应用于独立运行微电网的潮流计算方法

合集下载

简介几种潮流计算

简介几种潮流计算

简介几种潮流计算电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。

同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。

因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。

在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算,下面简单介绍三种潮流计算方法。

一、基于多口逆向矩阵的并行潮流计算方法多口逆向矩阵方法是求解线性方程组的普通并行方法,它只是修改了串行方法的几个部分,并且非常适用于从串行到并行的编程。

该方法已用于一些电力系统并行分析方法,比如说机电暂态稳定分析和小信号稳定性,并且并行效率高。

基于多口逆向矩阵方法,本文提出了一种并行牛顿潮流算法。

对一个划分几个网络的大型互联系统模型的仿真结果表明这种并行算法是正确的并且效率很高。

关键词:并行潮流计算,串行潮流计算,多口逆向矩阵方法,线性方程组,电力系统分析随着电力系统规模的扩大,尤其是区域互联网络,人们要求速度更快效率更高的功率计算,传统的串行计算越来越难满足要求,特别是对实时控制。

作为电力系统的基本计算,它的效率的提高会使其他为基础的计算速度都得到提高。

因为传统串行计算变的越来越难满足要求,并行计算成为提高潮流计算效率的需要。

潮流计算的主要步骤是求解稀疏线性方程组,因此对并行方法的研究主要集中在线性方程组的并行求解。

根据不同的实现方案,并行算法分为多因子方法、稀疏向量方法等等。

多口逆向矩阵方法在各种问题中是一种求解线性方程组的通用方法。

在这篇论文中,通过最常见的电力系统中的节点电压方程来说明这种方法。

多口逆向矩阵法不需要在矩阵中集中调整边界点,我们根据子网的密度把矩阵分裂并且把边界节点集中在顶部,整个网络的节点电压方程组如下:消去上矩阵中对应子网的部分,只保留边界部分。

经过网络分割,边界矩阵TT Y 注入电流向量T I 被分为主控制网和各个子网。

潮流计算的计算机方法

潮流计算的计算机方法

一、潮流计算的计算机方法对于复杂网络的潮流计算,一般必须借助电子计算机进行。

其计算步骤是:建立电力网络的数学模型,确定计算方法、制定框图和编制程序。

本章重点介绍前两部分,并着重阐述在电力系统潮流实际计算中常用的、基本的方法。

1,电力网络的数学模型电力网络的数学模型指的是将网络有关参数相变量及其相互关系归纳起来所组成的.可以反映网络性能的数学方程式组。

也就是对电力系统的运行状态、变量和网络参数之间相互关系的—种数学描述。

电力网络的数学模型有节点电压方程和回路电流方程等,前者在电力系统潮流计算中广泛采用。

节点电压方程又分为以节点导纳矩阵表示的节点电压方程和以节点阻抗矩阵表示的节点电压方程。

(1)节点导纳矩阵在电路理论课中。

已讲过了用节点导纳矩阵表示的节点电压方程:对于n个节点的网络其展开为:上式中,I是节点注入电流的列向量。

在电力系统计算中,节点注入电流可理解为节点电源电流与负荷电流之和,并规定电源向网络节点的注人电流为正。

那么,只有负荷节点的注入电流为负,而仅起联络作用的联络节点的注入电流为零。

U是节点电压的列向量。

网络中有接地支路时,通常以大地作参考点,节点电压就是各节点的对地电压。

并规定地节点的编号为0。

y是一个n×n阶节点导纳矩阵,其阶数n就等于网络中除参考节点外的节点数。

物理意义:节点i单位电压,其余节点接地,此时各节点向网络注入的电流就是节点i 的自导纳和其余节点的与节点i之间的互导纳。

特点:对称矩阵,稀疏矩阵,对角占优(2) 节点阻抗矩阵对导纳阵求逆,得:其中称为节点阻抗矩阵,是节点导纳矩阵的逆阵。

物理意义:节点i注入单位电流,其余节点不注入电流,此时各节点的电压就是节点i 的自阻抗和其余节点的与节点i之间的互阻抗。

特点:满阵,对称,对角占优2,功率方程、变量和节点分类(1)功率方程已知的是节点的注入功率,因此,需要重新列写方程: **==B B B B B U S I U Y其展开式为: i i i nj j ij U jQ P U Y ~1-=∑= 所以:∑=**=+nj jij i i i U Y U jQ P 1 展开写成极坐标方程的形式:)cos sin ()sin cos (11ij ij ij ij n j j i i ij ij ij ij n j j i i B G U U Q B G U U P δδδδ-=+=∑∑==所以节点的功率方程为:)cos sin ()sin cos (11ij ij ij ij n j j i di Gi i ij ij ij ij nj j i di Gi i B G U U Q Q Q B G U U P P P δδδδ---=∆+--=∆∑∑==(2) 变量分类负荷消耗的有功、无功功率取决于用户,因而是无法控制的,故称为不可控变量或扰动变量。

电力系统潮流计算

电力系统潮流计算

电力系统潮流计算电力系统潮流计算是电力系统运行分析中的重要环节。

它通过对电力系统中各节点的电压、相角以及功率等参数进行计算和分析,从而得出电力系统的稳态运行状态。

本文将从潮流计算的基本原理、计算方法、应用及其发展等方面进行阐述。

一、潮流计算的基本原理电力系统潮流计算的基本原理是基于潮流方程建立的。

潮流方程是一组非线性的方程,描述了电力系统中各节点的电压、相角以及功率之间的关系。

潮流计算的目的就是求解这组非线性方程,以确定电力系统的电压幅值、相角及有功、无功功率的分布情况。

二、潮流计算的基本方法潮流计算的基本方法主要有直接法、迭代法以及牛顿-拉夫逊法。

直接法是通过直接求解潮流方程得到电力系统的潮流状况,但对于大规模复杂的电力系统来说,直接法计算复杂度高。

迭代法是通过对电力系统的节点逐个进行迭代计算,直到满足预设的收敛条件。

牛顿-拉夫逊法是一种较为高效的迭代法,它通过近似潮流方程的雅可比矩阵,实现了计算的高效和稳定。

三、潮流计算的应用潮流计算在电力系统运行与规划中起着重要作用。

首先,潮流计算可以用于电力系统的稳态分析,确定电力系统在各种工况下的电压、相角等参数,以判断电力系统是否存在潮流拥挤、电压失调等问题。

其次,潮流计算还可以用于电力系统的优化调度,通过调整电力系统的发电机出力、负荷组织等参数,以改善电力系统的经济性和可靠性。

此外,潮流计算还可以用于电力系统规划,通过对电力系统进行潮流计算,可以为新建电源、输电线路以及变电站等设备的规划和选择提供科学依据。

四、潮流计算的发展随着电力系统的规模不断扩大和复杂度的提高,潮流计算技术也得到了迅速的发展。

传统的潮流计算方法在计算效率和计算精度上存在一定的局限性。

因此,近年来研究者提出了基于改进的迭代方法、高精度的求解算法以及并行计算等技术,以提高潮流计算的速度和准确性。

此外,随着可再生能源的不断融入电力系统,潮流计算还需要考虑多种能源的互联互通问题,这对潮流计算提出了新的挑战,需要进一步的研究和改进。

电力系统中潮流计算与优化方法研究与应用

电力系统中潮流计算与优化方法研究与应用

电力系统中潮流计算与优化方法研究与应用概述:电力系统是当今社会中不可或缺的基础设施之一,而潮流计算和优化方法是电力系统的核心研究内容。

随着电力负荷的增加,传统的电力系统已经不再能满足人们对电能的需求。

因此,对电力系统的潮流计算和优化方法的研究和应用显得尤为重要。

本文将讨论电力系统中潮流计算和优化方法的研究和应用。

一、潮流计算方法的研究与应用1.1 潮流计算的概念和原理潮流计算是对电力系统中各个节点的电流、电压和功率进行计算和分析的过程。

这个过程是通过电力系统的拓扑结构和负载改变来进行的。

潮流计算的基本原理是基于功率平衡方程和各个节点之间的电压相等条件。

最常见的潮流计算方法有直流潮流计算和交流潮流计算。

1.2 潮流计算的方法和技术在电力系统中,潮流计算是一个复杂的问题,因此需要使用一些方法和技术来解决。

目前,常用的潮流计算方法有牛顿-拉夫逊法(Newton-Raphson)、高斯-赛德尔法(Gauss-Seidel)、恢复牛顿法(Fast Decoupled Newton),以及分布式潮流计算方法。

1.3 潮流计算的应用潮流计算在电力系统中有着广泛的应用。

它可以用于解决电力系统中的潮流问题,评估电网状态和电力负荷,确定电力系统的输电能力,并为电力系统的规划和调度提供支持。

此外,潮流计算还可以用于分析电力系统的稳定性,提高电力系统的可靠性和安全性。

二、优化方法的研究与应用2.1 优化方法的概念和原理电力系统的优化问题是指找到一组最佳的控制策略或调整参数,使电力系统的某些性能指标达到最优。

优化方法的基本原理是通过最小化或最大化目标函数来寻找最优解。

在电力系统中,常见的优化问题包括最小化功率损耗、最大化输电能力和优化发电调度等。

2.2 优化方法的方法和技术优化问题是一个多目标、多约束的问题,因此需要使用一些方法和技术来解决。

常用的优化方法包括线性规划、非线性规划、遗传算法、粒子群算法等。

此外,在电力系统中还可以采用模糊数学、神经网络和支持向量机等方法来解决优化问题。

电力系统潮流计算方法分析

电力系统潮流计算方法分析

电力系统潮流计算方法分析1.黎曼法是最简单和最直接的计算方法。

该方法直接利用电力系统的基本方程式,即功率平衡方程式和节点电压方程式来计算潮流分布。

然而,黎曼法需要利用复杂的矩阵方程式来解决系统中节点电压的计算,计算量大且计算速度较慢,对大型复杂系统不适用。

2.高斯-赛德尔法是一种迭代法,将电网中的节电清设置为未知数,并采用全局迭代求解。

该方法通过迭代计算不断逼近潮流分布,直到满足系统中所有节点的电压和功率平衡方程为止。

高斯-赛德尔法具有迭代次数多、耗时较长的缺点,但计算稳定可靠,对于小型系统具有较好的适用性。

3.牛顿-拉夫逊法是一种基于牛顿迭代思想的高效潮流计算方法。

该方法通过利用电力系统中的雅可比矩阵,将潮流计算问题转化为解非线性方程组的问题。

牛顿-拉夫逊法的迭代速度和稳定性较高,适用于大型复杂系统的潮流计算。

综上所述,电力系统潮流计算方法可以选择黎曼法、高斯-赛德尔法和牛顿-拉夫逊法等不同的算法进行计算。

选择合适的计算方法应根据系统的规模、复杂度以及计算时间要求来综合考虑。

实际应用中,通常会根据具体情况采用不同的方法进行潮流计算,以获得准确和高效的结果。

同时,随着电力系统的发展和智能化技术的应用,也出现了一些基于机器学习和深度学习的潮流计算方法。

这些方法利用大数据和智能算法,通过学习和分析系统历史数据,能够更好地预测和计算系统潮流分布,提高计算效率和准确性。

这些方法在未来的电力系统潮流计算中具有潜力和广阔的应用前景。

总结起来,电力系统潮流计算是电力系统分析和规划的重要工作,不同的计算方法有不同的优劣势,合理选择计算方法对于准确评估系统稳定性和可靠性至关重要。

随着技术的进步和应用的发展,电力系统潮流计算方法也在不断演化和改进,以满足电力系统智能化和可持续发展的需求。

潮流计算的计算机算法资料

潮流计算的计算机算法资料

第四章潮流计算的计算机算法第一节概述潮流计算是电力系统最基本、最常用的计算。

根据系统给定的运行条件、网络接线及元件参数,通过潮流计算可以确定各母线的电压(幅值及相角),各元件中流过的功率、整个系统的功率损耗等。

潮流计算是实现电力系统安全经济发供电的必要手段和重要工作环节。

因此潮流计算在电力系统的规划设计、生产运行、调度管理及科学研究中都有着广泛的应用。

电力系统潮流计算分为离线潮流计算和在线潮流计算。

前者主要用于系统规划设计和安排系统的运行方式,后者则用于正在运行系统的经常监视及实时控制。

本章主要讨论离线潮流计算问题,它的基本算法同样适用于在线潮流计算。

潮流计算在数学上是多元非线性方程组的求解问题,求解的方法有很多种。

自从五十年代计算机应用于电力系统以来,当时求解潮流的方法是以节点导纳矩阵为基础的逐次代入法(导纳法),后来为解决导纳法的收敛性较差的问题,出现了以阻抗矩阵为基础的逐次代入法(阻抗法)。

到六十年代,针对阻抗法占用计算机内存大的问题又出现了分块阻抗法及牛顿-拉夫逊(Newton-Raphson)法。

Newton —Raphson法是数学上解非线形方程式的有效方法,有较好的收敛性。

将N-R法用于潮流计算是以导纳矩阵为基础的,由于利用了导纳矩阵的对称性、稀疏性及节点编号顺序优化等技巧,使N-R法在收敛性、占用内存、计算速度方面的优点都超过了阻抗法,成为六十年代末期以后普遍采用的方法。

同时国内外广泛研究了诸如非线形规划法、直流法、交流法等各种不同的潮流计算方法。

七十年代以来,又涌现出了更新的潮流计算方法。

其中有1974年由B、Stott、O、Alsac 提出的快速分解法以及1978年由岩本伸一等提出的保留非线性的高129速潮流计算法。

其中快速分解法(Fast decoupled load flow)从1975年开始已在国内使用,并习惯称之为PQ分解法。

由于PQ分解法在计算速度上大大超过N-R法,不但能应用于离线潮流计算,而且也能应用于在线潮流计算。

潮流计算的基本算法及使用方法

潮流计算的基本算法及使用方法

潮流计算的基本算法及使用方法Company number:【0089WT-8898YT-W8CCB-BUUT-202108】潮流计算的基本算法及使用方法一、 潮流计算的基本算法1.牛顿-拉夫逊法1.1 概述牛顿-拉夫逊法是目前求解非线性方程最好的一种方法。

这种方法的特点就是把对非线性方程的求解过程变成反复对相应的线性方程求解的过程,通常称为逐次线性化过程,就是牛顿-拉夫逊法的核心。

牛顿-拉夫逊法的基本原理是在解的某一邻域内的某一初始点出发,沿着该点的一阶偏导数——雅可比矩阵,朝减小方程的残差的方向前进一步,在新的点上再计算残差和雅可矩阵继续前进,重复这一过程直到残差达到收敛标准,即得到了非线性方程组的解。

因为越靠近解,偏导数的方向越准,收敛速度也越快,所以牛顿法具有二阶收敛特性。

而所谓“某一邻域”是指雅可比方向均指向解的范围,否则可能走向非线性函数的其它极值点,一般来说潮流由平电压即各母线电压(相角为0,幅值为1)启动即在此邻域内。

1.2 一般概念对于非线性代数方程组即 ()0,,,21=n i x x x f ()n i ,2,1= (1-1)在待求量x 的某一个初始计算值()0x 附件,将上式展开泰勒级数并略去二阶及以上的高阶项,得到如下的线性化的方程组()()()()()0000=∆'+x x f x f (1-2)上式称之为牛顿法的修正方程式。

由此可以求得第一次迭代的修正量()()()[]()()0100x f x f x -'-=∆ (1-3)将()0x ∆和()0x 相加,得到变量的第一次改进值()1x 。

接着再从()1x 出发,重复上述计算过程。

因此从一定的初值()0x 出发,应用牛顿法求解的迭代格式为()()()()()k k k x f x x f -=∆' (1-4)()()()k k k x x x ∆+=+1 (1-5)上两式中:()x f '是函数()x f 对于变量x 的一阶偏导数矩阵,即雅可比矩阵J ;k 为迭代次数。

潮流计算的基本算法及使用方法

潮流计算的基本算法及使用方法

潮流计算的基本算法及使用方法一、 潮流计算的基本算法1. 牛顿-拉夫逊法1.1 概述牛顿-拉夫逊法是目前求解非线性方程最好的一种方法;这种方法的特点就是把对非线性方程的求解过程变成反复对相应的线性方程求解的过程,通常称为逐次线性化过程,就是牛顿-拉夫逊法的核心;牛顿-拉夫逊法的基本原理是在解的某一邻域内的某一初始点出发,沿着该点的一阶偏导数——雅可比矩阵,朝减小方程的残差的方向前进一步,在新的点上再计算残差和雅可矩阵继续前进,重复这一过程直到残差达到收敛标准,即得到了非线性方程组的解;因为越靠近解,偏导数的方向越准,收敛速度也越快,所以牛顿法具有二阶收敛特性;而所谓“某一邻域”是指雅可比方向均指向解的范围,否则可能走向非线性函数的其它极值点,一般来说潮流由平电压即各母线电压相角为0,幅值为1启动即在此邻域内; 1.2 一般概念对于非线性代数方程组即 ()0,,,21=n i x x x f ()n i ,2,1= 1-1在待求量x 的某一个初始计算值()0x 附件,将上式展开泰勒级数并略去二阶及以上的高阶项,得到如下的线性化的方程组()()()()()0000=∆'+x x f x f 1-2上式称之为牛顿法的修正方程式;由此可以求得第一次迭代的修正量()()()[]()()0100x f x f x -'-=∆ 1-3将()0x ∆和()0x 相加,得到变量的第一次改进值()1x ;接着再从()1x 出发,重复上述计算过程;因此从一定的初值()0x 出发,应用牛顿法求解的迭代格式为()()()()()k k k x f x x f -=∆' 1-4()()()k k k x x x ∆+=+1 1-5上两式中:()x f '是函数()x f 对于变量x 的一阶偏导数矩阵,即雅可比矩阵J ;k 为迭代次数;由式1-4和式子1-5可见,牛顿法的核心便是反复形成求解修正方程式;牛顿法当初始估计值()0x 和方程的精确解足够接近时,收敛速度非常快,具有平方收敛特性;1.3 潮流计算的修正方程运用牛顿-拉夫逊法计算潮流分布时,首先要找出描述电力系统的非线性方程;这里仍从节点电压方程入手,设电力系统导纳矩阵已知,则系统中某节点i 节点电压方程为从而得∑=**••=nj j ij i i U Y U S 1进而有()01=-+*=*•∑j n j ij i i i U Y U jQ P1-6式1-6中,左边第一项为给定的节点注入功率,第二项为由节点电压求得的节点注入功率;他们二者之差就是节点功率的不平衡量;现在有待解决的问题就是各节点功率的不平衡量都趋近于零时,各节点电压应具有的价值;由此可见,如将式1-6作为牛顿-拉夫逊中的非线性函数()0=X F ,其中节点电压就相当于变量X ;建立了这种对应关系,就可列出修正方程式,并迭代求解;但由于节点电压可有两种表示方式——以直角做表或者极坐标表示,因而列出的迭代方程相应地也有两种,下面分别讨论;1.3.1 直角坐标表示的修正方程节点电压以直角坐标表示时,令i i i jf e U +=•、j j j jf e U +=•,且将导纳矩阵中元素表示为ij ij ij jB G Y +=,则式1-7改变为 ()()()()01=--+-+∑=nj j j ij ij i i i i jf e jB G jf e jQ P1-7再将实部和虚部分开,可得()()[]()()[]⎪⎪⎭⎪⎪⎬⎫=+---=++--∑∑==0011nj j ij j ij i j ij j ij i i nj j ij j ij i j ij j ij i i e B f G e f B e G f Q e B f G f f B e G e P 1-8这就是直角坐标下的功率方程;可见,一个节点列出了有功和无功两个方程;对于PQ 节点1,,21-=m i ,,给定量为节点注入功率,记为i P '、i Q ',则由式2-8可得功率的不平衡量,作为非线性方程()()[]()()[]⎪⎪⎭⎪⎪⎬⎫+---'=∆++--'=∆∑∑==nj j ij j ij i j ij j ij i i i nj j ij j ij i j ij j ij i i i e B f G e f B e G f Q Q e B f G f f B e G e P P 11 1-9式中i P ∆、i Q ∆——分别表示第i 节点的有功功率的不平衡量和无功功率的不平衡量;对于PV 节点n m m i ,,2,1 ++=,给定量为节点注入有功功率及电压数值,记为i P '、i U ',因此,可以利用有功功率的不平衡量和电压的不平衡量表示出非线性方程,即有()()[]()⎪⎭⎪⎬⎫+-'=∆++--'=∆∑=22221i i i i nj j ij j ij i j ij j ij i i i f e U U e B f G f f B e G e P P1-10式中i U ∆为电压的不平衡量;对于平衡节点m i =,因为电压数值及相位角给定,所以S s S jf e U +=•也确定,不需要参加迭代求节点电压;因此,对于n 个节点的系统只能列出()12-n 个方程,其中有功功率方程()1-n 个,无功功率方程()1-m 个,电压方程()m n -个;将式1-9、式1-10 非线性方程联立,称为n 个节点系统的非线性方程组,且按泰勒级数在()0i f 、()0i e m i n i ≠=,,,2,1 展开,并略去高次项,得到以矩阵形式表示的修正方程如下⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∆∆∆∆∆∆∆∆⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∆∆∆∆∆∆∆∆n n p p nn nnnpnpn n n n nn nn np np n n n n pn pn pp pp p p p p pn pn pp pp p p p p n n p p n n p p n n p p n n p p n n pp e f e f e f e f S R S R S R S R N H N H N H N H S R S R S R S R N H N H N H N H L J L J L J L J N H N H N H N H L J L J L J L J N H N H N H N H U P U P Q P Q P 22112211221122112211222222222121222222222121111112121111111112121111222211 1-11 上式中雅可比矩阵的各个元素则分别为 将1-11写成缩写形式[]⎥⎦⎤⎢⎣⎡∆∆=⎥⎦⎤⎢⎣⎡∆∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆∆∆e f e f S RL J N HU Q P J 2 1-12 对雅可比矩阵各元素可做如下讨论:当i j ≠时,对于特定的j ,只有该特定点的i f 和i e 是变量,于是雅可比矩阵中各非对角元素表示为当i j =时,雅可比矩阵中各对角元素的表示式为由上述表达式可知,直角坐标的雅可比矩阵有以下特点:1) 雅可比矩阵是()12-n 阶方阵,由于ji ij H H ≠、ji ij N N ≠等等,所以它是一个不对称的方阵;2) 雅可比矩阵中诸元素是节点电压的函数,在迭代过程中随电压的变化而不断地改变;3) 雅可比矩阵的非对角元素与节点导纳矩阵B Y 中对应的非对角元素有关,当B Y 中的ij Y 为零时,雅可比矩阵中相应的ij H 、ij N 、ij J 、ij L 也都为零,因此,雅可比矩阵也是一个稀疏矩阵;1.3.2 极坐标表示的修正方程在牛顿-拉夫逊计算中,选择功率方程∑=**•=-+nj j ij i i i U Y U jQ P 10作为非线性函数方程,把式中电压向量表示为极坐标形式 则节点功率方程变为 将上式分解成实部和虚部这就是功率方程的极坐标形式,由此可得到描述电力系统的非线性方程;对于PQ 节点,给定了()()⎪⎪⎭⎪⎪⎬⎫--'=+-'=∆∑∑==nj ij ij ij ij j i i i nj ij ij ij ij j i i i B G U U Q Q B G U U P P 11cos sin sin cos δδδδ ()121-=m i 、、 1-13对于PV 节点,给定了i P '、i U ',而i Q '未知,式1-13中i Q ∆将失去作用,于是PV 节点仅保留i P ∆方程,以求得电压的相位角;1-14对于平衡节点,同样因为s U 、s δ已知,不参加迭代计算;将式1-13、式1-14联立,且按泰勒级数展开,并略去高次项后,得出矩阵形式的修正方程⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∆∆∆∆∆∆⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∆∆∆∆∆∆n p nnnpn n n n pn pp p p p p n p n p n p n p n p U UU U H H N H N H H H N H N H L J L J L J N H N H N H L J L J L J H H N H N H P P Q P Q P δδδδ 22211122112211222121212122212121211112121111111212111122111-15雅可比矩阵终,对PV 节点,仍可写出两个方程的形式,但其中的元素以零元素代替,从而显示了雅可比矩阵的高度稀疏性;式中电压幅值的修正量采用U U ∆的形式,并没有什么特殊意义,仅是为了雅可比矩阵中各元素具有相似的表达式; 雅可比矩阵的各元素如下 将式1-15写成缩写形式⎥⎥⎦⎤⎢⎢⎣⎡∆∆⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∆∆U U L J N HQ P δ1-16以上得到了两种坐标系下的修正方程,这是牛顿-拉夫逊潮流计算中需要反复迭代求解的基本方程式;2. 快速分解法2.1 概述快速分解法的基本思想是:把节点功率表示为电压向量的极坐标方程式,抓主要矛盾,以有功功率误差作为修正电压向量角度的依据,以无功功率误差作为修正电压幅值的依据,把有功功率和无功功率的迭代分开来进行;快速分解法根据电力系统实际运行状态的物理特点,对牛顿-拉夫逊法潮流计算的数学模型进行合理的简化;2.2 基本公式在交流高压电网中,输电线路的电抗要比电阻大得多,系统中母线有功功率的变化主要受电压相位的影响,无功功率的变化主要受母线电压幅值变化的影响;在修正方程式的系数矩阵中,偏导数δ∂∆∂Q 和V P ∂∆∂的数值相对于偏导数V Q ∂∆∂和δ∂∆∂P是相当小的,作为简化的第一步,可以将方程式2-1中的子块N 和K 略去不计,即认为它们的元素都等于零;这样,m n +-1阶的方程式便分解为一个1-n 阶和一个m 阶的方程式,即将式2-1简化为式2-2和式2-3;⎥⎦⎤⎢⎣⎡∆∆⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡∆∆-V V L K N H Q P 1D δ 2-1 δ∆-=∆H P 2-2V LV Q 1D ∆-=∆- 2-3上述的简化大大地节省了计算机的内存和解题时间,但是矩阵H 和L 的元素都是节点电压幅值和相角差的函数,其数值在迭代过程中是不断变化的;因此,快速分解法潮流计算的第二个简化,也是最关键的一步简化就在于把系数矩阵H 和L 简化成在迭代过程中不变的常数对称矩阵;在一般情况下,线路两端电压的相角差是不大的通常不超过 10~ 20因此可以认为1cos ≈ij δ , ij ij ij B G <<δsin 2-4此外,与系统各节点无功功率相适应的导纳LDi B 必远小于该节点自导纳的虚部,即ii iiLDi B V Q B <<=2 或 ii i i B V Q 2<< 考虑到上面的关系,矩阵H 和L 的元素的表达式便被简化为ij j i ij B V V H = i,j=1,2,…,n -1 2-5 ij j i ij B V V L = i,j=1,2,…,m 2-6⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=------------11,1122,1111,1111,222222121211,1121211111n n n n n n n n n n n n V B V V B V V B V V B V V B V VB V V B V V B V V B VH 2-7⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m mm m m m m m m m m m V B V V B V V B V V B V V B V V B V V B V V B V V B V221122222212121121211111L 2-8将式2-7和式2-8分别代入式2-2和2-3,便得到:用11-D V 和12-D V 分别左乘以上两式便得简化了的修正方程式,可展开写成:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∆∆∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∆∆∆--------=-1122111,12,11,11,222211,11211112211δδδn n n n n n n n n n V V V B B B B B B B B B V P V P V P2-9⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∆∆∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∆∆∆m mm m m m m m m V V V B B B B B B B B B V Q V Q V Q212122221112112211 2-10 式2-9和式2-10就是快速分解法潮流计算的修正方程式,其中系数矩阵都是由节点导纳矩阵的虚部构成,只是阶次不同,矩阵B '为1-n 阶,不含平衡节点对应的行和列,矩阵B ''为m 阶,不含平衡节点和PV 节点对应的行和列;()∑=+-=-=∆nj ij ij ij ij j i is i is i B G V V P P P P 1δsin δcos 2-11∑=+-=-=∆nj ij ij ij ij j i is i is i B G V V Q Q Q Q 1)δcos δsin ( 2-12修正方程式2-9和2-10与功率误差方程式2-11和2-12构成了快速分解法迭代的基本计算公式; 2.3 快速分解法的特点快速分解法与牛顿法潮流计算的主要差别表现在它们的修正方程上;快速分解法通过对电力系统具体特点的分析,对牛顿法修正方程式的雅克比矩阵进行了有效的简化和改进,得到式2-9、式2-10所示的修正方程式;这两组方程式和牛顿法的修正方程相比主要有三个特点:a 快速分解法的修正方程式用两个n 阶线性方程组代替了一个n 2阶线方程组;b 快速分解法的修正方程式中系数矩阵的所有元素在迭代过程中维持常数不变;c 快速分解法的修正方程式中系数矩阵是对称矩阵;这些特点在提高计算速度和减少内存方面的作用是很明显的:首先,因为修正方程式的系数矩阵是导纳矩阵的虚部,因此在迭代过程中不必像牛顿法那样每次都要重新计算雅克比矩阵,这样不仅减少了运算量,而且也大大简化了程序;其次,由于系数矩阵在迭代过程中维持不变,因此在求解修正方程式时,不必每次都对系数矩阵进行消去运算,只需要在进入迭代过程以前,将系数矩阵用三角分解形成因子表,然后反复利用因子表对不同的常数项V P /∆或V Q /∆进行消去和回代运算,就可以迅速求得修正量,从而显着提高了迭代速度;第三,由于对称矩阵三角分解后,其上三角矩阵和下三角矩阵有非常简单的关系,所以在计算机中可以只存储上三角矩阵或下三角矩阵,从而也进一步节约了内存;快速分解法所采用的一系列简化假定只影响了修正方程的结构,也就是说只影响了迭代过程,但未影响最终结果;因为快速分解法和牛顿法都采用同样的数学模型,最后计算功率误差和判断收敛条件都是严格按照精确公式进行的,所以快速分解法和牛顿法一样都可以达到很高的精确度;为了改善快速分解法的收敛特性,修正方程的系数矩阵B '与B ''一般并不简单的是电力系统导纳矩阵的虚部,下面讨论一下B '与B ''的构成;B '与B ''的阶数是不同的,B '为 1-n 阶,B ''低于1-n 阶;因为式2-10不包含于PV 节点有关的项,所以,如果系统有r 个PV 节点,则B ''应为1--r n 阶;式2-9以有功功率误差为依据修正电压向量的角度,式2-10以无功功率误差依据修正电压幅值;为了加速收敛,使它们能够更有效地进行修正,可以考虑在B '中尽量去掉那些与有功功率及电压向量角度无关或影响较小的因素,而在B ''中尽量去掉与无功功率及电压幅值影响较小的因素;所以,我们以电力系统导纳矩阵的虚部作为B '和B ''时,可以在B '去掉充电电容和变压器变比的影响,在B ''中去掉输电线路电阻对B ''的影响;B '和B ''的非对角元素和对角元素可分别按式2-13和2-14计算:22ijijij ijxr x B +-=' ∑∈+='ij ijijij iixr x B 22ij x B 1-='' ∑∈-=''i j i ijb x B 01式2-13中ij r 和ij x 分别为支路ij 的电阻和感抗,式2-14中0i b 为节点i 接地支路的电纳;快速分解法改变了牛顿法迭代公式的结构,因此就改变了迭代过程的收敛性;牛顿法在迭代开始时收敛得较慢,当收敛到一定程度后,它的收敛速度非常之快,而快速分解法几乎是按同一速度收敛的,快速分解法每次迭代的计算量很小,因此快速分解法的计算速度比牛顿法有明显的提高;二、 潮流计算的使用方法1. 初始方式准备对任何潮流模拟操作计算,总是在某一个初始的运行方式上进行;这种初始方式可以是状态估计提供的实时运行方式,也可以是以往保存的历史运行方式;2. 调度操作模拟在准备好的初始潮流断面上,可以继续修改方式,模拟预想的潮流运行方式,再进行详细的潮流分析;模拟操作包括:1)开关刀闸变位模拟2)发电机功率调整3)负荷功率设置4)发电机分接头设置5)线路停运、投入6)变压器停运、投入7)母线停运、投入8)厂站停运、投入3.运行参数维护潮流计算参数画面上可以设置算法、收敛判据、迭代次数、单/多平衡机等运行参数;平衡发电机是电气岛内的电压相角参考点,当采用“单平衡机”模式时,电网的不平衡功率包括发电、负荷和网损都将由设定平衡机吸收;当采用“多平衡机”模式时,电网的不平衡功率将由多台发电机负责平衡,多台发电机之间的不平衡功率分配方式包括容量、系数和平均三种方式;选择容量时将根据发电机的可调容量分配,选择系数时根据人工设置的系数按比例分配,选择平均时则平均分配不平衡功率;在分配过程中,确保发电机的出力在最大出力和最小出力范围内;发电机参数中可以设置发电机的调节特性,包括节点类型平衡节点、PQ 节点、PV节点等,对于PV节点可以设定控制机端电压还是高压侧母线电压以及控制的目标电压值,对于按指定系数参与有功调节的机组可以设置比例系数;4.计算结果分析潮流计算结束后,计算结果分析包括:1)潮流计算状态2)电气岛、迭代信息3)潮流计算结果4)设备越限和重载监视5)运行信息5.误差统计在潮流模拟计算完成后,如果现场很快发生了模拟的动作,可以从统计每个测点模拟计算值和实际量测值相比的误差,并统计出全网平均误差,统计方法遵循实用化考核细则;在表格中全部列出所有测点的SCADA量测值、潮流模拟计算值、考核基准值以及测点误差等内容;如果只关心部分厂站的误差情况,局部误差统计中选择好需要关心的厂站,局部误差统计程序会过滤掉没有选中的厂站,只列出选中厂站的所有设备的误差统计情况;如果想要保存当前误差统计的运行断面,可以保存误差断面,将当前的断面以及误差统计结果一起保存起来;误差统计历史记录包含所有保存的误差断面,内容包括统计时间、平均误差、执行用户、值班主机、断面名称以及操作信息等内容;。

电力系统潮流计算方法分析

电力系统潮流计算方法分析

电力系统潮流计算方法分析电力系统潮流计算是电力系统运行中的基础性分析方法之一,它用于求解电力系统中各个节点的电压、相角以及线路的功率、电流等变量。

潮流计算是电力系统规划、运行和控制等方面的重要工具。

本文将对电力系统潮流计算方法进行分析。

电力系统潮流计算方法主要有两种,即直接法和迭代法。

直接法又分为解析法和数值法,迭代法包括高斯赛德尔迭代法、牛顿-拉夫逊迭代法等。

解析法是通过电力系统各个节点之间的网络拓扑关系和节点电压平衡条件的方程式,直接求解节点电压和线路功率等参数。

解析法的优点是计算速度快,但其适用范围较窄,主要适用于小型简单电力系统,对于大型复杂电力系统的潮流计算会出现计算量庞大的问题。

数值法是通过将连续变量离散化,将微分方程转化为差分方程,并利用数值解法求解离散的方程组来得到电力系统潮流计算结果。

数值法的优点是适用范围广,能够处理大型复杂电力系统的潮流计算,但其缺点是计算速度相对较慢。

在迭代法中,高斯赛德尔迭代法是一种经典的迭代法,它通过先假设节点电压的初值,然后利用节点注入功率与节点电压之间的关系不断迭代计算,最终达到收敛条件为止。

高斯赛德尔迭代法的优点是收敛速度快,计算精度高,但其缺点是收敛性有时不易保证,并且计算速度会随着系统规模的增大而变慢。

牛顿-拉夫逊迭代法是一种基于牛顿迭代法的改进方法,它引入雅可比矩阵,通过牛顿迭代法的迭代过程来求解节点电压和线路功率等参数。

牛顿-拉夫逊迭代法的优点是收敛性好,计算速度快,但其缺点是在实际应用中需要预先计算雅可比矩阵,会增加计算的复杂度。

综上所述,电力系统潮流计算方法有直接法和迭代法两种,其中直接法包括解析法和数值法,迭代法包括高斯赛德尔迭代法和牛顿-拉夫逊迭代法。

在实际应用中,根据电力系统的规模和复杂程度选择合适的方法进行潮流计算,以得到准确可靠的计算结果。

此外,随着计算机技术的不断发展,还可以利用并行计算和分布式计算等方法来提高潮流计算的效率。

电气工程外文文献原文与译文应用于独立运行微电网的潮流计算方法

电气工程外文文献原文与译文应用于独立运行微电网的潮流计算方法

毕业设计(论文)外文文献译文及原文Application of the Power Flow Calculation Method to Islanding Micro GridsY.H. Liu. Z.Q. Wu, S.J Lin, N. P. BrandonAbstract:Most existing power flow calculation methods use a swing bus as a reference node for the whole system Increasingly. new distributed generation resources (DGRs) are being added to the grid. Sometimes, local demand or failure of the grid can result in independent micro-grids forming, which are known as 'islanding' systems Howcver. current DGRs are often limited such that there is no single DGR which can balance the power demand and stabilize the frequency of the micro-grid, meaning that there is no swing bus from which the microgrid can bemanaged. According to existing research. a DGR coupled with a dcdicated cnergy storage .system and suitable control stratcgy (here termed a distributcd generation (DG system) has the ability to adjust its output. This means that a DG system can respond dynamically to grid events. This means that a DG .system can rcspond dynamically to grid events. In this paper. a new power flow calculation method (based on Newton-Raphson power flow solution) with good convergence is proposed that can accommodate the lack of a swing bus in an islanding system. This addresses power flow results and the frequency ofthe whole system. The method proposed is discussed in detail with cxamples of diffcrent DG systems with various adjustment coefficients and load models.The results arc compared with those of a traditional power flow calculation mcthod based around the use of a swing bus. In conclusion, this paper shows that the improved method is more apprpriate for islanding systems with mesh topology and for micro-grid management wihtno swing bus.Index Terms--Distributed Generation; Islanding; Micro Grid; Power Flow Calculation; Power SystemⅠ.NOMENCLATUREA. Indexesi,j numbef of node ;B. Constantsn number of nods of the system;m number of non-power-source nodes in the system;Ai percentage coefficient of constant impedance load in a compound load modeBi percentage coefficient ofconstant current load in a compound load model;Ci percentage coefficient of constant power load in a compound load model;错误!未找到引用源。

简单电力系统分析潮流计算

简单电力系统分析潮流计算

简单电力系统分析潮流计算电力系统潮流计算是电力系统分析中的一项重要任务。

其目的是通过计算各个节点的电压、电流、有功功率、无功功率等参数,来确定系统中各个元件的运行状态和互相之间的相互影响。

本文将介绍电力系统潮流计算的基本原理、计算方法以及应用。

潮流计算的基本原理是基于电力系统的节点电压和支路功率之间的网络方程。

通过对节点电压进行迭代计算,直到满足所有支路功率平衡方程为止,得到系统的运行状态。

潮流计算的基本问题可以表示为以下方程组:P_i = V_i * (G_i * cos(θ_i - θ_j ) + B_i * sin(θ_i -θ_j )) - V_j * (G_i * cos(θ_i - θ_j ) - B_i * sin(θ_i -θ_j )) (1)Q_i = V_i * (G_i * sin(θ_i - θ_j ) - B_i * cos(θ_i -θ_j )) - V_j * (G_i * sin(θ_i - θ_j ) + B_i * cos(θ_i -θ_j )) (2)其中,P_i为节点i的有功功率注入;Q_i为节点i的无功功率注入;V_i和θ_i分别为节点i的电压幅值和相角;V_j和θ_j分别为节点j的电压幅值和相角;G_i和B_i分别为支路i的导纳的实部和虚部。

对于一个电力系统,如果知道了节点注入功率和线路的导纳,就可以通过潮流计算求解出各节点的电压和功率。

这是一种不断迭代的过程,直到系统达到平衡状态。

潮流计算的方法有多种,常见的有高斯-赛德尔迭代法、牛顿-拉夫逊迭代法等。

其中,高斯-赛德尔迭代法是最常用的一种方法。

高斯-赛德尔迭代法的思想是从已知节点开始,逐步更新其他节点的电压值,直到所有节点的电压值收敛为止。

具体步骤如下:1.初始化所有节点电压的初始值;2.根据已知节点的注入功率和节点电压,计算其他节点的电压值;3.判断节点电压是否收敛,如果收敛则结束计算,否则继续迭代;4.更新未收敛节点的电压值,返回步骤2高斯-赛德尔迭代法的优点是简单有效,但其收敛速度较慢。

电力系统潮流计算与分析

电力系统潮流计算与分析

电力系统潮流计算与分析电力系统是现代社会不可或缺的基础设施之一,它为我们提供了稳定可靠的电力供应。

而电力系统的潮流计算与分析则是电气工程中的重要研究领域之一。

本文将介绍电力系统潮流计算与分析的基本概念、方法和应用。

一、潮流计算的基本概念潮流计算是指对电力系统中各个节点的电压、电流、功率等参数进行计算和分析的过程。

它是电力系统规划、设计和运行中必不可少的工具。

潮流计算的目的是确定电力系统中各个节点的电压和相位角,以及各个支路的电流和功率。

通过潮流计算,可以评估电力系统的稳定性、负载能力和输电能力,为电力系统的规划和运行提供科学依据。

二、潮流计算的方法潮流计算的方法主要包括直流潮流计算和交流潮流计算两种。

直流潮流计算是一种简化的方法,适用于电力系统中负载变化较小的情况。

它假设电力系统中的所有元件都是直流元件,忽略了电抗元件的影响。

交流潮流计算则考虑了电力系统中的电抗元件对电流和功率的影响,是一种更为精确的计算方法。

在交流潮流计算中,常用的方法包括高斯-赛德尔法、牛顿-拉夫逊法和快速潮流法等。

高斯-赛德尔法是一种迭代法,通过反复迭代计算节点的电压和相位角,直到满足收敛条件。

牛顿-拉夫逊法则是一种迭代法,通过对节点电压的雅可比矩阵进行线性化,求解节点电压的增量,从而逐步逼近潮流计算的结果。

快速潮流法是一种基于分解和迭代的方法,通过将电力系统分解为多个子系统进行计算,从而提高计算的速度和效率。

三、潮流计算的应用潮流计算在电力系统的规划、设计和运行中有着广泛的应用。

首先,潮流计算可以用于电力系统的负荷分配和负载能力评估。

通过计算各个节点的电压和功率,可以确定电力系统中各个节点的负载水平,从而合理分配负荷,提高电力系统的供电能力。

其次,潮流计算可以用于电力系统的故障分析和稳定性评估。

通过模拟电力系统中的故障情况,可以评估电力系统的稳定性,为电力系统的运行和维护提供依据。

此外,潮流计算还可以用于电力系统的输电能力评估和优化。

电力系统的潮流计算

电力系统的潮流计算

电力系统的潮流计算电力系统潮流计算电力工程的潮流在电力工程中,“潮流”还特指电网各处电压(包括幅值与相角)、有功功率、无功功率等的分布。

潮流的分布是运行调度单位和维修部门所必须知道的事项。

而潮流计算,是指给定电网中一些参数、已知值和未知值中假设的初始值,通过重复迭代,最终求出潮流分布的精确值,常用方法有牛顿-拉夫逊法和PQ分解法。

电力系统中的潮流在发电机母线上功率被注入网络;而在变(配)电站上接入负荷;其间,功率在网络中流动。

对于这种流动的功率,电力生产部门称为潮流(POWER FLOW)。

潮流:电力系统中电压(各节点)、功率(有功、无功)(各支路)的稳态分布潮流计算---电力系统分析中的一种最基本的计算,根据给定的运行参数确定系统的运行状态,如计算网络中个节点的电压(幅值和相角)和各支路中的功率分布及损耗。

电力系统潮流计算是电力系统最基本的计算,也是最重要的计算。

所谓潮流计算,就是已知电网的接线方式与参数及运行条件,计算电力系统稳态运行各母线电压、各支路电流、功率及网损。

对于正在运行的电力系统,通过潮流计算可以判断电网母线电压、支路电流和功率是否越限,如果有越限,就应采取措施,调整运行方式。

对于正在规划的电力系统,通过潮流计算,可以为选择电网供电方案和电气设备提供依据。

潮流计算还可以为继电保护和自动装置整定计算、电力系统故障计算和稳定计算等提供原始数据。

百科名片电力系统潮流计算是研究电力系统稳态运行情况的一种基本电气计算。

它的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。

电力系统潮流计算的结果是电力系统稳定计算和故障分析的基础。

目录潮流计算的意义潮流计算的发展史潮流计算的发展趋势编辑本段潮流计算的意义(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。

简介几种潮流计算

简介几种潮流计算

简介几种潮流计算电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。

同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。

因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。

在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算,下面简单介绍三种潮流计算方法。

一、基于多口逆向矩阵的并行潮流计算方法多口逆向矩阵方法是求解线性方程组的普通并行方法,它只是修改了串行方法的几个部分,并且非常适用于从串行到并行的编程。

该方法已用于一些电力系统并行分析方法,比如说机电暂态稳定分析和小信号稳定性,并且并行效率高。

基于多口逆向矩阵方法,本文提出了一种并行牛顿潮流算法。

对一个划分几个网络的大型互联系统模型的仿真结果表明这种并行算法是正确的并且效率很高。

关键词:并行潮流计算,串行潮流计算,多口逆向矩阵方法,线性方程组,电力系统分析随着电力系统规模的扩大,尤其是区域互联网络,人们要求速度更快效率更高的功率计算,传统的串行计算越来越难满足要求,特别是对实时控制。

作为电力系统的基本计算,它的效率的提高会使其他为基础的计算速度都得到提高。

因为传统串行计算变的越来越难满足要求,并行计算成为提高潮流计算效率的需要。

潮流计算的主要步骤是求解稀疏线性方程组,因此对并行方法的研究主要集中在线性方程组的并行求解。

根据不同的实现方案,并行算法分为多因子方法、稀疏向量方法等等。

多口逆向矩阵方法在各种问题中是一种求解线性方程组的通用方法。

在这篇论文中,通过最常见的电力系统中的节点电压方程来说明这种方法。

多口逆向矩阵法不需要在矩阵中集中调整边界点,我们根据子网的密度把矩阵分裂并且把边界节点集中在顶部,整个网络的节点电压方程组如下:消去上矩阵中对应子网的部分,只保留边界部分。

经过网络分割,边界矩阵TT Y 注入电流向量T I 被分为主控制网和各个子网。

电力系统三种潮流计算方法的比较

电力系统三种潮流计算方法的比较

电力系统三种潮流计算方法的比较 一、高斯-赛德尔迭代法:以导纳矩阵为基础,并应用高斯--塞德尔迭代的算法是在电力系统中最早得到应用的潮流计算方法,目前高斯一塞德尔法已很少使用。

将所求方程改写为 不能直接得出方程的根,给一个猜测值 得 又可取x1为猜测值,进一步得:反复猜测则方程的根优点:1. 原理简单,程序设计十分容易。

2. 导纳矩阵是一个对称且高度稀疏的矩阵,因此占用内存非常节省。

3. 就每次迭代所需的计算量而言,是各种潮流算法中最小的,并且和网络所包含的节点数成正比关系。

缺点:1. 收敛速度很慢。

2. 对病态条件系统,计算往往会发生收敛困难:如节点间相位角差很大的重负荷系统、包含有负电抗支路(如某些三绕组变压器或线路串联电容等)的系统、具有较长的辐射形线路的系统、长线路与短线路接在同一节点上,而且长短线路的长度比值又很大的系统。

3. 平衡节点所在位置的不同选择,也会影响到收敛性能。

二、牛顿-拉夫逊法:求解 设 ,则按牛顿二项式展开:当△x 不大,则取线性化(仅取一次项)则可得修正量对 得: 作变量修正:,求解修正方程 ()0f x =()0f x =10()x x ϕ=迭代 0x 21()x x ϕ=1()k k x x ϕ+=()x x ϕ=()0f x =k k x x lim *∞→=0x x x =+∆0()0f x x +∆=23000011()()()()()()02!3!f x f x x f x x f x x ''''''+∆+∆+∆+=00()()0f x f x x '+∆=()100()()x f x f x -'∆=-10x x x =+∆00()()f x x f x '∆=-1k k k x x x +=+∆牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性。

自从20世纪60年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了其他方法,成为直到目前仍被广泛采用的方法。

电力系统分析潮流计算

电力系统分析潮流计算

电力系统分析潮流计算电力系统分析是对电力系统运行状态进行研究、分析和评估的一项重要工作。

其中,潮流计算是电力系统分析的一种重要方法,用于计算电力系统中各节点的电压、功率和电流等参数。

本文将详细介绍电力系统潮流计算的原理、方法和应用。

一、电力系统潮流计算的原理电力系统潮流计算是基于潮流方程的求解,潮流方程是描述电力系统各节点电压和相角之间的关系的一组非线性方程。

潮流方程的基本原理是基于电力系统的等效导纳矩阵和节点电压相位差的关系,通过潮流计算可以得到电力系统各节点的电压和功率等参数。

电力系统潮流方程的一般形式如下:\begin{align*}P_i &= \sum_{j=1}^{n}(V_iV_j(G_{ij}\cos(\theta_i-\theta_j)+B_{ij}\sin(\theta_i-\theta_j))) \\Q_i &= \sum_{j=1}^{n}(V_iV_j(G_{ij}\sin(\theta_i-\theta_j)-B_{ij}\cos(\theta_i-\theta_j)))\end{align*}其中,$n$为节点数,$P_i$和$Q_i$表示第i个节点的有功功率和无功功率。

$V_i$和$\theta_i$表示第i个节点的电压和相角。

$G_{ij}$和$B_{ij}$表示节点i和节点j之间的等效导纳。

二、电力系统潮流计算的方法电力系统潮流计算的方法主要包括直接法、迭代法和牛顿-拉夫逊法等。

1.直接法:直接法是一种适用于小规模电力系统的潮流计算方法,它通过直接求解潮流方程来计算电力系统的潮流。

直接法的计算速度快,但对系统规模有一定的限制。

2.迭代法:迭代法是一种常用的潮流计算方法,通常使用高尔顿法或牛顿法。

迭代法通过迭代求解潮流方程来计算电力系统的潮流。

迭代法相对于直接法来说,可以适用于大规模电力系统,但计算时间较长。

3.牛顿-拉夫逊法:牛顿-拉夫逊法是一种高效的潮流计算方法,它通过求解潮流方程的雅可比矩阵来进行迭代计算,可以有效地提高计算速度。

电力系统的潮流计算

电力系统的潮流计算

电力系统的潮流计算电力系统的潮流计算是电力系统分析中的基础工作,主要用于计算电力系统中各节点的电压和功率流动情况。

通过潮流计算可以得到电力系统的电压、功率、功率因数等关键参数,为电力系统的运行和规划提供有效的参考依据。

本文将介绍电力系统潮流计算的基本原理、计算方法和应用。

一、电力系统潮流计算的基本原理电力系统潮流计算基于电力系统的能量守恒原理和基尔霍夫电流定律,通过建立电力系统的节点电压和功率平衡方程组来描述系统中各节点间的电压和功率流动关系。

潮流计算的基本原理可简述为以下三个步骤:1.建立节点电压方程:根据基尔霍夫电流定律,将电力系统中各节点的电流状况表达为节点电压和导纳矩阵之间的乘积关系。

2.建立功率平衡方程:根据能量守恒原理,将电力系统中各支路的功率流动表达为节点电压和导纳矩阵之间的乘积关系。

3.解算节点电压:通过求解节点电压方程组,得到系统中各节点的电压值。

二、电力系统潮流计算的常用方法电力系统潮流计算常用的方法有高斯-赛德尔迭代法、牛顿-拉夫逊迭代法和快速潮流法等。

其中,高斯-赛德尔迭代法是一种基于节点电压的迭代算法,通过在每一次迭代中更新节点电压值来逐步逼近系统潮流平衡状态。

牛顿-拉夫逊迭代法是一种基于节点电压和节点功率的迭代算法,通过在每一次迭代中同时更新节点电压和节点功率值来逼近系统潮流平衡状态。

快速潮流法则是一种通过行列式运算直接求解节点电压的方法,对于大规模复杂的电力系统具有较高的计算效率和精度。

三、电力系统潮流计算的应用电力系统潮流计算在电力系统的规划和运行中有广泛应用。

具体应用包括:1.电力系统规划:通过潮流计算可以预测系统中各节点的电压和功率流动情况,为电力系统的设计和扩建提供参考依据。

2.电力系统稳定性分析:潮流计算可以帮助分析系统中节点电压偏差、功率瓶颈等问题,为系统的稳态和暂态稳定性分析提供基础数据。

3.运行状态分析:潮流计算可以实时监测系统中各节点的电压和功率流动情况,为电力系统的运行调度提供参考。

电力系统潮流计算汇总

电力系统潮流计算汇总

电力系统潮流计算汇总电力系统潮流计算是电力系统分析和研究的基础之一,它是通过数学方法和电力系统的物理方程,计算并确定电力系统中各节点的电压幅值和相角,以及各支路的电流大小和相位。

电力系统潮流计算可以用于电力系统的规划、设计、运行与故障分析等方面。

电力系统潮流计算主要包括直流潮流计算和交流潮流计算。

直流潮流计算是指在电力系统中忽略线路的阻抗和电抗,只考虑发电机的电动势和负荷的功率需求,采用简化模型进行计算。

直流潮流计算方法简单,适用于小型、低压、简单电力系统的计算。

然而,对于复杂的大型交流电力系统,需要进行交流潮流计算。

交流潮流计算是指在电力系统中考虑线路的阻抗和电抗,并且计算节点的电压幅值和相角,以及各线路的电流大小和相位。

交流潮流计算需要解决一组非线性方程组,使用迭代法进行求解。

常见的交流潮流计算方法有牛顿-拉夫逊法、高斯-赛德尔法和快速潮流法等。

牛顿-拉夫逊法是一种常用的交流潮流计算方法,通过迭代法求解非线性方程组。

该方法将电力系统的潮流计算问题转化为求解节点电压和功率不平衡的方程组。

牛顿-拉夫逊法采用雅可比矩阵进行线性化,通过迭代计算修正方向和步长,逐步逼近方程组的解。

然后,根据修正的节点电压和功率不平衡进行下一次迭代,直到方程组的解满足收敛条件为止。

高斯-赛德尔法是另一种常用的交流潮流计算方法,该方法通过一次迭代求解并更新所有节点的电压和功率不平衡。

高斯-赛德尔法是一种逐次迭代的方法,每次迭代将上一次的节点电压作为新的节点电压进行计算,直到满足收敛条件为止。

这种方法的关键是选择一个合适的迭代次数和收敛条件,以确保计算结果的准确性和可靠性。

快速潮流法是一种基于改进的高斯-赛德尔法的交流潮流计算方法。

它通过将电力系统的节点分为平衡节点和非平衡节点,将其中的平衡节点选为参考节点,简化了方程组的求解。

快速潮流法首先通过高斯-赛德尔法进行初始迭代,然后根据电压和功率不平衡的误差计算出修正系数,进一步修正节点的电压和功率不平衡,直到满足收敛条件为止。

配电网潮流计算及重构算法的研究

配电网潮流计算及重构算法的研究

配电网潮流计算及重构算法的研究一、概述随着能源转型的推进和智能电网的快速发展,配电网作为电力系统的末端环节,其安全、稳定、经济运行的重要性日益凸显。

配电网潮流计算及重构算法作为配电网优化运行的关键技术,对于提高配电网的供电质量、降低网损、增强系统的稳定性等方面具有重要意义。

深入研究配电网潮流计算及重构算法具有重要的理论价值和实际应用价值。

配电网潮流计算是分析配电网运行状态的基础,通过计算各节点的电压、电流、功率等参数,可以评估配电网的运行状态,为配电网的优化调度和故障分析提供依据。

配电网重构算法则是通过改变配电网中开关的状态,调整配电网的运行方式,以达到优化配电网运行的目的。

配电网重构不仅可以改善电压质量、降低网损,还可以提高配电网的供电可靠性和经济性。

目前,配电网潮流计算和重构算法的研究已取得了一定的成果,但仍存在一些挑战和问题。

例如,配电网结构复杂,节点众多,如何快速准确地完成潮流计算是一个难题配电网重构涉及到开关的优化组合问题,如何设计高效的算法来求解最优解也是一个亟待解决的问题。

本文旨在深入研究配电网潮流计算及重构算法,探讨其理论和方法,为配电网的优化运行提供理论支持和技术指导。

本文首先介绍配电网潮流计算的基本原理和方法,包括前推回代法、牛顿拉夫逊法等,并分析各种方法的优缺点和适用范围。

重点研究配电网重构算法的设计和实现,包括基于遗传算法、粒子群算法等智能优化算法的重构算法,以及基于启发式规则的重构算法等。

通过对不同算法的性能进行比较和分析,本文旨在找到一种既快速又准确的配电网重构算法,以提高配电网的运行效率和供电质量。

本文将通过仿真实验和实际案例分析,验证所提算法的有效性和可行性,为配电网的优化运行提供实际的技术支持和解决方案。

同时,本文还将对配电网潮流计算及重构算法的未来发展趋势进行展望,以期为相关领域的研究提供参考和借鉴。

1. 配电网的重要性及其在电力系统中的位置配电网是电力系统中的重要组成部分,负责将电能从高压输电网或变电站输送到终端用户。

小电网潮流分布计算

小电网潮流分布计算

小电网潮流分布计算小电网潮流分布计算随着新能源的不断发展和应用,小电网也不断地在各个地方应运而生,并得到不断的完善和发展。

然而在小电网的规划和建设过程中也面临着不少的问题,尤其是在潮流分布计算方面,对于小电网电能传输的准确性和可靠性有着重要的影响。

小电网潮流分布计算是在深入研究小电网的网络拓扑结构和电气参数的基础上,通过对小电网各个节点间电能的分布和传输进行计算分析,以探求小电网中能量传输的路径,确保小电网的电气系统的高效运行。

首先,研究小电网拓扑结构和电气参数。

小电网的网络拓扑结构表示小电网的组成部分和节点之间的连接,是小电网建设的基础。

小电网的电气参数包括电阻、电感和电容等参数,为小电网的设计和计算提供了定量分析的工具。

通过对小电网的网络拓扑结构和电气参数的研究,对于小电网电能传输的路径和潮流分布有着重要的指导作用。

其次,对于小电网潮流分布计算进行建模。

小电网潮流计算可以采用基于节点电压法的计算模型、叶片模型、欠定模型等方法,通过各节点之间的电压、电流、功率等参数来计算小电网潮流分布。

最后,基于实际场景做小电网潮流分布计算的案例分析,以验证小电网潮流分布计算的可行性和有效性。

在案例分析中,可以通过初始节点电压、电流和功率等参数,对小电网潮流分布进行计算,并对计算结果进行分析和评估,以便针对性提出建议和改进措施。

综上所述,小电网潮流分布计算是小电网建设和运行中至关重要的一环,只有深入研究小电网的网络结构和电气参数,建立适合小电网的计算模型以及进行精准的实际场景应用,才能有效地保证小电网的电能传输路径的可靠性和准确性。

在小电网的建设中,潮流分布计算的意义不容小觑。

通过潮流分布计算能够明确小电网中电能传输的路径,分析和评估各节点的电压、电流和功率等参数,进而为小电网的设计和运行提供可靠的依据和支持。

在小电网潮流分布计算中,最重要的是建立准确的小电网模型。

模型中的参数应当充分考虑实际场景、充分模拟小电网的电气参数,以确保模型的精度和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用于独立运行微电网的潮流计算方法Y.H. Liu, Z.Q. Wu, S.J Lin, N P Brandon摘要:大多数现有的潮流计算方法的使用基准节点作为整个系统的参考节点。

越来越多的新的分布式电源( DGRs)被添加到电网中。

有时,局部电网的需求或失效可能导致独立微电网形成,其被称为“独立源”系统。

然而,目前的分布式电源往往是有限的,没有任何单独的DGR可平衡电力需求和稳定微电网的频率,这意味着没有任何不稳定的节点从该微电网可以被控制。

根据现有的研究,一个DGR再加上个专门的能源存储系统和适当的控制策略(这里称为分布式发电(DG)系统)有能力来调整其输出。

这意味着个分布式发电机系统可以动态地响应电网。

这分布式发电是指个系统可以动态地响应电网。

本文将介绍一个新的潮流计算方法(关于牛顿拉夫逊潮流的解决方案为基础)具有良好的收敛性,在一个独立源系统可以容纳个平衡节点。

这种潮流结果和整个系统的频率。

该方法建议中详细讨论了不同的分布式发电机的例子系统的各种调整系数和负荷模型。

是相对于传统的潮流计算方法,使用平衡节点。

总之,该论文表明,改进方法更适合于网状拓扑系统独立源和微型电网管理稳定节点。

关键词:分布式发电,独立源,微电网,潮流计算,电力系统一、符号说明A系数i,J 节点数目:B常数n 节点系统的数目:m 非动力源系统中的节点数u;复合负荷模型恒定阻抗负荷百分比系数;复合负载模型恒定流负载百分比系数;复合负载模型恒定功率负载百分比系数;分布式发电机有功功率调节系数;分布式发电机无功功率调节系数:负荷有功功率调节系数;负荷无功功率调节系数;C变量P 有功功率;有源功率节点i;θ电压相角;i和j之间的电压相角差节Q 无功功率:有功功率注入到节点i:无功功率注入到节点i:U 电压大小:节点i的电压;节点j的电压;ΔP 有功功率的导数值;ΔQ 无功功率的导数值;ΔU 电压幅值的导数f;f 系统频率;Δ f 系统频率的导数值;D.标G 发电机;L 负载;P 有功功率;q 无功功率0 初始值二、引言作为电力系统的分析和控制的基础,潮流计算得到了广泛研究和广泛应用。

最传统的潮流计算方法需要设置系统在计算平衡节点。

越来越多的新的分布式发电资源( DGRs)被添加到电网。

这些可以包括内燃机,微型燃气轮机,燃料电池,风力涡轮机,波浪能和潮汐的分布式发电机( DG)发电机这种输出往往不作为个传统的发电机。

通常,与一个在独立源微型电网中频率调节器相比,由于损耗、传统体制,电力系统的负荷总是随时间变化而变化。

因此,在独立源微电网,没有任何单一的发生器,可以使整个系统日益增加的需求平衡。

这意味着没有任何一个独立源微电网系统,这是从传统的权力本质上的大型电力系统潮流计算不同潮流计算的不稳定节点。

已有的研究对分布式电源( DGRs)这表明,有功功率,无功功率和输出电压可调节分布式电源。

Lopes和同事讨论了通过两国能源分布式存储和逆变器控制生成,可以实现电源频率和电压,无功作为微型涡轮机和传统的同步发电机的功率类似的特征。

K. De Brabandere , 讨论了一个独立源系统的电压和频率下降的逆变器并联控制策略。

电压和功率调整DGRs能力在论文中会被考虑,几乎所有分布式电源已处理作为个松弛PQ 的节点。

但是在潮流计算仍然需要不稳定节点。

传统的分配制度包括径向,链条或其他简单的结构。

使用嵌入式发电机是一个灵活的结构可以确保电力供应给客户。

然而,灵活的结构也可能导致个复杂的网络拓扑。

由于其二次收敛的牛顿迭代法是广泛应用于电力与复杂拓扑网的解决方案。

在此,提出一种新的潮流计算方法的牛顿拉夫逊方法基础上,提出解决孤岛微电网潮流。

没有任何不稳定节点设置,而电压和功率调节能力的分布式电源考虑。

基于IEEE 5节点与环结构,一个系统是一系列的比较,例如:不同地点的DGs,不同特性的DGs,以及具有不同特点的负载。

三、独立源微电网一般来说,分布式发电机范围输出功率为从几千瓦到50兆瓦。

虽然普通的水电发电机和燃煤发电机容量大约从百万千瓦到300兆瓦。

因此DG的容量远小于普通的发电机。

虽然一些接口(通常是逆变器),分布式发电机可以提供功率给交流负载。

因此,一个分布式发电机的能力大大高于传统的发电机。

通过控制逆变器,分布式发电机的输出可以被控制。

有时一个大型系统故障是由独立源系统的造成的。

为了维持当地的电力供应,分布式发电机和它的本地负载作为独立的系统,而不是成为某个保持与主电网的连结独立源系统。

另种情况是为了满足些偏远的客户或大客户的需求。

电力供应商和当地的负荷自然而然的形成个微电网,这个称为独立源系统。

局部使用分布式发电供电可以节省能源和成本。

独立源意味着微电网络是完全独立,从大规模的系统中分离出来,并没有与电气或磁性连接。

整个系统必须保持平衡的频率和电压,整个系统的水平必须维持在可接受的范围内。

由于分布式发电机的输出是太有限频率进行调整,分布式发电机必须携手合作。

四、潮流计算相对于传统的潮流计算,本论文所介绍的潮流和频率计算分析与分布式发电系统独立源。

A.节点类型在传统的潮流计算,第一个步骤是分类系统的节点。

系统的节点通常可以分为三大类:PQ的节点,PV节点和不稳定节点(Vθ节点)。

平衡节点,也称为松弛节点,担负着整个系统的频率调整。

这通常是个大型的水电站,它有能力迅速产生大量的输出。

在现实的系统里负载随着时间的变化。

发电机的输出随负荷相应变化。

整个系统,保持动态平衡与它的频率,维持在可接受的范围之内。

在本文中,在整个变化的系统中分布式发电机的输出被自动分配给动态平衡负载。

这里是松弛的PQ的节点,而不是任何其他类型的节点,例如平衡节点。

B.节点方程每一个分布式发电机都有调节不同功率的能力,通过他的等式方程表示不同的调节系数:(1)本文的负荷模型是一个组合模型的三种单独的模型构造。

考虑静态特性,任何负荷节点的功率方程被(2):++(2)其中Ai+Bi+Ci=l.C.雅可比矩阵关键问题是使用牛顿迭代潮流的解决方案是雅可比矩阵及的逆。

上述节点功率平衡方程考虑的是电源和负载的调节作用。

因此,除分矩阵L(N*n),M(N*n-1阶),N(n*n阶)和H(n*n-1阶)相似与传统的雅可比矩阵,有额外的子矩阵E(n*1阶),M(n*1阶)分别表示其之间的有功与无功功率频率偏差的关系:=- (3) 各子矩阵的详细内容是为如下:数:五、实例分析一般来说,一个传统的分布式电力系统网络拓扑结构是根。

一个拓扑分布式网络与分布式发电机可能更为复杂。

对牛顿迭代法的基础上,本文提出的方法适应了这两个根和循环网络潮流计算的拓扑:A.系统及参数在一个例子,把在IEEE.5节点高电压系统(传输系统)转化一个微电网(图1)。

除了减少系统的基础能力到100KVA,我们消除了在低电压等级中不被考虑的分支。

其他参数是在文献中给出的相同。

B假定条件电阻和电抗分布式系统是不同的传输系统。

现实的分布式系统的拓扑结构更有可能会比在本文的例子复杂。

讨论的重点在独立源系统与各个分布式发电机的合作的潮流计算。

每个分布式发电机的超出限制的输出功率/电压没有被考虑到。

我们假设系统的频率保持在一个可接受的范围。

假定功率源的等效调节系数和负载系数值,用来方便计算的和讨论。

例如,如果一个分布式发电机无功功率调节能力很差,那么它的无功功率调节系数设置为0。

在此模型中,我们只讨论对称三相功率潮流。

复杂的三相不对称情况将在进一步的工作中被讨论。

C算例和参考数据构建一系列的比较,基于IEEE 5节点与环结构体系(图1)。

表1显示的分布式电源不同地点,不同分布式发电的不同特征被赋予不同的系数。

负荷调节能力已考虑。

表Ⅰ不同的调控系数K1 K2 K3 K4 K5 K6n Kv1 Kf1 Kv2 Kf2 Kv3 Kf3 Kv4 Kf4 Kv5 Kf5 Kv6 Kf61 -2 2 -2 2 -2 2 -2 2 0 0 -2 22 -2 2 -2 2 -2 2 -2 2 0 0 -2 23 -2 2 -2 2 -2 2 -2 2 0 0 -2 24 20 20 0 20 20 40 0 0 20 20 10 105 20 40 20 40 20 20 0 0 20 40 10 20Kf(频率调节系数)-DG:;负载:。

KV(电压调节系数)-DG:;负载:。

表1从K1的DGs不同于K2:K3的DGs与这些在K1中显示的交换了位置;K4显示的DGs也没有调控能力:K5的不考虑每个负载的调节能力。

K6意味着每个DG达到Kl一半的能力。

不同负荷模型被认为是通过给定不同复台载荷的比例系数而构成的。

表Ⅱ不同负荷对比模型百分比L1:combined nodel L2:pureresistanceL3:pure current L4:pure powerA1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4 PL 0.3 0.3 0.4 1 0 0 0 1 0 0 0 1QL 0.3 0.3 0.3 1 0 0 0 1 0 0 0 1 13例(c)被比较(见表三)。

前两个Co和CI的情况下使用的是传统的电力潮流计算方法供应量(M1),其他例子使用在这个论文中提出改进方法量(M2)。

节点5设置是不稳定供应量M1节点。

在M2,C2到C9中考虑到中不同的调控系数和他们的不同位置(表一所示),不同负荷不同调节系数(表一所示),不同的负荷模型(表二所示)。

表Ⅲ对照不同的计算例C 描述不同的案例0 M1:恒定功率负载,基本负载1 M1:恒定功率负载,每个负载增加10%2 M2:K1 电压恒定系数,L1 负载,基本负载3 M2:K1 电压恒定系数,L1 每个负载增加10%4 M2:K2 电压恒定系数,L1 基本负载5 M2:K3 电压恒定系数,L1 基本负载6 M2:K4 电压恒定系数,L1 基本负载7 M2:K4 电压恒定系数,L1 每个负载增加10%8 M2:K5 电压恒定系数,L1 基本负载9 M2:K6 电压恒定系数,L1 基本负载10 M2:K6 电压恒定系数,L2 基本负载11 M2:K6 电压恒定系数,L3 基本负载12 M2:K6 电压恒定系数,L4 基本负载C:不同的计算例,M:潮流计算法,M1-传统方法,M2-改进方法;K1-K6:发电系数不同的负荷模型,见表一;L1-L4:基本负载模型,见表二。

初始值在表四表示(数据每单位价值);表四显示每个电力节点的初试数据。

对每个节点的电压大小的初试值是1.0,每个节点电压的电压相是0.表Ⅳ初始值有功/无功功率在每个节点节点 1 2 3 4 5P Q 1.6 2.0 3.7 5.005 2.68 0.8 1.0 1.3 1.81 2.2D.结论迭代结果的误差小于在M1,频率总是被看成50Hz.表五显示的是M2在不同的例子中系统频率的计算:表Ⅴ系统频率不同c 2 3 4 5 6 7 8 9 10 1112f 50 49.884 49.895 49.996 47.213 49.107 50 49.983 49.74 49.968 50.121图2,3和4分别显示了(单位价值)如何有功功率,无功功率和电压随不同的情况而变化。

相关文档
最新文档