 的直线 MN∥AC,D 为 BC 边上一点,连 接 AD,作 DE⊥AD 交 MN 于点 E,连接 AE. ( 1)如图 1,当∠ ABC=4°5时,0时,线段 AD 与 DE有何数量关系?并请说明理由.
5.( 1)如图 1,在正方形 ABCD中,点 E,F 分别在 BC,CD上, AE⊥BF 于点 M , 求证: AE=BF; ( 2)如图 2,将 ( 1)中的正方形 ABCD改为矩形 ABCD, AB=2, BC=3, AE⊥BF 于点 M ,探究 AE与 BF 的数量关系,并证明你的结论.
6.如图,四边形 ABCD中, AB=AC=AD, AC平分∠ BAD,点 P 是 AC 延长线上一 点,且 PD⊥AD. ( 1)证明:∠ BDC=∠PDC; ( 2)若 AC 与 BD相交于点 E,AB=1,CE: CP=2: 3,求 AE 的长.
2.如图,直角△ ABC中,∠ BAC=90°,D 在 BC上,连接 AD,作 BF⊥ AD 分别交 AD 于 E, AC于 F. ( 1)如图 1,若 BD=BA,求证:△ ABE≌△ DBE; ( 2)如图 2,若 BD=4DC,取 AB 的中点 G,连接 CG交 AD 于 M,求证:①GM=2MC; ② AG2=AF?AC.
2018 中考数学专题相似形 (共 40 题)
1.如图,△ ABC和△ ADE是有公共顶点的等腰直角三角形,∠ BAC=∠DAE=90°, 点 P 为射线 BD,CE的交点. ( 1)求证: BD=CE; ( 2)若 AB=2,AD=1,把△ ADE绕点 A 旋转,当∠ EAC=9°0时,求 PB的长;
【全效学习】2018专题提升含答案十三以圆为背景的相似三角形的计算与证明
专题提升(十三)以圆为背景的相似三角形的计算与证明【经典母题】如图Z13—1, DB为半圆的直径,A为BD延长线上的一点,AC切半圆于点E, BCLAC于点C,交半圆于点F.AC=12, BC = 9,求AO的长.解:如答图,连结OE,设。
的半径是R,那么OE = OB=R.在RtAACB中,由勾股定理,得AB =〈AC2+BC2 =15.••AC切半圆。
于点E, . OEXAC,•.zOEA= 90°士C, . OE//BC,.•.zAECM zACB,,OE AC R15—R45BC = AB,―9二15 ,斛行R= 8,75•.AC = AB —CB= 15- R= ^.8【思想方法】利用圆的切线垂直于过切点的半径构造直角三角形,从而得到相似三角形,利用比例线段求AC的长.【中考变形】1.如图Z13-2,在RtzXACB 中,/ ACB = 90°,。
是AC边上的一点,以。
为圆心,CC为半径的圆与AB 相切于点D,连结CD.(1)求证:△ADC S/XACB;图Z13-2⑵假设。
的半径为1,求证:AC = AD BC.证明:(1); AB 是。
O 的切线,;OD ,AB,• .zC=/ADO = 90° ,.公=/A,• .Z ADO S /ACB;t小八 八一 AD OD(2)由(1)知,9DO SZ ACB.;AC = BC , • .AD BC = AC OD, . OD = 1, . .AC = AD BC.2. [2021德州]如图Z13—3,RtAABC, 2C = 90° , D 为BC 的中点,以AC 为直径的。
O 交AB 于点E.(1)求证:DE 是。
O 的切线;(2)假设 AE : EB=1 : 2, BC = 6,求 AE 的长.解:(1)证明:如答图,连结 OE, EC,〈AC 是。
的直径,• ・&EC=/BEC=90° , D 为 BC 的中点,• .ED = DC = BD, ../ = /2,.OE = OC,.々=/4,「./+/3=/2+/4,即/OED=/ACB,. zACB=90° , . .OED=90° , DE 是。
2018中考专题相似三角形.doc
2018 中考数学专题相似形(共 40 题)1.如图,△ ABC和△ ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点 P 为射线 BD,CE的交点.( 1)求证: BD=CE;( 2)若 AB=2,AD=1,把△ ADE绕点 A 旋转,当∠ EAC=90°时,求 PB的长;2.如图,直角△ ABC中,∠ BAC=90°,D 在 BC上,连接 AD,作 BF⊥ AD 分别交 AD 于 E,AC于 F.1)如图 1,若 BD=BA,求证:△ ABE≌△ DBE;2)如图 2,若 BD=4DC,取 AB 的中点 G,连接 CG交 AD 于 M,求证:①GM=2MC;② AG2=AF?AC.3.如图,在锐角三角形ABC中,点 D,E 分别在边 AC,AB 上, AG⊥BC于点 G,AF⊥DE 于点 F,∠ EAF=∠GAC.1)求证:△ ADE∽△ ABC;2)若 AD=3,AB=5,求的值.4.如图,点 E 是正方形 ABCD的边 BC延长线上一点,连结DE,过顶点 B 作 BFDE,垂足为 F, BF分别交 AC 于 H,交 CD于G.( 1)求证: BG=DE;( 2)若点 G 为 CD的中点,求的值.5.( 1)如图 1,在正方形 ABCD中,点 E,F 分别在 BC,CD上, AE⊥BF 于点 M ,求证: AE=BF;2)如图 2,将( 1)中的正方形 ABCD改为矩形 ABCD, AB=2, BC=3, AE⊥BF 于点 M ,探究 AE与 BF 的数量关系,并证明你的结论.6.如图,四边形 ABCD中, AB=AC=AD, AC平分∠ BAD,点 P 是 AC 延长线上一点,且 PD⊥AD.1)证明:∠ BDC=∠PDC;2)若 AC 与 BD相交于点 E,AB=1,CE: CP=2: 3,求 AE 的长.7.△ ABC和△ DEF是两个全等的等腰直角三角形,∠ BAC=∠EDF=90°,△DEF的顶点 E 与△ ABC的斜边 BC 的中点重合,将△ DEF绕点 E 旋转,旋转过程中,线段 DE 与线段 AB 相交于点 P,线段 EF与射线 CA 相交于点 Q.1)如图①,当点 Q 在线段 AC 上,且 AP=AQ时,求证:△ BPE≌△ CQE;2)如图②,当点 Q 在线段 CA 的延长线上时,求证:△ BPE∽△ CEQ;并求当BP=2,CQ=9时 BC的长.8.如图,在矩形 ABCD中, E 为 AB 边上一点, EC平分∠ DEB,F 为 CE的中点,连接 AF,BF,过点 E 作 EH∥BC分别交 AF, CD于 G,H 两点.1)求证: DE=DC;2)求证: AF⊥BF;3)当 AF?GF=28时,请直接写出 CE的长.9.在 Rt△ABC中,∠ BAC=90°,过点 B 的直线 MN∥AC,D 为 BC 边上一点,连接 AD,作 DE⊥AD 交 MN 于点 E,连接AE.( 1)如图 1,当∠ ABC=45°时,求证:AD=DE;( 2)如图 2,当∠ ABC=30°时,线段 AD 与 DE有何数量关系?并请说明理由.精选10.如图 1,边长为 2 的正方形 ABCD中,E 是 BA 延长线上一点,且 AE=AB,点P 从点 D 出发,以每秒 1 个单位长度沿 D→ C→B向终点 B 运动,直线 EP交 AD 于点 F,过点 F 作直线 FG⊥DE于点 G,交 AB 于点 R.1)求证: AF=AR;2)设点 P 运动的时间为 t ,①求当 t 为何值时,四边形PRBC是矩形?②如图 2,连接 PB.请直接写出使△ PRB是等腰三角形时t 的值.11.如图,正方形 ABCD的对角线 AC,BD相交于点 O,延长 CB至点 F,使CF=CA,连接 AF,∠ ACF的平分线分别交 AF, AB, BD于点 E,N,M ,连接EO.1)已知 BD= ,求正方形 ABCD的边长;2)猜想线段 EM 与 CN的数量关系并加以证明.12.将两块全等的三角板如图 1 摆放,其中∠ A1CB1=∠ACB=90°,∠ A1=∠A=30°.1)将图 1 中△ A1B1C 绕点 C 顺时针旋转 45°得图 2,点 P1是 A1C 与 AB 的交点,点 Q 是 A1B1与 BC的交点,求证: CP1=CQ;2)在图 2 中,若 AP1=a,则 CQ等于多少?精选AP1的交点.当旋转角为多少度时,有△AP1C∽△ CP1P2?这时线段 CP1与 P1P2之间存在一个怎样的数量关系?.13.把 Rt△ABC和 Rt△ DEF按如图( 1)摆放(点 C 与 E 重合),点 B、 C(E)、F在同一条直线上.已知:∠ACB=∠ EDF=90°,∠ DEF=45°, AC=8cm, BC=6cm,EF=10cm.如图( 2),△ DEF从图( 1)的位置出发,以1cm/s 的速度沿 CB向△ABC匀速移动,在△ DEF移动的同时,点 P 从△ ABC的顶点 A 出发,以 2cm/s 的速度沿 AB 向点 B 匀速移动;当点 P 移动到点 B 时,点 P 停止移动,△ DEF也随之停止移动. DE与 AC交于点 Q,连接 PQ,设移动时间为 t( s).1)用含 t 的代数式表示线段 AP 和 AQ 的长,并写出 t 的取值范围;2)连接 PE,设四边形 APEQ的面积为 y(cm2),试探究 y 的最大值;3)当 t 为何值时,△ APQ是等腰三角形.14.△ ABC,∠ A、∠ B、∠ C 的对边分别是 a、b、c,一条直线 DE 与边 AC相交于点 D,与边 AB 相交于点 E.( 1)如图①,若 DE将△ ABC分成周长相等的两部分,则AD+AE 等于多少;(用a、b、c 表示)( 2)如图②,若AC=3, AB=5, BC=4.DE 将△ ABC分成周长、面积相等的两部分,求 AD;( 3)如图③,若 DE将△ ABC分成周长、面积相等的两部分,且DE∥BC,则 a、b、c 满足什么关系?15.已知:如图,四边形 ABCD 是正方形,∠ PAQ=45°,将∠ PAQ 绕着正方形的顶点 A 旋转,使它与正方形 ABCD的两个外角∠ EBC和∠ FDC的平分线分别交于点 M 和 N,连接 MN.1)求证:△ ABM∽△ NDA;2)连接 BD,当∠ BAM 的度数为多少时,四边形 BMND 为矩形,并加以证明.16.如图,在锐角△ ABC中, D,E 分别为 AB, BC中点, F 为 AC 上一点,且∠AFE=∠A,DM∥ EF交 AC于点 M.1)点 G 在 BE上,且∠ BDG=∠C,求证: DG?CF=DM?EG;2)在图中,取 CE上一点 H,使∠ CFH=∠B,若 BG=1,求 EH的长.17.△ ABC中, AB=AC,点 D、E、F 分别在 BC、AB、 AC上,∠ EDF=∠B.1)如图 1,求证: DE?CD=DF?BE2) D 为 BC中点如图 2,连接EF.①求证: ED平分∠ BEF;②若四边形 AEDF为菱形,求∠ BAC的度数及的值.18.如图,在△ ABC 中,点 P 是 AC边上的一点,过点 P 作与 BC平行的直线 PQ,交 AB 于点 Q,点 D 在线段 BC上,联接 AD 交线段 PQ 于点 E,且=,点G在 BC延长线上,∠ ACG的平分线交直线 PQ 于点F.( 1)求证: PC=PE;( 2)当 P 是边 AC的中点时,求证:四边形 AECF是矩形.19.如图,已知△ ABC中, AC=BC,点 D、E、F 分别是线段 AC、BC、AD 的中点,BF、ED的延长线交于点G,连接 GC.1)求证: AB=GD;( 2)如图 2,当 CG=EG时,求的值.20.如图,在△ ABC中,D、E 分别为 AB、AC上的点,线段 BE、CD相交于点 O,且∠ DCB=∠EBC= ∠A.( 1)求证:△ BOD∽△ BAE;2)求证: BD=CE;3)若 M 、N 分别是 BE、CE的中点,过 MN 的直线交 AB 于 P,交 AC于 Q,线段 AP、 AQ 相等吗?为什么?21.如图,在矩形 ABCD和矩形 PEFG中, AB=8, BC=6, PE=2, PG=4. PE 与 AC 交于点 M ,EF与 AC交于点 N,动点 P 从点 A 出发沿 AB 以每秒 1 个单位长的速度向点 B 匀速运动,伴随点 P 的运动,矩形 PEFG在射线 AB 上滑动;动点 K 从点 P 出发沿折线 PE﹣﹣ EF以每秒 1 个单位长的速度匀速运动.点 P、K 同时开始运动,当点 K 到达点 F 时停止运动,点 P 也随之停止.设点 P、 K 运动的时间是秒( t>0).( 1)当 t=1 时, KE=,EN=;2)当 t 为何值时,△ APM 的面积与△ MNE 的面积相等?3)当点 K 到达点 N 时,求出 t 的值;4)当 t 为何值时,△ PKB是直角三角形?22.如图( 1),在△ ABC中, AD 是 BC边的中线,过 A 点作 AE∥BC与过 D 点作DE∥AB 交于点 E,连接 CE.1)求证:四边形 ADCE是平行四边形.2)连接 BE,AC 分别与 BE、DE 交于点 F、G,如图( 2),若 AC=6,求 FG的精选长.23.已知:在正方形 ABCD中,点 E、F 分别是 CB、CD延长线上的点,且BE=DF,联结 AE、AF、 DE、DE交 AB 于点 M.1)如图 1,当 E、A、F 在一直线上时,求证:点 M 为 ED中点;2)如图 2,当 AF∥ED,求证: AM2=AB?BM.24.已知,如图 1,点 D、 E分别在 AB, AC上,且=.1)求证: DE∥BC.2)已知,如图 2,在△ ABC中,点 D 为边 AC上任意一点,连结 BD,取 BD 中点 E,连结 CE并延长 CE交边 AB 于点 F,求证:=.( 3)在( 2)的条件下,若 AB=AC,AF=CD,求的值.25.已知△ ABC,AC=BC,点 E, F 在直线 AB 上,∠ ECF=∠ A.1)如图 1,点 E,F 在 AB 上时,求证: AC2=AF?BE;2)如图 2,点 E,F 在 AB 及其延长线上,∠ A=60°,AB=4,BE=3,求 BF的长.26.如图,正方形 ABCD,∠ EAF=45°.交 BC、CD于 E、F,交 BD 于 H、G.1)求证: AD2=BG?DH;2)求证: CE= DG;3)求证: EF= HG.27.如图,C 为线段 BD上一动点,过 B、D 分别作 BD 的垂线,使 AB=BC,DE=DB,连接 AD、AC、BE,过 B 作 AD 的垂线,垂足为 F,连接 CE、 EF.1)求证: AC?DF= BF?BD;2)点 C 运动的过程中,∠ CFE的度数保持不变,求出这个度数;3)当点 C 运动到什么位置时, CE∥BF?并说明理由.28.如图,在△ ABC中,点 D 在边 AB 上(不与 A,B 重合),DE∥BC交 AC于点E,将△ ADE沿直线 DE翻折,得到△ A′ DE,直线 DA′,EA′分别交直线 BC于点精选N.1)求证: DB=DM.2)若 =2,DE=6,求线段 MN 的长.( 3)若=n( n≠ 1),DE=a,则线段 MN 的长为(用含n的代数式表示).29.如图,已知四边形 ABCD和四边形 DEFG为正方形,点 E 在线段 DC上,点 A、D、G 在同一直线上,且 AD=3,DE=1,连接 AC、CG、AE,并延长 AE交 OG于点H.1)求证:∠ DAE=∠DCG.2)求线段 HE 的长.30.如图,△ ABC中,点 E、F 分别在边 AB,AC上, BF与 CE相交于点 P,且∠1=∠2= ∠ A.( 1)如图 1,若 AB=AC,求证: BE=CF;( 2)若图 2,若 AB≠AC,①( 1)中的结论是否成立?请给出你的判断并说明理由;②求证:=.31.如图 1,在锐角△ ABC中, D、E 分别是 AB、 BC的中点,点 F 在 AC 上,且满足∠ AFE=∠A,DM∥ EF交 AC于点 M .1)证明: DM=DA;2)点 G 在 BE上,且∠ BDG=∠C,如图 2,求证:△ DEG∽△ ECF;3)在图 2 中,取 CE上一点 H,使得∠ CFH=∠B,若 BG=5,求 EH 的长.32.如图,正方形ABCD中,边长为 12,DE⊥DC 交 AB 于点 E, DF 平分∠ EDC 交 BC于点 F,连接EF.( 1)求证:EF=CF;( 2)当 = 时,求 EF的长.33.如图,已知在△ ABC中, P 为边 AB 上一点,连接CP,M 为 CP 的中点,连接 BM 并延长,交 AC 于点 D, N 为 AP的中点,连接 MN.若∠ ACP=∠ ABD.( 1)求证: AC?MN=BN?AP;( 2)若 AB=3,AC=2,求 AP 的长.精选34.如图,已知 AC、EC分别为四边形ABCD和 EFCG的对角线,点 E 在△ ABC内,CAE+∠ CBE=90°,当四边形 ABCD和 EFCG均为正方形时,连接 BF.( 1)求证:△ CAE∽△ CBF;( 2)若 BE=1,AE=2,求 CE的长.35.如图①,矩形 ABCD中, AB=2,BC=5,BP=1,∠MPN=90°,将∠ MPN 绕点 P 从 PB 处开始按顺时针方向旋转,PM 交边 AB(或 AD)于点 E, PN 交边 AD(或CD)于点 F,当 PN旋转至 PC处时,∠ MPN 的旋转随即停止.( 1)特殊情形:如图②,发现当 PM 过点 A 时,PN 也恰巧过点 D,此时,△ABP △ PCD(填“≌”或“~”);( 2)类比探究:如图③,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由.36.如图,点 M 是△ ABC内一点,过点 M 分别作直线平行于△ ABC的各边,所形成的三个小三角形△ 1、△2、△3(图中阴影部分)的面积分别是1、4、25.则△ ABC的面积是.37.如图,△ ABC中,∠ ACB=90°,AC=5,BC=12,CO⊥ AB 于点 O, D 是线段 OB 上一点, DE=2,ED∥AC(∠ ADE< 90°),连接 BE、CD.设 BE、CD的中点分别为P、Q.1)求 AO 的长;2)求 PQ 的长;3)设 PQ 与 AB 的交点为 M,请直接写出 | PM﹣MQ| 的值.38.尤秀同学遇到了这样一个问题:如图 1 所示,已知 AF,BE是△ ABC的中线,且 AF⊥ BE,垂足为 P,设 BC=a,AC=b,AB=c.求证: a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接 EF,利用 EF 为△ ABC的中位线得到△ EPF∽△ BPA,故,设 PF=m,PE=n,用 m,n 把 PA, PB 分别表示出来,再在 Rt△APE,Rt△BPF中利用勾股定理计算,消去 m,n 即可得证( 1)请你根据以上解题思路帮尤秀同学写出证明过程.( 2)利用题中的结论,解答下列问题:在边长为 3 的菱形 ABCD中, O 为对角线 AC, BD 的交点, E, F 分别为线段 AO,DO 的中点,连接 BE,CF并延长交于点 M, BM, CM 分别交 AD 于点 G,H,如图 2 所示,求 MG2+MH2的值.39.如图,在△ ABC中,点 D,E 分别在边 AB, AC上,∠ AED=∠B,射线 AG 分别交线段 DE, BC于点 F,G,且.1)求证:△ ADF∽△ ACG;2)若,求的值.40.如图,四边形中 ABCD中, E,F 分别是 AB, CD 的中点, P 为对角线 AC 延长线上的任意一点, PF交 AD 于 M,PE交 BC于 N,EF交 MN 于 K.求证: K 是线段 MN 的中点.参考答案与试题解析(共 40 题)1.(2017?阿坝州)如图,△ ABC和△ ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点 P 为射线 BD,CE的交点.1)求证: BD=CE;2)若 AB=2,AD=1,把△ ADE绕点 A 旋转,当∠ EAC=90°时,求 PB的长;【解答】解:(1)∵△ ABC和△ ADE是等腰直角三角形,∠ BAC=∠DAE=90°,AB=AC,AD=AE,∠DAB=∠CAE.∴△ ADB≌△ AEC.BD=CE.2)解:①当点 E 在 AB 上时, BE=AB﹣ AE=1.∵∠ EAC=90°,∴CE==.同( 1)可证△ ADB≌△ AEC.∴∠ DBA=∠ECA.∵∠ PEB=∠AEC,∴△ PEB∽△ AEC.= .= .PB=.②当点 E在 BA 延长线上时, BE=3.∵∠ EAC=90°,∴CE==.同( 1)可证△ ADB≌△ AEC.∴∠ DBA=∠ECA.∵∠ BEP=∠CEA,∴△ PEB∽△ AEC.= .= .PB=.综上所述, PB的长为或.2.(2017?常德)如图,直角△ ABC中,∠ BAC=90°,D 在 BC上,连接 AD,作 BF AD 分别交 AD 于 E,AC 于 F.1)如图 1,若 BD=BA,求证:△ ABE≌△ DBE;2)如图 2,若 BD=4DC,取 AB 的中点 G,连接 CG交 AD 于 M,求证:①GM=2MC;② AG2=AF?AC.【解答】证明:(1)在 Rt△ABE和 Rt△ DBE中,,∴△ ABE≌△ DBE;( 2)①过 G 作 GH∥AD 交 BC于 H,∵ AG=BG,∴ BH=DH,∵ BD=4DC,设 DC=1,BD=4,∴ BH=DH=2,∵ GH∥ AD,∴= =,∴ GM=2MC;②过 C 作 CN⊥ AC交 AD 的延长线于 N,则 CN∥ AG,∴△ AGM∽△ NCM,∴=,由①知 GM=2MC,2NC=AG,∵∠ BAC=∠AEB=90°,∴∠ ABF=∠CAN=90°﹣∠ BAE,∴△ ACN∽△ BAF,= ,AB=2AG,∴ =,∴ 2CN?AG=AF?A,AG2=AF?AC.3.( 2017?杭州)如图,在锐角三角形ABC中,点 D,E 分别在边 AC,AB 上,AG BC于点 G,AF⊥DE于点 F,∠ EAF=∠GAC.( 1)求证:△ ADE∽△ ABC;( 2)若 AD=3,AB=5,求的值.【解答】解:(1)∵ AG⊥BC, AF⊥DE,∴∠ AFE=∠AGC=90°,∵∠ EAF=∠GAC,∴∠ AED=∠ACB,∵∠ EAD=∠BAC,∴△ ADE∽△ ABC,( 2)由( 1)可知:△ ADE∽△ ABC,∴=由( 1)可知:∠ AFE=∠AGC=90°,∴∠ EAF=∠GAC,∴△ EAF∽△ CAG,∴,=4.(2017?眉山)如图,点 E 是正方形 ABCD的边 BC 延长线上一点,连结 DE,过顶点 B 作 BF⊥DE,垂足为 F,BF分别交 AC于 H,交 CD于 G.1)求证: BG=DE;( 2)若点 G 为 CD的中点,求的值.【解答】解:(1)∵ BF⊥ DE,∴∠ GFD=90°,∵∠ BCG=90°,∠ BGC=∠DGF,∴∠ CBG=∠CDE,在△ BCG与△ DCE中,∴△ BCG≌△ DCE( ASA),BG=DE,2)设 CG=1,∵G为 CD的中点,GD=CG=1,由( 1)可知:△ BCG≌△ DCE(ASA),CG=CE=1,∴由勾股定理可知: DE=BG= ,sin∠CDE= = ,GF= ,AB∥CG,∴△ ABH∽△ CGH,∴=,∴BH=,GH=,=5.(2017?河池)(1)如图 1,在正方形 ABCD中,点 E,F 分别在 BC,CD 上,AE⊥BF于点 M,求证: AE=BF;2)如图 2,将( 1)中的正方形 ABCD改为矩形 ABCD, AB=2, BC=3, AE⊥BF 于点 M ,探究 AE与 BF 的数量关系,并证明你的结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ ABC=∠C,AB=BC.AE⊥BF,∴∠ AMB=∠BAM+∠ABM=90°,∵∠ ABM+∠CBF=90°,∴∠ BAM=∠CBF.在△ ABE和△ BCF中,,∴△ ABE≌△ BCF(ASA),AE=BF;2)解: AE= BF,理由:∵四边形ABCD是矩形,∴∠ ABC=∠C,AE⊥BF,∴∠ AMB=∠BAM+∠ABM=90°,∵∠ ABM+∠CBF=90°,∴∠ BAM=∠CBF,∴△ ABE∽△ BCF,∴=,AE= BF.6.(2017?泰安)如图,四边形 ABCD 中, AB=AC=AD, AC 平分∠ BAD,点 P 是AC延长线上一点,且 PD⊥ AD.1)证明:∠ BDC=∠PDC;2)若 AC 与 BD相交于点 E,AB=1,CE: CP=2: 3,求 AE 的长.【解答】(1)证明:∵ AB=AD,AC平分∠ BAD,AC⊥BD,∴∠ ACD+∠BDC=90°,AC=AD,∴∠ ACD=∠ADC,∴∠ ADC+∠BDC=90°,PD⊥AD,∴∠ ADC+∠PDC=90°,∴∠ BDC=∠PDC;2)解:过点 C 作 CM⊥PD 于点 M ,∵∠ BDC=∠PDC,CE=CM,∵∠ CMP=∠ADP=90°,∠ P=∠P,∴△ CPM∽△ APD,= ,设 CM=CE=x,∵ CE:CP=2:3,∴ PC= x,∵ AB=AD=AC=1,∴=,解得: x=,故 AE=1﹣=.7(.2017?天水)△ABC和△ DEF是两个全等的等腰直角三角形,∠BAC=∠ EDF=90°,DEF的顶点 E 与△ ABC的斜边 BC的中点重合,将△ DEF绕点 E 旋转,旋转过程中,线段 DE 与线段 AB 相交于点 P,线段 EF与射线 CA 相交于点 Q.( 1)如图①,当点 Q 在线段 AC 上,且 AP=AQ时,求证:△ BPE≌△ CQE;( 2)如图②,当点 Q 在线段 CA 的延长线上时,求证:△ BPE∽△ CEQ;并求当BP=2,CQ=9时 BC的长.【解答】(1)证明:∵△ ABC是等腰直角三角形,∴∠ B=∠ C=45°,AB=AC,AP=AQ,∴ BP=CQ,E 是 BC的中点,∴ BE=CE,在△ BPE和△ CQE中,∵,∴△ BPE≌△ CQE(SAS);( 2)解:∵△ ABC和△ DEF是两个全等的等腰直角三角形,∴∠ B=∠ C=∠DEF=45°,∵∠ BEQ=∠EQC+∠C,即∠ BEP+∠DEF=∠EQC+∠C,∴∠ BEP+45°=∠EQC+45°,∴∠ BEP=∠EQC,∴△ BPE∽△ CEQ,= ,BP=2, CQ=9, BE=CE,∴ 2BE=18,BE=CE=3 ,BC=6 .8.(2017?绥化)如图,在矩形ABCD中, E 为 AB 边上一点, EC 平分∠ DEB,F 为 CE的中点,连接 AF,BF,过点 E 作 EH∥BC分别交 AF,CD于 G, H 两点.( 1)求证: DE=DC;( 2)求证: AF⊥BF;( 3)当 AF?GF=28时,请直接写出 CE的长.【解答】解:(1)∵四边形 ABCD是矩形,AB∥CD,∴∠ DCE=∠CEB,EC平分∠ DEB,∴∠ DEC=∠CEB,∴∠ DCE=∠DEC,DE=DC;( 2)如图,连接 DF,DE=DC, F 为 CE的中点,∴ DF⊥EC,∴∠ DFC=90°,在矩形 ABCD中, AB=DC,∠ABC=90°,∴ BF=CF=EF=EC,∴∠ ABF=∠CEB,∵∠ DCE=∠CEB,∴∠ ABF=∠DCF,在△ ABF和△ DCF中,,∴△ ABF≌△ DCF(SAS),∴∠ AFB=∠DFC=90°,AF⊥BF;( 3) CE=4 .理由如下:∵ AF⊥BF,∴∠ BAF+∠ABF=90°,EH∥BC,∠ ABC=90°,∴∠ BEH=90°,∴∠ FEH+∠CEB=90°,∵∠ ABF=∠CEB,∴∠BAF=∠FEH,∵∠EFG=∠AFE,∴△EFG∽△ AFE,∴ = ,即 EF2=AF?GF,AF?GF=28,EF=2 ,CE=2EF=4 .9.(2017?雨城区校级自主招生)在Rt△ABC中,∠ BAC=90°,过点 B 的直线 MNAC,D 为 BC边上一点,连接 AD,作 DE⊥ AD 交 MN 于点 E,连接AE.( 1)如图 1,当∠ ABC=45°时,求证: AD=DE;( 2)如图 2,当∠ ABC=30°时,线段 AD 与 DE有何数量关系?并请说明理由.【解答】(1)证明:如图 1,过点 D 作 DF⊥ BC,交 AB 于点F,则∠ BDE+∠FDE=90°,DE⊥AD,∴∠ FDE+∠ADF=90°,∴∠ BDE=∠ADF,∵∠ BAC=90°,∠ ABC=45°,∴∠ C=45°,MN∥AC,∴∠ EBD=180°﹣∠ C=135°,∵∠ BFD=45°, DF⊥BC,∴∠ BFD=45°, BD=DF,∴∠ AFD=135°,∴∠ EBD=∠AFD,在△ BDE和△ FDA中,∴△ BDE≌△ FDA(ASA),AD=DE;2)解: DE= AD,理由:如图 2,过点 D 作 DG⊥ BC,交 AB 于点G,则∠ BDE+∠GDE=90°,DE⊥AD,∴∠ GDE+∠ADG=90°,∴∠ BDE=∠ADG,∵∠ BAC=90°,∠ ABC=30°,∴∠ C=60°,MN∥AC,∴∠ EBD=180°﹣∠ C=120°,∵∠ ABC=30°,DG⊥ BC,∴∠ BGD=60°,∴∠ AGD=120°,∴∠ EBD=∠AGD,∴△ BDE∽△ GDA,= ,在 Rt△BDG中, =tan30°= ,∴DE= AD.10.(2017?深圳模拟)如图 1,边长为 2 的正方形 ABCD中,E 是 BA 延长线上一点,且 AE=AB,点 P 从点 D 出发,以每秒 1 个单位长度沿 D→C→B向终点 B 运动,直线 EP交 AD 于点 F,过点 F 作直线 FG⊥ DE 于点 G,交 AB 于点 R.1)求证: AF=AR;( 2)设点 P 运动的时间为 t ,①求当 t 为何值时,四边形PRBC是矩形?②如图 2,连接 PB.请直接写出使△ PRB是等腰三角形时t 的值.【解答】(1)证明:如图,在正方形ABCD中, AD=AB=2,AE=AB,∴ AD=AE,∴∠ AED=∠ADE=45°,又∵ FG⊥ DE,∴在 Rt△ EGR中,∠ GER=∠GRE=45°,∴在 Rt△ ARF中,∠ FRA=∠AFR=45°,∴∠ FRA=∠RFA=45°,AF=AR;2)解:①如图,当四边形 PRBC是矩形时,则有 PR∥BC,∴ AF∥PR,∴△ EAF∽△ ERP,∴,即:由(1)得AF=AR,∴,解得:或(不合题意,舍去),∴,∵点 P 从点 D 出发,以每秒 1 个单位长度沿 D→C→B向终点 B 运动,∴(秒);②若 PR=PB,过点 P 作 PK⊥AB于 K,设 FA=x,则 RK= BR= (2﹣x),∵△ EFA∽△ EPK,∴,即:=,解得: x=±﹣3(舍去负值);∴ t=(秒);若 PB=RB,则△ EFA∽△ EPB,∴=,∴,BP= AB= ×2=CP=BC﹣BP=2﹣ = ,(秒).综上所述,当 PR=PB时, t=;当PB=RB时,秒.11.(2017?江汉区校级模拟)如图,正方形 ABCD的对角线 AC,BD 相交于点 O,延长 CB至点 F,使 CF=CA,连接 AF,∠ ACF的平分线分别交 AF,AB,BD于点 E,N,M ,连接 EO.1)已知 BD= ,求正方形 ABCD的边长;2)猜想线段 EM 与 CN的数量关系并加以证明.【解答】解:(1)∵四边形 ABCD是正方形,∴△ ABD是等腰直角三角形,2AB2=BD2,∵BD= ,AB=1,∴正方形 ABCD的边长为 1;2) CN=2EM证明方法一、理由:∵四边形ABCD是正方形,AC⊥BD,OA=OCCF=CA,CE是∠ ACF的平分线,∴ CE⊥AF,AE=FEEO为△ AFC的中位线EO∥BC∴∴在 Rt△ AEN中, OA=OCEO=OC= AC,CM= EMCE平分∠ ACF,∴∠OCM=∠ BCN,∵∠NBC=∠COM=90°,∴△ CBN∽△ COM,∴,CN= CM,即 CN=2EM.证明方法二、∵四边形ABCD是正方形,∴∠ BAC=45°=∠DBC,由( 1)知,在 Rt△ ACE中, EO= AC=CO,∴∠ OEC=∠OCE,CE平分∠ ACF,∴∠ OCE=∠ECB=∠OEC,EO∥BC,∴∠ EOM=∠DBC=45°,∵∠ OEM=∠ OCE∴△ EOM∽△ CAN,∴,CN=2CM.12.(2017?济宁二模)将两块全等的三角板如图1 摆放,其中∠ A1CB1=∠ACB=90°,A1=∠ A=30°.1)将图 1 中△ A1B1C 绕点 C 顺时针旋转 45°得图 2,点 P1是 A1C 与 AB 的交点,点 Q 是 A1B1与 BC的交点,求证: CP1=CQ;2)在图 2 中,若 AP1=a,则 CQ等于多少?3)将图 2 中△ A1B1C 绕点 C 顺时针旋转到△ A2B2C(如图 3),点 P2是 A2C 与AP1的交点.当旋转角为多少度时,有△AP1C∽△ CP1P2?这时线段 CP1与 P1P2之间存在一个怎样的数量关系?.【解答】(1)证明:∵∠ B1 CB=45°,∠ B1CA1=90°,∴∠ B1CQ=∠ BCP1=45°;又 B1C=BC,∠ B1 =∠ B,∴△ B1CQ≌△ BCP1(ASA)∴ CQ=CP1;2)解:如图:作 P1D⊥AC于 D,∵∠ A=30°,∴ P1D= AP1;∵∠ P1CD=45°,∴=sin45 °=,CP1= P1D= AP1;又 AP1=a,CQ=CP1,∴ CQ= a;3)解:当∠ P1CP2=∠ P1 AC=30°时,由于∠ CP1P2=∠AP1C,则△ AP1C∽△ CP1P2,所以将图 2 中△ A1B1C 绕点 C 顺时针旋转 30°到△ A2B2C 时,有△ AP1C∽△ CP1P2.这时==,P1P2= CP1.13.( 2017?惠阳区模拟)把Rt△ABC和 Rt△ DEF按如图( 1)摆放(点 C 与 E 重合),点 B、C(E)、F 在同一条直线上.已知:∠ACB=∠ EDF=90°,∠ DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△ DEF从图( 1)的位置出发,以 1cm/s 的速度沿 CB 向△ ABC 匀速移动,在△ DEF移动的同时,点 P 从△ ABC的顶点 A 出发,以 2cm/s 的速度沿 AB 向点 B 匀速移动;当点 P 移动到点 B 时,点 P 停止移动,△DEF也随之停止移动. DE与 AC 交于点 Q,连接 PQ,设移动时间为 t (s).1)用含 t 的代数式表示线段 AP 和 AQ 的长,并写出 t 的取值范围;2)连接 PE,设四边形 APEQ的面积为 y(cm2),试探究 y 的最大值;3)当 t 为何值时,△ APQ是等腰三角形.精选【解答】(1)解: AP=2t∵∠ EDF=90°,∠ DEF=45°,∴∠ CQE=45°=∠ DEF,CQ=CE=t,AQ=8﹣t,的取值范围是: 0≤t ≤5;2)过点 P 作 PG⊥x 轴于 G,可求得 AB=10,SinB= ,PB=10﹣2t,EB=6﹣t ,∴ PG=PBSinB=(10﹣2t)y=S△ABC﹣S△PBE﹣S△QCE==∴当(在 0≤t≤ 5 内),y 有最大值, y 最大值 =(cm2)( 3)若 AP=AQ,则有 2t=8﹣t 解得:(s)若 AP=PQ,如图①:过点P 作 PH⊥AC,则 AH=QH=,PH∥BC∴△ APH∽△ ABC,∴,即,解得:( s)若 AQ=PQ,如图②:过点 Q 作 QI⊥ AB,则 AI=PI= AP=t∵∠ AIQ=∠ACB=90°∠ A=∠A,∴△ AQI∽△ ABC∴即,解得:( s)综上所述,当或或时,△ APQ是等腰三角形.14.( 2017?庐阳区一模)△ ABC,∠ A、∠ B、∠ C 的对边分别是 a、 b、c,一条直线 DE 与边 AC相交于点 D,与边 AB 相交于点 E.( 1)如图①,若 DE将△ ABC分成周长相等的两部分,则AD+AE 等于多少;(用a、b、c 表示)2)如图②,若 AC=3, AB=5, BC=4.DE 将△ ABC分成周长、面积相等的两部分,求 AD;3)如图③,若 DE将△ ABC分成周长、面积相等的两部分,且 DE∥BC,则 a、b、c 满足什么关系?【解答】解:(1)∵ DE将△ ABC分成周长相等的两部分,AD+AE=CD+BC+BE= ( AB+AC+BC)= (a+b+c);2)设AD=x,AE=6﹣x,∵ S△ADE= AD?AE?sinA=3,即: x(6﹣x) ? =3,解得: x1 (舍去), 2 ,= x =∴AD=;3)∵ DE∥ BC,∴△ ADE∽△ ABC,∴,= ,AD= b, AE= c,b c= (a+b+c),= ﹣1.15.( 2017?嘉兴模拟)已知:如图,四边形 ABCD是正方形,∠ PAQ=45°,将∠ PAQ绕着正方形的顶点 A 旋转,使它与正方形 ABCD的两个外角∠ EBC和∠FDC 的平分线分别交于点 M 和 N,连接 MN.1)求证:△ ABM∽△ NDA;2)连接 BD,当∠ BAM 的度数为多少时,四边形 BMND 为矩形,并加以证明.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ ABC=∠ADC=∠BAD=90°,BM、 DN 分别是正方形的两个外角平分线,∴∠ ABM=∠ADN=135°,∵∠ MAN=45°,∴∠ BAM=∠AND=45°﹣∠ DAN,∴△ ABM∽△ NDA;( 2)解:当∠ BAM=22.5°时,四边形 BMND 为矩形;理由如下:∵∠ BAM=22.5°,∠ EBM=45°,∴∠ AMB=22.5°,∴∠ BAM=∠AMB,AB=BM,同理 AD=DN,∵ AB=AD,∴ BM=DN,∵四边形 ABCD是正方形∴∠ ABD=∠ADB=45°,∴∠ BDN=∠DBM=90°∴∠ BDN+∠DBM=180°,BM∥ DN∴四边形 BMND 为平行四边形,∵∠ BDN=90°,∴四边形 BMND 为矩形.16.( 2017?肥城市三模)如图,在锐角△ABC中, D,E 分别为 AB,BC中点, F 为 AC上一点,且∠ AFE=∠ A, DM∥EF交 AC于点 M.1)点 G 在 BE上,且∠ BDG=∠C,求证: DG?CF=DM?EG;2)在图中,取 CE上一点 H,使∠ CFH=∠B,若 BG=1,求 EH的长.【解答】(1)证明:如图 1 所示,D, E 分别为 AB, BC中点,DE∥ACDM∥EF,∴四边形 DEFM是平行四边形,DM=EF,如图 2 所示,∵ D、 E 分别是 AB、 BC的中点,DE∥AC,∴∠ BDE=∠A,∠ DEG=∠ C,∵∠ AFE=∠A,∴∠ BDE=∠AFE,∴∠ BDG+∠GDE=∠C+∠FEC,∵∠ BDG=∠C,∴∠ GDE=∠FEC,∴△ DEG∽△ ECF;∴,∴,∴,DG?CF=DM?EG;( 2)解:如图 3 所示,∵∠ BDG=∠C=∠DEB,∠ B=∠B,∴△ BDG∽△ BED,∴,BD2 =BG?BE,∵∠ AFE=∠A,∠ CFH=∠B,∴∠ C=180°﹣∠ A﹣∠ B=180°﹣∠ AFE﹣∠CFH=∠EFH,又∵∠ FEH=∠CEF,∴△ EFH∽△ ECF,∴=,∴ 2EF=EH?EC,DE∥AC,DM∥EF,∴四边形 DEFM是平行四边形,∴ EF=DM=DA=BD,∴ BG?BE=EH?EC,BE=EC,EH=BG=1.17.( 2017?肥城市模拟)△ ABC中, AB=AC,点 D、E、F 分别在 BC、AB、AC 上,EDF=∠ B.1)如图 1,求证: DE?CD=DF?BE2) D 为 BC中点如图 2,连接EF.①求证: ED平分∠ BEF;②若四边形 AEDF为菱形,求∠ BAC的度数及的值.【解答】(1)证明:∵△ ABC中, AB=AC,∴∠ B=∠ C.∵∠ B+∠ BDE+∠ DEB=180°,∠ BDE+∠ EDF+∠ FDC=180°,∠ EDF=∠ B,∴∠ FDC=∠DEB,∴△ BDE∽△ CFD,∴,即 DE?CD=DF?BE;( 2)解:①由( 1)证得△ BDE∽△ CFD,∴,D 为 BC中点,∴BD=CD,∴ = ,∵∠ B=∠ EDF,∴△ BDE~△ DFE,∴∠ BED=∠DEF,ED平分∠ BEF;②∵四边形 AEDF为菱形,∴∠ AEF=∠DEF,∵∠ BED=∠DEF,∴∠ AEF=60°,精选∴∠ BAC=60°,∵∠ BAC=60°,∴△ ABC是等边三角形,∴∠ B=60°,∴△ BED是等边三角形,BE=DE,∵ AE=DE,AE= AB,= .18.( 2017?长宁区二模)如图,在△ ABC 中,点 P 是 AC边上的一点,过点 P作与 BC平行的直线 PQ,交 AB 于点 Q,点 D 在线段 BC上,联接 AD 交线段 PQ 于点 E,且=,点G在BC延长线上,∠ ACG的平分线交直线PQ 于点 F.1)求证: PC=PE;2)当 P 是边 AC的中点时,求证:四边形 AECF是矩形.【解答】(1)证明:∵ PQ∥BC,∴△ AQE∽△ ABD,△ AEP∽△ ADC,∴=,,= ,∵ = ,。
(2021年整理)2018届初三中考数学专题复习相似三角形专项训练题含答案
2018届初三中考数学专题复习相似三角形专项训练题含答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018届初三中考数学专题复习相似三角形专项训练题含答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018届初三中考数学专题复习相似三角形专项训练题含答案的全部内容。
2018届初三中考数学专题复习相似三角形专项训练题1. 如图,在△ABC中,DE∥BC,若错误!=错误!,则错误!=( )A。
错误! B。
错误! C.错误! D。
错误!2. 如图,在△ABC中,DE∥BC,MN∥AB,则图中与△ABC相似的三角形有( )A.1个 B.2个 C.3个 D.4个3。
如图,四边形ABCD的对角线AC,BD相交于点O,且将这个四边形分成①,②,③,④四个三角形.若OA∶OC=OB∶OD,则下列结论中一定正确的是( )A.①和②相似 B.①和③相似 C.①和④相似 D.②和④相似4. 在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,若添加一个条件,使得Rt△ABC∽Rt△A′B′C′,则下列条件中不符合要求的是( )A.∠A=∠A′ B.∠B=∠B′C.错误!=错误! D。
错误!=错误!5。
如图,在△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为( )A.4 B.4错误! C.6 D.4错误!6. 如果两个相似三角形对应边的比为2∶3,那么这两个相似三角形面积的比是( )A.2∶3 B。
错误!∶错误! C.4∶9 D.8∶277。
已知△ABC∽△A′B′C′,错误!=错误!,AB边上的中线CD=4 cm,则A′B′边上的中线C′D′为( )A.6 cm B。
2018中考相似三角形汇编(供参考)
2018中考数学试题分类汇编:考点36 相似三角形一.选择题(共28小题)1.(2018•重庆)制作一块3m×2m长方形广告牌的本钱是120元,在每平方米制作本钱相同的情形下,假设将此广告牌的四边都扩大为原先的3倍,那么扩大后长方形广告牌的本钱是()A.360元B.720元C.1080元D.2160元【分析】依照题意求出长方形广告牌每平方米的本钱,依照相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【解答】解:3m×2m=6m2,∴长方形广告牌的本钱是120÷6=20元/m2,将此广告牌的四边都扩大为原先的3倍,那么面积扩大为原先的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的本钱是54×20=1080m2,应选:C.2.(2018•玉林)两三角形的相似比是2:3,那么其面积之比是()A.:B.2:3 C.4:9 D.8:27【分析】依照相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵两三角形的相似比是2:3,∴其面积之比是4:9,应选:C.3.(2018•重庆)要制作两个形状相同的三角形框架,其中一个三角形的三边长别离为5cm,6cm 和9cm,另一个三角形的最短边长为2.5cm,那么它的最长边为()A.3cm B.4cm C.4.5cm D.5cm【分析】依照相似三角形的对应边成比例求解可得.【解答】解:设另一个三角形的最长边长为xcm,依照题意,得:=,解得:x=4.5,即另一个三角形的最长边长为4.5cm,应选:C.4.(2018•内江)已知△ABC与△A1B1C1相似,且相似比为1:3,那么△ABC与△A1B1C1的面积比为()A.1:1 B.1:3 C.1:6 D.1:9【分析】利用相似三角形面积之比等于相似比的平方,求出即可.【解答】解:已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为1:9,应选:D.5.(2018•铜仁市)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,那么△DEF的面积为()A.32 B.8 C.4 D.16【分析】由△ABC∽△DEF,相似比为2,依照相似三角形的面积的比等于相似比的平方,即可得△ABC与△DEF的面积比为4,又由△ABC的面积为16,即可求得△DEF的面积.【解答】解:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为16,∴△DEF的面积为:16×=4.应选:C.6.(2017•重庆)已知△ABC∽△DEF,且相似比为1:2,那么△ABC与△DEF的面积比为()A.1:4 B.4:1 C.1:2 D.2:1【分析】利用相似三角形面积之比等于相似比的平方计算即可.【解答】解:∵△ABC∽△DEF,且相似比为1:2,∴△ABC与△DEF的面积比为1:4,应选:A.7.(2018•临安区)如图,小正方形的边长均为1,那么以下图中的三角形(阴影部份)与△ABC 相似的是()A.B.C.D.【分析】依照正方形的性质求出∠ACB,依照相似三角形的判定定理判定即可.【解答】解:由正方形的性质可知,∠ACB=180°﹣45°=135°,A、C、D图形中的钝角都不等于135°,由勾股定理得,BC=,AC=2,对应的图形B中的边长别离为1和,∵=,∴图B中的三角形(阴影部份)与△ABC相似,应选:B.8.(2018•广东)在△ABC中,点D、E别离为边AB、AC的中点,那么△ADE与△ABC的面积之比为()A.B.C.D.【分析】由点D、E别离为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E别离为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.应选:C.9.(2018•自贡)如图,在△ABC中,点D、E别离是AB、AC的中点,假设△ADE的面积为4,那么△ABC的面积为()A.8 B.12 C.14 D.16【分析】直接利用三角形中位线定理得出DE∥BC,DE=BC,再利用相似三角形的判定与性质得出答案.【解答】解:∵在△ABC中,点D、E别离是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴=,∵△ADE的面积为4,∴△ABC的面积为:16,应选:D.10.(2018•崇明县一模)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE 交BD于点F,那么△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【分析】可证明△DFE∽△BFA,依照相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE :S△BFA=9:16.应选:B.11.(2018•随州)如图,平行于BC的直线DE把△ABC分成面积相等的两部份,那么的值为()A.1 B.C. 1 D.【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出=,结合BD=AB﹣AD即可求出的值,此题得解.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴()2=.∵S△ADE =S四边形BCED,∴=,∴===﹣1.应选:C.12.(2018•哈尔滨)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,那么以下结论必然正确的选项是()A.=B.=C.=D.=【分析】由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,依照相似三角形的性质即可找出==,此题得解.【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.应选:D.13.(2018•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.假设DE=3,那么AD的长为()A.5 B.4 C.3 D.2【分析】先求出AC,进而判定出△ADF∽△CAB,即可设DF=x,AD=x,利用勾股定理求出BD,再判定出△DEF∽△DBA,得出比例式成立方程即可得出结论.【解答】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,那么AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,应选:D.14.(2018•扬州)如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD 与BE、AE别离交于点P,M.关于以下结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的选项是()A.①②③B.①C.①②D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD因此①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME因此②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM因此③正确应选:A.15.(2018•贵港)如图,在△ABC中,EF∥BC,AB=3AE,假设S四边形BCFE=16,那么S△ABC=()A.16 B.18 C.20 D.24【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出那么S△ABC的值.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF :S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴=,解得:x=2,∴S△ABC=18,应选:B.16.(2018•孝感)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD 于点E,连CD别离交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.那么以下结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为()A.5 B.4 C.3 D.2【分析】①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判定;②求出∠AFP和∠FAG度数,从而得出∠AGF度数,据此可判定;③证△ADF≌△BAH即可判定;④由∠AFG=∠CBG=60°、∠AGF=∠CGB即可得证;⑤设PF=x,那么AF=2x、AP==x,设EF=a,由△ADF≌△BAH知BH=AF=2x,依照△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△PAF∽△EAH得=,从而得出a与x的关系即可判定.【解答】解:∵△ABC为等边三角形,△ABD为等腰直角三角形,∴∠BAC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°,∴△CAD是等腰三角形,且顶角∠CAD=150°,∴∠ADC=15°,故①正确;∵AE⊥BD,即∠AED=90°,∴∠DAE=45°,∴∠AFG=∠ADC+∠DAE=60°,∠FAG=45°,∴∠AGF=75°,由∠AFG≠∠AGF知AF≠AG,故②错误;记AH与CD的交点为P,由AH⊥CD且∠AFG=60°知∠FAP=30°,则∠BAH=∠ADC=15°,在△ADF和△BAH中,∵,∴△ADF≌△BAH(ASA),∴DF=AH,故③正确;∵∠AFG=∠CBG=60°,∠AGF=∠CGB,∴△AFG∽△CBG,故④正确;在Rt△APF中,设PF=x,那么AF=2x、AP==x,设EF=a,∵△ADF≌△BAH,∴BH=AF=2x,△ABE中,∵∠AEB=90°、∠ABE=45°,∴BE=AE=AF+EF=a+2x,∴EH=BE﹣BH=a+2x﹣2x=a,∵∠APF=∠AEH=90°,∠FAP=∠HAE,∴△PAF∽△EAH,∴=,即=,整理,得:2x2=(﹣1)ax,由x≠0得2x=(﹣1)a,即AF=(﹣1)EF,故⑤正确;应选:B.17.(2018•泸州)如图,正方形ABCD中,E,F别离在边AD,CD上,AF,BE相交于点G,假设AE=3ED,DF=CF,那么的值是()A.B.C.D.【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,那么AE=3a,利用平行线分线段成比例定明白得决问题即可;【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,那么AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,应选:C.18.(2018•临安区)如图,在△ABC中,DE∥BC,DE别离与AB,AC相交于点D,E,假设AD=4,DB=2,那么DE:BC的值为()A.B.C.D.【分析】依照平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再依照相似三角形的对应边成比例解那么可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴===.应选:A.19.(2018•恩施州)如下图,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,那么线段AE的长度为()A.6 B.8 C.10 D.12【分析】依照正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,依照相似三角形的性质可得出==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【解答】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.应选:D.20.(2018•杭州)如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积别离为S1,S2()A.假设2AD>AB,那么3S1>2S2B.假设2AD>AB,那么3S1<2S2C.假设2AD<AB,那么3S1>2S2D.假设2AD<AB,那么3S1<2S2【分析】依照题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.【解答】解:∵如图,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴=()2,∴假设2AD>AB,即>时,>,现在3S1>S2+S△BDE,而S2+S△BDE<2S2.可是不能确信3S1与2S2的大小,应选项A不符合题意,选项B不符合题意.假设2AD<AB,即<时,<,现在3S1<S2+S△BDE<2S2,应选项C不符合题意,选项D符合题意.应选:D.21.(2018•永州)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,那么边AC的长为()A.2 B.4 C.6 D.8【分析】只要证明△ADC∽△ACB,可得=,即AC2=AD•AB,由此即可解决问题;【解答】解:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,应选:B.22.(2018•香坊区)如图,点D、E、F别离是△ABC的边AB、AC、BC上的点,假设DE∥BC,EF ∥AB,那么以下比例式必然成立的是()A.=B.=C.=D.=【分析】用平行线分线段成比例定理和相似三角形的判定即可得出结论.【解答】解:∵DE∥BC,∴,∵DE∥BC,∴△ADE∽△ABC,∴,∵EF∥AB,∴,∵EF∥AB,∴△CEF∽△CAB,∴,∵DE∥BC,EF∥AB,∴四边形BDEF是平行四边形,∴DE=BF,EF=BD,∴,,,,∴正确,应选:C.23.(2018•荆门)如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE交于点G,那么S△EFG:S△ABG=()A.1:3 B.3:1 C.1:9 D.9:1【分析】利用相似三角形的性质面积比等于相似比的平方即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵DE=EF=FC,∴EF:AB=1:3,∴△EFG∽△BAG,∴=()2=,应选:C.24.(2018•达州)如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF=AC.连接DE,DF 并延长,别离交AB,BC于点G,H,连接GH,那么的值为()A.B.C.D.1【分析】第一证明AG:AB=CH:BC=1:3,推出GH∥AC,推出△BGH∽△BAC,可得==()2=()2=,=,由此即可解决问题.【解答】解:∵四边形ABCD是平行四边形∴AD=BC,DC=AB,∵AC=CA,∴△ADC≌△CBA,∴S△ADC =S△ABC,∵AE=CF=AC,AG∥CD,CH∥AD,∴AG:DC=AE:CE=1:3,CH:AD=CF:AF=1:3,∴AG:AB=CH:BC=1:3,∴GH∥AC,∴△BGH∽△BAC,∴==()2=()2=,∵=,∴=×=,应选:C.25.(2018•南充)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP 于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.以下结论正确的选项是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF【分析】第一证明BH=AH,推出EG=BG,推出CE=CB,再证明△CEH≌△CBH,Rt△HFE≌Rt△HFA,利用全等三角形的性质即可一一判定.【解答】解:连接EH.∵四边形ABCD是正方形,∴CD=AB═BC=AD=2,CD∥AB,∵BE⊥AP,CH⊥BE,∴CH∥PA,∴四边形CPAH是平行四边形,∴CP=AH,∵CP=PD=1,∴AH=PC=1,∴AH=BH,在Rt△ABE中,∵AH=HB,∴EH=HB,∵HC⊥BE,∴BG=EG,∴CB=CE=2,应选项A错误,∵CH=CH,CB=CE,HB=HE,∴△ABC≌△CEH,∴∠CBH=∠CEH=90°,∵HF=HF,HE=HA,∴Rt△HFE≌Rt△HFA,∴AF=EF,设EF=AF=x,在Rt△CDF中,有22+(2﹣x)2=(2+x)2,∴x=,∴EF=,故B错误,∵PA∥CH,∴∠CEP=∠ECH=∠BCH,∴cos∠CEP=cos∠BCH==,故C错误.∵HF=,EF=,FC=∴HF2=EF•FC,故D正确,应选:D.26.(2018•临沂)如图.利用标杆BE测量建筑物的高度.已知标杆BE高 1.2m,测得AB=1.6m.BC=12.4m.那么建筑物CD的高是()A.9.3m B.10.5m C.12.4m D.14m【分析】先证明∴△ABE∽△ACD,那么利用相似三角形的性质得=,然后利用比例性质求出CD即可.【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).应选:B.27.(2018•长春)《孙子算经》是中国古代重要的数学高作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不明白有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),那么竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺【分析】依照同一时刻物高与影长成正比可得出结论.【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴,解得x=45(尺).应选:B.28.(2018•绍兴)学校门口的栏杆如下图,栏杆从水平位置BD绕O点旋转到AC位置,已知AB ⊥BD,CD⊥BD,垂足别离为B,D,AO=4m,AB=1.6m,CO=1m,那么栏杆C端应下降的垂直距离CD为()A.0.2m B.0.3m C.0.4m D.0.5m【分析】由∠ABO=∠CDO=90°、∠AOB=∠COD知△ABO∽△CDO,据此得=,将已知数据代入即可得.【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO=90°,又∵∠AOB=∠COD,∴△ABO∽△CDO,则=,∵AO=4m,AB=1.6m,CO=1m,∴=,解得:CD=0.4,应选:C.二.填空题(共7小题)29.(2018•邵阳)如下图,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:△ADF∽△ECF.【分析】利用平行四边形的性质取得AD∥CE,那么依照相似三角形的判定方式可判定△ADF∽△ECF.【解答】解:∵四边形ABCD为平行四边形,∴AD∥CE,∴△ADF∽△ECF.故答案为△ADF∽△ECF.30.(2018•北京)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,假设AB=4,AD=3,那么CF的长为.【分析】依照矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.31.(2018•包头)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.假设S△AEF=1,那么S△ADF的值为.【分析】由3AE=2EB可设AE=2a、BE=3a,依照EF∥BC得=()2=,结合S△AEF=1知S△=S△ABC=,再由==知=,继而依照S△ADF=S△ADC可得答案.ADC【解答】解:∵3AE=2EB,∴可设AE=2a、BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,∵S△AEF=1,∴S△ABC=,∵四边形ABCD是平行四边形,∴S△ADC =S△ABC=,∵EF∥BC,∴===,∴==,∴S△ADF =S△ADC=×=,故答案为:.32.(2018•资阳)已知:如图,△ABC的面积为12,点D、E别离是边AB、AC的中点,那么四边形BCED的面积为9.【分析】设四边形BCED的面积为x,那么S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得=()2,据此成立关于x的方程,解之可得.【解答】解:设四边形BCED的面积为x,那么S△ADE=12﹣x,∵点D、E别离是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,则=()2,即=,解得:x=9,即四边形BCED的面积为9,故答案为:9.33.(2018•泰安)《九章算术》是中国传统数学最重要的高作,在“勾股”章中有如此一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为步.【分析】证明△CDK∽△DAH,利用相似三角形的性质得=,然后利用比例性质可求出CK 的长.【解答】解:DH=100,DK=100,AH=15,∵AH∥DK,∴∠CDK=∠A,而∠CKD=∠AHD,∴△CDK∽△DAH,∴=,即=,∴CK=.答:KC的长为步.故答案为.34.(2018•岳阳)《九章算术》是我国古代数学名著,书中有以下问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.【分析】如图1,依照正方形的性质得:DE∥BC,那么△ADE∽△ACB,列比例式可得结论;如图2,同理可得正方形的边长,比较可得最大值.【解答】解:如图1,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,那么CD=x,AD=12﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴,∴,x=,如图2,四边形DGFE是正方形,过C作CP⊥AB于P,交DG于Q,设ED=x,S△ABC=AC•BC=AB•CP,12×5=13CP,CP=,同理得:△CDG∽△CAB,∴,∴,x=,∴该直角三角形能容纳的正方形边长最大是(步),故答案为:.35.(2018•吉林)如图是测量河宽的示用意,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=100m.【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,,解得:AB=(米).故答案为:100.三.解答题(共15小题)36.(2018•张家界)如图,点P是⊙O的直径AB延长线上一点,且AB=4,点M为上一个动点(不与A,B重合),射线PM与⊙O交于点N(不与M重合)(1)当M在什么位置时,△MAB的面积最大,并求岀那个最大值;(2)求证:△PAN∽△PMB.【分析】(1)当M在弧AB中点时,三角形MAB面积最大,现在OM与AB垂直,求出现在三角形面积最大值即可;(2)由同弧所对的圆周角相等及公共角,利用两对角相等的三角形相似即可得证.【解答】解:(1)当点M在的中点处时,△MAB面积最大,现在OM⊥AB,∵OM=AB=×4=2,=AB•OM=×4×2=4;∴S△ABM(2)∵∠PMB=∠PAN,∠P=∠P,∴△PAN∽△PMB.37.(2018•株洲)如图,在Rt△ABM和Rt△ADN的斜边别离为正方形的边AB和AD,其中AM=AN.(1)求证:Rt△ABM≌Rt△AND;(2)线段MN与线段AD相交于T,假设AT=,求tan∠ABM的值.【分析】(1)利用HL证明即可;(2)想方法证明△DNT∽△AMT,可得由AT=,推出,在Rt△ABM中,tan∠ABM=.【解答】解:(1)∵AD=AB,AM=AN,∠AMB=∠AND=90°∴Rt△ABM≌Rt△AND(HL).(2)由Rt△ABM≌Rt△AND易患:∠DAN=∠BAM,DN=BM∵∠BAM+∠DAM=90°;∠DAN+∠ADN=90°∴∠DAM=∠AND∴ND∥AM∴△DNT∽△AMT∴∵AT=,∴∵Rt△ABM∴tan∠ABM=.38.(2018•大庆)如图,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB,交⊙O于点C,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠FAB;(2)求证:BC2=CE•CP;(3)当AB=4且=时,求劣弧的长度.【分析】(1)依照等角的余角相等证明即可;(2)只要证明△CBE∽△CPB,可得=解决问题;(3)作BM⊥PF于M.那么CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,即AC平分∠FAB.(2)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∵CD是直径,∴∠CBD=∠CBP=90°,∴△CBE∽△CPB,∴=,∴BC2=CE•CP;(3)解:作BM⊥PF于M.那么CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵∠MCB+∠P=90°,∠P+∠PBM=90°,∴∠MCB=∠PBM,∵CD是直径,BM⊥PC,∴∠CMB=∠BMP=90°,∴△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∠BOD=120°∴的长==π.39.(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD 交AC于点E,求AE的长.【分析】依照角平分线概念和平行线的性质求出∠D=∠CBD,求出BC=CD=4,证△AEB∽△CED,得出比例式,求出AE=2CE,即可得出答案.【解答】解:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,∵AB∥CD,∴∠D=∠ABD,∴∠D=∠CBD,∴BC=CD,∵BC=4,∴CD=4,∵AB∥CD,∴△ABE∽△CDE,∴=,∴=,∴AE=2CE,∵AC=6=AE+CE,∴AE=4.40.(2018•上海)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足别离是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.【分析】(1)利用正方形的性质得AB=AD,∠BAD=90°,依照等角的余角相等取得∠1=∠3,那么可判定△ABE≌△DAF,那么BE=AF,然后利用等线段代换可取得结论;(2)利用=和AF=BE取得=,那么可判定Rt△BEF∽Rt△DFA,因此∠4=∠3,再证明∠4=∠5,然后依照等腰三角形的性质可判定EF=EP.【解答】证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABE和△DAF中,∴△ABE≌△DAF,∴BE=AF,∴EF=AE﹣AF=AE﹣BE;(2)如图,∵=,而AF=BE,∴=,∴=,∴Rt△BEF∽Rt△DFA,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.41.(2018•东营)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)假设BD=AD,AC=3,求CD的长.【分析】(1)连接OD,由OB=OD可得出∠OBD=∠ODB,依照切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,依照相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.【解答】(1)证明:连接OD,如下图.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.42.(2018•南京)如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O通过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)假设正方形ABCD的边长为4,AE=1,求⊙O的半径.【分析】(1)欲证明△AFG∽△DFC,只要证明∠FAG=∠FDC,∠AGF=∠FCD;(2)第一证明CG是直径,求出CG即可解决问题;【解答】(1)证明:在正方形ABCD中,∠ADC=90°,∴∠CDF+∠ADF=90°,∵AF⊥DE,∴∠AFD=90°,∴∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC.(2)解:如图,连接CG.∵∠EAD=∠AFD=90°,∠EDA=∠ADF,∴△EDA∽△ADF,∴=,即=,∵△AFG∽△DFC,∴=,∴=,在正方形ABCD中,DA=DC,∴AG=EA=1,DG=DA﹣AG=4﹣1=3,∴CG==5,∵∠CDG=90°,∴CG是⊙O的直径,∴⊙O的半径为.43.(2018•滨州)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.【分析】(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,依照AD⊥DC即可得证;(2)连接BC,证△DAC∽△CAB即可得.【解答】解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴=,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.44.(2018•十堰)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作FG⊥AC于点F,交AB的延长线于点G.(1)求证:FG是⊙O的切线;(2)假设tanC=2,求的值.【分析】(1)欲证明FG是⊙O的切线,只要证明OD⊥FG;(2)由△GDB∽△GAD,设BG=a.可得===,推出DG=2a,AG=4a,由此即可解决问题;【解答】(1)证明:连接AD、OD.∵AB是直径,∴∠ADB=90°,即AD⊥BC,∵AC=AB,∴CD=BD,∵OA=OB,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴FG是⊙O的切线.(2)解:∵tanC==2,BD=CD,∴BD:AD=1:2,∵∠GDB+∠ODB=90°,∠ADO+∠ODB=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠GDB=∠GAD,∵∠G=∠G,∴△GDB∽△GAD,设BG=a.∴===,∴DG=2a,AG=4a,∴BG:GA=1:4.45.(2018•杭州)如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD.(2)假设AB=13,BC=10,求线段DE的长.【分析】(1)想方法证明∠B=∠C,∠DEB=∠ADC=90°即可解决问题;(2)利用面积法:•AD•BD=•AB•DE求解即可;【解答】解:(1)∵AB=AC,BD=CD,∴AD⊥BC,∠B=∠C,∵DE⊥AB,∴∠DEB=∠ADC,∴△BDE∽△CAD.(2)∵AB=AC,BD=CD,∴AD⊥BC,在Rt△ADB中,AD===12,∵•AD•BD=•AB•DE,∴DE=.46.(2018•烟台)如图,已知D,E别离为△ABC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上.F为上一点,连接FE并延长交AC的延长线于点N,交AB于点M.(1)假设∠EBD为α,请将∠CAD用含α的代数式表示;(2)假设EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;(3)在(2)的条件下,假设AD=,求的值.【分析】(1)依照同圆的半径相等和等边对等角得:∠EDB=∠EBD=α,∠CAD=∠ACD,∠DCE=∠DEC=2α,再依照三角形内角和定理可得结论;(2)设∠MBE=x,同理得:∠EMB=∠MBE=x,依照切线的性质知:∠DEF=90°,因此∠CED+∠MEB=90°,同理依照三角形内角和定理可得∠CAD=45°;(3)由(2)得:∠CAD=45°;依照(1)的结论计算∠MBE=30°,证明△CDE是等边三角形,得CD=CE=DE=EF=AD=,求EM=1,MF=EF﹣EM=﹣1,依照三角形内角和及等腰三角形的判定得:EN=CE=,代入化简可得结论.【解答】解:(1)连接CD、DE,⊙E中,∵ED=EB,∴∠EDB=∠EBD=α,∴∠CED=∠EDB+∠EBD=2α,⊙D中,∵DC=DE=AD,∴∠CAD=∠ACD,∠DCE=∠DEC=2α,△ACB中,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴∠CAD==;(2)设∠MBE=x,∵EM=MB,∴∠EMB=∠MBE=x,当EF为⊙D的切线时,∠DEF=90°,∴∠CED+∠MEB=90°,∴∠CED=∠DCE=90°﹣x,△ACB中,同理得,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴2∠CAD=180°﹣90∴=90∴,∴∠CAD=45°;(3)由(2)得:∠CAD=45°;由(1)得:∠CAD=;∴∠MBE=30°,∴∠CED=2∠MBE=60°,∵CD=DE,∴△CDE是等边三角形,∴CD=CE=DE=EF=AD=,Rt△DEM中,∠EDM=30°,DE=,∴EM=1,MF=EF﹣EM=﹣1,△ACB中,∠NCB=45°+30°=75°,△CNE中,∠CEN=∠BEF=30°,∴∠CNE=75°,∴∠CNE=∠NCB=75°,∴EN=CE=,∴===2+.47.(2018•陕西)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示用意如下图.请依照有关测量信息,求河宽AB.【分析】由BC∥DE,可得=,构建方程即可解决问题.【解答】解:∵BC∥DE,∴△ABC∽△ADE,∴=,∴=,∴AB=17(m),经查验:AB=17是分式方程的解,答:河宽AB的长为17米.48.(2018•济宁)如图,在正方形ABCD中,点E,F别离是边AD,BC的中点,连接DF,过点E 作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,别离交AD,BC于点M,N,假设正方形ABCD的边长为10,点P是MN 上一点,求△PDC周长的最小值.【分析】(1)结论:CF=2DG.只要证明△DEG∽△CDF即可;(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,现在△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK;【解答】解:(1)结论:CF=2DG.理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴==,∴CF=2DG.(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,现在△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.由题意:CD=AD=10,ED=AE=5,DG=,EG=,DH==,∴EH=2DH=2,∴HM==2,∴DM=CN=NK==1,在Rt△DCK中,DK===2,∴△PCD的周长的最小值为10+2.49.(2018•聊城)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)假设正方形边长是5,BE=2,求AF的长.【分析】(1)依照ASA证明△ABE≌△BCF,可得结论;(2)依照(1)得:△ABE≌△BCF,那么CF=BE=2,最后利用勾股定理可得AF的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∴∠BAE+∠AEB=90°,∵BH⊥AE,∴∠BHE=90°,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵AB=BC=5,由(1)得:△ABE≌△BCF,∴CF=BE=2,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF====.50.(2018•乌鲁木齐)如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.(1)求证:直线BC是⊙O的切线;(2)假设AC=2CD,设⊙O的半径为r,求BD的长度.【分析】(1)依照角平分线的概念和同圆的半径相等可得OD∥AC,证明OD⊥CB,可得结论;(2)在Rt△ACD中,设CD=a,那么AC=2a,AD=a,证明△ACD∽△ADE,表示a=,由平行线分线段成比例定理得:,代入可得结论.【解答】(1)证明:连接OD,∵AG是∠HAF的平分线,∴∠CAD=∠BAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵∠ACD=90°,∴∠ODB=∠ACD=90°,即OD⊥CB,∵D在⊙O上,∴直线BC是⊙O的切线;(4分)(2)解:在Rt△ACD中,设CD=a,那么AC=2a,AD=a,连接DE,∵AE是⊙O的直径,由∠CAD=∠BAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即,∴a=,由(1)知:OD∥AC,∴,即,∵a=,解得BD=r.(10分)。
中考数学压轴题 相似三角形与圆的综合运用
第三周数学培优相似三角形与圆的综合运用
1.已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O上的一点,且AD平分∠FAE,ED⊥AF交AF的延长线于点C.
(1)判断直线CE与⊙O的位置关系,并证明你的结论;
(2)若AF∶FC=5∶3,AE=16,求⊙O的直径AB的长.
2.如图,△ABC中,AB=AE,以AB为直径
作⊙O交BE于C,过C作CD⊥AE于D,
DC的延长线与AB的延长线交于点P .
(1)求证:PD是⊙O的切线;
(2)若AE=5,BE=6,求DC的长.
3.(安徽芜湖模拟)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.求证:
(1)D是BC的中点;
(2)△BEC∽△ADC;
(3)BC2=2AB·CE.
4.(长沙市中考模拟)在
中,
,
是
边上一点,以
为直径的
与边
相切于点
,连结
并延长,与
的延长线交于点
.
(1)求证:
;
(2)若
,求
的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形在圆中的应用专题练习卷
1.如图,菱形ABCD 的边AB=20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO=10,则⊙O 的半径长等于( )
A .5
B .6
C .25
D .32
2.(2017浙江衢州第19题)如图,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆O 于点D 。
连结OD ,作BE ⊥CD 于点E ,交半圆O 于点F 。
已知CE=12,BE=9 (1)求证:△COD ∽△CBE ; (2)求半圆O 的半径r 的长
3.如图,已知BC 是O ⊙的直径,点D 为BC 延长线上的一点,点A 为圆上一点,且AB AD =,AC CD =. (1)求证:ACD BAD △∽△; (2)求证:AD 是O ⊙的切线.
4.如图,以原点O 为圆心,3为半径的圆与x 轴分别交于A ,B 两点(点B 在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与⊙O 分别交于C ,D 两点(点C 在点D 的上方),直线AC ,DB 交于点E .若AC :CE=1:2. (1)求点P 的坐标;
(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.
5.如图,ABC △内接于O ⊙,BC 是O ⊙的直径,弦AF 交BC 于点E ,延长BC 到点D ,连接OA ,AD ,使得FAC AOD =∠∠,D BAF =∠∠.
(1)求证:AD 是O ⊙的切线;
(2)若O ⊙的半径为5,2CE =,求EF 的长.
6.如图,已知直线PT 与⊙O 相切于点T ,直线PO 与⊙O 相交于A ,B 两点. (1)求证:PT 2=PA•P B ;
(2)若PT=TB=3,求图中阴影部分的面积.
7.如图,AB 是⊙O 的直径,AB =43E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB . (1)求证:CB 是∠ECP 的平分线; (2)求证:CF =CE ; (3)当
34
CF CP 时,求劣弧»BC
的长度(结果保留π)
8.如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;
(2)求证:BD2=AC•BQ;
(3)若AC、BQ的长是关于x的方程
4
x m
x
+=的两实根,且tan∠PCD=
1
3
,求⊙O的半径.
9.如图,已知C
∆AB内接于O
e,AB是直径,点D在O
e上,D//C
O B,过点D作D E⊥AB,垂足为E,连接CD交OE边于点F.
(1)求证:D
∆OE∽C
∆AB;
(2)求证:DF D
∠O=∠B E;
(3)连接C
O,设D
∆OE的面积为
1
S,四边形C D
B O的面积为
2
S,若1
2
2
7
S
S
=,求sin A的值.
10.如图,ABC
∆内接于O
e,,
AB AC CO
=的延长线交AB于点D.
(1)求证AO 平分BAC ∠; (2)若3
6,sin 5
BC BAC =∠=
,求AC 和CD 的长. 11. 如图,点E 是△ABC 的内心,AE 的延长线交BC 于点F ,交△ABC 的外接圆⊙O 于点D ;连接BD ,过点D 作直线
DM ,使∠BDM =∠DA C .
(1)求证:直线DM 是⊙O 的切线; (2)求证:DE 2
=DF ·D A .
12.如图,AB 是⊙O 的直径,PB 与⊙O 相切于点B ,连接PA 交⊙O 于点C .连接BC .
(1)求证:CBP BAC ∠=∠; (2)求证:PA PC PB ⋅=2;
(3)当3,6==CP AC 时,求PAB ∠sin 的值.
13.如图,菱形ABCD 中,对角线BD AC ,相交于点O ,cm BD cm AC 16,12==,动点N 从点D 出发,沿线段DB 以s cm /2的速度向点B 运动,同时动点M 从点B 出发,沿线段BA 以s cm /1的速度向点A 运动,当其中一个动点停止运动时另一个动点也随之停止.设运动时间为)0)((>t s t ,以点M 为圆心,MB 为半径的⊙M 与射线BA ,线段BD 分别交于点F E ,,连接EN .
(1)求BF的长(用含有t的代数式表示),并求出t的取值范围;
(2)当t为何值时,线段EN与⊙M相切?
(3)若⊙M与线段EN只有一个公共点,求t的取值范围.
4.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.
(2)若BC=3,CD=32,求弦AD的长.
5.如图,已知RtΔABC,∠C=90°,D为BC的中点.以AC为直径的圆O交AB于点E.
(1)求证:DE是圆O的切线.
(2)若AE:EB=1:2,BC=6,求AE的长.。