绝对值与相反数(基础)知识精讲

合集下载

七年级数学专题二:绝对值 相反数 倒数华东师大版知识精讲

七年级数学专题二:绝对值 相反数 倒数华东师大版知识精讲

初一数学专题二:绝对值相反数倒数华东师大版【本讲教育信息】一. 教学内容:专题二:绝对值相反数倒数二、知识要点1. 知识点概要⑴了解有理数的绝对值、相反数、倒数的意义;⑵会求一个有理数的相反数、绝对值、倒数;⑶能借助数轴理解一个数的绝对值、相反数、倒数及完成相关计算.2. 重点难点⑴有理数(特别是负数)绝对值、相反数的意义;⑵数形结合的思想方法.三、考点分析(一)借助于数轴学习有理数的概念数轴不但是研究数形结合的典型的思想方法,而且是学习有理数的重要工具.借助于数轴可以加深对有理数的有关概念的理解和运用.1. 借助于数轴理解正负数数轴的建立,可以将所有的有理数在数轴上表示出来.即零可以用原点表示,正数可以用原点右边的点表示,负数可以用原点左边的点表示出来.如,-0.1,-1,-2,-100等等只能在数轴的左边表示出来,0在数轴的原点表示出来,0. 1,1,2,100等等只能在数轴的右边表示出来.2. 借助于数轴理解绝对值⑴数轴上表示一个数的点与原点的距离,叫做这个数的绝对值.绝对值的几何意义可以由数轴直接知道:一个数a的绝对值就是数轴上表示数a的点与原点的距离.a的绝对值记作|a|.⑵由数轴我们同样可以知道绝对值的代数意义:一个正数的绝对值就是它本身,一个负数的绝对值是它的相反数,零的绝对值是零.用数学式子表示为() ()()0, 00,0.a aaa a⎧⎪=⎨⎪-⎩><⑶绝对值的主要性质:①若a为有理数,则|a|≥ 0;②绝对值为某一正数的有理数有两个,它们互为相反数;互为相反数的两个数的绝对值相等;③若|a|=a¸则a≥ 0;④若|a|+|b|=0¸则a=b=0;⑤绝对值没有最大的数,但有绝对值最小的数:0.3. 借助于数轴理解相反数⑴我们知道,只有符号不同的两个数,我们称它们互为相反数.如212与-212互为相反数,即212是-212的相反数,-212是212的相反数.零的相反数是零.由此可知,互为相反数的两个数表示在数轴上分别在原点的两旁,并且这两个数到原点的距离相等.⑵事实上,我们可以借助于数轴来这样理解相反数的概念,在数轴上,位于原点两旁,且到原点的距离相等的两个点表示的两个数即为互为相反数.如3与-2就不是互为相反数.要注意概念中的“只有”这个字眼,就是说在两个数中,只是符号不同,一个是正号,另一个是负号,其余什么都相同.另外,由数轴上原点两旁,且到原点的距离相等的两个数总是成对出现的,单独一个数或三个数等都不能说成是互为相反数.符号不同的两个数也不能说成是互为相反数,⑶相反数的表示方法:一般地,数a 的相反数是-a ,这里a 表示任意的一个数,可以是正数、0、负数,a 还可以代表任意一个代数式.一般地,在一个数前面添加一个“-”号,就成为原数的相反数.⑷相反数的重要性质:①如果a 、b 互为相反数,则a +b =0,反之,若a +b =0,则a 、b 互为相反数;②如果a 、b 互为相反数,则a 、b 在数轴上对应的点到原点的距离相等,即互为相反数的两个数的绝对值相等. 4. 借助于数轴比较有理数的大小 在数轴上表示的两个数,右边的数总比左边的数大.由此,利用数轴比较有理数的大小,采用数形结合的方法,简单、直观,同学们也一定易于掌握.(二)倒数⑴倒数的意义:乘积为1的两个数互为倒数,其中一个数是另一个数的倒数.即当ab=1时,则a 、b 互为倒数;反之,当a 、b 互为倒数时,则ab=1.⑵倒数与相反数的区别:①互为倒数的两个数的积为1,而互为相反数的两个数的和为0;②0的相反数是0,而0没有倒数;③互为倒数的两个数同号,而互为相反数的两个数(0除外)异号.⑶倒数的求解方法:①求一个整数的倒数时,直接写成这个数分之一即可.如- 3的倒数是 -31;②求一个分数的倒数时,就是把这个分数的分子和分母交换一下即可.如 -53的倒数是 -35;③若求小数的倒数时,先将小数化成分数再求.如求-0.5的倒数,由-0.5 = -21,-21的倒数是-2,则-0.5的倒数是-2。

人教版数学绝对值精讲精讲

人教版数学绝对值精讲精讲

人教版数学绝对值精讲精讲一、绝对值的概念1.定义:一个数的绝对值就是数轴上表示a的点与原点的距离,数a 的绝对值记作a,读作a的绝对值。

2.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值还是0。

3.绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小。

4绝对值的非负性:由于距离总是正数或0,故有理数的绝对值不可能是负数,即对任意有理数a,总有a≥0。

5.互为相反数的两个数的绝对值相等,但绝对值相等的两个数相等或互为相反数。

6.绝对值等于它本身的数一定是非负数,绝对值等于它的相反数的数一定是非正数。

例1、47-的绝对值为()A.47B.74-C.74D.47-二、绝对值的求法绝对值是一种运算,这个运算符号是“”,求一个数的绝对值就是想办法去掉绝对值符号,对于任意有理数a,有(1)(0)0(0)(0)a aa aa a>⎧⎪==⎨⎪-<⎩(2)⎩⎨⎧<-≥=)0()0(aaaaa(3)⎩⎨⎧≤->=)0()0(aaaaa例2、计算|﹣2+1|的结果是( ) A .﹣3 B .3 C .﹣1 D .11.-2的绝对值等于( ) A .12-B .-2C .2±D .22.下列各数化简后与3相等的是( ) A .13-B .()31-C D .13⎛⎫-- ⎪⎝⎭3.下列各数中,绝对值最小的是( ) A .﹣2B .3C .0D .﹣34.2021-的绝对值是( ) A .2021B .2021-C .2020-D .20205.﹣ǀ﹣5ǀ的倒数是( ) A .5B .﹣5C .15D .15-6.计算:113=2-⎛⎫+- ⎪⎝⎭______. 7.计算:(-2)2-|-3|=______.8.计算:(011232-9.计算:212|3-⎛⎫+- ⎪⎝⎭.。

绝对值知识讲解

绝对值知识讲解

绝对值知识讲解-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII绝对值知识讲解一、知识框架图二、基础知识1、绝对值的概念(1)定义:一个数的绝对值就是数轴上表示数a 的点与原点的距离。

数a 的绝对值记作a ,读作a 的绝对值。

(2)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

(3)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离。

离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。

(4)绝对值的非负性:由于距离总是正数或0,故有理数的绝对值不可能是负数,即对于任意有理数a ,总有a ≥0.2、绝对值的求法 绝对值是一种运算,这个运算符号是“”。

求一个数的绝对值,就是想办法去掉这个绝对值符号,对于任意有理数a ,有:a (a >0)(1) 0(a=0)a (a <0)a (a ≥0)(2)a -(a <0) a (a >0)(3)a -(a ≤0)这就说,去掉绝对值符号不是随便就能完成的,要看绝对值里面的数是什么性质的数。

若绝对值里面的数是非负数,那么这个数的绝对值就是它本身,此时绝对值“”符号就相当于“( )”的作用,如125--=)(125--=415=-。

由于这里2-1是正数,故去掉绝对值符号后12-=(2-1);若绝对值里面的数是负数,那么这个负数的绝对值就是这个负数的相反数这时去掉绝对值时,就要把绝对值里面的数添上括号,再在括号前面加上负号“-”。

3、利用绝对值比较两个数的大小两个负数,绝对值大的反而小。

比较两个负数的大小,可按照下列步骤进行:(1)先求出两个负数的绝对值;(2)比较这两个绝对值的大小;(3)写出正确的判断结果。

三、例题讲解例1求下列各数的绝对值(1)21;(2)31-;(3)434-;(4)331 分析:运用绝对值的意义来求解。

解:(1)21=21;(2)31-=3131=--)(;(3)434434434=--=-)(;(4)3313=31 点评:解答本题首先要弄清楚绝对值的意义,准确列出代数式,再运用绝对值的意义求出结果,切不可写作31-=31-=31. 例2计算:(1)2.1--;(2))(3---;(3)023+---. 分析:本题关键是确定绝对值里面的数的性质,再按照绝对值的意义去掉绝对值负号。

相反数、绝对值及比较大小复习知识点

相反数、绝对值及比较大小复习知识点

绝对值及有理数大小比较和相反数知识点一:数轴上表示数a 的点与原点的 叫数a 的绝对值,记作 。

如-2到原点的距离是 ,所以-2的绝对值是 ,即|-2|= 。

知识点二:一个正数的绝对值是 ;一个负数的绝对值是 ;0的绝对值是 。

即:如果a > 0,那么|a |= ;如果a =0,那么|a |= ;如果a < 0,那么|a |= 。

(注意:由于0的绝对值是0,既可以看作是0本身,也可以看作是0的相反数,所以绝对值是这个数本身的数包括 和 (即非负数);绝对值是这个数的相反数的数包括 和 (即非正数))例题1:|-6|= ;|7|= ;|0|= .任意有理数的绝对值一定是 数,即|a | 0(即非负性)。

例题2:|-5|= ;|5|= 。

互为相反数的两个数的绝对值 ;一个数的绝对值等于正数,这样的数应该有两个,它们互为相反数。

例题3:已知|a |=4,|b |=2,且a>b ,求a 、b 的值。

解:因为|a |=4,|b |=2,所以a =±4,b=±2,但a > b,所以a=4, b=±2.《绝对值的非负性、双值性都是保证做题全面的关键》知识点三:有理数比较大小:方法一:数轴直观法——数轴左边的数小于数轴右边的数。

方法二:法则——两个负数相比较,绝对值大的反而小。

正数大于0,0大于负数,正数大于负数。

例题6:比较-65和-76的大小: 解:因为|-65|=65=4235,|-76|=76=4236,而4235<4236,所以-65>-76。

(依据“两个负数相比较,绝对值大的反而小”法则)知识点四:只有符号不同的两个数叫互为相反数,它们位于原点 ,且到原点的距离 。

求相反数的方法是在数(正负数均可)前面加个“-”号即可。

多重符号化简的方法:只看“-”号的个数,偶数个结果为正,奇数个结果为负。

正号可以省略。

例题7:化简:-⎥⎦⎤⎢⎣⎡+-)31( 解:原式=+(+31)=31 例题8:-(-3)的相反数是 。

初中数学知识点精讲精析 绝对值

初中数学知识点精讲精析 绝对值

1.3 绝对值学习目标1. 理解绝对值的概念及表示法。

2. 理解数的绝对值的几何意义。

知识详解1.绝对值的几何意义及表示方法(1)概念:在数轴上,一个数所对应的点到原点的距离叫做这个数的绝对值。

(2)表示方法:数a的绝对值记作︱a︳。

注意:(1)绝对值最小的数是0.(2)互为相反数的两个数的绝对值相等。

(3)绝对值相等的两个数可能相等也可能互为相反数。

(4)绝对值等于一个正数的数有两个,且它们互为相反数。

2. 绝对值的代数定义一般地,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

互为相反数的两个数的绝对值相等。

绝对值的代数定义,用式子可以表示为:︱a︳=a(a>0)或0(a=0)或-a(a<0)。

求一个数的绝对值有两种方法:(1)根据几何定义画数轴,利用它到原点的距离来求;(2)判断已知数的正、负或0,根据代数定义来求。

【典型例题】例1:下列说法正确的是( ).A.|-5|表示-5的绝对值,等于-5B.负数的绝对值等于它本身C.-10距离原点10个单位长度,所以-10的绝对值是10D.绝对值等于它本身的数有两个,是0和1【答案】C【解析】例2①若|x|=2 013,则x=2 013;②2332-=+;③绝对值最小的有理数是1;④0没有绝对值;⑤一个有理数的绝对值一定是非负数.正确的个数为( ).A.1 B.2 C.3 D.4【答案】A【解析】绝对值是2 013的数是±2 013;2233-=,3322+=;绝对值最小的有理数是0;0的绝对值是0;正数的绝对值是正数,负数的绝对值是它的相反数,也是正数,0的绝对值是0.所以⑤正确.例3:|-2|的值等于()A.2B.-2C.±2D【答案】A【解析】|-2|=2【误区警示】易错点1:绝对值的值1. -4的绝对值是()A.4B.1 4C.-4D.±4【答案】A【解析】-4的绝对值是4易错点2:化简2.化简下列各数的符号:(1)-{-[+(-10)]};(2)-[-(+5)]【答案】(1)-{-[+(-10)]}=-10;(2)-[-(+5)]=5.【解析】【综合提升】针对训练1.求下列各式的值:|+2 013|,|-3.9|,-56-,-|+18|2.求下列各数的绝对值:+11,-3.4,0,3 2 -3.13-=()A.3 B.-3C.1 3D.1 3 -1.【答案】|+2 013|=2 013,|-3.9|=3.9,-56-=-56,-|+18|=-18.【解析】2.【答案】|+11|=11,|-3.4|=3.4,|0|=0,33 22 -=【解析】可根据绝对值的意义,即根据“正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0”进行求解。

绝对值与相反数

绝对值与相反数

点击关注,学习更多知识
点击关注,学习更多知识
初中数学 七年级上 绝对值与相反数第五讲
(习题讲解三)主讲:拓老师
点击关注,学习更多知识
点击关注,学习更多知识
初中数学 七年级上 绝对值与相反数第六讲
(提高训练一)主讲:拓老师
点击关注,学习更多知识
点击关注,学习更多知识
点击关注,学习更多知识
两数异号
正数大于负数
-数为0
正数与0:正数大于0 负数与0:负数小于0
点击关注,学习更多知识
要点诠释: 利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:
(3)判定两数的大小. 3. 作差法:设a、b为任意数,若a-b>0,则a>b;
若a-b=0,则a=b; 若a-b<0,a<b;反之成立.
2.性质: (1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离
相等(这两个点关于原点对称). (2)互为相反数的两数和为0.
绝对值
1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,
例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.
要点诠释:
(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是
4. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.
点击关注,学习更多知识
初中数学 七年级上 绝对值与相反数第三讲
(习题讲解一)主讲:拓老师
点击关注,学习更多知识
点击关注,学习更多知识
点击关注,学习更多知识
初中数学 七年级上 绝对值与相反数第四讲
(习题讲解二)主讲:拓老师
点击关注,学习更多知识

相反数和绝对值

相反数和绝对值

相反数和绝对值一、教材分析1、教材的地位和作用相反数与绝对值是数学中的重要概念,是有理数大小比较和有理数四则运算的基础。

教材先将相反数,再讲绝对值,按数轴---相反数---绝对值的顺序教学,可以充分利用数轴使数与形更好地结合起来。

学好本节课,不仅对于学生完善对有理数的认识,并为学习下章做好知识铺垫,而且使学生认识到数与数、形与形的内在联系,以及数形之间的联系与区别,这对学生认识数学概念的本质,感悟数形结合和转化的数学思想,都具有重要意义。

2、学习目标:【知识与能力】1、借助数轴,理解相反数的意义,知道互为相反数的一对数在数轴上的位置关系,会求有理数的相反数;2、借助数轴,了解绝对值的概念,知道|a|的含义(这里a表示有理数);会求有理数的绝对值;3、会利用绝对值比较两负数的大小。

【过程与方法】经历相反数、绝对值知识的发生过程,丰富学生的数学活动经验。

【情感、态度与价值观】在相反数和绝对值概念的形成过程中,培养学生数形结合的思想。

进一步培养学生分类讨论的思想和观察、归纳与概括的能力。

3、重点:相反数及绝对值的意义难点:利用绝对值比较两个负数的大小关键点:通过数轴,理解相反数和绝对值的意义。

二、教学方法与手段1、教学方法引导学生在独立思考的基础上,采用小组合作交流的探究方式。

以数轴的知识为主线,把数轴的概念和画法、相反数、绝对值以及如何利用数轴和绝对值比较两个有理数的大小等知识有机联系在一起。

2、教学手段采用多媒体辅助教学,激发兴趣,促进学生自主学习,增大课堂容量,提高教学效率。

三、教学过程设计1、尝试发现,探索新知教师设计如下三个问题引导学生思考讨论:问题1:数-4和4有什么相同点和不同点?2.5和-2.5呢?你还能说出两个具有这种特征的数吗?与同学交流,从而引出相反数的意义。

问题2:你能在数轴上标出-4和4,-2.5和2.5的点吗?(利用电脑将相应点加上不同的颜色并闪烁)问题3:你发现数轴上表示互为相反数的点的位置有什么特点?让学生讨论,总结相反数的特征(1)成对出现;(2)只有符号不同;(3)表示互为相反数的点分别在原点两旁且到原点的距离相等;(4)0的相反数是0问题4:观察上面画出的数轴,回答下列问题(1)数轴上表示4和2.5的点到原点的距离分别是多少?(2)数轴上表示-4和-2.5的点到原点的距离分别是多少?(3)数轴上表示0的点到原点的距离分别是多少?在学生回答的基础上,教师投影绝对值的概念和记法:在数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值,记作|a|,例如|4|=4,|-2.5|=2.5.目的:通过学生解决教师设置提出的问题激发学生的学习积极性和好奇心,达到知识的认知。

第一章 第二节 相反数和绝对值

第一章 第二节 相反数和绝对值

第二节相反数和绝对值知识结构导图知识点四:相反数(重点)1概念:只有符号不同的两个数叫做相反数。

(在数轴上分别位于原点的两侧,到原点的距离相等的两个点所表示的数叫做互为相反数。

)注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是02相反数的性质与判断:⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0 (常考点)3相反数的表示方法:⑴一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。

当a>0时,-a<0(正数的相反数是负数)当a<0时,-a>0(负数的相反数是正数)当a=0时,-a=0,(0的相反数是0)4多重符号的化简:多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。

例题:如果a+b=0,那么a,b两个实数一定是()A.都等于0B.一正一负C.互为相反数D.互为倒数检测:1化简符号:-[-(-3)] = ,-[+(-3)] =1、相反数是它本身的数是3、写出下列各数的相反数,并把所有的数(包括相反数)在数轴上表示出来.4,12-,2()3--,+(-4.5),0,-(+3)知识点五:绝对值(难点)1概念:绝对值的定义:数轴上表示a的点与原点的距离叫做a的绝对值,记为∣a∣,读作:a的绝对值2绝对值的代数定义:正数的绝对值是本身;负数的绝对值是它的相反数;0的绝对值是0.反之,绝对值等于本身的数必然为正数和0;绝对值为它的相反数的数为负数和0;3.绝对值的性质:(1)绝对值非负:正数和负数的绝对值都为正数;0的绝对值为0,0的绝对值最小;(2)如果一个数的绝对值为0,那么这个数必然为0; 如果一个式子的绝对值为0,那么这个式子必然为0; 如果两个式子的绝对值之和为0,那么这两个式子同时为0;(3) 绝对值为正数的数有两个,这两个数互为相反数; 所以当绝对值确定时,数并不能确定,而是一正一负都有可能。

1.3 绝对值与相反数(课件)七年级数学上册(冀教版2024)

1.3 绝对值与相反数(课件)七年级数学上册(冀教版2024)
8
|-9|=9, |-3.2|=3.2,
5
2
5
2
7
8
7
8
= ,| |= ,
|-3.14|=3.14.
3.请分别写出下列各数的相反数:
-5, 13, 0,
1
3 ,-(+1.35).
2
-5的相反数是5,
13的相反数是-13,
0的相反数0,
1
2
1
2
3 的相反数- 3 ,
-(+1.35)的相反数是1.35.
分层练习-巩固
利用相反数的定义在数轴上表示相关的数
13.(1)写出下列各数的相反数,并将这些数连同它们的相反
数在数轴上表示出来:

+2,-3,0,-(-1),-3 ,-(+4).

【解】+2的相反数是-2,-3的相反数是3,0的相反数是0,-(-1)的相


反数是-1,-3 的相反数是3 ,-(+4)的相反数是4.如图.
小亮家
小明家
你有什么发现?
西



新知探究
1.绝对值的概念
请以学校为原点画一条数轴,并把小明家和小亮家的位置在数轴上表示出
来.你有什么发现?
小亮家
西
-1500

-1000
-500
小明家

0
500
1000
1500

做一做
请画一条数轴,在数轴上标出表示4,-2,0的点,并写出这些点到原点
的距离.
-6
)2(|-17|=
17
)3(|0|=


0



七年级数学上册专题02_绝对值与相反数(知识点串讲)(解析版)

七年级数学上册专题02_绝对值与相反数(知识点串讲)(解析版)

专题02 绝对值与相反数知识点一相反数只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)注意:1、通常a与-a互为相反数;2、a表示任意一个数,可以是正数、负数,也可以是0;3、特别注意,0的相反数是0.知识点二绝对值正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

(互为相反数的两个数的绝对值相等。

)考查题型考查题型一求一个数的相反数典例1.﹣25的相反数是()A.﹣25B.25C.﹣52D.52【答案】B 【解析】详解:-25的相反数是:25.故选:B.变式1-1.如果a表示有理数,那么下列说法中正确的是( )A.+a和一(-a)互为相反数B.+a和-a一定不相等C.-a一定是负数D.-(+a)和+(-a)一定相等【答案】D【解析】试题解析:A.()a a--=,两个数相等,故错误.B.当0a =时,a +与a -相等,故错误.C.a -可以是正数,也可以是负数,还可以是0.故错误.D .正确.故选D.变式1-2.-(-6)的相反数是 ( )A .|-6|B .-6C .0.6D .6【答案】B【详解】解:−(−6)=6,∴6的相反数是−6.答案为:−6.故选B.变式1-3已知1=a ,b 是2的相反数,则+a b 的值为( )A .-3B .-1C .-1或-3D .1或-3 【答案】C【详解】 ∵1=a ,b 是2的相反数,∴1a =或1a =﹣,2b =﹣,当1a =时,121a b +==﹣﹣;当1a =﹣时,123a b +==﹣﹣﹣;综上,+a b 的值为-1或-3,故选C .考查题型二 判断两个数是否互为相反数典例2.下列各组数中,互为相反数的是( )A .-(-1)与1B .(-1)2与1C .|1|-与1D .-12与1 【答案】D【解析】试题分析:选项A ,-(-1)与1不是相反数,选项A 错误;选项B ,(-1)2与1不是互为相反数,选项B 错误;选项C ,|-1|与1不是相反数,选项C 错误;选项D ,-12与1是相反数,选项正确.故答案选D .变式2-1.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是( )A.B.C.D.【答案】B【解析】试题分析:根据互为相反数的两个数到原点的距离相等,并且在原点的两侧,可知只有B答案正确.故选B.变式2-2.(2020·沈阳市期末)如图,数轴上有A,B,C,D 四个点,其中到原点距离相等的两个点是()A.点B 与点D B.点A 与点C C.点A 与点D D.点B 与点C【答案】C【解析】试题分析:到原点距离相等的两个点所表示的数互为相反数.变式2-3.下列各对数互为相反数的是()A.+(+3)与-(-3) B.+(-3)与-(+3)C.+|+3|与+|-3| D.+|-3|与-|+3|【答案】D【详解】A、+(+3)=3,-(-3)=3,两者相等,故本选项错误;B、+(-3)=-3,-(+3)=-3,两者相等,故本选项错误;C、+|+3|=3,+|-3|=3,两者相等,故本选项错误;D、+|-3|=3,-|+3|=-3,两者互为相反数,故本选项正确;故选D.考查题型三多重符号化简典例3.下列化简,正确的是()A.﹣(﹣3)=﹣3B.﹣[﹣(﹣10)]=﹣10C.﹣(+5)=5D.﹣[﹣(+8)]=﹣8【答案】B【解析】试题分析:A、-(-3)=3,故错误;B、-[-(-10)]=-10,故正确;C、-(+5)=-5,故错误;D、-[-(+8)]=8,故正确.故选B.变式3-1.化简-(+2)的结果是()A .-2B .2C .±2D .0【答案】A【详解】-(+2)=-2.故选A .变式3-2.下列各数中互为相反数的是( )A .(5)+- 与 5-B .(5)-+ 与 5-C .(5)-+ 与 |5|--D .(5)-- 与 (5)+-【答案】D【详解】解:A 、+(-5)=-5,选项错误;B 、-(+5)=-5,选项错误;C 、-(+5)=-5,-|-5|=-5,选项错误;D 、-(-5)=5,+(-5)=-5,5与-5互为相反数,选项正确.故选D .变式3-3.﹣(﹣3)的绝对值是( )A .﹣3B .13 C .3 D .﹣13 【答案】C【详解】解:∵﹣(﹣3)=3,3的绝对值等于3,∴﹣(﹣3)的绝对值是3,即|﹣(﹣3)|=3.故选:C .考查题型四 相反数的应用典例4.已知x ﹣4与2﹣3x 互为相反数,则x=( )A .1B .﹣1C .32 D .﹣32【答案】B【详解】因为x ﹣4与2﹣3x 互为相反数,所以x ﹣4+2﹣3x =0,解得:x=-1.故选B. 变式4-1.若37m -和9m -互为相反数,则m 的值是( )A .4B .1C .1-D .4-【答案】C【详解】由题意知3790m m -+-=,则379m m -=-, 22m =-,1m =-,故选:C .变式4-2.(2020·大石桥市期中)如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-1 【答案】C【详解】由a 与1互为相反数,得a+1=0,即a=-1,故|a+2|=|-1+2|=1.故选C考查题型五 求一个数的绝对值典例5.2019-=( )A .2019B .-2019C .12019D .12019- 【答案】A【详解】 20192019-=.故选A .变式5-1.如图,在数轴上点A 所表示的数的绝对值为( )A .1B .﹣1C .0D .2【答案】A由数轴可得:点A 表示的数是﹣1.∵|﹣1|=1,∴数轴上点A 所表示的数的绝对值为1.故选A .变式5-2.已知a 与1的和是一个负数,则|a |=( )A .aB .﹣aC .a 或﹣aD .无法确定【答案】B【解析】试题解析:∵a 与1的和是一个负数,∴a <-1.∴|a|=-a .故选B .变式5-3.在0,1-,2,3-这四个数中,绝对值最小的数是( )A .0B .1-C .2D .3-【答案】A【详解】解:∵|−1|=1,|0|=0,|2|=2,|−3|=3,∴这四个数中,绝对值最小的数是0;故选:A .考查题型六 化简绝对值典例6.实数a 、b 、c 在数轴上的位置如图所示,则代数式|c ﹣a |﹣|a +b |的值等于()A .c +bB .b ﹣cC .c ﹣2a +bD .c ﹣2a ﹣b【答案】A【详解】由数轴可知,b <a <0<c ,∴c-a >0,a+b <0,则|c-a|-|a+b|=c-a+a+b=c+b ,故选A .变式6-1.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-3【答案】B解:当1<a <2时,|a ﹣2|+|1﹣a |=2﹣a +a ﹣1=1.故选B .变式6-2.已知5,2a b ==,且||a b b a -=-,则a+b 的值为( )A .3或7B .-3或-7C .-3D .-7【答案】B【解析】试题分析:由|a -b |=b -a ,知b >a ,又由|a |=5,|b |=2,知a =-5,b =2或-2,当a =-5,b =2时,a +b =-3,当a =-5,b =-2时,a +b =-7,故a +b =-3或-7. 解:∵|a -b |=b −a , ∴b >a ,∵|a |=5,|b |=2,∴a =−5,b =2或−2,当a =−5,b =2时,a +b =−3,当a =−5,b =−2时,a +b =−7,∴a +b =−3或−7.故选B.考查题型七 绝对值非负性的应用典例7.已知,则a+b 的值是( ) A .-4B .4C .2D .-2【答案】D【详解】解:根据题意得,a +3=0,b−1=0,解得a =−3,b =1,所以a +b =−3+1=−2.故选:D .变式7-1.已知|1|a +与|4|b -互为相反数,则b a 的值是( )。

相反数与绝对值

相反数与绝对值

相反数与绝对值一、知识精讲1、相反数(1)只有不同的两个数叫互为相反数的数;特别的,0的相反数是。

(2)数a 的相反数是,a >0时,-a ;当a <0时,-a ;当a=0时,a.(3)a 、b 互为相反数,那么;反之,若a+b=0,则。

(4)互为相反数的两个数在数轴上位于原点两旁,且到原点的距离。

2、绝对值(1)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零。

a =(2)绝对值的几何意义:b a -在数轴上表示:(3)互为相反数的两个数绝对值相等,即a b b a a a 22,-=--=。

(4)任意一个数的绝对值是非负数,即a 0.注:(1)222a a a ==(2)b a b a ⋅=⋅;)0(,≠=b ba b a (2)0是绝对值最小的有理数。

当0=a 时,a 取得最小值0,反过来成立。

二、典例剖析类型1:相反数例1、已知b a -=1,b 的相反数是1,则a=。

变式:下列说法:①有理数的绝对值一定是正数;②一个数的绝对值的相反数一定是负数;③互为相反数的两个数,必然一个是正数,一个是负数;④互为相反数的两个数绝对值相等;⑤π的相反数是-3.14;⑥任何一个数都有它的相反数。

其中正确的有(填序号)1、n m ,互为相反数,则下列结论错误的是( )A.022=+n mB.2m mn -=C.n m =D.1-=nm 例2、如图所示,已知A ,B ,C ,D 四个点在一条没有原点的数轴上(1)若点A 和点C 表示的两个数互为相反数,则原点为;(2)若点B 和点D 表示的两个数互为相反数,则原点为;(3)若点A 和点D 表示的两个数互为相反数,请在数轴上表示出原点的位置。

变式:如图,四个数q p n m ,,,在数轴上对应的点分别为Q P N M ,,,,若0=+q n ,则q p n m ,,,四个实数中,绝对值最大的一个是( )例3、已知数m 小于它的相反数且数轴上表示数m 的A 点与原点相距3个单位长度,将点A 向右移动5个单位长度后,点A 对应的数是。

新人教版七年级数学(上)——数轴、相反数、绝对值

新人教版七年级数学(上)——数轴、相反数、绝对值

数轴、相反数、绝对值第一部分:知识精讲知识点一、数轴1、数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.2、数轴三要素:原点、正方向、单位长度3、数轴的画法:①在平面内画一条直线;②标出原点;③用一定的长度作为单位长度,左边和右边标出数字4、数轴上的点的意义:一般地,设a是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示-a的点在原点的左边,与原点的距离是a个单位长度。

注意:任何一个有理数都可以用数轴上的点来表示。

知识点二、相反数1、相反数的代数概念:只有符号不同的两个数称互为相反数。

0的相反数是0.2、相反数的几何意义:在数轴上,表示互为相反数的两个数分别位于原点两侧,且与原点的距离相等。

说明:(1)相反数是指只有符号不同的两个数;(2)相反数是成对出现的,不能单独存在,因而不能说“-6是相反数”。

特别强调的是0的相反数为0,因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于本身的唯一的数。

规定:在任何一个数的前面添上一个"+"号,表示这个数本身;添上一个"-"号,就表示这个数的相反数.一般地,数a的相反数是-a,其中a可是正数和负数和0.注意:a 不一定是正数,同样-a 也不一定是负数。

3、“-”号的三种主要意义:① 性质符号:写在一个数值的前面,表示这个数是负数. 比如,-5表示“负5”这个负数,在这里的“-”号就是表示负数的一种符号,它表明“-5”的性质是负数.② 相反数符号:表示一个数的相反数时,我们常在这个数的前面添上“-”号.③ 运算符号:知识点三、绝对值1、绝对值的定义:我们把在数轴上表示数a 的点与原点的距离叫做数a 的绝对值)。

记作|a|。

2、绝对值的一般规律:① 一个正数的绝对值是它本身;② 0的绝对值是0;③ 一个负数的绝对值是它的相反数。

即:①若a >0,则|a|=a ; ②若a <0,则|a|=–a ; 或写成:)0()0()0(0<=>⎪⎩⎪⎨⎧-=a a a a a a 。

绝对值与相反数(基础)知识讲解

绝对值与相反数(基础)知识讲解

绝对值与相反数(基础)责编:康红梅【学习目标】1.借助数轴理解绝对值和相反数的概念;2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系;3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小;4.通过应用绝对值解决实际问题,体会绝对值的意义和作用.【要点梳理】要点一、相反数1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点二、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.要点三、绝对值1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数.(2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点四、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法: 两个数比较大小,按数的性质符号分类,情况如下: 两数同号 同为正号:绝对值大的数大 同为负号:绝对值大的反而小 两数异号正数大于负数 -数为0 正数与0:正数大于0负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b <,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【典型例题】类型一、相反数的概念1.下列各组数互为相反数的是( )A .18-和0.8+ B .13和0.33- C .6-和(6)-- D . 3.14-和π 【思路点拨】解决这类问题的关键是抓住互为相反数的特征“只有符号不同”,所以只要将原数的符号变为相反的符号,即可求出其相反数.【答案】C【解析】18-的相反数是18,而不是0.8+;13的相反数是13-,而不是0.33-,-6的相反数就是(6)--,所以C 正确; 3.14-的相反数是3.14,不是π.【总结升华】求一个数的相反数,只改变这个数的符号,其他部分都不变.举一反三:【变式】(2015•天水)若a 与1互为相反数,则|a+1|等于( )A.-1B.0C.1D.2【答案】B类型二、多重符号的化简2.(2014秋•本溪校级月考)化简:(1)﹣{+[﹣(+3)]};(2)﹣{﹣[﹣(﹣|﹣3|)]}.【答案与解析】解:(1)原式=﹣{+[﹣3]}=﹣{﹣3}=3;(2)原式=﹣{﹣[﹣(﹣3)]}=﹣{﹣[+3]}=﹣{﹣3}=3.【总结升华】运用多重符号化简的规律解决这类问题较为简单.即数一下数字前面有多少个负号.若有偶数个,则结果为正;若有奇数个,则结果为负.类型三、绝对值的概念3.求下列各数的绝对值. 112-,-0.3,0,132⎛⎫-- ⎪⎝⎭ 【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.【答案与解析】方法1:因为112-到原点距离是112个单位长度,所以111122-=. 因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0.因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭. 方法2:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭. 因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0因为1302⎛⎫--> ⎪⎝⎭,所以113322⎛⎫--= ⎪⎝⎭ 【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是零.从而求出该数的绝对值.类型四、比较大小4.比较下列有理数大小:(1)-1和0; (2)-2和|-3| ;(3)13⎛⎫-- ⎪⎝⎭和12- ; (4)1--______0.1-- 【答案】(1)0大于负数,即-1<0;(2)先化简|-3|=3,负数小于正数,所以-2<3,即-2<|-3|;(3)先化简1133⎛⎫--= ⎪⎝⎭,1122-=,1123>,即1132⎛⎫--<- ⎪⎝⎭. (4)先化简11--=-,0.10.1--=-,这是两个负数比较大小:因为11-=,0.10.1-=,而10.1>,所以10.1-<-,即1--<0.1--【解析】(2)、(3)、(4)先化简,再运用有理数大小比较法则.【总结升华】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断. 举一反三:【高清课堂:绝对值比大小 356845 典型例题2】【变式】比大小:653-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000; 1.38-&&______-1.384; -π______-3.14.【答案】>;=;>;>;<类型五、绝对值非负性的应用5. 已知|2-m|+|n-3|=0,试求m-2n 的值.【思路点拨】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3.【答案】解:因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0所以|2-m|=0,|n-3|=0即2-m =0,n-3=0所以m =2,n =3故m-2n =2-2×3=-4.【解析】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.类型六、绝对值的实际应用6.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.【总结升华】绝对值越小,越接近标准.【变式】某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L的误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数.检查结果如下表:+0.0018 -0.0023 +0.0025-0.0015 +0.0012 +0.0010请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量?【答案】(1)绝对值不超过0.002的有4瓶,分别是检查结果为+0.0018,-0.0015,+0.0012,+0.0010的这四瓶(2)第6瓶净含量与规定的净含量相差最少,最接近规定的净含量.。

实数的倒数相反数和绝对值知识点

实数的倒数相反数和绝对值知识点

实数的倒数相反数和绝对值知识点实数的倒数相反数和绝对值知识点数轴、倒数、相反数、绝对值是实数的有关概念,那么它们的倒数相反数和绝对值是什么呢?本文是店铺整理实数的倒数相反数和绝对值的资料,仅供参考。

实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

实数一定有倒数吗不一定,以为实数0是没有倒数的,因为1/0是没有意义的,分式的分母不能为0我们知道,倒数的概念是:乘积为1的两个数是互为倒数的两个数。

根据定义,我们可以知道,“1”的倒数是它的本身,而“0”乘以任何实数,都等于0,也就是说没有实数与“0”相乘等于1。

那么,我们就可以知道,“0”没有倒数。

或者可以这样理解:把实数写成分数形式(例如:2可以写成2/1),然后把分子和分母颠倒位置(例如:把2/1分子、分母颠倒,则为1/2),就可以得出原数的倒数(例如:1/2就是2的倒数)。

然后,我们根据分数定义和除法法则可以知道:“0”不可以作为分母和除数。

所以,可以得出结论:“0”没有倒数。

实数定义实数由有理数和无理数组成,其中无理数就是无限不循环小数,有理数就包括整数和分数。

数学上,实数直观地定义为和数轴上的点一一对应的数。

本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”--意义是“实在的数”。

实数的定义分析:1.实数可以分为有理数(如31)和无理数(如π、)两类,或代数数和超越数两类,或正数,负数和零三类。

绝对值基础知识讲解

绝对值基础知识讲解
4.求商法:设a、b为任意正数,若 ,则 ;若 ,则 ;若 ,则 ;反之也成立.若a、b为任意负数,则与上述结论相反.
5.倒数比较法:如果两个数都大于0,那么倒数大的反而小.
【典型例题】
类型一、绝对值的概念
1.求下列各数的绝对值.
,-0.3,0,
【思路点拨】 ,-0.3,0, 在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.
2.已知一个数的绝对值等于2009,则这个数是________.
【答案】2009或-2009
【解析】根据绝对值的定义,到原点的距离是2009的点有两个,从原点向左侧移动2009个单位长度,得到表示数-2009的点;从原点向右侧移动2009个单位长度,得到表示数2009的点.
【总结升华】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法都要注意若一个数的绝对值是正数,则此数有两个,且互为相反数.
【答案与解析】因Βιβλιοθήκη |2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0
所以|2-m|=0,|n-3|=0
即2-m=0,n-3=0
所以m=2,n=3
故m-2n=2-2×3=-4.
【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.
类型四、绝对值的实际应用
绝对值(基础)知识讲解
———————————————————————————————— 作者:
———————————————————————————————— 日期:

绝对值(基础)
【学习目标】
1.掌握一个数的绝对值的求法和性质;

绝对值与相反数

绝对值与相反数

0 0
4 A
-1 0 1 2 3 4 5
因为点 A 与原点的距离是 4 ,所以 4 的 绝对值是 4 ;记为 4 4. 因为点 B 与原点的距离是 3.5 ,所 以- 3.5 的绝对值是 3.5 ;记为 3.5 3.5 .
强调: 绝对值的表示方法如下: -2的绝对值是2,记作 |-2|=2; 3的绝对值是3 ,记作 |3|=3
2 2 像 5 与 - 5 、 2.5 与 2.5 、 与 符号 3 3 不同、绝对值相等的两 个数互为相反数,其 中一个是另一个的相反 . 数 0 的相反数是0 .
3 例: 化简 (2), ( 2.7), ( 3), ( ) . 4
解: 因为 2 的相反数是 2 ,
-1
0
1
2
3
4
5
知识点二:关于相反数 如图,观察数轴上 A、B 两点位置及其 到原点的距离,你有什么发现? 5 3 A
-5 -4
5 3 D
-2 -1 0 1 2C 、 D 两点在原点的两侧,分别表示 和 A 、 B 两点在原点两侧,分别表示 -5-3 和3; 5; A 、 B 两点到原点的距离相等,都等于5. C D 两点到原点的距离相等,都等于3.
说一说: 你能说出数轴上点 A、B、C、D、 E、F 各点所表示的数的绝对值吗?
A
-5 -4
B
-3 -2 -1
F C
0 1 2
D
3 4
E
5
学案交流
1、—1的绝对值是 ;5的绝对值 -9/2的绝对值是 ; 2、| +6 | = ; | —2.8 | = ; | +1.5 | = ;

-5
-4
-3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值与相反数(基础)
【学习目标】
1.借助数轴理解绝对值和相反数的概念;
2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系;
3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小;
4.通过应用绝对值解决实际问题,体会绝对值的意义和作用.
【要点梳理】
要点一、相反数
1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.
要点诠释:
(1)“只”字是说仅仅是符号不同,其它部分完全相同.
(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.
(3)相反数是成对出现的,单独一个数不能说是相反数.
(4)求一个数的相反数,只要在它的前面添上“-”号即可.
2.性质:
(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).
(2)互为相反数的两数和为0.
要点二、多重符号的化简
多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .
要点诠释:
(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.
要点三、绝对值
1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.
要点诠释:
(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:
(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.
(3)一个有理数是由符号和绝对值两个方面来确定的.
2.性质:
(1)0除外,绝对值为一正数的数有两个,它们互为相反数.
(2)互为相反数的两个数(0除外)的绝对值相等.
(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.
要点四、有理数的大小比较
1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边
的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .
2.法则比较法:
两个数比较大小,按数的性质符号分类,情况如下: 两数同号
同为正号:绝对值大的数大
同为负号:绝对值大的反而小
两数异号
正数大于负数 -数为0
正数与0:正数大于0
负数与0:负数小于0
要点诠释:
利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:
(3)判定两数的大小.
3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立. (0)||0
(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩
4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b
<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.
5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.
【典型例题】
类型一、相反数的概念
1.2016
1-的相反数是( ) A .2016 B .﹣2016 C .20161 D .2016
1- 【思路点拨】解决这类问题的关键是抓住互为相反数的特征“只有符号不同”,所以只要将原数的符号变为相反的符号,即可求出其相反数.
【答案】C
【解析】解:∵20161-
与2016
1只有符号不同, ∴﹣20161的相反数是20161. 故选:C .
【总结升华】求一个数的相反数,只改变这个数的符号,其他部分都不变.
举一反三:
【变式】若a 与1互为相反数,则|a+1|等于( )
A.-1
B.0
C.1
D.2
【答案】B
类型二、多重符号的化简
2.化简:
(1)﹣{+[﹣(+3)]};
(2)﹣{﹣[﹣(﹣|﹣3|)]}.
【答案与解析】
解:(1)原式=﹣{+[﹣3]}=﹣{﹣3}=3;
(2)原式=﹣{﹣[﹣(﹣3)]}=﹣{﹣[+3]}=﹣{﹣3}=3.
【总结升华】运用多重符号化简的规律解决这类问题较为简单.即数一下数字前面有多少个
负号.若有偶数个,则结果为正;若有奇数个,则结果为负.
类型三、绝对值的概念
3.求下列各数的绝对值. 112-,-0.3,0,132⎛⎫-- ⎪⎝⎭ 【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字
就是各数的绝对值.还可以用绝对值法则来求解.
【答案与解析】
方法1:因为112-到原点距离是112
个单位长度,所以111122-=. 因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.
因为0到原点距离为0个单位长度,所以|0|=0.
因为132⎛
⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭
. 方法2:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭
. 因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.
因为0的绝对值是它本身,所以|0|=0
因为1302⎛
⎫--> ⎪⎝⎭,所以113322
⎛⎫--= ⎪⎝⎭ 【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是零.从而求出该数的绝对值.
类型四、比较大小
4.比较下列有理数大小:
(1)-1和0; (2)-2和|-3| ;
(3)13⎛⎫-- ⎪⎝⎭和12- ; (4)1--______0.1-- 【答案】 (1)0大于负数,即-1<0;
(2)先化简|-3|=3,负数小于正数,所以-2<3,即-2<|-3|;
(3)先化简1133⎛⎫
--= ⎪⎝⎭,1122-=,1123>,即1132⎛⎫--<- ⎪⎝⎭
. (4)先化简11--=-,0.10.1--=-,这是两个负数比较大小:因为11-=,0.10.1-=,而10.1>,所以10.1-<-,即1--<0.1--
【解析】(2)、(3)、(4)先化简,再运用有理数大小比较法则.
【总结升华】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断. 举一反三:
【变式】比大小:
6
53-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000; 1.38-______-1.384; -π______-3.14.
【答案】>;=;>;>;<
类型五、绝对值非负性的应用
5.已知|2-m|+|n-3|=0,试求m-2n 的值.
【思路点拨】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3.
【答案】
解:因为|2-m|+|n-3|=0
且|2-m|≥0,|n-3|≥0
所以|2-m|=0,|n-3|=0
即2-m =0,n-3=0
所以m =2,n =3
故m-2n=2-2×3=-4.
【解析】由|a|≥0即绝对值的非负性可知,|2-m|≥0,|n-3|≥0,而它们的和为0.所以|2-m|=0,|n-3|=0.因此,2-m=0,n-3=0,所以m=2,n=3.
【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.
类型六、绝对值的实际应用
6.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.
【答案】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.
【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.【总结升华】绝对值越小,越接近标准.
【变式】某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L的误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数.检查结果如下表:
+0.0018 -0.0023 +0.0025
-0.0015 +0.0012 +0.0010
请用绝对值知识说明:
(1)哪几瓶是合乎要求的(即在误差范围内的)?
(2)哪一瓶净含量最接近规定的净含量?
【答案】(1)绝对值不超过0.002的有4瓶,分别是检查结果为+0.0018,-0.0015,+0.0012,+0.0010的这四瓶
(2)第6瓶净含量与规定的净含量相差最少,最接近规定的净含量.。

相关文档
最新文档