中考数学 第4节数的开方与二次根式

合集下载

第四讲:数的开方及二次根式

第四讲:数的开方及二次根式

数的开方与二次根式知识点:平方根、立方根、算术平方根、二次根式、二次根式性质、最简二次根式、 同类二次根式、二次根式运算、分母有理化教学目标:1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根;会求实数的平方根、算术平方根和立方根;2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式;掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。

教学重难点:1.平方根、算术平方根、立方根的概念(有关试题在试题中出现的频率很高,习题类型多为选择题或填空题);2.最简二次根式、同类二次根式概念(有关习题经常出现在选择题中);3.二次根式的计算或化简求值(有关问题在中考题中出现的频率非常高,在选择题和中档解答题中出现的较多)。

教学过程:1、知识要点:考点1 平方根、算术平方根与立方根:若)0(2≥=a a x ,则x 叫做a 的平方根,记作a ±;正数a 的正的平方根叫做a 的算术平方根,0的算术平方根是0。

当0≥a 时,a 的算术平方根记作a 。

注意:1、非负数是指正数或0,常见的非负数有:(1)绝对值:0≥a ;(2)实数的平方:02≥a ;(3) 算术平方根:)0(0≥≥a a 。

2、如果a 、b 、 c 是实数,且满足02=++c b a , 则有0=a,0=b ,0=c考点2 二次根式的有关概念:1、二次根式:式子)0(≥a a 叫做二次根式(注意被开方数只能是正数或0); 二次根式a 定义中的“a ≥0”是定义的一个重要组成部分,不可以省略,因为负数没有平方根,所以当a<0时,没有意义.在具体问题中,一旦出现了二次根式a ,就意味着a ≥0,这通常作为一个重要的隐含条件来应用;被开方数a 既可以是具体的数,也可以是单项式或多项式,如:3、ab (ab ≥0)、3+x (x ≥-3)都是二次根式.2、最简二次根式:被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式;最简二次根式,满足两个条件:①被开方数不含分母;②被开方数中不含开得尽方的因数或因式.3、同类二次根式:①化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式; ②二次根式的性质: )0()(2≥=a a a ⎩⎨⎧<-≥==)0()0(||2a a a a a a )0;0(≥≥⋅=b a b a ab )0;0(>≥=b a ba b a 考点3 二次根式的运算:1、二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并;2、二次根式的乘法: 二次根式相乘,等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a(二次根式的和相乘,可参照多项式的乘法进行;两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个二次根式互为有理化因式);3、二次根式的除法:二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分);把分母的根号化去,叫做分母有理化。

2020年中考数学总复习第四节数的开方与二次根式

2020年中考数学总复习第四节数的开方与二次根式

A. 5 2 B. 2 5 C.
2 10 . D.
45
2. 【 2020 最新模拟南京 】 9 的算术平方根是
A.-3 B.3 C.
± 3 D.81
3. 【 2020 最新模拟南通 】已知 x 2 , 则化简 x2 4x 4 的结果是
A、 x 2
B、x 2
C、 x 2
D、 2 x
4. 【 2020 最新模拟泰州 】下列运算正确的是 A.a2+ a3=a5 B . ( -2x) 3=- 2x3 C . (a - b)( - a+ b)= -
2. 【 2020 最 新 模 拟 苏 州 】 不 使 用 计 算 器 , 计 算 :
18 1 2 1 2
1 21
21
【解】 2 3
3.【 2020 最新模拟锦州 】
【解】
4. 【2020 最新模拟青岛 】来自【解】答案: 10
5. 【 2020 最新模拟青岛 】计算: 2 2 1 2 .
5
2
【解】 原式= 2 2 1 2 = 3 2 1
4
2
p ( p a)( p b )( p c )
8. 【2020 最新模拟丰台 】计算:
【解】 9. 【2020 最新模拟北京 】计算:
【解】
10. 【 2020 最新模拟漳州 】计算:
sin 45o( 1 )-1+ |2 - 2 |-( 2005 )0 2
【解】 原式= 2 2+2- 2-1 = 1
模拟 1 D.3.2020 最新模拟 2
最新
16.【 2020 最新模拟湘潭 】下列算式中, 你认为错误的是 ( )
A . a + b =1
B
. 1÷ b × a =1

2015年浙江省杭州数学中考总复习课件第4课时:数的开方及二次根式

2015年浙江省杭州数学中考总复习课件第4课时:数的开方及二次根式

考点聚焦
杭考探究
当堂检测
第4课时┃ 数的开方及二次根式
先化简分式后,再将相应的 x 的值代入,最后 根据二次根式的运算法则求得结果.
思路点津
考点聚焦
杭考探究
当堂检测
第4课时┃ 数的开方及二次根式
x-3 x -6x+9 解:原式= ÷ x x x- 3 x 1 = · . 2= x (x - 3 ) x- 3 1 2014 当 x= 2014+3 时,原式= = . 2014 2014
杭考探究
当堂检测
第4课时┃ 数的开方及二次根式
【知识树】
考点聚焦
杭考探究
当堂检测
第4课时┃ 数的开方及二次根式
杭 考 探 究
探究一 二次根式的估算
3 例 1 [2012·杭州 ] 已知 m = ( - )×(- 2 21) ,则有 3 ( A )
A. 5 <m < 6 C.-5<m<-4
B . 4< m <5 D.-6<m<-5
当堂检测
第4课时┃ 数的开方及二次根式
3.[2014·江干模拟] 下列各式中,错误 的是 ..
( D )
A.(- 3)2=3 B.- 32=-3 C.( 3)2=3 D. (-3)2=-3
考点聚焦
杭考探究
当堂检测
第4课时┃ 数的开方及二次根式
【归纳总结】 二次 式子 a(a≥0),即非负数 a 的算术平方根 二次 根式 根式 最简二 ①被开方数中的因数是整数,因式是整式; 相关 次根式 ②被开方数中不含开得尽方的因数或因式 概念 二次 a 根式 ①( a)2=____(a≥0); a ② a2=|a|= -a 的性 a· b 质 ③ ab=________(a≥0,b≥0); a a b ④ =________(a≥0, b>0) b

开方及二次根式知识点

开方及二次根式知识点

开方及二次根式知识点全文共四篇示例,供读者参考第一篇示例:开方是数学中常见的运算符号,表示一个数的平方根。

而二次根式则是指包含开方的代数式。

在学习数学过程中,掌握开方及二次根式的知识是非常重要的。

本文将就开方及二次根式的相关知识进行详细介绍。

我们来看看开方的定义。

对于一个非负实数a,如果实数b满足b 的平方等于a,即b²=a,那么b就是a的平方根,记作√a,其中√符号称为根号。

如果a是一个负数,那么它的平方根定义为复数,可以表示为±√(-a),其中±表示取正负号。

开方的运算可以用来求解方程、计算距离等实际问题,是数学中的重要工具。

在代数中,我们经常会遇到二次根式,即含有开方的代数式。

如√2、√3等都属于二次根式。

二次根式通常可以简化,使其形式更加简洁。

简化二次根式的方法是利用数的乘法性质,将开方中的被开方数进行因式分解,找到一个完全平方数因子,然后将其提出开方符号。

对于√12,可以找到一个完全平方数的因子4,即√12=√(4*3)=2√3。

这样就化简成了更加简洁的形式。

在进行运算时,需要注意开方及二次根式的运算规则。

首先是同底数相乘的运算法则,即√a*√b=√(a*b),这条规则适用于任意实数a、b。

其次是开方的乘法公式,即√a±√b=√(a±2√(a*b)±√b),这个公式在计算开方时经常会用到。

如果要进行开方的除法运算,可以采用类似的方法,将被开方数分解成较小的因子,然后进行化简。

运用这些运算规则,可以更加方便地进行开方及二次根式的运算。

除了基本的开方运算,还有一些特殊的开方,如立方根、四次根等。

立方根表示一个数的三次方根,记作³√a,其运算规则与平方根类似。

比如³√8=2,因为2³=8。

四次根则表示一个数的四次方根,记作⁴√a,其运算规则也可以类似的推出。

这些特殊的开方可以在数学问题中发挥重要作用,例如求解立方程等。

第4节 数的开方与二次根式

第4节 数的开方与二次根式
2
1.( a )2=a(a② ≥0

返回
运 算
二次根式 ab a 乘法: 除法: a ⑤
b
加减:先将二次根式化成最简二次根式,再合并同类
b
(a≥0,b≥0)
a b (a≥0,b>0)
返回
2.找出与平方后所得数字相邻的两个开得尽方的整数,如4<7<9 估 值 3.对以上两个整数开方,如 4 =2, 9 =3 4.确定这个根式的值在这两个整数之间,如2< 7 <3
2.被开方数中不含能开得尽方的因数或因式
同类二次根式:几个二次根式化为最简二次根式后,如果它们 的被开方数相同,则把这几个二次根式叫做同类二次根式. 如 8 2 2 ,所以 8 与 2 是同类二次根式 未完继续
a (a≥0) a | a | 2. -a a≤0) ③ _____( 性 3. ab a b (a≥0,b≥0) 质 a a(a≥0,b④ >0 ) 4. b b 5.双重非负性:
1.先对根式平方,如( 7 )2=7
返回
第一章
数与式
第4节 数的开方运算 二次根式 估值
定 义 及 其 性 质

定义:形如 a (a≥0)的式子,其中a叫被开方数
有意义的条件:被开方数大于或等于零 最简二次根式同时满足两个“不含”条件 : 1.被开方数不含① 分母 ,分母中也不含二次根式

中考数学课件(第4讲)数的开方及二次根式(29页)

中考数学课件(第4讲)数的开方及二次根式(29页)

第4讲┃ 数的开方及二次根式
[中考点金] 一般采用“夹逼法”来估计二次根式的值,具体操
作过程如下:先找出与被开方数相邻的两个能开得尽方 的整数,再求这两个整数的算术平方根,由此来确定原 二次根式的取值范围.
第4讲┃ 数的开方及二次根式
变式题 设 m= 41-3,若 m 在相邻的两个整数之间,
则这两个整数是 A.2 和 3 C.4 和 5
a 的符号.根据各数在数轴上的相对位置确定代数式的正 负时,常用各数的大小关系和各数的绝对值关系来判断.
第4讲┃ 数的开方及二次根式
变式题 实数 a,b 在数轴上的位置如图 4-2 所示,且
a>b, C.b
B.-2a+b D.2a-b
2.正数的平方根有__两____个,它们互为__相__反__数____, 0 的平方根是____0____,负数__没__有____平方根.
3.任意实数都有立方根,正数的立方根是__正__数____, 0 的立方根是___0_____,负数的立方根是___负__数___.
第4讲┃ 数的开方及二次根式
由数轴可知 5<a<10,所以 a-4>0,a-11<0,所以 (a-4)2=|a-4|=a-4, (a-11)2=|a-11|=11-a, 因此 (a-4)2+ (a-11)2=a-4+11-a=7.故选 A.
第4讲┃ 数的开方及二次根式
[中考点金] 运用二次根式的性质化简形如 a2的式子,关键是确定
第4讲┃ 数的开方及二次根式
探究三 二次根式的化简和计算
例3
化简:
a(
a+2)-
a2b .
b
[解析] 用乘法对加法的分配律来计算“-”号前边的部
分,根据二次根式的除法法则计算“-”号后边的部分,然

开方及二次根式知识点

开方及二次根式知识点

开方及二次根式知识点全文共四篇示例,供读者参考第一篇示例:开方及二次根式是高中数学中常见的一个知识点,也是数学中的基础概念之一。

在学习代数学时,开方及二次根式是必须要掌握的重要内容。

本文将对开方及二次根式进行详细介绍,帮助读者更好地理解和掌握这一知识点。

让我们从最基础的概念开始。

所谓开方,就是对一个数进行开方运算,即找到一个数,使得它的平方等于给定的数。

如果一个数是另一个数的平方,那么这个数就是这个数的平方根。

开方也可以用符号√来表示,如√4表示对4进行开方运算,结果为2,因为2的平方等于4。

二次根式是由一个数与它的二次根号组成的一个式子,例如√2、√3、√5等。

这些数都是无理数,也就是不能用有限位小数表示的数。

在数轴上,二次根式对应的数是不完全平方数,即无法整除的数。

在计算开方及二次根式时,有一些基本规则需要遵循。

对于整数n,如果n>0,则√n是一个正数;如果n<0,则√n是一个虚数。

开方运算是一个单调递增的函数,即当x<y时,√x < √y。

开方运算不满足交换律和结合律,即√xy≠√x·√y,(√x)²≠x。

在开方运算中,常见的性质有:1.开方运算的运算性质:√a ± √b ≠ √(a ± b),√a · √b ≠√(a · b)。

3.二次根式的乘法运算:√a · √b = √(a · b)。

还有一些常见的运算法则需要注意。

如何计算复合二次根式呢?如何计算√(√2 + √3)呢?我们可以用代数的方法将其化简。

设x = √2 + √3,则x² = (√2 + √3)² = 2 + 2√6 + 3 = 5 + 2√6,即x² - 5 = 2√6。

所以√(√2 + √3) = √(x) = √(x² - 5) = √(2√6) = √2 · √3 = √6。

新人教初中数学中考复习数的开方与二次根式【精品】

新人教初中数学中考复习数的开方与二次根式【精品】

知 识
1.判断正误:
[答案] (1)× (2)× (3)× (4)×


(1)36 的平方根是 6; ( )
(5)× (6)×
高 频
(2)±9 的平方根是±3; ( )

向 (3) 4=±2; ( )


(4)0.01 是 0.1 的平方根; ( )
[解析](1)36 的平方根是±6,故错误; (2)-9 没有平方根,故错误; (3) 4=2,故错误; (4)0.1 是 0.01 的算术平方根,故错误;
(1)
1 ������
=
������
������ ·
������
=
������ ������
;
(2)
1 ������ -
������ =(
������ -
������+ ������ ������)( ������+
������
=
)
������ + ������-������
������ .
基 础

A.x≥4

B.x>4
4-x>0,解得 x<4,故选 D.

C.x≤4
D.x<4




基 础
考向三 二次根式的化简与计算
知 识
9.[2019·常德]下列运算正确的是 ( D )


A. 3 + 4= 7
B. 12=3 2
高 频
C. (-2)2=-2




D.
164 =
21 3
基 础

中考数学第一轮复习(第4讲--数的开方与二次根式)

中考数学第一轮复习(第4讲--数的开方与二次根式)
第十六 ,共44 。
【例题1】 (2012·浙江宁波)下列计算正确的是( ). A.a6÷a2=a3 B.(a3)2=a5
解析 根据同底数幂的除法,幂的乘方,算术平方根,立方根运算
法则逐一计算作出判断:
A.a6÷a2=a6-2=a4≠a3,故本选项错误; B.(a3)2=a3×2=a6≠a5,故本选项错误;
第三十五 ,共44 。
【预测1】 下列计算:
答案 C
第三十六 ,共44 。
【预测2】 下列运算正确的是
( ).
答案 C
第三十七 ,共44 。
易 错防 范
第三十八 ,共44 。
数的开方、二次根式常见错误
第三十九 ,共44 。
【典型例题】
第四十 ,共44 。
第四十一 ,共44 。
第二十八 ,共44 。
A.a≠0
C.a>-2或a≠0
B.a>-2且a≠0 D.a≥-2且a≠0
答案 D
第二十九 ,共44 。
【预测3】 下列二次根式中,最简二次根式是( ).
答案 B
第三十 ,共44 。
答案 C
第三十一 ,共44 。
解析 考查二次根式和绝对值等非负数的性质,由已知得,x= -3,y=2 013,所以x+y=-3+2 013=2 010.
(3)混合运算:与实数的混合运算顺序相同.
状元笔记 (1)加减运算:需先化简,再合并;
(2)乘除运算:可先乘除,后化简.
第十四 ,共44 。
对 接中 考
第十五 ,共44 。
对接点一:平方根、立方根及算数平方根
常考角度
1. 平方根、算术平方根与立方根的概念; 2. 求一个数的平方根、算术平方根与立方根.

2015年人教版中考数学总复习课件(考点聚焦+归类探究+回归教材):第4课时 数的开方及二次根式(共26张PPT)

2015年人教版中考数学总复习课件(考点聚焦+归类探究+回归教材):第4课时 数的开方及二次根式(共26张PPT)

考点聚焦
归类探究
回归教材
第4课时┃ 数的开方及二次根式
分子中被开方数是非负数,分母不等于零,∴ x≥0,且 x+1≠0,∴x 的取值范围是 x≥0.
解 析
失分盲点 二次根式有意义的条件不容忽视 此类有意义的条件问题主要是根据二次根式的被开方数大于或 等于零,分式的分母不为零等列不等式 (组),转化为求不等式 ( 组)的解集.
[点析]在进行二次根式的化简求值时,常常用到整体思想.把x +y,x-y,xy当做整体进行代入求值.
方法点析
(1)一个正数的平方根有两个,它们互为相反数;(2)平方根等 于本身的数是0,算术平方根等于本身的数是1和0,立方根等 于本身的数是1,-1和0;(3)一个数的立方根与它本身同号; (4)对一个式子进行开方运算时,要先将式子化简,再进行开 方运算.
考点聚焦
归类探究
回归教材
第4课时┃ 数的开方及二次根式
解 析
∵ x-1+|y+3|=0, ∴x-1=0,y+3=0, ∴x=1,y=-3, ∴x+y=1+(-3)=-2.
考点聚焦
归类探究
回归教材
第4课时┃ 数的开方及二次根式
方法点析 (1)常见的非负数有三种形式:|a|,(a≥0),a2. (2)若几个非负数的和等于零,则这几个数都为零.
考点聚焦
归类探究
回归教材
第4课时┃ 数的开方及二次根式
回 归 教 材
二次根式化简中的整体思想 教材母题——人教版八下 P15T6 已知 x= 3+1,y= 3-1,求下列各式的值: (1)x2+2xy+y2;(2)x2-y2.
考点聚焦
归类探究
回归教材
第4课时┃ 数的开方及二次根式
解:因为 x= 3+1,y= 3-1, 所以 x+y=2 =(x+y)2 =(2 =12. (2)x2-y2 =(x+y)(x-y)=4 3. 3,x-y=2. 3)2 则(1)x2+2xy+y2

最新北师版初中九年级数学下册中考知识点梳理第4讲二次根式

最新北师版初中九年级数学下册中考知识点梳理第4讲二次根式

第4讲二次根式
式的乘
除法(2)除法:a
b
=
a
b
(a≥0,b>0).
例:计算:32
23
⋅=1;
3232
2
2
==
4.
5.二次根
式的混合运算运算顺序与实数的运算顺序相同,先算乘方,
再算乘除,最后算加减,有括号的先算括号里
面的(或先去括号).
运算时,注意观察,有时运用
乘法公式会使运算简便.
例:计算:(2+1)(2 -1)=
1 .
学生每日提醒
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~励志名言:
1、泰山不是垒的,学问不是吹的。

天不言自高,地不语自厚。

2、学习如钻探石油,钻得愈深,愈能找到知识的精髓。

先学爬,然后学走。

3、星星使天空绚烂夺目;知识使人增长才干。

4、宽阔的河平静,博学的人谦虚。

秀才不怕衣衫破,就怕肚子没有货。

5、老姜辣味大,老人经验多。

请教别人不折本,舌头打个滚。

6、心专才能绣得花,心静才能织得麻。

书山有路勤为径,学海无涯苦作舟。

7、一分耕耘,一分收获。

一艺之成,当尽毕生之力。

8、只有努力攀登顶峰的人,才能把顶峰踩在脚下。

困难是人的教科书。

9、学问渊博的人,懂了还要问;学问浅薄的人,不懂也不问。

10、世界上三种东西最宝贵——知识、粮食和友谊。

人教版初中数学八年级下册《数的开方与二次根式》

人教版初中数学八年级下册《数的开方与二次根式》

回归教材
考点聚焦
考向探究
第4课时┃数的开方与二次根式
考点聚焦 考点1 平方根、算术平方根与立方根 平方
平方
立方
回归教材
考点聚焦
考向探究
第4课时┃ 数的开方与二次根式
考点聚焦
考点1 平方根、算术平方根与立方根
名称
性质
算术平方根
只有_非___负__数__才有算术平方根,而 且算术平方根都是_非__负___数__.
二次根式 1. a • b= ab(a___≥__0___,b__≥__0____);
的乘除
2.
b= a
ba(a___>__0___,b___≥__0___).
二次根式 如:要估算 7在哪两个相邻的整数之间,先对 7进 的估算 行平方,因为 4<7<9,所以 2< 7<3.
回归教材
考点聚焦
考向探究
第4课时┃数的开方与二次根式
乘以分母的有理化因式,达到化去分母中根号的目的,如:1+1
= 2

12×+(1)(2-12)-1)=
2-1,
1 3+
2=(
1×( 3- 3+ 2)(
3-
2)=
3
- 2.
回归教材
考点聚焦
考向探究
第4课时┃数的开方与二次根式
考 向 探 究4
二次根式的大小比较
命题角度
1.比较二次根式与有理数的大小、比较两个二次根式的大小;
A B CD
2.二次根式
(1)二次根式、最简二次根式的概念

(2)用有理数估计二次根式值的大致范围

(3)用二次根式(根号下仅限于数)的加、减、乘、除运
算法则进行简单四则运算

第4讲-数的开方及二次根式

第4讲-数的开方及二次根式
第4讲
数的开方及二次根式
┃考点自主梳理与热身反馈 ┃ 考点1 平方根与立方根
(B C. 8 C.2 D.±8 ( B ) D.- 2 )
1. 16 的平方根是 A. 4 B.±4 2.4 的算术平方根是 1 A.±2 B. 2 1 1 2 3. 的立方根是 ________ . 8
第4讲┃ 数的开方及二次根式
3x- 9 3 = . ( x+ 3)( x- 3) x+ 3 3 3 10 当 x= 10- 3 时,原式= = . 10 10- 3+ 3
第4讲┃ 数的开方及二次根式
[中考点金] 此类分式与二次根式综合计算与化简问题,一般先 化简再代入求值.最后的结果要化为分母没有根号的数 或者是最简二次根式.
x- y+ 3= 0, x=- 1, 由题意知, 解得 2x+ y= 0, y= 2,
所以 x+y=1.故答案选 C.
第4讲┃ 数的开方及二次根式
[中考点金]
常见的非负数有 a2, b, c ,一般根据 “若几个非负
数的和等于零,那么这几个数都为零”来解答.
第4讲┃ 数的开方及二次根式

【归纳总结】 整式 最简二次 被开方数是____________ , 被开方数不 能开得尽方 根式 含 ________________ 的因数或因式
二次 根式相 几个二次根式化为最简二次根式后, 关概念 同类二次 如果被开方数 ________ 相同 ,则这几个二 根式 次根式叫作同类二次根式
第4讲┃ 数的开方及二次根式
变式题
[2013· 孝感 ]
x 先化简,再求值: 1- ÷ x + 1
x2- 1 ,其中 x= 2sin45°+ 1. x2+ 2x+ 1

04数的开方与二次根式

04数的开方与二次根式

第4课时┃ 数的开方与二次根式
x-2 3 例 4 [2013· 苏州] 先化简,再求值: ÷(x+1- ), x-1 x-1 其中 x= 3-2.

x-2 x2-1-3 3 x-2 x + 1 - 原式= ÷ = ÷ x - 1 x-1 x-1 x-1
x-2 x-1 1 = · = , x-1 (x+2)(x-2) x+2 1 1 3 当 x= 3-2 时,原式= = = . 3-2+2 3 3
求二次根式中未知数的取值范围时,考虑问题要全面. 在实数范围内,判断 a, -a2等式子有无意义或知道这些式子 有或无意义时,求被开方数中的字母的取值范围,容易出现考虑问题 不周的错误,特别是分式与二次根式在同一式中更容易出错.
第4课时┃ 数的开方与二次根式 探究三 二次根式的化简与计算
命题角度: 1.二次根式的性质:两个重要公式,积的算术平方根,商 的算术平方根; 2.二次根式的加减乘除运算.
第4课时┃ 数的开方与二次根式
考点3 二次根式的性质
2 1.( a ) =a(a________) ; ≥0 二 次 a (a≥0), 2 根 2. a =|a|= -a (a<0); 式 的 3. ab= a· b(a________ ,b________) ; ≥0 ≥0 性 b b 质 4. = (a________ ,b________). ≥0 > 0 a a
1 x≤ . 值范围是________ 3
本题考查了字母取值范围的确定, 根据二次根式的 1 被开方数是非负数,建立不等式 1-3x≥0,解得 x≤ . 3
解 析
第4课时┃ 数的开方与二次根式
此类有意义的条件问题主要是根据: ①二次根式的被开方数大于 或等于零; ②分式的分母不为零等列不等式(组), 转化为求不等式(组) 的解集.

【人教版】九年级数学下册中考知识点梳理:第4讲二次根式

【人教版】九年级数学下册中考知识点梳理:第4讲二次根式

【人教版】九年级数学下册中考知识点梳理:第4讲二次根式第 4 讲二次根式一、知识清单梳理知识点一:二次根式重点点拨及对应举例( 1)二次根式的观点:形如a(a≥0)的式子 .失分点警告:当判断分式、二次根式构成的复( 2)二次根式存心义的条件:被开方数大于或等于 0.合代数式存心义的条件时,注意保证各部分都存心义,即分母不为0,被开方数大于等于 01. 相关观点( 3)最简二次根式:①被开方数的因数是整数,因式是整1等.例:若代数式存心义,则 x 的取值式(分母中不含根号);②被开方数中不含能开得尽方x 1的因数或因式范围是 x >1.利用二次根式的两重非负性解题:( 1)两重非负性:(1)值非负 : 当多个非负数的和为0 时,可得①被开方数是非负数,即a≥0;各个非负数均为0.如 a 1 +b 1=0,②二次根式的值是非负数,即a ≥0.则 a=-1, b=1.(2)被开方数非负 : 当互为相反数的两个数同注意:初中阶段学过的非负数有:绝对值、偶幂、算式平2.二次根式方根、二次根式 .的性质(2)两个重要性质:a a0① ( a)2= a(a≥0);② a2= |a|=a ;a0 (3)积的算术平方根:ab = a · b (a≥0,b≥0);(4)商的算术平方根:a ab (a≥0, b> 0).b知识点二:二次根式的运算3.二次根式的先将各根式化为最简二次根式,再归并被开方数同样的二次根式.加减法4.二次根式的( 1)乘法: a · b =ab ( a≥0,b≥0);乘除法( 2)除法:a a(a≥0, b> 0).b=b5.二次根式的运算次序与实数的运算次序同样,先算乘方,再算乘除,最后算加减,有括号的先算括号里面的(或先去括号).混淆运算时出此刻二次根式的被开方数下时,可得这一对相反数的数均为0.如已知b=a1 +1 a,则 a=1,b=0.例:计算:3.142=;2=;3.142224=;=2;442993例:计算: 2 832=3 2.注意:将运算结果化为最简二次根式.例:计算:32=1;3232 4.2322运算时,注意察看,有时运用乘法公式会使运算简易 .例:计算: ( 2 +1)(2-1)= 1 .1。

人教版初中数学中考复习 一轮复习-数的开方与二次根式

人教版初中数学中考复习 一轮复习-数的开方与二次根式
C 2
伦﹣秦九韶公式.若p=5,c=4,则此三角形面积的最大值为( )
A. 5
B.4
C.2 5
D.5
知识点四、二次根式-二次根式的运算
解:p a b c a b 4 5
2
2
所以a b 6, a 6 b
s pp ap bp c 55 a5 b5 4
55 (6 b)5 b1 5 b 15 b
3 的结果是______.
3 12
解: 3 1 1 1 3 12 1 4 1 2 3
5. 化简: 1 1 49
解: 1 1 9 4 13 13 4 9 36 36 36 6
知识点三、二次根式-二次根式的性质
D 1.[2019·济宁]下列计算正确的是 ( )
A. 3 2 3
解:原式 9 — 1 8 22
9 2 — 1 2 2 2 22 22
3 2 — 2 2 2 22
3 — 1 2 2 2 2
3 2
知识点四、二次根式-二次根式的运算
2、(2021. 铜仁)计算( 27 — 18)( 3 — 2)
解:原式 (3 3 - 3 2)( 3 - 2) 9-3 6 -3 6 6 15- 6 6
一轮复习
数的开方与二次根式
课标要求
1. 了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方 根 、 .立方根。 2. 了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求
百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根. 3. 能用有理数估计一个无理数的大致范围. 4. 了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、
5 4 b3 2

人教版初三数学下册中考知识点梳理:第4讲二次根式

人教版初三数学下册中考知识点梳理:第4讲二次根式

第4讲二次根式一、知识清单梳理中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.抛物线223y x +=(﹣)的顶点坐标是( ) A .(2,3) B .(-2,3)C .(2,-3)D .(-2,-3)【答案】A【解析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标. 【详解】解:y=(x-2)2+3是抛物线的顶点式方程, 根据顶点式的坐标特点可知,顶点坐标为(2,3). 故选A . 【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .2.如图,AB ∥CD ,∠1=45°,∠3=80°,则∠2的度数为( )A .30°B .35°C .40°D .45°【答案】B【解析】分析:根据平行线的性质和三角形的外角性质解答即可. 详解:如图,∵AB ∥CD ,∠1=45°, ∴∠4=∠1=45°, ∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°, 故选B .点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答. 321的相反数是( )A.21--B.21+C.21--D.12【答案】D【解析】根据相反数的定义求解即可.【详解】21-的相反数是-21+,故选D.【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.4.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线【答案】C【解析】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.5.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A.y1B.y2C.y3D.y4【答案】A【解析】由图象的点的坐标,根据待定系数法求得解析式即可判定.【详解】由图象可知:抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=34(x+2)2-2;抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x-1)2+1;抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;综上,解析式中的二次项系数一定小于1的是y1故选A.【点睛】本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.6.如图所示的几何体的主视图正确的是()A.B.C.D.【答案】D【解析】主视图是从前向后看,即可得图像.【详解】主视图是一个矩形和一个三角形构成.故选D.7.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C.D.【答案】A【解析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.详解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选A.点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.8.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC 的度数是()A.85°B.105°C.125°D.160°【答案】C【解析】首先求得AB与正东方向的夹角的度数,即可求解.【详解】根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【点睛】本题考查了方向角,正确理解方向角的定义是关键.9.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°【答案】C【解析】试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.考点:切线的性质.10.-2的倒数是()A.-2 B.12C.12D.2【答案】B【解析】根据倒数的定义求解. 【详解】-2的倒数是-12故选B 【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握 二、填空题(本题包括8个小题)11.如图,在ABC ∆中,5BC AC ==,8AB =,CD 为AB 边的高,点A 在x 轴上,点B 在y 轴上,点C 在第一象限,若A 从原点出发,沿x 轴向右以每秒1个单位长的速度运动,则点B 随之沿y 轴下滑,并带动ABC ∆在平面内滑动,设运动时间为t 秒,当B 到达原点时停止运动连接OC ,线段OC 的长随t 的变化而变化,当OC 最大时,t =______.当ABC ∆的边与坐标轴平行时,t =______. 【答案】2243255和 【解析】(1)由等腰三角形的性质可得AD=BD ,从而可求出OD=4,然后根据当O ,D ,C 共线时,OC 取最大值求解即可;(2)根据等腰三角形的性质求出CD ,分AC ∥y 轴、BC ∥x 轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可.【详解】(1)15,,42BC AC CD AB AD BD AB ∴==⊥∴===, 190,,42AOB AD BD OD AB ︒∠==∴==, 当O ,D ,C 共线时,OC 取最大值,此时OD ⊥AB. ∵,4OD AB OD AD BD ⊥===, ∴△AOB 为等腰直角三角形, ∴242OA t ===;(2)∵BC=AC ,CD 为AB 边的高, ∴∠ADC=90°,BD=DA=12AB=4, ∴22AC AD -,当AC ∥y 轴时,∠ABO=∠CAB , ∴Rt △ABO ∽Rt △CAD ,∴AO AB CD AC =,即835t =, 解得,t=245,当BC ∥x 轴时,∠BAO=∠CBD , ∴Rt △ABO ∽Rt △BCD ,∴AO AB BD BC =,即845t =, 解得,t=325, 则当t=245或325时,△ABC 的边与坐标轴平行.故答案为t=245或325.【点睛】本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.12.如图,在矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且AE =CE .若将纸片沿AE 折叠,点B 恰好与AC 上的点B 1重合,则AC =_____cm .【答案】4【解析】∵AB=2cm ,AB=AB 1, ∴AB 1=2cm ,∵四边形ABCD 是矩形,AE=CE , ∴∠ABE=∠AB 1E=90° ∵AE=CE ∴AB 1=B 1C ∴AC=4cm .13.如果点P 1(2,y 1)、P 2(3,y 2) 在抛物线22y x x =-+上,那么 y 1 ______ y 2.(填“>”,“<”或“=”). 【答案】>【解析】分析:首先求得抛物线y=﹣x 2+2x 的对称轴是x=1,利用二次函数的性质,点M 、N 在对称轴的右侧,y 随着x 的增大而减小,得出答案即可.详解:抛物线y=﹣x 2+2x 的对称轴是x=﹣22-=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y 1>y 2.故答案为>.点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.14.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为__________.【答案】6【解析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.【详解】解:∵四边形ABCD为正方形,且边长为3,∴2∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴2∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴2∴22215.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.【答案】1【解析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【详解】解:设利润为w元,则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,∵10≤x≤20,∴当x=1时,二次函数有最大值25,故答案是:1.【点睛】本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.16.分解因式:4a2-4a+1=______.【答案】2(21)a -【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【详解】解:22441(21)a a a -+=-. 故答案为2(21)a -. 【点睛】本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握. 17.如果抛物线y=﹣x 2+(m ﹣1)x+3经过点(2,1),那么m 的值为_____. 【答案】2【解析】把点(2,1)代入y=﹣x 2+(m ﹣1)x+3,即可求出m 的值. 【详解】∵抛物线y=﹣x 2+(m ﹣1)x+3经过点(2,1), ∴1= -4+2(m-1)+3,解得m=2,故答案为2. 【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式. 18.如图,正△ABC 的边长为 2,顶点 B 、C 在半径为2 的圆上,顶点 A 在圆内,将正△ABC 绕点 B 逆时针旋转,当点 A 第一次落在圆上时,则点 C 运动的路线长为 (结果保留π);若 A 点落在圆上记做第 1 次旋转,将△ABC 绕点 A 逆时针旋转,当点 C 第一次落在圆上记做第 2 次旋转,再绕 C 将△ABC 逆时针旋转,当点 B 第一次落在圆上,记做第 3 次旋转……,若此旋转下去,当△ABC 完成第 2017 次旋转时,BC 边共回到原来位置 次.【答案】3π,1. 【解析】首先连接OA′、OB 、OC ,再求出∠C′BC 的大小,进而利用弧长公式问题即可解决.因为△ABC 是三边在正方形CBA′C″上,BC 边每12次回到原来位置,2017÷12=1.08,推出当△ABC 完成第2017次旋转时,BC 边共回到原来位置1次. 【详解】如图,连接OA′、OB 、OC .∵2BC=2, ∴△OBC 是等腰直角三角形, ∴∠OBC=45°;同理可证:∠OBA′=45°, ∴∠A′BC=90°; ∵∠ABC=60°, ∴∠A′BA=90°-60°=30°, ∴∠C′BC=∠A′BA=30°,∴当点A 第一次落在圆上时,则点C 运动的路线长为:30?21803ππ=. ∵△ABC 是三边在正方形CBA′C″上,BC 边每12次回到原来位置, 2017÷12=1.08,∴当△ABC 完成第2017次旋转时,BC 边共回到原来位置1次, 故答案为:3π,1. 【点睛】本题考查轨迹、等边三角形的性质、旋转变换、规律问题等知识,解题的关键是循环利用数形结合的思想解决问题,循环从特殊到一般的探究方法,所以中考填空题中的压轴题. 三、解答题(本题包括8个小题)19.为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.【答案】(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标.【解析】试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x ,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案.试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x ,根据题意得:700(1+x )2=1183,解得:x 1=0.3=30%,x 2=﹣2.3(舍去),答:这两年该市推行绿色建筑面积的年平均增长率为30%;(2)根据题意得:1183×(1+30%)=1537.9(万平方米),∵1537.9>1500,∴2017年该市能完成计划目标.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.20.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:两次取出小球上的数字相同;两次取出小球上的数字之和大于1.【答案】(1)()P =两数相同13;(2)()10P =两数和大于49. 【解析】根据列表法或树状图看出所有可能出现的结果共有多少种,再求出两次取出小球上的数字相同的结果有多少种,根据概率公式求出该事件的概率.【详解】第二次第一次6﹣2 7 6(6,6) (6,﹣2) (6,7) ﹣2(﹣2,6) (﹣2,﹣2) (﹣2,7) 7 (7,6) (7,﹣2)(7,7) (1)P (两数相同)=.(2)P (两数和大于1)=.【点睛】本题考查了利用列表法、画树状图法求等可能事件的概率.21.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A 、C 分别在坐标轴上,点B 的坐标为(4,2),直线1y x 32=-+交AB ,BC 分别于点M ,N ,反比例函数k y x=的图象经过点M ,N .求反比例函数的解析式;若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.【答案】(1)4y x =;(2)点P 的坐标是(0,4)或(0,-4). 【解析】(1)求出OA=BC=2,将y=2代入1y x 32=-+求出x=2,得出M 的坐标,把M 的坐标代入反比例函数的解析式即可求出答案. (2)求出四边形BMON 的面积,求出OP 的值,即可求出P 的坐标.【详解】(1)∵B (4,2),四边形OABC 是矩形,∴OA=BC=2.将y=2代入1y x 32=-+3得:x=2,∴M (2,2). 把M 的坐标代入k y x =得:k=4, ∴反比例函数的解析式是4y x=; (2)AOM CON BMON OABC 1S S S S 422442∆∆=--=⨯-⨯⨯=四边形矩形. ∵△OPM 的面积与四边形BMON 的面积相等,∴1OP AM 42⋅⋅=. ∵AM=2,∴OP=4.∴点P 的坐标是(0,4)或(0,-4).22.甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x 件时,甲商场收费为y 1元,乙商场收费为y 2元.分别求出y 1,y 2与x 之间的关系式;当甲、乙两个商场的收费相同时,所买商品为多少件?当所买商品为5件时,应选择哪个商场更优惠?请说明理由.【答案】(1);y 2=2250x ;(2)甲、乙两个商场的收费相同时,所买商品为6件;(3)所买商品为5件时,应选择乙商场更优惠.【解析】试题分析:(1)由两家商场的优惠方案分别列式整理即可;(2)由收费相同,列出方程求解即可;(3)由函数解析式分别求出x=5时的函数值,即可得解试题解析:(1)当x=1时,y1=3000;当x>1时,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+1.∴;y2=3000x(1﹣25%)=2250x,∴y2=2250x;(2)当甲、乙两个商场的收费相同时,2100x+1=2250x,解得x=6,答:甲、乙两个商场的收费相同时,所买商品为6件;(3)x=5时,y1=2100x+1=2100×5+1=11400,y2=2250x=2250×5=11250,∵11400>11250,∴所买商品为5件时,应选择乙商场更优惠.考点:一次函数的应用23.如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.【答案】见解析【解析】(1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF【详解】解:(1)证明:在△AEO与△BFO中,∵Rt△OAB与Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.24.如图,在等边三角形ABC中,点D,E分别在BC, AB上,且∠ADE=60°.求证:△ADC~△DEB.【答案】见解析【解析】根据等边三角形性质得∠B=∠C,根据三角形外角性质得∠CAD=∠BDE,易证ADC DEB. 【详解】证明: ABC是等边三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C= ∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴ADC DEB【点睛】考核知识点:相似三角形的判定.根据等边三角形性质和三角形外角确定对应角相等是关键.25.甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.【答案】(1)13;(2)这个游戏不公平,理由见解析.【解析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:13;(2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P(甲胜)=59,P(乙胜)=49.∴P(甲胜)≠P(乙胜),故这个游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.26.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.求证:△ADE≌△CBF;若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.【答案】(1)证明见解析;(2)若∠ADB是直角,则四边形BEDF是菱形,理由见解析.【解析】(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF 是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠A=∠C,∵E、F分别为边AB、CD的中点,∴AE=12AB,CF=12CD,∴AE=CF,在△ADE和△CBF中,{AD BC A C AE CF=∠=∠=,∴△ADE≌△CBF(SAS);(2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:解:由(1)可得BE=DF,又∵AB∥CD,∴BE∥DF,BE=DF,∴四边形BEDF是平行四边形,连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,∴DF∥AE,DF=AE,∴四边形AEFD是平行四边形,∴EF∥AD,∵∠ADB是直角,∴AD⊥BD,∴EF⊥BD,又∵四边形BFDE是平行四边形,∴四边形BFDE是菱形.【点睛】1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )A.45︒B.50︒C.60︒D.75︒【答案】C【解析】根据平行四边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知∠B=∠AOC,根据圆内接四边形的对角互补可知∠B+∠D=180°,根据圆周角定理可知∠D=12∠AOC,因此∠B+∠D=∠AOC+12∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故选C【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.2.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )A.k≤2且k≠1B.k<2且k≠1C.k=2 D.k=2或1【答案】D【解析】当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.【详解】当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,综上可知k的值为1或2,故选D.【点睛】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.3.下列计算正确的是()A.(﹣2a)2=2a2B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a2【答案】C4a;【解析】解:选项A,原式=2选项B,原式=a3;选项C,原式=-2a+2=2-2a;选项D,原式=3a故选C4.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为()A.2:3 B.3:2 C.4:9 D.9:4【答案】C【解析】由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.【详解】∵△ABC与△DEF相似,相似比为2:3,∴这两个三角形的面积比为4:1.故选C.【点睛】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.5.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+5【答案】A【解析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,故选A.【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答. 6.如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C.D.【答案】A【解析】分析:根据从上边看得到的图形是俯视图,可得答案.详解:从上边看外面是正方形,里面是没有圆心的圆,故选A.点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.7.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°【答案】A【解析】试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.考点:平行线的性质.8.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A.3 B.4 C.5 D.6【答案】B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B.9.某商品价格为a元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.0.96a元B.0.972a元C.1.08a元D.a元【答案】B【解析】提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可.【详解】第一次降价后的价格为a×(1-10%)=0.9a元,第二次降价后的价格为0.9a×(1-10%)=0.81a元,∴提价20%的价格为0.81a×(1+20%)=0.972a元,故选B.【点睛】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.10.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是()A.红花、绿花种植面积一定相等B.紫花、橙花种植面积一定相等C.红花、蓝花种植面积一定相等D.蓝花、黄花种植面积一定相等【答案】C【解析】图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.故选择C.【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.二、填空题(本题包括8个小题)11.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.【答案】1【解析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.【详解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.12.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回元(用含a的代数式表示).【答案】(50-3a).【解析】试题解析:∵购买这种售价是每千克a元的水果3千克需3a元,∴根据题意,应找回(50-3a)元.考点:列代数式.13.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________.【答案】44°【解析】首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.【详解】连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案为44°【点睛】此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.14.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.【答案】1【解析】分析:设方程的另一个根为m,根据两根之和等于-ba,即可得出关于m的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=1.故答案为1.点睛:本题考查了根与系数的关系,牢记两根之和等于-ba是解题的关键.15.抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为_____.【答案】x1=1,x2=﹣1.【解析】直接观察图象,抛物线与x轴交于1,对称轴是x=﹣1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程﹣x2+bx+c=0的解.【详解】解:观察图象可知,抛物线y=﹣x2+bx+c与x轴的一个交点为(1,0),对称轴为x=﹣1,∴抛物线与x轴的另一交点坐标为(﹣1,0),∴一元二次方程﹣x2+bx+c=0的解为x1=1,x2=﹣1.故本题答案为:x1=1,x2=﹣1.【点睛】本题考查了二次函数与一元二次方程的关系.一元二次方程-x2+bx+c=0的解实质上是抛物线y=-x2+bx+c 与x轴交点的横坐标的值.16.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为.【答案】2【解析】试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,∴反比例函数的解析式为6yx=;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),∵点E在抛物线上,∴61aa=+,整理得260a a+-=,解得2a=或3a=-(舍去),故正方形ADEF的边长是2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4节数的开方与二次根式命题点一二次根式的概念及性质
1. 下列二次根式中,最简二次根式是()
A. - 2
B. 12
C. 1
5 D. a
2
2. 下列二次根式中,与3是同类二次根式的是()
A. 18
B. 1
3 C. 2
4 D. 0.3
3. 下列各式化简后的结果为32的是()
A. 6
B. 12
C. 18
D. 36
命题点二二次根式有意义的条件
4. 要使二次根式2x-4在实数范围内有意义,则x的取值范围是()
A. x>2
B. x≥2
C. x<2
D. x=2
5. 式子
a+1
a-2
有意义,则实数a的取值范围是______________.
6. 使代数式
1
x+3
+4-3x有意义的整数x有________个.
命题点三平方根、算术平方根、立方根
7. 4的平方根是()
A. 16
B. 2
C. ±2
D. ± 2
8. 计算36的结果为()
A. 6
B. -6
C. 18
D. -18
命题点四二次根式的估值
9. 估计38的值在()
A. 4和5之间
B. 5和6之间
C. 6和7之间
D. 7和8之间
10. 下列实数,介于5和6之间的是()
A. 21
B. 35
C. 42
D. 3
64
11. 已知M=2×8+5,则M的取值范围是()
A. 8<M<9
B. 7<M<8
C. 6<M<7
D. 5<M<6
12. 估计7+3的值在哪两个连续整数之间()
A. 3和4
B. 4和5
C. 5和6
D. 6和7
13.若3<a<10,则下列结论中正确的是()
A. 1<a<3
B. 1<a<4
C. 2<a<3
D. 2<a<4
14. 在数轴上标注了四段范围,如图,则表示8的点落在()
第14题图
A. 段①
B. 段②
C. 段③
D. 段④
15. 关于8的叙述正确的是()
A. 在数轴上不存在表示8的点
B. 8=2+ 6
C. 8=±2 2
D. 与8最接近的整数是3
命题点五二次根式的运算
16.下列运算正确的是()
A. 2+3= 5
B. 22×32=6 2
C. 8÷2=2
D. 32-2=3
17.实数a,b在数轴上对应点的位置如图所示,化简|a|+(a-b)2的结果是()
A. -2a+b
B. 2a-b
C. -b
D. b
第17题图
18. 计算27-61
3的结果是________.
19. 计算:418-92=________.
20. 计算12+8×6的结果是________.
21. 计算:(24+1
6)×6=________.
22. 计算:|2-5|-2(1
8-
10
2)+
3
2
答案
1. A
2. B
3. C
4. B
5. a≥-1,且a≠2
6. 4
7. C
8. A
9. C10. B 11. C【解析】∵M=16+5=4+5,∵4<5<9,∴2<5<3,∴6<M<7.
12. B【解析】∵ 6.25<7<9,∴2.5<7<3,∵ 2.25<3<4,∴1.5<3<2,∴4<7+3<5,∴7+3的值在4和5之间.
13. B
14.C【解析】∵32=9,2.92=8.41,2.82=7.84,∴7.84<8<8.41,∴8应介于2.8与2.9之间.
15. D【解析】
16. C
17. A【解析】由题图可知:a<0,a-b<0,则|a|+(a-b)2=-a-(a-b)=-2a+b.
18. 319. 3220. 6321. 13
22. 解:原式=5-2-1
2+5+
3
2
=25-1.。

相关文档
最新文档