人教版七年级上册有理数加减乘除四则混合运算专题检测题(无答案)
人教版七年级上册数学第一章有理数-四则运算练习题
七年级有理数四则运算练习题1、[1-(1-0.5x 13)]x [2-(-3)2]2、57 ÷(-225 )- 57 x 512 - 53÷43、(-23)+72+(-31)+(+47)4、(-1.6)+(-351)+|-1.8|5、1-4-2-|-5|6、(-251)+(-131)-(-261)-(-451)7、(-543)+41-381-(-543)8、)15.3()413()85.3(434+----+9、3-5-4÷(-12)10、-4.5+0.5-3.2+5.111、-4.5+352-531+153-2112、(-32)-(+31)-|-43|-(-41)13、⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-712347514、3155235.453121-+-+-15、⎪⎭⎫ ⎝⎛----⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-4143323116、653411612112315--+-17、82002200118125.0⨯⨯-18、-24×⎪⎭⎫⎝⎛-+-8561433119、98812)988()8()988(4⨯--⨯-+-⨯-20、36187436597⨯⎪⎭⎫⎝⎛-+-21、)12(201919-⨯-22、75)21(212)75(75211⨯-+⨯--⨯23、22233411110.5+(-)--2-4-(-1)()(-)2232-⨯÷计算:24、25、512⎛⎫- ⎪⎝⎭26、212133n n +⎛⎫⨯ ⎪⎝⎭27、()()()()=----2002200143322128、()42--29、3211⎪⎭⎫ ⎝⎛30、()20031-31、()33131-⨯--32、()2332-+-33、()2233-÷-34、()()3322222+-+--35、()34255414-÷-⎪⎭⎫ ⎝⎛-÷36、()⎪⎭⎫ ⎝⎛-÷----72132224637、()()()33220132-⨯+-÷---38、111236⎛⎫⎛⎫---+- ⎪ ⎪⎝⎭⎝⎭39、()42118932⎛⎫-⨯-++ ⎪⎝⎭40、()151.2936⎛⎫⨯⨯-⨯- ⎪⎝⎭41、51200(300)62⎛⎫-+--+- ⎪⎝⎭42、()180.125(2)3⎡⎤⨯⨯-⨯-⎢⎥⎣⎦43、()()302 1.254--+--44、()20.8 1.40 1.27⎛⎫⨯-⨯⨯⨯- ⎪⎝⎭45、()70.511.522--+-+--46、(﹣11)×+(+5)×+(﹣137)÷5+(+113)÷5;47、﹣8﹣[﹣7+(1﹣×0.6)÷(﹣3)].48、﹣13×﹣0.34×+×(﹣13)﹣×0.3449、(﹣10)×(﹣)×(﹣0.1)×650、+(16)×5×(﹣29.4)×0×(﹣7)1、最困难的事就是认识自己。
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。
一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。
规定:先算高级运算再算低级运算同级运算从左到右依次进行。
(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。
当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。
1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。
七年级数学上册有理数加减乘除混合运算练习人教新课标版
数 学 练 习(一)〔有理数加减法运算练习〕一、加减法法则、运算律的温习。
A .△同号两数相加,取__________________,并把____________________________。
一、(–3)+(–9) 2、85+(+15)3、(–361)+(–332) 4、(–)+(–532)△绝对值不相等的异号两数相加,取_________________________,并用____________________ _____________. 互为__________________的两个数相加得0。
一、(–45) +(+23) 2、(–)+3、412+(–) 4、(–9)+7△ 一个数同0相加,仍得_____________。
一、(–9)+ 0=______________; 2、0 +(+15)=_____________。
B 一、(–)+(–)+ (– 二、23+(–17)+(+7)+(–13)3、(+ 341)+(–253)+ 543+(–852) 4、52+112+(–52)C .有理数的减法能够转化为_____来进行,转化的“桥梁”是△减法法则:减去一个数,等于_____________________________。
一、(–3)–(–5) 二、341–(–143) 3、0–(–7)D .加减混合运算能够统一为_______一、(–3)–(+5)+(–4)–(–10) 二、341–(+5)–(–143)+(–5)△把––(–)+(–)+ (+写成省略加号的和的形式是______________,读作:__________________________,也能够读作:__________________________。
一、 1–4 + 3–5 二、– + – + 3、 381–253 + 587–852二、综合提高题。
1、 –99 + 100–97 + 98–95 + 96–……+2 二、–1–2–3–4–……–1003、一个病人天天下午需要测量一次血压,下表是病人礼拜一至礼拜五收缩压的转变情形,该病人上个礼拜日的请算出礼拜五该病人的收缩压。
新人教版七年级数学上册1.4有理数的乘除法1.4.2有理数的除法第3课时有理数的加减乘除混合运算练习
10.用计算器计算: (1)-4.3+2.3-(-5.7);
解:3.7
(2)21×(-32)+(-43)×(-7); 解:-371
(3)-2.56÷2.5-(-328)÷(-4). 解:-83.024
14.若 a,b 互为相反数,c,d 互为倒数,x 的绝对值
为 2,则a+cdb -x=_____2_或_-__2____
15.计算:
3 (1)24÷(2
-43
)-62212
×22;
解
:
原
式
=
24÷(
9 6
-
8 6
)
-
(6
+
21 22
)×22 =
1 24÷6
-132-21=24×6-132-21=-9.
(2)(-1223 )÷6.4-(-813 )÷(-6.4)+1013 ÷6.4
解:原式=(-1223 )×352 -813 ×352 +1013 ×352 =
5 32
×(-1223
-813
+1013
)=352
×(-1023
)=-53
16.数学老师布置了一道思考题“计算:(-112
1 )÷(3
-56
)”,小
明仔细思考了一番,用了一种不同的方法解决了这个问题.
小明的解法:原式的倒数为(13 -56 )÷(-112 )=(13 -56 )×(-12)
=-4+10=6,所以(-112 )÷(13 -56 )=16 . (1)请你判断小明的解答是否正确,并说明理由; (2)请你运用小明的解法解答下面的问题.
人教版七年级数学上册第一章 1.4.2 第2课时 有理数的加减乘除混合运算 作业练习题
4.(4 分)计算: (1)1-(-8)÷(-4)=_-__1_;
(2)(聊城中考)(-13 -12 )÷54 =__-__23___.
5.(6分)计算: (1)(-3)-(-15)÷(-3); 解:原式=-8 (2)(-3)×4+(-24)÷6; 解:原式=-16 (3)(-42)÷(-7)-(-6)×4. 解:原式=30
6.(6 分)根据下列语句列式计算: (1)40 与 25 的差乘-3 所得的积; 解:(40-25)×(-3)=15×(-3)=-45 (2)32 与 6 的商减去-13 所得的差.
解:32÷6-(-13 )=136 +13 =137
7.(3 分)使用计算器计算某题,按键顺序为 8 × 5 ÷ 4 = , 则结果为_1_0__.
(1)如果抽到的是黑桃7,黑桃3,红桃3,梅花7,你能凑成24吗? 解:能.如[3÷7-(-3)]×7=24(答案不唯一)
(2)请将下面的一组扑克牌凑成24:黑桃Q,红桃K,梅花3,方块A. 解:如12×3+(-13)-(-1)=24(答案不唯一)
(2)先计算哪部分比较简便?并请你计算出结果.
(3)利用(1)中的关系,直接写出另一部分的结果.
(4)根据以上分析,求出原式的结果.
解:(1)前后两部分互为倒数 (2)先计算后一部分比较方便.
1 (4
+112
-178
-316
1 )÷36
=(14
+112
-178
-316
)×36=9+3-14-1=-3
那么 ×
=_1__2_.
三、解答题(共 35 分) 16.(12 分)计算: (1)-1×(0÷25 -2)+4÷(-14 )×12 ;
解:原式=-6
七年级数学上册 1.4.3 有理数加减乘除混合运算作业 试题
有理数加减乘除混合运算◆随堂检测1、 计算:〔1〕)12()9()15(8---+---; 〔2〕)1()2.3(7)56(-+----;〔3〕21)41(6132-----; 〔4〕)2.4(3112)527()3211(------. 2、计算:〔1〕)]41()52[()3(-÷-÷-; 〔2〕3)411()213()53(÷-÷-⨯-;〔3〕)5()910()101()212(-÷-÷-⨯-; 〔4〕74)431()1651()56(⨯-÷-⨯-3、计算:〔1〕)2(66-÷+-; 〔2〕)12(60)4()3(-÷--⨯-; 〔3〕)6()61(51-⨯-÷+-; 〔4〕101411)2131(÷÷-. ◆典例分析 计算:〔1〕601)315141(÷+-;〔2〕)315141(601+-÷. 分析:第〔2〕题属于易错题,因为除法没有分配律,只有乘法才有分配律,而一些学生往往因不看清题目而错误地运用运算规律。
解:〔1〕解法一:2360602360)602060126015(601)315141(=⨯=⨯+-=÷+-解法二:601)315141(÷+-2360316051604160)315141(=⨯+⨯-⨯=⨯+-=〔显然,解法二中运用了乘法分配律后计算方法很简单。
〕 〔2〕错解:)315141(601+-÷301316015160141601=÷+÷-÷= 〔出错的原因在于:除法没有分配律,从而是不能运用的〕 正确解法一:)315141(601+-÷=2316023601)602060126015(601=÷=+-÷ 正确解法二: ∵601)315141(÷+-2360316051604160)315141(=⨯+⨯-⨯=⨯+-= ∴根据倒数的定义有:)315141(601+-÷=231 ◆课下作业 ●拓展进步1、 计算:〔1〕)425()327261(-÷+-; 〔2〕]51)31(71[1051---÷. 2、计算:〔1〕)5(]24)436183(2411[-÷⨯-+-; 〔2〕)411(113)2131(215-÷⨯-⨯-.3、对整数10,6,3,2-〔每个数只用一次〕进展加减乘除四那么运算,使其运算结果等于24,运算式可以是 、 、 4、a <0,且1 a ,那么11--a a 的值是〔 〕A 、等于1 B 、小于零 C 、等于1- D 、大于零 5、03=++-y x y ,求xyyx -的值. 6、假设0,0≠≠b a ,≠c 0,求b b aa +cc+的可能取值。
最新2019-2020年度人教版七年级数学上册《有理数加减乘除混合运算》综合练习题-经典试题
数 学 练 习(一)〔有理数加减法运算练习〕一、加减法法则、运算律的复习。
A .△同号两数相加,取__________________,并把____________________________。
1、(–3)+(–9)2、85+(+15)3、(–361)+(–332) 4、(–3.5)+(–532)△绝对值不相等的异号两数相加,取_________________________,并用____________________ _____________. 互为__________________的两个数相加得0。
1、(–45) +(+23)2、(–1.35)+6.353、412+(–2.25) 4、(–9)+7△ 一个数同0相加,仍得_____________。
1、(–9)+ 0=______________;2、0 +(+15)=_____________。
B .加法交换律:a + b = ___________ 加法结合律:(a + b) + c = _______________1、(–1.76)+(–19.15)+ (–8.24)2、23+(–17)+(+7)+(–13)3、(+ 341)+(–253)+ 543+(–852) 4、52+112+(–52)C .有理数的减法可以转化为_____来进行,转化的“桥梁”是___________。
△减法法则:减去一个数,等于_____________________________。
即a –b = a + ( )1、(–3)–(–5)2、341–(–143) 3、0–(–7)D .加减混合运算可以统一为_______运算。
即a + b –c = a + b + _____________。
1、(–3)–(+5)+(–4)–(–10)2、341–(+5)–(–143)+(–5)△把–2.4–(–3.5)+(–4.6)+ (+3.5)写成省略加号的和的形式是______________,读作:__________________________,也可以读作:__________________________。
七年级上册有理数的加减乘除混合运算测试卷
有理数的加减乘除混合运算测试卷一、选择题(3分×10=30分)1. -12的相反数是……………………………………………………( )A.21- .2 C D.122.数轴上的点A 、B 、C 、D 分别表示数a 、b 、c 、d ,已知点A 在点B 的右侧,点C 在点B 的左侧,点D 在点B 和点C 之间,则下列式子成立的是( ) A .a b c d <<< B .b c d a <<< C .c d b a <<< D .c d a b <<< 3.-3不是( )A .负有理数B .有理数C .自然数D .整数4.4||5-的倒数是( )A .45B .45-C .54D .54-5.一个数的绝对值等于它的相反数,这个数一定是( ) A .非正数 B .非负数 C .负数 D .正数 6.绝对值小于6的所有整数的和是………………………………( ) A 、15 B 、10 C 、0 D 、-10 7.若||8a =,||5b =,且0a b +>,那么a b -的值为( )A .-13或13B .3或13C .-3或-13D .3或-3 8.下列计算正确的是…………………………………………………………( )A 、21-21×3=0 B 、23--(32-)=1C 、6÷3×31=6 D 、(121)2-(-1)2005 = 3419.下列比较大小正确的是( )A .22||55-=-B .5567->-C .1(5)| 5.5|2--<-D .7687-<-10.有理数a 、b 在数轴上的对应的位置如图所示,则……………( ) A .a + b <0 B .a + b >0 C .a -b = 0 D .a -b >0二、填空题(3分×5=15分) 11.若|x |=7,则x =12.若数轴上的点A 所对应的有理数是7-,那么与点A 相距3个单位长度的点所对应的有理数是 .13.如果||||,0,0b a b a ><<,那么a b (填“<”或“>”). 14.绝对值不小于5且不大于8的整数的个数是 . 15.如右图,是一个正方体纸盒的展开图,若在其中三个正方形a 、b 、c 内分别填入适当的数,使得它们折成正方体后相对的两 个面上的两个数互为相反数,则代数式20082c a b ++的值为 . 三、计算题(每小题5分,共40分)17.4316532211--+- 18.(-5)×(-7)-5÷⎪⎭⎫ ⎝⎛-61;19.-374÷(-132)×(-432) 20. 17-8÷(-2)+4×(-3)21.532)2(1---+-- 22.911)325.0(311÷-⨯--11ab23. ⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-+-30115841073652541 24. )221()76(412-÷-⨯四、解答题25. (10分)在数轴上画出表示下列各数的点,并用“<”把它们连接起来:-(+13)、45- 、0、(1)--、12、| 3.5|--26.(10分)如果a 、b 互为相反数,c 、d 互为倒数,1y +没有倒数,1x -的绝对值等于1.那么代数式2||(1)(1)cda b y a b x-+++-+-的值是多少?27.(8分)已知021=++-y x ,求y x +的值28.(7分)一天上午,一辆警车从M车站出发在一条笔直的公路上来回巡逻,行驶的路程情况如下(向M车站右侧方向行驶为正,单位:km):-6,+4,+8,-5,+10,+3,+6,-10,-7,+3。
人教版数学七年级上册1.4.2 有理数的除法第2课时有理数的加减乘除混合运算同步课时训练
人教版数学七年级上册1.4.2有理数的除法第2课时有理数的加减乘除混合运算同步课时训练自主预习基础达标要点1有理数的加减乘除混合运算1. 有理数的加减乘除混合运算顺序:在有理数的加减乘除混合运算中,若没有括号,则先算,再算,若有括号,则按照先算括号里的,再算括号外的顺序计算.2. 同级运算要按从至的顺序进行运算.要点2用计算器进行有理数的混合运算计算器的使用步骤:1.按开启键ON;2. 按照算式的输入数据,看显示器上的显示是否正确;3. 按=键执行运算,此时显示出计算结果.每次新的运算要按一下清零键AC.课后集训巩固提升1. 计算12+(-18)÷(-6)-(-3)×2的结果是()A. 7B. 8C. 21D. 362. 若两个数的和为0,且商为-1,则这两个数()A. 互为相反数B. 互为倒数C. 互为相反数且不为零D. 以上都不对3. 下列说法错误的是()A. 开启计算器使之工作的按键是ON键B. 输入-5.8的按键顺序是-5·8或(-)5·8C. 输入0.58的按键顺序是·58D. 按键69-87-=能计算-69-87的结果4. 在算式1-|-2※3|中的※里,填入下列哪种运算符号,使得算式的值最小()A. +B. -C. ×D. ÷5. 已知ac b<0,a >c ,ac <0,则下列结论正确的是( ) A. a <0,b <0,c >0 B. a >0,b >0,c <0C. a <0,b <0,c <0D. a >0,b >0,c >06. 计算12-7×(-4)+8÷(-2)的结果是 .7. 若ab <0,a >b ,则b 0;若ab c <0,ac >0,则b 0;若a b >0,b c<0,则ac 0. 8. 用计算器计算(结果保留两位小数):(1)2.52÷(-15)≈ ;(2)-2.34×(-0.12)-3.74÷(-2.68)≈ ;(3)-5.28÷0.75×(-3.14)≈ ;(4)37.5-(-4.2)×31÷(-16)≈ .9. 计算:(1)(-7.5)×(+25)×(-0.04); (2)(-12+16-38+512)×(-24);(3)(-112+116-1112)÷(-112); (4)-1108÷[124-(-112)-172];(5)(79-56+318)×18-1.45×6+3.95×6.10. 如果对于任意非零有理数a ,b ,定义新运算※如下:a ※b =(a -2b )÷(2a -b ).求(-3)※5的值.11. 已知m ,n 互为相反数,x ,y 互为倒数,求(4m +4n -24)÷(8xy -3)-2(m +n )的值.12. 已知有理数m,n,且在数轴上表示m的点距离原点的距离为4,|n|=12,求nm(m+n)的值.13. 有两个数-4和+6,它们相反数的和为a,倒数的和为b,和的倒数为c,求a÷b÷c的值.14. 若有理数a,b,c满足:|a-1|+|b-3+a|+|2a+b-c+1|=0.(1)求a,b,c的值;(2)求3a-2b+4(3-c)b-c的值.15. 赵先生将甲、乙两种股票都以1200元的价格同时卖出,其中甲股票盈利20%,乙股票亏损20%,问这次赵先生是盈利还是亏损?盈利或亏损多少元?16. 阅读材料,回答问题.计算:(-130)÷(23-110+16-25).解:方法一:原式=(-130)÷[(23+16)-(110+25)]=(-130)÷(56-12)=(-130)÷13=-110.方法二:原式的倒数为(23-110+16-25)÷(-130)=(23-110+16-25)×(-30)=-20+3-5+12=-10.故原式=-110.根据材料用适当的方法计算:(-142)÷(16-314+23-27). 参考答案自主预习 基础达标要点1 1. 乘除 加减 2. 左 右要点2 2. 书写顺序课后集训 巩固提升1. C2. C3. D4. C5. B6. 367. < < <8. (1)-0.17 (2)1.68 (3)22.11 (4)29.369. 解:(1)原式=7.5.(2)原式=7.(3)原式=17.(4)原式=-112. (5)原式=17.10. 解:由新运算知:(-3)※5=[(-3)-2×5]÷[2×(-3)-5]=(-3-10)÷(-6-5)=(-13)÷(-11)=1311. 11. 解:因为m ,n 互为相反数,所以m +n =0.因为x ,y 互为倒数,所以xy =1.所以(4m +4n -24)÷(8xy -3)-2(m +n )=(-24)÷5-0=-245. 12. 解:根据题意,可知|m |=4,得m =-4或m =4.由|n |=12,得n =-12或n =12.当m =4且n =12时,n m (m +n )=916;当m =4且n =-12时,n m (m +n )=-716;当m =-4且n =12时,n m (m +n )=716;当m =-4且n =-12时,n m (m +n )=-916.综上可知,n m (m +n )的值为±916或±716. 13. 解:由题意,得a =4+(-6)=-2,b =-14+16=-112,c =1-4+6=12,所以a ÷b ÷c =-2÷(-112)÷12=2×12×2=48. 14. 解:(1)由题意,得a -1=0,即a =1,b -3+a =b -3+1=0,即b =2,2a +b -c +1=2×1+2-c +1=0,即c =5.(2)原式=3a -2b -4c +12b -c =3×1-2×2-4×5+122-5=3.15. 解:由题意得1200×2-[1200÷(1+20%)+1200÷(1-20%)]=2400-(1200÷1.2+1200÷0.8)=2400-(1000+1500)=2400-2500=-100(元),因为-100<0,所以赵先生在这次交易中共亏损了100元.16. 解:原式的倒数为(16-314+23-27)÷(-142)=(16-314+23-27)×(-42)=-7+9-28+12=-14.故原式=-114.。