大学物理实验傅里叶分析实验报告
傅里叶实验报告
一、实验目的1. 了解傅里叶变换的基本原理和方法。
2. 掌握傅里叶变换在信号处理中的应用。
3. 通过实验验证傅里叶变换在信号处理中的效果。
二、实验原理傅里叶变换是一种将信号从时域转换为频域的方法,它可以将一个复杂的信号分解为一系列不同频率的正弦波和余弦波的叠加。
傅里叶变换的基本原理是:任何周期信号都可以表示为一系列不同频率的正弦波和余弦波的叠加。
三、实验仪器与材料1. 实验箱2. 信号发生器3. 示波器4. 计算机及傅里叶变换软件四、实验步骤1. 设置信号发生器,产生一个正弦信号,频率为f1,幅度为A1。
2. 将信号发生器输出的信号输入到实验箱,通过示波器观察该信号。
3. 利用傅里叶变换软件对观察到的信号进行傅里叶变换,得到频谱图。
4. 改变信号发生器的频率,分别产生频率为f2、f3、f4的正弦信号,重复步骤2-3。
5. 分析不同频率信号的频谱图,观察傅里叶变换在信号处理中的应用。
五、实验数据与结果1. 当信号发生器频率为f1时,示波器显示的信号波形如图1所示。
图1:频率为f1的正弦信号波形2. 对频率为f1的正弦信号进行傅里叶变换,得到的频谱图如图2所示。
图2:频率为f1的正弦信号的频谱图从图2可以看出,频率为f1的正弦信号在频域中只有一个频率成分,即f1。
3. 重复步骤4,分别对频率为f2、f3、f4的正弦信号进行傅里叶变换,得到的频谱图分别如图3、图4、图5所示。
图3:频率为f2的正弦信号的频谱图图4:频率为f3的正弦信号的频谱图图5:频率为f4的正弦信号的频谱图从图3、图4、图5可以看出,不同频率的正弦信号在频域中分别只有一个频率成分,即对应的f2、f3、f4。
六、实验分析与讨论1. 傅里叶变换可以将信号从时域转换为频域,方便我们分析信号的频率成分。
2. 通过傅里叶变换,我们可以得到信号的频谱图,直观地观察信号的频率成分。
3. 实验结果表明,傅里叶变换在信号处理中具有重要作用,可以应用于信号分解、滤波、调制等领域。
大学物理实验傅里叶分析实验报告
脉搏、语音及图像信号的傅里叶分析一、实验简介任何波形的周期信号均可用傅里叶级数来表示。
傅里叶级数的各项代表了不同频率的正弦或余弦信号,即任何波形的周期信号都可以看作是这些信号(谐波)的叠加。
利用不同的方法,可以从周期信号中分解出它的各次谐波的幅值和相位。
也可依据信号的傅里叶级数表达式,将各次谐波按表达式的要求叠加得到所期望的信号。
二、实验目的1、了解常用周期信号的傅里叶级数表示。
2、了解周期脉搏信号、语音信号及图像信号的傅里叶分析过程3、理解体会傅里叶分析的理论及现实意义三、实验仪器脉搏语音实验仪器,数字信号发生器,示波器四、实验原理1、周期信号傅里叶分析的数学基础任意一个周期为T的函数f(t)都可以表示为傅里叶级数:其中为角频率,称为基频,为常数,和称为第n次谐波的幅值。
任何周期性非简谐交变信号均可用上述傅里叶级数进行展开,即分解为一系列不同次谐波的叠加。
对于如图1所示的方波,一个周期内的函数表达式为:其傅里叶级数展开为:同理:对于如图2所示的三角波,函数表达式为:其傅里叶级数展开为:图1 方波图2 三角波从以上各式可知,任何周期信号都可以表示为无限多次谐波的叠加,谐波次数越高,振幅越小,它对叠加波的贡献就越小,当小至一定程度时(谐波振幅小于基波振幅的5%),则高次的谐波就可以忽略而变成有限次数谐波的叠加,这对设计仪器电路是很有意义的。
实验内容1、傅里叶级数的合成(1)利用数字信号发生器产生频率分别为100Hz、300Hz、500Hz的正弦信号,并使其位相相同,振幅比为:1:1/3: 1/5,将上述三个信号,分别通过加法器输入到傅里叶分析仪,观察并记录其波形。
(2)利用数字信号发生器产生方波,输入到傅里叶分析仪,并将其与上述合成后的信号相比较。
两者有何差异?试分析引起的原因,应如何消除?(3)利用数字信号发生器产生频率分别为200Hz、600Hz、1000Hz的正弦信号,振幅比为:1:1/32:1/52,并且保证其相位相差180°,然后通过加法器输入到傅里叶分析仪,观察并记录其波形,并与数字信号发生器产生的三角波相比较。
信号与系统的傅立叶分析实验报告(共10篇)
信号与系统的傅立叶分析实验报告(共10篇)信号与系统实验报告周期信号的傅立叶级数分析信号与系统实验报告实验名称:姓学班时一、实验目的周期信号的傅立叶级数分析名:号:级:间:2013.4.191、掌握周期信号的频谱分析;2、学会对一般周期信号在时域上进行合成;二、实验基本原理在“信号与系统”中,任何周期信号只要满足狄利赫利条件就可以用傅立叶级数表示,即可分解成直流分量及一系列谐波分量之和。
以周期矩形脉冲信号为例,设周期矩形脉冲信号f~(t)的脉冲宽带为?,脉冲幅度为E,周期为T1,如图1.1所示。
图1.1 周期矩形脉冲信号的波形它可以展开成如下三角形式的傅立叶级数:E?2E?f(t)??T1T1~n?1?Sa()cosn?1t ?2n?1从上式可得出直流分量、基波及各次谐波分量的幅度:E?T12E?n??c?Sa()T2c0?1n1根据式(1-2)、(1-3)可以分别画出周期矩形脉冲信号三角形式表示的幅度谱和相位谱,如图1.2所示。
(a)(b)图1.2 周期矩形脉冲信号的频谱从上图中可以看出,周期矩形脉冲信号可以分解成无穷多个频率分量,也就是说,周期信号是由多个单一频率的正弦信号合成的,各正弦信号的频率n?1是周期信号频率?1的整数倍。
同样,任一周期信号也可以由一系列单一的频率分量按式(1-1)式所定的频率、幅度和相位进行合成。
理论上需要谐波个数为无限,但由于谐波幅度随着谐波次数的增加信号幅度减少,因而只需取一定数目的谐波数即可。
三、实验内容及结果1、周期方波信号的傅里叶级数分析(1)五路谐波分量的幅值1)一次谐波的波形(2)2)一、二次谐波合成的波形3)一、二、三次谐波合成的波形4)一、二、三、四次谐波合成的波形5)一、二、三、四、五次谐(3)画出周期方波信号的幅度谱波合成的波形篇二:实验一信号与系统的傅立叶分析实验一信号与系统的傅立叶分析一. 实验目的用傅立叶变换对信号和系统进行频域分析。
二.实验仪器装有matlab软件的计算机三.实验内容及步骤(1)已知系统用下面差分方程描述:y(n)?x(n)?ay(n?1)试在a?0.95和a?0.5两种情况下用傅立叶变换分析系统的频率特性。
傅立叶光学实验报告
傅立叶光学实验报告
一、实验目的
本实验旨在引导学生了解傅立叶光学,并通过实验验证物质特征的光学折射特性,观察、测量及分析物质的光学折射指数分布,验证物质的光学特性,以此加强对光学知识的理解和掌握。
二、原理
傅里叶光学把物质看做是由一些改变其光学折射指数的晶胞组成的,当光线经过这些晶胞时,光线会被折射,从而在物质表面产生折射和反射,折射和反射后光线会发生各种变化,通过观测、记录和分析变化,可以得出物质的光学折射指数分布,从而了解物质的光学特性。
三、实验步骤
1.将实验仪器、光台、准直仪、探测器准备好
2.对光台进行准直
3.将样品放置在准直仪上,调整样品到光路中心
4.调整物质折射指数,调整换算物质折射指数
5.记录、计算光路折射指数变化
6.观察物质的变化和反射现象
四、实验结果
折射率随温度的变化:
温度(℃):20 30 40 50
折射率(n):1.6 1.7 1.8 1.9
反射率随温度的变化:
温度(℃):20 30 40 50
反射率(R/%):8.1 8.5 9.2 10.1
五、实验结论
1. 通过本次实验,可以得出物质折射指数随温度变化的规律,从而更深刻地了解物质的光学特性。
2. 可以观察到折射率随温度增加而增加,而反射率随温度增加而减少。
傅里叶光学的实验报告(3篇)
第1篇一、实验目的1. 深入理解傅里叶光学的基本原理和概念。
2. 通过实验验证傅里叶变换在光学系统中的应用。
3. 掌握光学信息处理的基本方法,如空间滤波和图像重建。
4. 理解透镜的成像过程及其与傅里叶变换的关系。
二、实验原理傅里叶光学是利用傅里叶变换来描述和分析光学系统的一种方法。
根据傅里叶变换原理,任何光场都可以分解为一系列不同频率的平面波。
透镜可以将这些平面波聚焦成一个点,从而实现成像。
本实验主要涉及以下原理:1. 傅里叶变换:将空间域中的函数转换为频域中的函数。
2. 光学系统:利用透镜实现傅里叶变换。
3. 空间滤波:在频域中去除不需要的频率成分。
4. 图像重建:根据傅里叶变换的结果恢复原始图像。
三、实验仪器1. 光具座2. 氦氖激光器3. 白色像屏4. 一维、二维光栅5. 傅里叶透镜6. 小透镜四、实验内容1. 测量小透镜的焦距实验步骤:(1)打开氦氖激光器,调整光路使激光束成为平行光。
(2)将小透镜放置在光具座上,调节光屏的位置,观察光斑的会聚情况。
(3)当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。
2. 利用夫琅和费衍射测光栅的光栅常数实验步骤:(1)调整光路,使激光束通过光栅后形成衍射图样。
(2)测量衍射图样的间距,根据dsinθ = kλ 的关系式,计算出光栅常数 d。
3. 傅里叶变换光学系统实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在光栅后放置傅里叶透镜,将光栅的频谱图像投影到屏幕上。
(3)在傅里叶透镜后放置小透镜,将频谱图像聚焦成一个点。
(4)观察频谱图像的变化,分析透镜的成像过程。
4. 空间滤波实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在傅里叶透镜后放置空间滤波器,选择不同的滤波器进行实验。
(3)观察滤波后的频谱图像,分析滤波器对图像的影响。
五、实验结果与分析1. 通过测量小透镜的焦距,验证了透镜的成像原理。
大学物理仿真实验傅里叶光学
⼤学物理仿真实验傅⾥叶光学⼤学物理仿真实验——傅⾥叶光学实验实验报告姓名:班级:学号:实验名称傅⾥叶光学实验⼀、实验⽬的1.学会利⽤光学元件观察傅⽴叶光学现象。
2.掌握傅⽴叶光学变换的原理,加深对傅⽴叶光学中的⼀些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波和卷积等。
⼆、实验所⽤仪器及使⽤⽅法防震实验台,He-Ne激光器,扩束系统(包括显微物镜,针孔(30µm),⽔平移动调整器),全反射镜,透镜及架(f=+150mm,f=+100mm),50线/mm光栅滤波器,⽩屏三、实验原理平⾯波Ee(x,y)⼊射到p平⾯(透过率为)在p平⾯后Z=0处的光场分布为:E(x,y)= Ee(x,y)图根据惠更斯原理(Huygens’ Principle),在p平⾯后任意⼀个平⾯p’处光场的分布可看成p平⾯上每⼀个点发出的球⾯波的组合,也就是基尔霍夫衍射积分(Kirchhoff’s diffraction integral)。
(1)这⾥:=球⾯波波长;n=p平⾯(x,y)的法线⽮量;K=(波数)是位相和振幅因⼦;cos(n,r)是倾斜因⼦;在⼀般的观察成像系统中,cos(n,r)1。
r=Z+,分母项中r z;(1)式可⽤菲涅尔衍射积分表⽰:(菲涅尔近似 Fresnel approximation)(2)当z更⼤时,即z>>时,公式(2)进⼀步简化为夫琅和费衍射积分:(Fraunhofer Approximation)这⾥:位相弯曲因⼦。
如果⽤空间频率做为新的坐标有:,若傅⽴叶变换为(4)(3)式的傅⽴叶变换表⽰如下:E(x’,y’,z)=F[E(x,y)]=c图2 空间频率和光线衍射⾓的关系tg==,tg===,=可见空间频率越⾼对应的衍射⾓也越⼤,当z越⼤时,衍射频谱也展的越宽;由于感光⽚和⼈眼等都只能记录光的强度(也叫做功率谱),所以位相弯曲因⼦(5)理论上可以证明,如果在焦距为f的汇聚透镜的前焦⾯上放⼀振幅透过率为g(x,y)的图象作为物,并⽤波长为的单⾊平⾯波垂直照明图象,则在透镜后焦⾯上的复振幅分布就是g(x,y)的傅⽴叶变换,其中空间频率,与坐标,的关系为:,。
傅里叶变换光学系统-实验报告
实验10傅里叶变换光学系统实验时间:2014年3月20日星期四一、实验目的1. 了解透镜对入射波前的相位调制原理。
2. 加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。
3. 观察透镜的傅氏变换力图像,观察4f 系统的反傅氏变换的图像,并进行比较。
4. 在4f 系统的变换平面插入各种空间滤波器,观察各种试件相应的频谱处理图像。
二、实验原理1. 透镜的FT 性质及常用函数与图形的关学频谱分析透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。
假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。
设原复振幅分布为U(x,y)的L光通过透镜后,其复振幅分布受到透镜的位相调制后变为U '(x,y ):LU '(x,y)=U (x,y)exp[j (x,y)]LL (1)假设对于任意一点〔x ,y 〕透镜的厚度为D (x ,y ),透镜的中心厚度为。
光线由 该点通过透镜时在透镜中的距离为D (x ,y ),空气空的距离为D -D(x,y),透镜折射率 为n ,则该点的位相延迟因子t (x ,y )为:t(x,y)=exp(jkD 0)exp[jk(n -1)D(x,y)]由此可见只要知道透镜的厚度函数D (x ,y )就可得出其相位调制。
在球面镜傍轴 区域,用抛物面近似球面,并引入焦距f ,有:111 D(x,y)=D —(x 2+y 2)(-) 02RR12 111 —=(n -1)(—-一)fRR 12 kt (x ,y )=eXP(jkn D o )eXP[-j (x 2+y 2)] 第一项位相因子exp(jknD)仅表示入射光波的常量位相延迟,不影响位相的空间0分布,即波面形状,所以在运算过程中可以略去。
当考虑透镜孔径后,有:(2) (3) (4)(5)k t(x,y)=exp[-j(x 2+y 2)]p(x,y)其中的p (x ,y )为透镜的光瞳函数,表达式为: 2.透镜的傅立叶变换性质中包含很多不同的频率成分。
傅里叶变换光学系统实验报告
傅里叶变换光学系统-实验报告————————————————————————————————作者: ————————————————————————————————日期:实验10 傅里叶变换光学系统实验时间:2014年3月20日 星期四一、 实验目的1. 了解透镜对入射波前的相位调制原理。
2. 加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。
3. 观察透镜的傅氏变换力图像,观察4f 系统的反傅氏变换的图像,并进行比较。
4. 在4f 系统的变换平面插入各种空间滤波器,观察各种试件相应的频谱处理图像。
二、 实验原理1. 透镜的F T性质及常用函数与图形的关学频谱分析 透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。
假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。
设原复振幅分布为(,)L U x y 的光通过透镜后,其复振幅分布受到透镜的位相调制后变为(,)L U x y ':(,)(,)exp[(,)]L L U x y U x y j x y ϕ'= (1)若对于任意一点(x,y)透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。
光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0(,)D D x y -,透镜折射率为n,则该点的位相延迟因子(,)t x y 为:0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (2)由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。
在球面镜傍轴区域,用抛物面近似球面,并引入焦距f,有: 22012111(,)()()2D x y D x y R R =-+- (3)12111(1)()n f R R =-- (4) 220(,)exp()exp[()]2kt x y jknD jx y f=-+ (5) 第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。
傅里叶红外光谱的测定实验报告
傅里叶红外光谱的测定实验报告本实验以傅里叶红外光谱仪为工具,利用红外光谱分析技术对不同样品进行测定,以了解样品所包含的化学结构。
实验中我们选用的样品有氯化钠、甲醛、氨基苯甲酸甲酯和纤维素等。
首先,我们将样品按要求制成薄片,并在一定范围内对样品进行扫描,通过仪器计算出不同波数下的吸收光谱。
我们在实验中发现,不同样品之间的光谱图结果有着明显的区别。
对于氯化钠样品,我们可以看到相对较强的单峰峰值在波数4000左右。
这是因为氯化钠为离子晶体,结构特征简单,其分子内部相互作用相对较少,因此对红外辐射能力较弱。
因此在红外辐射光谱中,氯化钠所表现出的吸收带比较窄。
对于甲醛样品,在3370-2850cm-1波段内的C-H键伸缩振动产生的峰值比较明显,而460-880cm-1波段间的C-H摆动波数峰值较为弱。
这是因为甲醛分子中含有烷基官能团,因此对红外辐射的吸收峰呈现出明显的特征。
因此我们可以利用甲醛样品的红外光谱特征,来对甲醛进行鉴定。
对于氨基苯甲酸甲酯样品,在3280-3500cm-1波段内的存在着较强的N-H化学键伸缩振动产生的峰值。
同时,这个峰值表现出了微小的峰裂而呈现褶皱形状,这是因为该样品中的氨基化合物分子中的N-H键被氢键所包围,因此其形状十分特殊。
最后,我们对纤维素样品进行了红外光谱分析。
在650-1000cm-1波段内的弱吸收峰,表示了众所周知的C-OH、O-C-O的拉伸振动,是纤维素聚合物中分子结构特点之一。
同时,其在3400-3600cm-1的H-O-H振动峰以及在1640-1690cm-1中的C=O键振动峰,都分别对应了氢键和纤维素中酰基吸收带的存在。
总的来说,通过本次实验我们可以获得不同样品所具有的红外光谱谱图,从而进一步理解它们的化学结构特征。
这些结构特征有助于我们在测定中根据样品的红外光谱图来对不同化合物进行鉴定。
傅里叶变换 实验报告
傅里叶变换实验报告傅里叶变换实验报告引言:傅里叶变换是一种重要的数学工具,广泛应用于信号处理、图像处理、物理学、工程学等领域。
本次实验旨在通过实际操作和数据分析,深入了解傅里叶变换的原理、特性以及应用。
一、实验目的本实验的目的是通过实际操作,掌握傅里叶变换的基本原理,了解其在信号处理中的应用,并能够正确进行频域分析。
二、实验仪器和材料1. 信号发生器2. 示波器3. 计算机4. 傅里叶变换软件三、实验步骤1. 将信号发生器与示波器连接,并设置合适的频率和幅度,产生一个正弦信号。
2. 通过示波器观察并记录原始信号的时域波形。
3. 将示波器输出的信号通过音频线连接到计算机的输入端口。
4. 打开傅里叶变换软件,选择输入信号源为计算机输入端口,并进行采样。
5. 在傅里叶变换软件中,通过选择合适的窗函数、采样频率和采样点数,进行傅里叶变换。
6. 观察并记录变换后的频域波形,并进行分析。
四、实验结果与分析通过实验操作和数据分析,我们得到了信号的时域波形和频域波形。
在时域波形中,我们可以清晰地看到正弦信号的周期性特征,而在频域波形中,我们可以看到信号的频率成分。
傅里叶变换将信号从时域转换到频域,通过分析频域波形,我们可以得到信号的频率成分。
在实验中,我们可以通过改变信号发生器的频率和幅度,观察频域波形的变化,进一步理解傅里叶变换的原理和特性。
此外,傅里叶变换还可以用于信号滤波。
通过观察频域波形,我们可以选择性地去除某些频率成分,从而实现信号的滤波处理。
这在音频处理、图像处理等领域中具有广泛的应用。
五、实验总结本次实验通过实际操作和数据分析,深入了解了傅里叶变换的原理、特性以及应用。
傅里叶变换作为一种重要的数学工具,在信号处理、图像处理等领域中具有广泛的应用前景。
通过本次实验,我们不仅掌握了傅里叶变换的基本原理和操作方法,还深入了解了信号的时域和频域特性。
这对于我们进一步研究和应用傅里叶变换具有重要的意义。
总之,傅里叶变换是一项重要的数学工具,通过实际操作和数据分析,我们可以更好地理解和应用傅里叶变换,为信号处理和图像处理等领域的研究和应用提供有力支持。
傅里叶变换光学系统实验报告
实验10 傅里叶变换光学系统实验时间:2014年3月20日 星期四一、 实验目的1. 了解透镜对入射波前的相位调制原理。
2. 加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。
3. 观察透镜的傅氏变换力图像,观察4f 系统的反傅氏变换的图像,并进行比较。
4. 在4f 系统的变换平面插入各种空间滤波器,观察各种试件相应的频谱处理图像。
二、 实验原理1. 透镜的FT 性质及常用函数与图形的关学频谱分析透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。
假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。
设原复振幅分布为(,)L U x y 的光通过透镜后,其复振幅分布受到透镜的位相调制后变为(,)L U x y ':(,)(,)exp[(,)]L L U x y U x y j x y ϕ'= (1)若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。
光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0(,)D D x y -,透镜折射率为n ,则该点的位相延迟因子(,)t x y 为:0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (2)由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。
在球面镜傍轴区域,用抛物面近似球面,并引入焦距f ,有:22012111(,)()()2D x y D x y R R =-+- (3) 12111(1)()n f R R =-- (4) 220(,)exp()exp[()]2k t x y jknD j x y f=-+ (5)第一项位相因子exp()jknD仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。
快速傅里叶变换实验报告
快速傅里叶变换实验报告机械34班 刘攀 2013010558一、 基本信号(函数)的FFT 变换1. 000()sin()sin 2cos36x t t t t πωωω=+++ 1) 采样频率08s f f =,截断长度N=16;取02ωπ=rad/s ,则0f =1Hz ,s f =8Hz ,频率分辨率f ∆=s f f N ∆==0.5Hz 。
最高频率c f =30f =3Hz ,s f >2c f ,故满足采样定理,不会发生混叠现象。
截断长度02T T =,整周期截取,不会发生栅栏效应。
理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。
频谱图如下:幅值误差0A ∆=,相位误差0ϕ∆=。
2) 采样频率08s f f =,截断长度N=32;取02ωπ=rad/s ,则0f =1Hz ,s f =8Hz ,频率分辨率f ∆=s f f N ∆==0.25Hz 。
最高频率c f =30f =3Hz ,s f >2c f ,故满足采样定理,不会发生混叠现象。
截断长度04T T =,整周期截取,不会发生栅栏效应。
理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。
频谱图如下:幅值误差0A ∆=,相位误差0ϕ∆=。
2. 00()sin()sin116x t t t πωω=++ 1) 采样频率08s f f =,截断长度N=16;取02ωπ=rad/s ,则0f =1Hz ,s f =8Hz ,频率分辨率f ∆=s f f N ∆==0.5Hz 。
最高频率c f =110f =11Hz ,s f <2c f ,故不满足采样定理,会发生混叠现象。
漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。
频谱图:由上图可以看出,并未体现出110f 的成分,说明波形出现混叠失真。
为了消除混叠现象,应加大采样频率, 使之大于等于 22Hz 。
傅里叶光学实验报告[整理]
傅里叶光学实验报告[整理]傅里叶光学实验报告一、实验目的1. 掌握傅里叶光学的基本原理和方法;2. 实验验证平面波和球面波通过透镜之后的傅里叶变换关系;3. 了解频谱成像的基本原理和方法。
二、实验原理傅里叶光学是一种将光场分解为一组微小的平面波或球面波的方法,然后利用傅里叶变换将这些平面波或球面波的振幅和相位信息转换为相应的频谱图像。
1. 平面波通过透镜的傅里叶变换关系当平面波通过透镜时,透镜将平面波折射成球面波。
根据惠更斯原理,球面波前可以看作由无限多的次波分布组成。
如果透镜的曲率半径为R,球面波前中心距离透镜为s,则透镜折射后的球面波前半径为r=R+s。
当球面波面向透镜的时候,透镜将其中心处的波捕获并将其折射到焦平面上。
由于透镜的几何关系,球面波的频谱可以通过傅里叶变换转换为另一个球面波,其频率等于初始球面波频率的两倍,且与原始平面波的振幅和相位有关。
2. 球面波通过透镜的傅里叶变换关系当球面波通过透镜时,透镜将其变为以透镜为中心的球面波。
根据惠更斯原理,透镜表面的每个点都在向球面波前广播无限多的次波。
在透镜上选择一个点作为坐标原点,并定义该点上的波面为 z=0。
当球面波辐射到该点上的时候,透镜所发出的微光波会在该点上聚焦。
此时,球面波的频谱可以通过傅里叶变换转换为平面波,其频率等于初始球面波频率的两倍,且与原始球面波的振幅和相位有关。
3. 频谱成像将频谱图像转换为空间图像的方法称为频谱成像。
在傅里叶光学中,频谱成像允许我们在不影响图像分辨率的情况下调整像场大小和形状。
简单地说,对于一张图像,我们可以选择不同的频率空间滤波器进行滤波,然后通过傅里叶反变换将滤波后的频谱图像转换为空间图像。
滤波后的频谱图像通常会显示出图像的高频信息,使我们可以对图像分辨率和清晰度进行调整。
三、实验仪器1. He-Ne激光器2. 分束器3. 透镜4. 母线5. 干涉条纹增强滤波器6. 透镜支架7. CCD相机8. 分光仪9. 激光干涉仪四、实验步骤1. 准备实验仪器并清洁透镜表面。
傅里叶实验报告
南昌大学物理实验报告实验名称: 信号的相关和傅立叶变换实验原理:傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。
在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
最初傅里叶分析是作为热过程的解析分析的工具被提出的傅立叶变换(FFT )是信号分析最重要的工具之一,其目的是为了时域和频域的转化。
列如:如果将一个正弦波进行傅立叶变换,得到的结果在坐标上只是一根直线,因为只有一个频率分量。
简而言之就是将非周期函数信号作为周期函数信号的一种极限。
傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值谱——显示与频率对应的幅值大小)。
从已知信号f(t)求出相应的频谱函数F(ω)的数学表达式为:它的表达式(DFT ) :因DFT 的运算量大,且要求相当大的内存,难以实现实时处理,一种能提高DFT 运算 度的方法FFT 得到了广泛的应用和推广。
FFT 根据DFT 变换定义的运算规律,及其中某些 算子的特殊性,找出减少乘法和加法运算的有效途径,实现了原始变换的高效算法。
信号相关度的问题:利用相关处理在信号的相似性比较中,有重要的应用! 表达式为:关系判定式:()()j tF f t edtωω+∞--∞=⎰正变换:1()()2j tf t F ed ωωωπ+∞-∞=⎰逆变换:()[]j nF f n eωω+∞--∞=∑1()()2j nf n F eπωπωπ-=∑1212221/212()()[()()]f t f t dt R f t dt f t dt +∞-∞+∞+∞-∞-∞=⎰⎰⎰相关系数:此时称为互相关而当函数关系为此时称为自相关利用这些公式可以很好的判断它们你的相关性,以便于对其的分析与处理实验仪器:双踪示波器,探头,扩音器,U 盘,电脑。
傅里叶实验报告
傅里叶实验报告傅里叶实验报告引言傅里叶变换是一种重要的数学工具,广泛应用于信号处理、图像处理、物理学等领域。
本实验旨在通过实际操作,深入理解傅里叶变换的原理和应用。
实验设备本实验所需设备包括信号发生器、示波器、计算机等。
实验步骤1. 准备工作首先,我们需要将信号发生器连接到示波器上,以便观察信号的波形。
同时,将示波器与计算机连接,以便进行数据采集和分析。
2. 信号发生器设置将信号发生器的频率设置为50Hz,幅度设置为适当的值。
这样可以产生一个稳定的正弦信号。
3. 示波器设置将示波器的触发方式设置为外部触发,以保证观测到稳定的波形。
同时,调整示波器的水平和垂直缩放,使波形在屏幕上能够清晰显示。
4. 信号采集将示波器的输出信号通过USB接口连接到计算机上,使用相应的软件进行数据采集。
在采集过程中,需要注意保持信号的稳定性,避免干扰。
5. 数据分析将采集到的数据导入到计算机上的数据处理软件中,进行傅里叶变换。
通过傅里叶变换,我们可以将时域信号转换为频域信号,进一步分析信号的频谱特性。
实验结果通过对采集到的数据进行傅里叶变换,我们可以得到信号的频谱图。
从频谱图中,我们可以观察到信号的频率成分和强度分布情况。
通过进一步的分析,我们可以得到信号的频率、幅度、相位等信息。
实验思考傅里叶变换的应用非常广泛,例如在通信领域中,可以通过傅里叶变换将信号从时域转换为频域,从而实现信号的调制和解调。
在图像处理中,傅里叶变换可以用于图像的滤波和压缩。
在物理学中,傅里叶变换可以用于光学、声学等领域的研究。
总结通过本次实验,我们深入了解了傅里叶变换的原理和应用。
傅里叶变换是一种非常重要的数学工具,对于信号处理、图像处理、物理学等领域都具有重要意义。
通过实际操作,我们更加深入地理解了傅里叶变换的工作原理,并通过数据分析得到了实验结果。
通过实验思考,我们发现傅里叶变换在各个领域的应用都非常广泛,对于进一步研究和应用具有重要价值。
波的傅里叶分析实验报告
700
6 6 9 正弦
900
7 7 11 正弦 1100
8 8 13 正弦 1300
9 9 15 正弦 1500
依次加入 1-9 通道,所得图像如下:
n=2
幅度
A B B/3 B/5 B/7 B/9 B/11 B/13 B/15
相位 /°
0 180 180 180 180 180 180 180 180
形成的。但是,如果这两个相互垂直的振动的频率为任意值,那么它们的合成运
动就会比较复杂,而且轨迹是不稳定的。如果两个简谐振动频率之比是无理数,
则合成运动永不重复已走过的路,是非周期性运动。
然而,如果两个振动的频率成简单的整数比,这样就能合成一个稳定、封闭
的曲线图形,这就是李萨如图形。实际上,李萨如图是一种描述系统运动状态的
相位 /°
0 0 0 0 0 0 0 0 0
n=2
n=3
n=4
n=5
n=6
n=7
n=8
n=9
4.方波的傅里叶分解 (A=100,B=255) 各通道参数如下:
序 CH 谐波 波形 频率 / Hz 号
1 1 - 方波
100
2 2 1 正弦
100
3 3 3 正弦
300
4 4 5 正弦
500
5 5 7 正弦
序 频 率 幅 相 位 图像 号 / Hz 度 / °
/格 1 900.0 200 0.0
2 900.0 200 45.0
3 900.0 200 90.0
4 900.0 200 180.0
5 900.0 200 225.0 6 900.0 200 270.0 7 450 200 0.0 8 450 200 180.0
傅里叶光学实验报告
傅里叶光学实验报告摘要:本实验通过光学元件的调整,利用干涉仪实现了傅里叶光学实验。
实验结果表明,在合适的条件下,可以实现光场的物理变换,为光学信号的处理和传输提供了新的思路。
引言:傅里叶光学是基于傅里叶变换的原理,研究光场在透镜、衍射及干涉等传输过程中的变换规律。
傅里叶光学理论的应用,不仅可以为光学领域提供新的方法和实现技术,而且对于信息科学、通信技术等领域也具有重要的意义。
本次实验旨在掌握傅里叶光学实验的原理和方法,以及掌握干涉仪的基本操作技术。
实验原理:在光学传输过程中,各种光学元件会对光场进行各种变换,如缩放、旋转、平移等。
傅里叶光学理论认为,任何复杂的光学变换都可以分解为一系列基本变换的乘积,这些基本变换因形式各异而具有不同的物理意义。
例如,平移变换对应了频率空间中的相移,旋转变换对应了频率空间中的相位,缩放变换对应了频率空间中的尺度变换等。
傅里叶光学实验利用了干涉仪的干涉效应,实现了光场的物理变换,并通过干涉图案的记录和分析,得到了相关的光学信息。
在干涉仪中,可以通过调整反射镜、透镜等光学元件的位置和角度,实现不同的光学变换效果。
例如,在Fourier变换的情况下,通过调整透镜的位置或反射镜的角度,可以实现平移变换、缩放变换等操作。
实验结果:本次实验中,我们通过调整干涉仪的各个光学元件,实现了物理变换效果,并得到了相应的干涉图案。
通过对干涉图案的分析,实验结果表明,在适当的条件下,我们可以通过傅里叶光学实验,实现光学信号的物理变换、建模、分析和传输。
结论:傅里叶光学是一种重要的光学变换技术和分析手段,利用其可以实现光学信号的稳定传输和处理。
本次实验通过干涉仪实现了傅里叶光学实验,对傅里叶光学基本原理和实现方法有了更深入的了解,对后续的光学研究和应用具有良好的指导意义。
傅里叶变换实验报告
一、实验目的1. 理解傅里叶变换的基本原理及其在信号处理中的应用。
2. 掌握傅里叶变换的数学计算方法。
3. 利用MATLAB软件实现傅里叶变换,并对实验结果进行分析。
二、实验原理傅里叶变换是一种重要的信号处理方法,它可以将信号从时域转换到频域。
在频域中,信号的特征更加明显,便于分析和处理。
傅里叶变换的基本原理是将一个信号分解为不同频率的正弦波和余弦波的叠加。
傅里叶变换分为连续傅里叶变换(CFT)和离散傅里叶变换(DFT)。
CFT适用于连续信号,而DFT适用于离散信号。
在本实验中,我们将使用DFT。
三、实验步骤1. 利用MATLAB软件创建一个时域信号,如正弦波、方波或三角波。
2. 对信号进行采样,得到离散信号。
3. 使用MATLAB的fft函数对离散信号进行傅里叶变换。
4. 分析傅里叶变换后的频谱,观察信号在不同频率下的能量分布。
5. 对频谱进行滤波处理,提取感兴趣的特征。
6. 将滤波后的频谱进行逆傅里叶变换,还原信号。
四、实验结果与分析1. 信号创建在本实验中,我们创建了一个频率为50Hz的正弦波信号,采样频率为1000Hz。
2. 傅里叶变换使用MATLAB的fft函数对信号进行傅里叶变换,得到频谱。
观察频谱,发现50Hz 处的能量最大,与信号频率一致。
3. 滤波处理对频谱进行低通滤波,保留50Hz以下的频率成分,滤除高于50Hz的频率成分。
然后对滤波后的频谱进行逆傅里叶变换,还原信号。
观察还原后的信号,发现高频噪声被滤除,信号质量得到提高。
4. 逆傅里叶变换将滤波后的频谱进行逆傅里叶变换,还原信号。
观察还原后的信号,发现其波形与原始信号基本一致,但噪声明显减少。
五、实验结论1. 通过本实验,我们掌握了傅里叶变换的基本原理和计算方法。
2. 利用MATLAB软件可以方便地实现傅里叶变换,并对实验结果进行分析。
3. 傅里叶变换在信号处理中具有广泛的应用,如信号滤波、图像处理、通信等领域。
4. 本实验验证了傅里叶变换在噪声抑制方面的有效性,有助于提高信号质量。
傅里叶光学实验报告
实验原理:(略) 实验仪器:光具座、氦氖激光器、白色像屏、作为物的一维、二维光栅、白色像屏、傅立叶透镜、小透镜实验内容与数据分析1.测小透镜的焦距f 1 (付里叶透镜f 2=45.0CM )光路:激光器→望远镜(倒置)(出射应是平行光)→小透镜→屏操作及测量方法:打开氦氖激光器,在光具座上依次放上扩束镜,小透镜和光屏,调节各光学元件的相对位置是激光沿其主轴方向射入,将小透镜固定,调节光屏的前后位置,观察光斑的会聚情况,当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。
112.1913.2011.6712.3533f cm ++==0.7780cm σ== 1.320.5929p A pt t cm μ=== 0.68P = 0.0210.00673B p B pt k cm C μ∆==⨯= 0.68P =0.59cm μ== 0.68P =1(12.350.59)f cm =±0.68P =2.利用弗朗和费衍射测光栅的的光栅常数 光路:激光器→光栅→屏(此光路满足远场近似)在屏上会观察到间距相等的k 级衍射图样,用锥子扎孔或用笔描点,测出衍射图样的间距,再根据sin d k θλ=测出光栅常数d (1)利用夫琅和费衍射测一维光栅常数;衍射图样见原始数据; 数据列表:sin ||i k Lk d x λλθ=≈ 取第一组数据进行分析:21051343.0910******* 4.00106.810d m ----⨯⨯⨯⨯==⨯⨯ 21052343.0910******* 3.871014.110d m ----⨯⨯⨯⨯==⨯⨯ 21053343.0910******* 3.95106.910d m ----⨯⨯⨯⨯==⨯⨯ 21054343.0910******* 4.191013.010d m ----⨯⨯⨯⨯==⨯⨯ 554.00 3.87 3.95 4.1910 4.0025104d m m --+++=⨯=⨯61.3610d m σ-=⨯忽略b 类不确定度:671.20 1.3610/9.410p A pt t m μμ--===⨯⨯=⨯则7(400.29.4)10d m -=±⨯(2)记录二维光栅的衍射图样并测量其光栅常数.二维衍射图样如原始数据中所示 取一组数据分析:114.0086.8027.2L cm =-=1(4.6 4.6)/2 4.6x mm ±=+=故2105327.210632810 3.74104.610d m ----⨯⨯⨯==⨯⨯3.利用空间频谱测量一维、二维光栅常数光路:激光器→光栅→透镜→屏(位于空间频谱面上) (1)利用空间频谱的方法测量一维光栅常数 取k=111 6.8 6.96.8522x x x mm mm -+++=== 1025363281045.010 4.16106.8510fd m xλ----⨯⨯⨯===⨯⨯ (2)利用空间频谱的方法测量二维光栅常数 取k=11025363281045.010 6.18104.610fd m xλ----⨯⨯⨯===⨯⨯ 比较两种方法计算的结果后发现,二维光栅常数的计算结果相差较大,分析误差产生的原因可能为:1.衍射光斑是用笔描点记录的,需要依靠试验者的判断,会出现较大误差;2.光斑的间距是由钢尺测纸上的点而得,由于测量时会产生误差;3.利用公式计算式用了近似,也会带来一定的误差;4.观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征;光路:激光器→光栅→小透镜→滤波模板(位于空间频谱面上)→墙上屏 空间频谱面经过小透镜的焦点,此时图样为清晰的一排点列(1)一维光栅:(滤波模板自制,一定要注意戴眼镜保护;可用一张纸,一根针扎空来制作,也可用其他方法).a.滤波模板只让 0级通过;现象:屏上只出现一个0级光斑的轮廓,无条纹b.滤波模板只让0、±1级通过;现象:屏上出现平行且竖直的条纹、±2级通过;c.滤波模板只让0、1现象:屏上出现更为清晰并分布面较大的平行且竖直的条纹(2)二维光栅:a.滤波模板只让含0级的水平方向一排点阵通过;现象:屏上只出现竖直条纹b.滤波模板只让含0级的竖直方向一排点阵通过;现象:屏上只出现水平条纹c.滤波模板只让含0级的与水平方向成45O一排点阵通过;现象:屏上只出现与水平方向成135°方向的条纹d.滤波模板只让含0级的与水平方向成135O一排点阵通过.现象:屏上只出现与水平方向成45°方向的条纹5.“光”字屏滤波物面上是规则的光栅和一个汉字“光”叠加而成,在实验中要求得到如下结果:a.如何操作在像面上仅能看到像面上是“光”,写出操作过程.操作过程:在大透镜的后焦面上加一个只让0级中间点通过的滤波模板b.如何操作在像面上仅能看到像面上是横条纹,写出操作过程;操作过程:在大透镜的后焦面上加一个只让含0级的竖直方向一排点阵通过的滤波模板c.如何操作在像面上仅能看到像面上是竖条纹,写出操作过程;操作过程:在大透镜的后焦面上加一个只让含0级的水平方向一排点阵通过的滤波模板由实验可得,对像的垂直结构起作用的是沿水平方向的频谱分量,反之亦然。
傅里叶光学实验报告
傅里叶光学实验报告摘要:本实验主要是通过傅里叶光学的实验,研究光的干涉和衍射现象以及傅里叶变换的原理与应用。
在实验中,我们用干涉仪观察了两个光源的干涉现象,并利用光栅观察了光的衍射现象。
实验结果表明,光的干涉和衍射具有波动性和干涉性,傅里叶变换能够将信号从时域转换到频域。
1.引言2.实验装置实验主要用到了干涉仪和光栅。
干涉仪是由两个光源和一系列光学元件组成的装置,用于观察光的干涉现象。
光栅则是一种特殊的光学元件,能够通过衍射产生多个光斑。
3.实验步骤3.1干涉实验首先我们调整干涉仪的各个光路元件,使得两个光源的光线通过干涉仪后能够叠加在一起。
接着,我们调整干涉仪的反射镜,使得两束光叠加后的干涉条纹清晰可见。
在实验中,我们发现当两个光源相位差恰好为0时,干涉条纹最为明显;而当相位差为180度时,干涉条纹相消。
这说明光的干涉现象与光源的相位差有关。
3.2衍射实验接下来,我们使用光栅进行衍射实验。
将光栅置于光源前方,然后调整光栅的位置和角度,使得衍射光斑能够清晰可见。
实验中,我们观察到了光栅产生的多个光斑,这是由于光经过光栅后发生了衍射现象。
3.3傅里叶变换实验最后,我们进行了傅里叶变换实验。
在实验中,我们使用傅里叶变换将信号从时域转换到频域。
通过调整输入信号的频率,我们观察到傅里叶变换的输出结果呈现出不同的频谱。
4.结果与讨论实验结果表明,光的干涉和衍射现象能够用波动光学的理论进行解释。
干涉实验显示了光的相位差对干涉条纹的影响,而衍射实验则是光波通过光栅后发生了弯曲现象。
傅里叶变换实验则展示了将信号从时域转换到频域的能力。
在实际应用中,傅里叶光学在光学成像、信号处理等领域具有重要作用。
例如,利用傅里叶变换可以对图像进行去噪、增强等处理,同时也可以通过干涉和衍射现象实现光学传感器、光学显微镜等设备。
5.结论通过本次实验,我们深入了解了光的干涉和衍射现象以及傅里叶变换的原理与应用。
实验结果验证了光的波动性和干涉性,同时也为我们在光学领域的研究与应用提供了基础知识和实验基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脉搏、语音及图像信号的傅里叶分析
一、实验简介
任何波形的周期信号均可用傅里叶级数来表示。
傅里叶级数的各项代表了不同频率的正弦或余弦信号,即任何波形的周期信号都可以看作是这些信号(谐波)的叠加。
利用不同的方法,可以从周期信号中分解出它的各次谐波的幅值和相位。
也可依据信号的傅里叶级数表达式,将各次谐波按表达式的要求叠加得到所期望的信号。
二、实验目的
1、了解常用周期信号的傅里叶级数表示。
2、了解周期脉搏信号、语音信号及图像信号的傅里叶分析过程
3、理解体会傅里叶分析的理论及现实意义 三、实验仪器
脉搏语音实验仪器,数字信号发生器,示波器 四、实验原理
1、周期信号傅里叶分析的数学基础
任意一个周期为T 的函数f(t)都可以表示为傅里叶级数:
00010000000
1
()(cos sin )
21()()
1
()cos()()
1
()sin()()n n n n n f t a a n t b n t a f t d t a f t n t d t b f t n t d t π
π
π
π
π
πωωωωπ
ωωωπ
ωωωπ
∞
=--
-
=++===
∑⎰⎰⎰
其中0ω为角频率,称为基频,0a 为常数,n a 和n b 称为第n 次谐波的幅值。
任何周期性非简谐交变信号均可用上述傅里叶级数进行展开,即分解为一系列不同
次谐波的叠加。
对于如图1所示的方波,一个周期内的函数表达式为:
(0t<)2() (-t 0)
2
h f t h ππ⎧
≤⎪⎪=⎨
⎪-≤<⎪⎩ 其傅里叶级数展开为:
0100041
()(
)sin(21)21411(sin sin 3sin 5)
35n h
f t n t
n h t t t ωπωωωπ∞
==
--=+++∑ 同理:对于如图2所示的三角波,函数表达式为:
4t (-t<)44
()232(1) (t )
44
h
T T f t t T T h T π⎧≤⎪⎪=⎨⎪-≤<⎪⎩
其傅里叶级数展开为:
1
2
021********()(1)()sin(21)21811
(sin sin 3sin 5)
35
n n h
f t n t
n h t t t ωπωωωπ∞
-==---=-++∑
图1 方波 图2 三角波
从以上各式可知,任何周期信号都可以表示为无限多次谐波的叠加,谐波次数越高,振幅越小,它对叠加波的贡献就越小,当小至一定程度时(谐波振幅小于基波振幅的5%),则高次的谐波就可以忽略而变成有限次数谐波的叠加,这对设计仪器电路是很有意义的。
实验内容
1、傅里叶级数的合成
(1)利用数字信号发生器产生频率分别为100Hz、300Hz、500Hz的正弦信号,并使其位相相同,振幅比为:1:1/3: 1/5,将上述三个信号,分别通过加法器输入到傅里叶分析仪,观察并记录其波形。
(2)利用数字信号发生器产生方波,输入到傅里叶分析仪,并将其与上述合成后的信号相比较。
两者有何差异?试分析引起的原因,应如何消除?
(3)利用数字信号发生器产生频率分别为200Hz、600Hz、1000Hz的正弦信号,振幅比为:1:1/32:1/52,并且保证其相位相差180°,然后通过加法器输入到傅里叶分析仪,观察并记录其波形,并与数字信号发生器产生的三角波相比较。
(4)利用傅里叶分析仪分别产生方波与三角波,进行傅里叶分析,记录各正弦波频率以及相对的幅度之间的关系,并与上述加法器输入信号相比较。
2.滤波与选频分析:
对上述(4)傅里叶分析的频谱,分别选择低频段和高频段信号通过傅里叶反变换,观察它们图像并导出保存,试分析低通滤波和高通滤波图像的区别
3.周期信号傅里叶分析的应用:
(1)“脉搏信号”的傅里叶分析
1)用傅里叶分析仪软件中提供的“脉搏信号”模块和压电晶体测试自己脉搏波的信号,观察你的脉搏信号。
2)选择完整的周期信号进行频谱分析,并选择合适的频段,测量其中心频率。
3)你深呼吸后,重复上述实验,请比较两次中心频率的变化。
(2)图像信号的傅里叶分析
1)用傅里叶分析仪软件提供的“图片分析”模块,分别选择图片“双缝干涉”、“彩色十字”、“光字”以及“箭头”进行空域的傅里叶频谱分析。
2)分别选择低通和高通滤波器进行滤波,记录所用滤波器的参数并将滤波后的图片导出保存。
3)将滤波后的图像与原图像作对比,你能作何结论?
(3)语音信号的傅里叶分析与识别
1)用傅里叶分析仪软件提供的“语音信号”模块,通过外置麦克风采集语音信号,并选择合适的频段,记录该频段语音信号的傅里叶分析频谱。
2)利用“选择频谱”功能,滤除噪声频率后,进行频率合成;将合成后的结果与1)中采集的原语音信号对比,为语音识别打下基础。
3)利用软件提供的“语音识别”模块,通过麦克风采集两次相同或不同元音的信号,重复上述过程,分别记录两次频谱的分布,并利用“语音识别”模块体验语音识别功能。
7、利用软件中提供的“长时语音”模块,通过外置麦克风采集一段语音信
号,并观察傅里叶分析频谱实时频谱变化。
六.实验结果及分析
1、傅里叶级数的合成(1)合成方波
(2)合成方波低频段
(1)(2)对比可以看出低频波主要决定了叠加波的大致形状,而高频波主要修饰边界,让边界趋于平直。
(3)标准方波
对比(1)(3),两者波形大体相似,但标准波的边界平直,是无限多次谐波的
叠加的结果,而(1)中叠加次数过少。
上述结论同样适用于三角波。
(4)合成三角波
(5)合成三角波低频
(6)标准三角波
下面用傅里叶分析仪输入波形(7)方波低频
(8)方波高频
(7)(8)对比得出,在叠加正弦波中,频率越大,对应的相对振幅就越小,对波形的贡献率就越小。
上述结论同样适用于三角波
(9)三角波低频
(10)三角波高频
2.“脉搏信号”的傅里叶分析(11)脉搏信号
由上图可以看出脉搏信号具有中心频率为7.7Hz
(12)深呼吸后的脉搏信号
由上图可以看出深呼吸后的脉搏信号具有中心频率为4.1Hz
对比上两幅图,第二次中心频率比第一次变低
3.图像信号的傅里叶分析
(13)彩十字低通
(14)彩十字高通
(16)光字低通
(17)光字高通
(18)箭头低频
(19)箭头高通
(20)双缝低频
(21)双缝高频
将滤波后的图像与原图像作对比得出结论:
低频波主要决定了图形的形状,高频波主要决定了图形的轮廓边界。
这是由于在边界处颜色突变,频率大;而在同一色块上,频率小。
4.语音信号的傅里叶分析与识别
(22)语音信号
(23)语音识别之同一声音相同音节
(24)语音识别之同一声音不同音节
(25)长时语音。