典型例题解析:比例线段

合集下载

比例线段的计算及证明讲义(大同作业)

比例线段的计算及证明讲义(大同作业)

比例线段的计算和证明Ⅰ. 例题精解 一、 确定性与有关比、比例的计算例题1. △ABC 中,点D 在直线AB 上,点E 在直线AC 上,且DE ∥BC. (1)若AD=3DB ,求DE ∶BC 的值; (2)若DE ∶BC=1∶3,求AD ∶BD 的值例题2. 若P 、Q 是线段MN 的两个黄金分割点,求MPPQ的值。

例题3. 已知菱形ABCD 的边长是6,点E 在直线AD 上,DE=2,连接BE 与对角线AC 相交于点M , 则MC ∶AM 的值为例题4. △ABC 中,D 、E 、F 分别在AB 、AC 、BC 上,DE//BC ,DF//AC ,AC=8,BC=6,若四边形CEDF 的一组邻边之比为1︰2。

求四边形CEDF 的周长。

例题5. 已知三个数1、2、3,请你再添上一个数,使它们构成一个比例式,则这个数是多少?二、归纳与探究例题6. (1)如图,两根电线杆AB 、CD 直立于地面,每根电线杆的顶端与另一根电线杆的底端用缆绳AD 、BC 相连,已知AB=4米,CD=6米,求AD 、BC 的交点E 离地面的距离EF.(2)若变成右图所示,AD ∥BC ,AC 与BD 交于点O ,过点O 作OE ∥DA ,交AB 于点E .当AD=a ,BC =b 时,用a 、b 表示OE 的长例题7. 在△ABC 中,D 为BC 边的中点,E 为AC 边上任意一点,BE 交AD 于点O . 某学生在研究这一问题时,发现了如下的事实:(1) 当11121+==AC AE 时,有12232+==AD AO (如图1); (2) 当21131+==AC AE 时,有22242+==AD AO (如图2); (3) 当31141+==AC AE 时,有32252+==AD AO (如图3). 在图4中,当n AC AE +=11时,参照上述研究结论,请你猜想用n 表示ADAO的一般结论,并给出证明(其中n 为正整数).三、利用中间比过渡例题8. 如图,过□ABCD 对角线BD 上任意一点P ,作直线交□ABCD 的两组对边(或延长线)于点E 、F 、G 、H.求证:PE·PH=PF·PG .四、面积问题例题9. 如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,BH 交DE 于M ,BG 交DF 于N ,求ABCDMBND S S 四边形四边形的值。

4.1 成比例线段(练习)(解析版)

4.1 成比例线段(练习)(解析版)

第四章 图形的相似4.1 成比例线段精选练习一、单选题1.(2022·山东淄博·八年级期末)如果线段3a =,2b =,且b 是线段a 和c 的比例中项,那么c =( )A .23B .32C .34D .432.(2021·浙江·杭州第十四中学附属学校九年级阶段练习)若y ﹣2x =0,则x :y 等于( )A .1:2B .1:4C .2:1D .4:13.(2021·江苏·南通市八一中学九年级阶段练习)已知35ab=,则a bb a+-的值为( )A.2B.52C.4D.454.(2022·全国·九年级专题练习)已知67xy=,则下列结论一定成立的是( )A.x=6,y=7B.137x yy+=C.y﹣x=1D.76x y=5.(2021·福建东盛集团股份有限公司九年级期中)下列各组线段中,不成比例的是( )A.30cm,20cm,90cm,60cm B.4cm,6cm,8cm,10cmC .11cm,22cm,33cm,66cmD .2cm,4cm,4cm,8cm 【答案】B 【分析】四条线段成比例,根据线段的长短关系,从小到大排列,判断中间两项的积是否等于两边两项的积,相等即成比例;不相等即不成比例.【详解】A 、从小到大排列,由于20×90=30×60,所以成比例,不符合题意;B 、从小到大排列,由于4×10≠6×8,所以不成比例,符合题意;C 、从小到大排列,由于22×33=11×66,所以成比例,不符合题意;D 、从小到大排列,由于4×4=2×8,所以成比例,不符合题意.故选 B .【点睛】本题考查应用比例的基本性质判断成比例线段.将所给的四条线段长度按大小顺序排列,若最长和最短两条线段之积与另两条线段之积相等,则说明四条线段成比例.6.(2021·安徽亳州·九年级阶段练习)若2a c b d ==-,则a c b d --=( )A .2-B .2C .12-D .12二、填空题7.(2021·福建·漳州三中九年级期中)若275x y z ==,则x y z x -+=__.8.(2021·山东济南·九年级期中)若23yx=,则x yx+=____.【答案】53##2139.(2022·浙江省义乌市廿三里初级中学九年级期中)已知a=1,b=4,则a,b的比例中项c的值为________.【答案】±2【分析】根据比例中项的概念得到2c ab=,再根据平方根的定义求得c即可.【详解】解:∵c为a、b的比例中项,∴2c ab=,∵a=1,b=4,∴24c ab==,解得:c=±2,故答案为:±2.【点睛】本题考查比例中项的概念、平方根的求法,熟练掌握比例中项的概念得到2c ab=是解答的关键,注意正数的平方根有两个,且互为相反数.10.(2022·江苏镇江·中考真题)《九章算术》中记载,战国时期的铜衡杆,其形式既不同于天平衡杆,也异于称杆衡杆正中有拱肩提纽和穿线孔,一面刻有贯通上、下的十等分线.用该衡杆称物,可以把被称物与砝码放在提纽两边不同位置的刻线上,这样,用同一个砝码就可以称出大于它一倍或几倍重量的物体.图为铜衡杆的使用示意图,此时被称物重量是砝码重量的_________倍.【答案】1.2【分析】设被称物的重量为a,砝码的重量为1,根据图中可图列出方程即可求解.【详解】解:设被称物的重量为a,砝码的重量为1,依题意得,2.531a=´,解得 1.2a=,故答案为:1.2.【点睛】本题考查了比例的性质,掌握杠杆的原理是解题的关键.三、解答题11.(2022·广西·靖西市教学研究室九年级期中)如果a c ekb d f===(b+d+f≠0),且a+c+e=5(b+d+f).求k的值.12.(2022·全国·九年级专题练习)已知a:b=3:2,求:(1)a b b +(2)27 4a bb-13.(2022·全国·九年级专题练习)(1)已知线段a=2,b=9,求线段a,b的比例中项.(2)已知x:y=4:3,求y xy-的值.一、填空题1.(2022·湖南·岳阳市第十九中学九年级期末)若34a c e b d f ===,则2323a c e b d f -+=-+______.2.(2022·江西景德镇·九年级期末)已知234a b c ==¹,且4a b c +-=,则=a ______.3.若3是x 和4的比例中项,则x 的值为___________4.(2021·四川内江·中考真题)已知非负实数a ,b ,c 满足123234a b c ---==,设23S a b c =++的最大值为m ,最小值为n ,则n m 的值为 __.【答案】1116+##0.6875二、解答题5.(2022·全国·九年级专题练习)已知3a b +=4b c +=5c a +,求a b c c a b ---+的值.6.(2022·全国·九年级专题练习)已知2222a b c d b c d a c d a b d a b c ===++++++++=k ,求k 2-3k-4的值.【点睛】本题主要考查了比例的性质的运用,解决问题的关键是掌握比例的性质.7.(2022·全国·九年级专题练习)已知线段a 、b 满足a :b =3:2,且a +2b =28(1)求a 、b 的值.(2)若线段x 是线段a 、b 的比例中项,求x 的值.8.(2022·全国·九年级专题练习)(1)若x y =115,求代数式2x y y -的值;(2)已知2a =3b =5c ≠0,求代数式23a b c a b c -+-+的值.。

线段的比与比例线段

线段的比与比例线段

线段比与比例线段的联系
定义关联
线段比描述了两条线段长 度的相对大小,而比例线 段则是基于线段比构建的 一种特殊线段关系。
性质相通
在比例线段中,若两条线 段成比例,则它们的比值 是相等的,这与线段比的 性质是一致的。
应用互补
在解决几何问题时,线段 比和比例线段经常相互补 充,共同构建解题思路。
线段比与比例线段的区别
线段的比与比例 线段
目录
• 线段比的基本概念 • 比例线段的基本概念 • 线段比与比例线段的关系 • 线段比与比例线段的应用 • 典型例题解析
01
线段比的基本概念
定义与性质
定义:对于两条线段a和b(b≠0),线段 a与b的比定义为a/b,记作a:b。
线段比具有对称性,即若a:b=c:d,则 b:a=d:c。
利用平行线分线段成比例定理,可以求解未知线段的长度或证明线段的比例关系。
在复杂图形中,可以通过作平行线构造相似三角形,进而利用相似三角形的性质求 解问题。
在其他几何问题中的应用
在几何变换(如平移、旋转、缩放等) 中,线段之间的比例关系保持不变。
在解析几何中,线段的比和比例关系 可以用于求解方程、证明定理等。
定义与性质
定义
两组线段,若它们的 比值相等,则称这两 组线段为比例线段。
反比性质
若a/b = c/d,则b/a = d/c。
更比性质
若a/b = c/d,则 a+b/b = c+d/d。
合比性质
若a/b = c/d,则 (a+b)/b = (c+d)/d。
等比性质
若a/b = c/d = ... = m/n,则 (a+c+...+m)/(b+d+ ...+n) = a/b。

学姐笔记-中考数学几何经典题型比例线段

学姐笔记-中考数学几何经典题型比例线段

比例线段知识考点:本节知识在历年中考的考题中,主要涉及用比例的性质、平行线分线段成比例定理。

由于比例的性质在应用时有其限制条件,一些中考题又以此为背景设计分类求解题。

精典例题:【例1】已知0543≠==zy x ,那么z y x z y x +++-= 。

分析:此类问题有多种解法,一是善于观察所求式子的特点,灵活运用等比性质求解;二是利用方程的观点求解,将已知条件转化为z x 53=,z y 54=,代入所求式子即可得解;三是设“k ”值法求解,这种方法对于解有关连比的问题十分方便有效,要掌握好这一技巧。

答案:31变式1:已知32===f e d c b a ,若032≠-+-f d b ,则3222-+--+-f d b e c a = 。

变式2:已知3:1:2::=z y x ,求yx zy x 232++-的值。

变式3:已知aac b b c b a c c b a k -+=+-=-+=,则k 的值为 。

答案:(1)32;(2)3;(3)1或-2; 【例2】如图,在△ABC 中,点E 、F 分别在AB 、AC 上,且AE =AF ,EF 的延长线交BC 的延长线于点D 。

求证:CD ∶BD =CF ∶BE 。

分析:在题设中,没有平行的条件,要证明线段成比例,可考虑添加平行线,观察图形,对照结论,需要变换比CF ∶BE ,为了变换比CF ∶BE ,可以过点C 作BE 的平行线交ED 于G ,并设法证明CG =CF 即可获证。

本例为了实现将比CF ∶BE 转换成比CD ∶BD 的目的,还有多种不同的添画平行线的方法,它们的共同特征都是构造平行线截得的线段成比例的基本图形,请你们参考图形,自己去构思证明。

例2图1GFEDCBA 例2图2 GF EDC B A例2图3GFEDC B A变式1:已知如图,D 是△ABC 的边BC 的中点,且31=BE AE ,求FCAF的值。

变式2:如图,BD ∶DC =5∶3,E 为AD 的中点,求BE ∶EF 的值。

比例线段-2023年新九年级数学核心知识点与常见题型(沪教版)(解析版)

比例线段-2023年新九年级数学核心知识点与常见题型(沪教版)(解析版)

比例线段【知识梳理】一.比例的性质(1)比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(2)常用的性质有:①内项之积等于外项之积.若=,则ad=bc.②合比性质.若=,则=.③分比性质.若=,则=.④合分比性质.若=,则=.⑤等比性质.若==…=(b+d+…+n≠0),则=.二.比例线段(1)对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如ab =cd(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.(2)判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.三.黄金分割(1)黄金分割的定义:如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC =AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.(2)黄金三角形:黄金三角形是一个等腰三角形,其腰与底的长度比为黄金比值.黄金三角形分两种:①等腰三角形,两个底角为72°,顶角为36°.这样的三角形的底与一腰之长之比为黄金比:;②等腰三角形,两个底角为36°,顶角为108°;这种三角形一腰与底边之长之比为黄金比:.(3)黄金矩形:黄金矩形的宽与长之比确切值为.【考点剖析】一.比例的性质(共15小题)1.(2018秋•浦东新区期中)已知3x=5y(y≠0),则下列比例式成立的是()A.=B.=C.=D.=【分析】直接利用比例的性质得出x,y之间关系进而得出答案.【解答】解:A、=,可以化成:xy=15,故此选项错误;B、=,可以化成:3x=5y,故此选项正确;C、=,可以化成:5x=3y,故此选项错误;D、=,可以化成:5x=3y,故此选项错误.故选:B.【点评】此题主要考查了比例的性质,正确掌握比例的基本性质是解题关键.2.(2023•青浦区一模)已知三个数1、3、4,如果再添上一个数,使它们能组成一个比例式,那么这个数可以是()A.6B.8C.10D.12【分析】根据比例的性质分别判断即可.【解答】解:1:3=4:12,故选:D.【点评】此题主要考查了比例的性质,正确把握比例的性质是解题关键.3.(2023•普陀区一模)已知,x+y=10,那么x﹣y=.【分析】直接利用已知代入求出y的值,即可得出x的值,进而得出答案.【解答】解:∵,x+y=10,∴x=y,则y+y=10,解得:y=4,那么x﹣y=6﹣4=2.故答案为:2.【点评】此题主要考查了比例的性质,正确将已知代入是解题关键.4.(2022秋•奉贤区期中)已知:==,2x﹣3y+4z=33,求代数式3x﹣2y+z的值.【分析】设比值为k,用k表示出x、y、z,然后代入等式求出k,从而得到x、y、z,再代入代数式进行计算即可得解.【解答】解:设===k,则x=2k,y=3k,z=4k,∵2x﹣3y+4z=33,∴4k﹣9k+16k=33,解得k=3,∴x=6,y=9,z=12,∴3x﹣2y+z=3×6﹣2×9+12=18﹣18+12=12.【点评】本题考查了比例的性质,利用“设k法”表示出x、y、z求解更简便.5.(2022秋•金山区校级期末)根据4a=5b,可以组成的比例有()A.B.C.D.【分析】根据比例的性质,进行计算即可解答.【解答】解:A、∵=,∴5a=4b,故A不符合题意;B、∵=,∴5a=4b,故B不符合题意;C、∵=,∴4a=5b,故C符合题意;D、∵=,故D不符合题意.故选:C.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.6.(2022秋•浦东新区期中)已知=,那么的值为()A.B.C.D.﹣【分析】利用比例的性质,进行计算即可解答.【解答】解:∵=,∴=1﹣=1﹣=,故选:B.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.7.(2022秋•嘉定区校级期末)如果2a=3b(a、b都不等于零),那么=.【分析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【解答】解:∵2a=3b(a、b都不等于零),∴设a=3x,则b=2x,那么==.故答案为:.【点评】本题考查了比例的性质,掌握正确表示出a,b的值是关键.8.(2022秋•奉贤区期中)已知,且2a﹣3b+c=28,求代数式a+b﹣c的值.【分析】利用设k法,进行计算即可解答.【解答】解:设===k,则a=2k,b=5k,c=7k,∵2a﹣3b+c=28,∴4k﹣15k+7k=28,解得:k=﹣7,∴a=﹣14,b=﹣35,c=﹣49,∴a+b﹣c=﹣14+(﹣35)﹣(﹣49)=﹣49+49=0,∴代数式a+b﹣c的值为0.【点评】本题考查了比例的性质,熟练掌握设k法是解题的关键.9.(2022秋•上海月考)已知a、b、c分别是△ABC的三条边的边长,且a:b:c=5:7:8,3a﹣2b+c=9,求△ABC的周长.【分析】设a=5k,b=7k,c=8k,再代入等式3a﹣2b+c=9,求出k的值,从而得到a、b、c的值,然后根据三角形周长公式进行计算,即可得解.【解答】解:设a=5k,b=7k,c=8k,代入3a﹣2b+c=9得,15k﹣14k+8k=9,解得:k=1,则a=5,b=7,c=8,所以△ABC的周长是:5+7+8=20.【点评】本题考查了比例的性质以及代数式求值,解决此类题目时利用“设k法”求解更简便.10.(2022秋•虹口区期中)已知:==≠0,且a+b+c=36,求a、b、c的值.【分析】可设===k(k≠0),可得a=3k,b=4k,c=5k,再根据a+b+c=36可得关于k的方程,解方程求出k,进一步求得a、b、c的值.【解答】解:设===k≠0,则a=3k,b=4k,c=5k,∵a+b+c=36,∴3k+4k+5k=36,解得k=3,则a=3k=9,b=4k=12,c=5k=15.【点评】此题考查了比例的性质,设k法得到关于k的方程是解题的关键.11.(2021秋•徐汇区校级月考)已知,求的值.【分析】先设===k,可得x=2k,y=3k,z=4k,再把x、y、z的值都代入所求式子计算即可.【解答】解:设===k,则x=2k,y=3k,z=4k,==11.【点评】本题考查了比例的性质.解题的关键是先假设设===k,可得x=2k,y=3k,z=4k,降低计算难度.12.(2021秋•奉贤区校级期中)已知:a:b:c=3:4:5.(1)求代数式的值;(2)如果3a﹣b+c=10,求a、b、c的值.【分析】设a=3k,b=4k,c=5k,(1)把a=3k,b=4k,c=5k代入代数式中进行分式的混合运算即可;(2)把a=3k,b=4k,c=5k代入3a﹣b+c=10得到关于k的方程,求出k,从而得到a、b、c的值.【解答】解:∵a:b:c=3:4:5,∴设a=3k,b=4k,c=5k,(1)==;(2)∵3a﹣b+c=10,∴9k﹣4k+5k=10,解得k=1,∴a=3,b=4,c=5.【点评】本题考查了比例的性质:熟练掌握比例的基本性质(内项之积等于外项之积、合比性质、分比性质、合分比性质、等比性质等)是解决问题的关键.13.(2022秋•奉贤区期中)已知实数a、b、c满足,且a﹣3b+2c=﹣8.求的值.【分析】设a=3k,b=5k,c=4k,根据a﹣3b+2c=﹣8,得k=2,a=6,b=10,c=8,即可求出答案.【解答】解:∵,∴设a=3k,b=5k,c=4k,∵a﹣3b+2c=﹣8,∴3k﹣15k+8k=﹣8,∴k=2,∴a=6,b=10,c=8,∴==1.【点评】本题考查了比例的基本性质,根据已知条件列方程是关键.14.(2021秋•奉贤区校级期中)已知实数x、y、z满足==,且x﹣2y+3z=﹣2.求:的值.【分析】设===k(k≠0),得出x=3k,y=5k,z=2k,再根据x﹣2y+3z=﹣2,求出k的值,从而得出x、y、z的值,然后代入要求的式子进行计算即可得出答案.【解答】解:∵==,设===k(k≠0),∴x=3k,y=5k,z=2k,∵x﹣2y+3z=﹣2,∴3k﹣10k+6k=﹣2,∴k=2,∴x=6,y=10,z=4,∴==2.【点评】本题考查了比例的性质:熟练掌握比例的基本性质(内项之积等于外项之积、合比性质、分比性质、合分比性质、等比性质等)是解决问题的关键.15.(2022秋•嘉定区期中)已知==≠0,且5x+y﹣2z=10,求x、y、z值【分析】首先设x=2a,y=3a,z=4a,然后再代入5x+y﹣2z=10,可得a的值,进而可得答案.【解答】解:设x=2a,y=3a,z=4a,∵5x+y﹣2z=10,∴10a+3a﹣8a=10,5a=10,a=2,∴x=4,y=6,z=8.【点评】此题主要考查了比例的性质,关键是掌握用同一未知数表示各未知数.二.比例线段(共10小题)16.(2021秋•徐汇区校级期中)下列各组的四条线段a,b,c,d是成比例线段的是()A.a=4,b=6,c=5,d=10B.a=1,b=2,c=3,d=4C.,b=3,c=2,D.a=2,,,【分析】根据比例线段的定义即如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对选项一一分析,即可得出答案.【解答】解:A.4×10≠6×5,故不符合题意,B.1×4≠2×3,故不符合题意,C.≠2×3,故不符合题意,D.,故符合题意,故选:D.【点评】此题考查了比例线段,根据成比例线段的概念,注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.同时注意单位要统一.17.(2023•长宁区一模)已知线段a、b、c、d是成比例线段,如果a=1,b=2,c=3,那么d的值是()A.8B.6C.4D.1【分析】根据成比例线段的概念可得a:c=c:b,可求d的值.【解答】解:∵线段a、b、c、d是成比例线段,a=1,b=2,c=3,∴a:b=c:d,即1:2=3:d,解得:d=6.故选:B.【点评】此题考查了比例线段,掌握比例线段的定义是解题的关键.18.(2023•宝山区一模)已知线段a、b,如果a:b=2:3,那么下列各式中一定正确的是()A.2a=3b B.a+b=5C.D.【分析】根据比例的性质进行判断即可.【解答】解:A、由a:b=2:3,得3a=2b,故本选项错误,不符合题意;B、当a=4,b=6时,a:b=2:3,但是a+b=10,故本选项错误,不符合题意;C、由a:b=2:3,得=,故本选项正确,符合题意;D、当a=4,b=6时,a:b=2:3,但是=,故本选项错误,不符合题意.故选:C.【点评】本题考查了比例的性质及式子的变形,用到的知识点:在比例里,两外项的积等于两内项的积,比较简单.19.(2022秋•嘉定区期中)如果mn=pq,那么下列比例式正确的是()A.B.C.D.【分析】从选项判断,把每一个比例式化成等积式即可解答.【解答】解:A、∵,∴mq=pn,故不符合题意;B、∵,∴qm=pn,故不符合题意;C、∵,∴mn=pq,故符合题意;D、∵,∴pm=qn,故不符合题意,故选:C.【点评】本题考查了比例的性质,把比例式化成等积式是解题的关键.20.(2021秋•金山区期末)在比例尺是1:200000的地图上,两地的距离是6cm,那么这两地的实际距离为()A.1.2km B.12km C.120km D.1200km【分析】设这两地的实际距离为xcm,根据比例尺的定义列出方程,然后求解即可得出答案.【解答】解:设这两地的实际距离为xcm.由题意得:=,解得x=1200000,经检验,x=1200000是分式方程的解,1200000cm=12km,故选:B.【点评】本题考查比例线段,比例尺的定义,解题的关键是熟练掌握比例尺性质,属于中考常考题型.21.(2020秋•静安区期末)已知线段x,y满足=,求的值.【分析】先根据比例的基本性质得到y(2x+y)=x(x﹣y),可得x2﹣3xy﹣y2=0,再把y当作已知数,解关于x的方程即可求得的值.【解答】解:∵=,∴y(2x+y)=x(x﹣y),则x2﹣3xy﹣y2=0,解得x1=y,x2=y(负值舍去).故的值为.【点评】考查了比例线段,关键是熟练掌握比例的基本性质,得到x=y是解题的难点.22.(2023•金山区一模)下列各组中的四条线段成比例的是()A.1cm,2cm,3cm,4cm B.2cm,3cm,4cm,5cmC.2cm,3cm,4cm,6cm D.3cm,4cm,6cm,9cm【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A、∵1×4≠2×3,∴四条线段不成比例,不符合题意;B、∵2×5≠3×4C、∵2×6=3×4,∴四条线段成比例,符合题意;D、∵3×9≠4×6,∴四条线段成比例,不符合题意;故选:C.【点评】此题考查了比例线段,理解成比例线段的概念,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.23.(2021秋•黄浦区期末)4和9的比例中项是()A.6B.±6C.D.【分析】根据比例的基本性质:两外项之积等于两内项之积求解.【解答】解:根据比例中项的概念结合比例的基本性质得:比例中项的平方等于两条线段的乘积.设它们的比例中项是x,则x2=4×9,解得x=±6.故选:B.【点评】本题考查了比例中项的概念:当比例式中的两个内项相同时,即叫比例中项.求比例中项根据比例的基本性质进行计算.24.(2021秋•奉贤区校级期中)已知:线段a、b、c,且.(1)求的值;(2)如线段a、b、c满足3a﹣4b+5c=54,求a﹣2b+c的值.【分析】(1)设===k,则a=3k,b=4k,c=5k,代入所求代数式即可;(2)把a=3k,b=4k,c=5k代入3a﹣4b+5c=54求出k,把k值代入所求代数式即可.【解答】解:设===k,则a=3k,b=4k,c=5k,(1)===;(2)∵3a﹣4b+5c=54,∴9k﹣16k+25k=54,解得:k=3,∴a﹣2b+c=3k﹣8k+5k=0.【点评】本题主要考查了比例线段,设===k得到a=3k,b=4k,c=5k是解决问题的关键.25.(2021秋•宝山区校级月考)已知a、b、c是△ABC的三边长,且==≠0,求:(1)的值.(2)若△ABC的周长为90,求各边的长.【分析】(1)设===k,易得a=5k,b=4k,c=6k,然后把它们分别代入中,再进行分式的运算即可;(2)根据三角形周长定义得到5k+4k+6k=90,解关于k的方程求出k,然后计算5k、4k和6k即可.【解答】解:(1)设===k,则a=5k,b=4k,c=6k,所以==;(2)5k+4k+6k=90,解得k=6,所以a=30,b=24,c=36.【点评】本题考查了比例线段:对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a:b=c:d(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.三.黄金分割(共7小题)26.(2023•长宁区一模)已知P是线段AB的黄金分割点,且AP>BP,那么的值为()A.B.C.D.【分析】利用黄金分割的定义,进行计算即可解答.【解答】解:∵P是线段AB的黄金分割点,且AP>BP,∴=,∴==,∴=﹣1=﹣1==,故选:C.【点评】本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.27.(2022秋•徐汇区期末)已知点P、点Q是线段AB的两个黄金分割点,且AB=10,那么PQ的长为()A.5(3﹣)B.10(﹣2)C.5(﹣1)D.5(+1)【分析】先由黄金分割的比值求出BP=AQ=5(﹣1),再由PQ=AQ+BP﹣AB进行计算即可.【解答】解:如图,∵点P、Q是线段AB的黄金分割点,AB=10,∴BP=AQ=AB=5(﹣1),∴PQ=AQ+BP﹣AB=10(﹣1)﹣10=10(﹣2),故选:B.【点评】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,熟记黄金比是解题的关键.28.(2021秋•金山区期末)如果点P是线段AB的黄金分割点,且AP<BP,那么的值等于()A.+1B.﹣1C.D.【分析】由黄金分割的定义得=,即可得出答案.【解答】解:∵点P是线段AB的黄金分割点(AP<BP),∴===,故选:D.【点评】本题考查了黄金分割的定义,熟练掌握黄金分割的定义及黄金比值是解题的关键.29.(2022秋•嘉定区期中)已知点A、B、C在一条直线上,AB=1,且AC2=BC•AB,求AC的长.【分析】分三种情况:当点C在线段AB上,当点C在线段AB的延长线时,当点C在线段BA的延长线时,然后分别进行计算即可解答.【解答】解:分三种情况:当点C在线段AB上,如图:∵AC2=BC•AB,∴点C是AB的黄金分割点,∴AC=AB=×1=;当点C在线段AB的延长线时,如图:设AC=x,则BC=AC﹣AB=x﹣1,∵AC2=BC•AB,∴x2=(x﹣1)•1,整理得:x2﹣x+1=0,∴原方程没有实数根;当点C在线段BA的延长线时,如图:设AC=x,则BC=AC+AB=x+1,∵AC2=BC•AB,∴x2=(x+1)•1,整理得:x2﹣x﹣1=0,解得:x1=,x2=(不符合题意,舍去),∴AC的长为;综上所述,AC的长为或.【点评】本题考查了黄金分割,分三种情况讨论是解题的关键.30.(2022秋•宝山区校级月考)已知点C在线段AB上,且满足AC2=AB•BC.(1)若AB=1,求AC的长;(2)若AC比BC大2,求AB的长.【分析】(1)根据已知可得点C是线段AB的黄金分割点,从而可得AC=AB,然后进行计算即可解答;(2)根据已知可设AC=x,则BC=x﹣2,从而可得AB=2x﹣2,然后根据AC2=AB•BC,可得x2=(2x﹣2)(x﹣2),从而进行计算即可解答.【解答】解:(1)∵点C在线段AB上,且满足AC2=AB•BC,∴点C是线段AB的黄金分割点,∴AC=AB=,∴AC的长为;(2)∵AC比BC大2,∴设AC=x,则BC=x﹣2,∴AB=AC+BC=2x﹣2,∵AC2=AB•BC,∴x2=(2x﹣2)(x﹣2),解得:x1=3+,x2=3﹣(舍去),∴AB=2x﹣2=2+4,∴AB的长为2+4.【点评】本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.31.(2020秋•闵行区期末)古希腊艺术家发现当人的头顶至肚脐的长度(上半身的长度)与肚脐至足底的长度(下半身的长度)的比值为“黄金分割数”时,人体的身材是最优美的.一位女士身高为154cm,她上半身的长度为62cm,为了使自己的身材显得更为优美,计划选择一双合适的高跟鞋,使自己的下半身长度增加.你认为选择鞋跟高为多少厘米的高跟鞋最佳?()A.4cm B.6cm C.8cm D.10cm【分析】她下半身的长度为92cm,设鞋跟高为x厘米时,她身材显得更为优美,利用黄金分割的定义得到≈0.618,然后解方程即可.【解答】解:∵一位女士身高为154cm,她上半身的长度为62cm,∴她下半身的长度为92cm,设鞋跟高为x厘米时,她身材显得更为优美,根据题意得≈0.618,解得x≈8.3(cm).经检验x=8.3为原方程的解,所以选择鞋跟高为8厘米的高跟鞋最佳.故选:C.【点评】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC≈0.618AB,并且线段AB的黄金分割点有两个.也考查了解分式方程.32.(2019秋•嘉定区校级月考)已知:如图,线段AB=2,BD⊥AB于点B,且BD=AB,在DA上截取DE=DB.在AB上截取AC=AE.求证:点C是线段AB的黄金分割点.【分析】在直角△ABD中根据勾股定理计算出AD=,则AE=AD﹣DE=﹣1,再利用画法得到AC=AE =﹣1,即AC =AB ,然后根据黄金分割的定义得到点C 就是线段AB 的黄金分割点.【解答】证明:∵AB =2,BD =AB ,∴BD =1.∵BD ⊥AB 于点B ,∴AD ==, ∴AE =AD ﹣DE =﹣1, ∴AC =AE =﹣1,∴AC =AB ,∴点C 就是线段AB 的黄金分割点.【点评】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC =AB ≈0.618AB ,并且线段AB 的黄金分割点有两个.【过关检测】一、单选题【答案】C【分析】能否构成一个比例式,根据“两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段”判断即可.【详解】A .21=,能组成一个比例式,不合题意;B .12=⨯,能组成一个比例式,不合题意;C .1,2 不能组成一个比例式,符合题意;D .12=故选:C【点睛】本题考查了成比例的线段,熟知:两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段. 2.(2022秋·上海浦东新·九年级校考期中)下列各组线段中,成比例线段的组是( )A .0.2cm,0.3cm,4cm,6cmB .1cm,3cm,4cm,8cmC .3cm,4cm,5cm,8cmD .1.5cm,2cm,4cm,6cm 【答案】A【分析】根据比例线段的定义可各选项分别进行判断即可.【详解】解:A 、0.260.34⨯=⨯,是成比例线段,故本选项符合题意;B 、1834⨯≠⨯,不是成比例线段,故本选项不符合题意;C 、3845⨯≠⨯,不是成比例线段,故本选项不符合题意;D 、1.5624⨯≠⨯,不是成比例线段,故本选项不符合题意.故选:A【点睛】本题考查了比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 ::a b c d =(即ad bc =),我们就说这四条线段是成比例线段,简称比例线段.【答案】B【分析】利用比例中项的平方等于两个外项的积,进行计算即可.【详解】解:由题意,得:24936b ac ==⨯=,∵0b >,∴6b =;故选B .【点睛】本题考查比例选段.熟练掌握比例中项的平方等于两个外项的积,是解题的关键.【答案】B【分析】把各个选项的比例式转化为乘积式,可得结论.【详解】解:A 、由a b c d =推出ad bc =,本选项不符合题意; B 、由a b d c =推出ac bd =,本选项符合题意; C 、由a d cb =推出ab cd =,本选项不符合题意; D 、由a cb d =推出ad bc =,本选项不符合题意. 故选:B .【点睛】本题考查比例线段,比例的性质,解题的关键是掌握比例的性质.【答案】A【分析】设1AB =,BC x =,则1AC x =−,由比例中项得出2BC AC AB =,代入解一元二次方程即可解答.【详解】解:设1AB =,BC x =,则1AC x =−,∵BC 是AC 和AB 的比例中项,∴2BC AC AB =,即21x x =−,∴210x x +−=,解得:1x =2x ,即BC =,∴1AC ==,∴ BC AB=,故A 符合题意;BC AC ==,故B 不符合题意;AC AB =,故C 不符合题意;AC BC =,故D 不符合题意;故选:A .【点睛】本题考查比例中项、线段的比、解一元二次方程,熟知比例中项的定义是解答的关键.【答案】C【分析】根据比例的性质进行判断即可.【详解】解:A 、由:2:3a b =,得32a b =,故本选项错误,不符合题意;B 、当4a =,6b =时,:2:3a b =,但是10a b +=,故本选项错误,不符合题意;C 、由:2:3a b =,得52a b a +=,故本选项正确,符合题意; D 、当4a =,6b =时,:2:3a b =,但是3728a b +=+,故本选项错误,不符合题意.故选:C .【点睛】本题考查了比例的性质及式子的变形,用到的知识点:在比例里,两外项的积等于两内项的积,比较简单.二、填空题【答案】3 【分析】由23x y =,设2,3(0)==≠x k y k k ,然后再代入求解即可; 【详解】解:∵23x y =,设2,3(0)==≠x k y k k , ∴235=33x y k k y k ++=,故答案为:53.【点睛】本题考查比例的性质,设2,3(0)==≠x k y k k 是解题关键. 8.(2021秋·上海·九年级校考阶段练习)在比例尺为1:60000的地图上A 、B 两处的距离是4cm ,那么A 、B 两处实际距离是______km .【答案】2.4【分析】设A 、B 两处的实际距离是cm x ,根据比例尺的定义列式计算即可得解,然后再化为千米即可.【详解】解:设A 、B 两处的实际距离是cm x ,根据题意得:4:1:60000x =解得:240000x =,240000cm 2.4km =,故答案为:2.4.【点睛】本题考查了比例,主要利用了比例尺的定义,计算时要注意单位之间的换算.9.(2021秋·上海·九年级校考阶段练习)已知():1:2x y y +=,则:x y 的值为______.【答案】12−/0.5− 【分析】根据比例的基本性质,求得2y x =−,即可得到答案.【详解】解:∵():1:2x y y +=, ∴()2x y y +=, 解得2y x =−,∴1:2x y =−, 故答案为:12−【点睛】此题考查了比例,熟练掌握比例的基本性质是解题的关键.【答案】52/2.5/22【分析】直接利用已知把a ,b 用同一未知数表示,进而计算得出答案;【详解】解:23a b =(a b 、都不等于零),∴设3a x =,则2b x =, 那么32522a b x x bx ++==; 故答案为:52.【点睛】此题主要考查了比例的性质,正确表示出a ,b 的值是解题关键. 11.(2021秋·上海青浦·九年级校考期中)已知线段4a =厘米、9c =厘米,如果线段a 是线段c 和b 的比例中项,那么线段b =______厘米.【答案】169【分析】根据比例中项的定义得到::c a a b =,然后利用比例性质计算即可.【详解】解:∵线段a 是线段c 和b 的比例中项,∴::c a a b =, 即9:44:b =,∴169b =.故答案为: 169.【点睛】本题考查了比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如::a b c d =(即ad bc =),我们就说这四条线段是成比例线段,简称比例线段.特别的是若::c a a b =,则a 是c 和b 12.(2023·上海金山·统考一模)如图,已知上海东方明珠电视塔塔尖A 到地面底部B 的距离是468米,第二球体点P 处恰好是整个塔高的一个黄金分割点(点A 、B 、P 在一直线),且BP AP >,那么底部B 到球体P 之间的距离是_________米(结果保留根号)【答案】234)【分析】根据黄金分割的定义,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值⎝⎭叫做黄金比. 【详解】解:∵点P 是线段AB 上的一个黄金分割点,且468AB =米,BP AP >,∴468234)BP ==米.故答案为:234).【点睛】本题考查了黄金分割的概念,熟记黄金分割的定义是解题的关键. 13.(2023·上海杨浦·统考一模)已知点P 是线段MN的黄金分割点()MP NP >,如果10MN =,那么线段MP =___________.【答案】5/5−+【分析】根据黄金分割点的概念列式求解即可.【详解】解:∵点P 是线段MN 的黄金分割点,>MP PN ,10MN =,∴105PM ===,故答案为:5.【点睛】此题考查了黄金分割点的概念,解题的关键是熟练掌握黄金分割点的概念.把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比.14.(2023·上海崇明·统考一模)点P 是线段MN 的黄金分割点,如果10cm MN =,那么较长线段MP 的长是__________cm.【答案】()5【分析】根据黄金分割点的定义,得到MP MN=,求解即可.【详解】解:由题意,得:MP MN=,即:10MP =,∴()5cm MP =;故答案为:()5.【点睛】本题考查黄金分割点.熟练掌握黄金分割点的定义,是解题的关键.【答案】1:3【分析】根据32a b =设3,2a k b k ==,代入计算即可.【详解】解:∵32a b =∴设3,2a k b k ==,∴(a ﹣b ):a =(32):31:3k k k −=故答案为:1:3【点睛】本题主要考查了比例的性质,熟练掌握比例的性质是解答本题的关键. 16.(2022秋·九年级单元测试)已知线段AB =2cm ,点C 是线段AB 的黄金分割点,则线段AC 等于__________cm【答案】或【分析】分AC >BC 、AC <BC 两种情况,根据黄金比值计算即可.【详解】当AC >BC 时,AC=21当AC <BC 时,AC=AB-AB=23−=∴线段AC (cm )或cm ).(cm )或cm ).【点睛】本题考查的是黄金分割,掌握黄金比值是解题的关键.【答案】【分析】根据折叠的性质以及矩形的性质可证四边形ABEF 是正方形,可得EF =BE ,进一步即可求出EF 与CE 的比值.【详解】解:根据折叠,可知AB =AF ,BE =FE ,∠BAE =∠FAE ,在矩形ABCD 中,∠BAF =∠B =90°,∴∠BAE =∠FAE =45°,∴∠AEB =45°,∴BA =BE ,∴AB =BE =EF =FA ,又∵∠B =90°,∴四边形ABEF 是正方形,∴EF =BE =AB ,∵矩形ABCD 是黄金矩形,∴A BB C =,∴EF EC ,故答案为:.【点睛】本题考查了黄金分割,矩形的性质,正方形的判定和性质,熟练掌握黄金分割是解题的关键.【答案】5【分析】根据CD 是∠ACB 的平分线,由三角形的面积可得出BD BC AD AC =,可得出AB BC AC DA AC +=①;由CE 是∠ACB 的外角平分线, 得出BE BC AE AC =,进而得出AB BC AC AE AC −=②,两式相加即可得出结论. 【详解】解:∵CD 是∠ACB 的平分线,∴BDC BDC ADC ADC S S BD BC S AD S AC ∆∆∆∆==, ∴BD BC AD AC =∴BD DA BC AC DA AC ++=,即AB BC AC AD AC +=①; ∵CE 是∠ACB 的外角平分线,∴BE BC AE AC = ∴BE AE BC AC AE AC −−=,即AB BC AC AE AC −=②; ①+②,得22 2.55AB AB BC AC BC AC BC AD AE AC AC AC +−+=+==⨯=.故答案为:5.【点睛】此题主要考查了比例的应用,熟练掌握比的性质是解答此题的关键.三、解答题19.(2020秋·九年级校考课时练习)已知线段AB=10cm ,点C 是AB 上的黄金分割点,求AC 的长是多少厘米?【答案】(5)cm 或(15−cm【分析】根据黄金分割点的定义,知AC 可能是较长线段,也可能是较短线段;则AC =105=或AC =10−(5)=15−【详解】解:根据黄金分割点的概念,应有两种情况,当AC 是较长线段时,AC =105=;当AC 是较短线段时,则AC =10−(5)=15−故答案为:(5)cm 或(15−cm .【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.【答案】11【分析】通过设k 法,设234x y z k ===,则2x k =,3y k =,4z k =,再利用消元的思想代入分式求值.【详解】解:设234x y z k ===,则2x k =,3y k =,4z k =, 552341144234x y z k k k x y z k k k −+⨯−+==−−⨯−−.【点睛】本题主要考查求分式的值,熟练掌握消元的思想是解决本题的关键.【分析】设a=5k ,则b=7k ,c=8k ,代入3a-2b+c=9,即可求出k 的值,从而可求出a 、b 、c 的值,最后由三角形周长的计算公式求解即可.【详解】根据题意可设a=5k ,则b=7k ,c=8k ,代入3a-2b+c=9,得:352789k k k ⨯−⨯+=,解得:1k =,∴578a b c ===,,, ∴△ABC 的周长=a+b+c=5+7+8=20.【点睛】本题主要考查比例的性质.解决此类题目时一般利用“设k 法”更简便.【答案】4【分析】设345x y z k ===,则3,4,5x k y k z k ===,再根据232x y z −+=−求出k 的值,然后得出x ,y ,z 的值,从而得出x y z +−的值. 【详解】解:设345x y z k ===,则3,4,5x k y k z k ===,代入232x y z −+=−,得233452k k k ⋅−⋅+=−,解得2k =,6,8,10x y z ∴===,68104x+y -z ∴=+−=. 【点睛】本题考查了比例的性质,解题的关键是设345x y z k ===,得出k 的值.【答案】(1)证明见解析;(2)=AD BC. 【分析】(1)连接1BG 、2CG 并延长交AO 、OD 于点E 、F ,连接EF .易得EF 为AOD △的中位线,故EF//AD ,根据重心的性质可得12121=2EG FG BG CG =,即EF //12G G ,即可得证; (2)根据点P 为黄金分割点,可得PC BC,再根据中位线的性质即可求解. 【详解】(1)连接1BG 、2CG 并延长交AO 、OD 于点E 、F ,连接EF .因为1G 、2G 为三角形AOB 和三角形COD 的重心,所以点E 、F 为AO 、DO 的中点,所以EF 为AOD △的中位线,所以EF//AD , 又因为12121=2EG FG BG CG =, 所以EF //12G G ,所以12G G //AD .(2)因为点P 为黄金分割点,所以PC BC, 又因为RQ 是中位线,所以RQ//BC ,12RQ BC =,因为AD//PQ ,所以1=2PQ DQ RO BO AD OA OD DO ==,所以AD BC. 【点睛】本题考查重心的定义和性质、三角形中位线的性质、黄金分割,掌握重心的性质是解题的关键.【答案】(1)9y =;(2)3y =. 【分析】(1)由比例的性质对比例式进行变形,然后去括号、移项、合并同类项可得到x=9y ,即可解答;(2)由比例的性质对比例式进行变形从而得到3y 2+2xy-x 2=0,然后分解得(3y-x )(y+x )=0,即可解答. 【详解】解:(1)由332x y x y +=−,得2(3)3()x y x y +=−, 即2633x y x y +=−,解得9y x =,∴9x y =.(2)由3x y x x y y +=−,得(3)()y x y x x y +=−, 即22320y xy x +−=,解得3x y =或x y =−(不合题意,舍去),∴3x y =.【点睛】本题重点考查比例线段,解答本题的关键在于了解比例的性质并且对比例式进行变形. 25.(2020秋·上海宝山·九年级统考阶段练习)如图,点D 、E 分别在ABC ∆的边AB 、AC 上,DE BC ∥. (1)若2ADE S ∆=,7.5BCE S ∆=,求BDE S ∆;(2)若BDE S m ∆=,BCE S n ∆=,求ABC S ∆.(用m ,n 表示)【答案】(1)3BDE S ∆=;(2)2ABC n S n m ∆=−。

解比例典型例题及答案

解比例典型例题及答案

解比例答案典题探究例1.按下面的条件列出比例并解比例.(1)5和8的比等于20和X的比.(2)4和12的比等于8和X的比.(3)等号左端的比是4.5:X,等号右端的比是0.3:4.(4)比的两个外项分别是X和1.5,两个内项分别是2.8和3.考点:解比例.专题:比和比例.分析:(1)根据题意先列出比例式5:8=20:x,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除5,即可得解;(2)根据题意先列出比例式4:12=8:x,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除4,即可得解;(3)根据题意先列出比例式4.5:x=0.3:4,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除0.3,即可得解;(4)根据题意先列出比例式x:2.8=3:1.5,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除1.5,即可得解;解答:解:(1)5:8=20:x;5x=20×85x÷5=160÷5x=32;(2)4:12=8:x4x=12×84x÷4=96÷4x=24;(3)4.5:x=0.3:40.3x=4×4.50.3x÷0.3=18÷0.3x=60;(4)x:2.8=3:1.51.5x=3×2.81.5x÷1.5=8.4÷1.5x=5.6.点评:此题考查解比例的方法:根据两内项之积等于两外项之积,把比例式转化为乘积式是解题的关键.例2.求未知数x的值.(1)7:x=0.8:2.4;(2)=;(3)x:=18:.考点:解比例.专题:比和比例.分析:(1)根据比例的基本性质可得:0.8x=7×2.4,再利用等式的性质,两边同时除以0.8求解;(2)根据比例的基本性质可得:15x=20×0.8,再利用等式的性质,两边同时除以15求解;(3)根据比例的基本性质可得:x=×18,再利用等式的性质,两边同时除以求解.解答:解:(1)7:x=0.8:2.40.8x=7×2.40.8x÷0.8=16.8÷0.8x=21;(2)=15x=20×0.815x÷15=16÷15x=;(3)x:=18:x=×18x=x=.点评:此题考查了比例的基本性质和等式的性质的计算应用.例3.若自然数A、B满足﹣=,且A:B=4:5.那么A=8,B=10.考点:解比例.专题:简易方程.分析:把﹣=的左边通分成,由A:B=4:5,根据比例的性质,可得5A=4B,推出A=B,把A=B代人=中,即可求得B的数值,进而求得A的数值.解答:解:因为A:B=4:5,所以5A=4B,A=B;﹣=,=,把A=B代人=中,得:=,=,×=,=,B=10;把B=10代入A=B中,A=B=×10=8;故答案为:8,10.点评:用含B的式子表示出A是解答此题的关键,进而代入方程即可得解.例4.只列算式(或方程),不计算.(1)比例的两个内项分别是5和2,两个外项分别是x和3.5.(2考点:解比例;分数除法应用题.专题:压轴题.分析:(1)根据比例的基本性质“两外项之积等于两内项之积”,据此列出方程即可;(2)根据图意,可知把这根绳子的总长看做单位“1”,用去了,还剩下300米;要求单位“1”的量,要先求出还剩下的300米对应的分率是多少列式为:1﹣,进而用具体的数量除以具体的数量对应的分率即可解答.解答:解:(1)x:2=5:3.5;(2)300÷(1﹣).点评:此题考查根据题意或图意,列比例式或算式,解决关键是要分析好题意或图意,灵活的解答即可.演练方阵A档(巩固专练)一.选择题(共7小题)1.在2、3、这三个数中插入第四个数X,使得这四个数能组成比例,那么X最小是()A.B.C.D.考点:解比例;比例的意义和基本性质.专题:比和比例.分析:根据比例的性质:两内项之积等于两外项之积.要使插入的第四个数X最小,即要使两内项之积或两外项之积最小,积最小为:2×,据此解答即可.解答:解:由分析可得:2×=3X,所以X=.故选:C.点评:解答本题的关键是,分析出要使插入的第四个数X最小,即要使两内项之积或两外项之积最小.2.(•静宁县)在比例中,两个外项互为倒数,两个内项()A.成正比例B.成反比例C.不成比例考点:解比例;正比例和反比例的意义.分析:根据倒数的定义结合比例的基本性质,即可得出两个内项的关系.解答:解:因为在比例中,两个外项互为倒数,所以两个内项的积=1,所以两个内项成反比例.故选:B.点评:本题考查了正比例和反比例的意义,得到两个内项的积=1是解题的关键.3.(•厦门)如果a÷=b×(a、b都不等于零),那么()A.a>b B.a=b C.a<b考点:解比例;比与分数、除法的关系.专题:压轴题.分析:可令a÷=b×的值为1,求得a,b,再比较a,b的关系.解答:解:令a÷=b×=1,则a=,b=,则a<b.故选C.点评:考查了比例中的大小比较问题,常用举特例的方法解决这类问题.4.2:x=:,x=()A.40B.4C.0.4D.1考点:解比例.分析:根据两内项之积等于两外项之积把比例式转化为乘积式,然后再解关于x的一元一次方程即可.解答:解:x=2×,x=,解得x=1.故选D.点评:本题主要考查了解比例,根据两内项之积等于两外项之积把比例式转化为乘积式是解题的关键,是基础题,难度不大.5.在=中,a的值是()A.2B.4C.6D.8考点:解比例.分析:利用比例的基本性质“两内项之积等于两外项之积”由此可求得a,进而选择正确答案.解答:解:根据比例的基本性质可解得:a=4,故选:B.点评:紧扣比例的基本性质即可解决此类问题.6.当:4=x:5时,x的值是()A.B.C.D.考点:解比例.分析:根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,再进行选择.解答:解::4=x:5,4x=×5,4x=3,x=.故选:B.点评:此题考查比例性质的运用即解比例.7.已知,则x=()A.40B.4C.0.4D.1考点:解比例.分析:解比例的方法:根据比例的性质先把比例式转化成两外项积等于两内项积的形式,就是已学过的简易方程,再解简易方程即可.解答:解:,x=2×,x=,x=,x=1.故选:D.点评:此题考查根据比例的性质解比例:把比例式先转化成两外项积等于两内项积的形式,再解方程即可.二.填空题(共10小题)8.(1)如果:5=16%:7,那么=;(2)若(0.5+÷)=,则=.考点:解比例;整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则;简易方程.分析:(1)把五角星未知数看作x,根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以7求解,(2)把正方形看作未知数x,依据等式的性质,方程两边同时除以,再同时减0.5,然后同时乘x,最后同时除以求解.解答:解:(1)把原题中五角星未知数看作x,原题化为:x:5=16%:7,7x=5×16%,7x=0.8,7x÷7=0.8÷7,x=,即=,故应填:;(2)把原题中的正方形看作未知数x,原题化为:(0.5+÷x)=,(0.5+÷x)=,0.5+÷x﹣0.5=﹣0.5,x×x=x,x,x=,即=,故应填:.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解方程时注意对齐等号.9.在X:1=3:4中,X=.考点:解比例.分析:本题按照比例的基本性质两内项之积等于两外项之积来求解.解答:解:X:1=3:4解:4X=×34X=X=;故答案为:.点评:解比例使用比例的基本性质来求解.10.0.8:4=8:x中,x=0.4,×.(判断对错)考点:解比例.专题:比和比例.分析:0.8:4=8:x,根据比例的基本性质得:0.8x=4×8,两边同时除以0.8解出x即可.解答:解:0.8:4=8:x0.8x=4×80.8x=32x=32÷0.8x=40x=40而不是0.4,故这句话是错误的.故答案为:×.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解答时注意对齐等号.11.9:6=15:10.考点:解比例.专题:比和比例.分析:根据比的基本性质“两内项之积等于两外项之积”,先求出两內项之积,进而用积除以已知的外项,即可得出未知的外项.解答:解:6×15÷9=90÷9=10;故答案为:10.点评:解决此题也可以根据比的意义,先求出前一个比的比值,进而用后一个比的内项除以比值求解.12.6:1.5=8:2.填上合适的数.4:3=36:2724:80=1.8:6考点:解比例.专题:比和比例.分析:每一道题都设要求的数为x,进而写出比例:(1)根据比例的基本性质,先把比例式转化成等式4x=3×36,再根据等式的性质,在方程两边同时除以4得解;(2)根据比例的基本性质,先把比例式转化成等式1.8x=24×6,再根据等式的性质,在方程两边同时除以1.8得解;(3)根据比例的基本性质,先把比例式转化成等式1.5x=6×2,再根据等式的性质,在方程两边同时除以1.5得解.解答:解:每一道题都设要求的数为x:(1)4:3=36:x,4x=3×36,4x÷4=108÷4,x=27;(2)24:x=1.8:6,1.8x=24×6,1.8x÷1.8=144÷1.8,x=80;(3)6:1.5=x:2,1.5x=6×2,1.5x÷1.5=12÷1.5,x=8.故答案为:27,80,8.点评:本题主要考查了解比例,根据比例的性质先把比例式转化为乘积式是解题的关键;注意等号要对齐.13.解比例::=X:24X:=:0.6.考点:解比例.分析:根据两内项之积等于两外项之积把比例式转化为乘积式,然后再解关于x的一元一次方程即可.解答:解:(1)x=24×,x=9,解得x=10;(2)0.6x=×,0.6x=,解得x=;(3)4x=5.2×6.5,4x=33.8,解得x=8.45;(4)0.6x=1.2×4,0.6x=4.8,解得x=8.点评:本题主要考查解比例,根据两内项之积等于两外项之积把比例式转化为乘积式是解题的关键,是基础题,难度不大.14.(•金寨县模拟)甲数比乙数少,甲数和乙数的比是2:9.考点:解比例.分析:甲数=(1﹣)×乙数,依此可求甲数与乙数的比.解答:解:甲数和乙数的比=(1﹣):1=2:9.故答案为:2:9.点评:考查了求比的问题,解题的关键是将乙数看作单位1,依此得到甲数.15.如果x:=0.15:2.5,那么x=0.048.考点:解比例.专题:比和比例.分析:根据比例的基本性质变为:2.5x=×0.15,然后化简,再在方程的两边同时除以2.5求解.解答:解:x:=0.15:2.52.5x=×0.152.5x=0.122.5x÷2.5=0.12÷2.5x=0.048故答案为:0.048.点评:本题考查了利用比例的基本性质解比例.16.能与:组成比例的比是B、CA.2:3B.9:6C.:D.:.考点:解比例.分析:先化简:,再分别计算各选项,与:进行比较,比值相等的即为所求.解答:解::=3:2.A、因为2:3≠3:2,所以不能组成比例,故选项错误;B、因为9:6=3:2,所以能组成比例,故选项正确;C、因为:=3:2,所以能组成比例,故选项正确;D、因为:=2:3≠3:2,所以不能组成比例,故选项错误.故选:B和C.点评:本题考查了比例线段的定义:对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a:b=c:d(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.17.在横线里填上适当的数.5:4=30:241.5:0.18=150:188:15=24:4536:12=9:30.9:0.5=9:5.考点:解比例.专题:比和比例.分析:设未知数为x,列出比例,根据比例的基本性质,两外项之积等于两内项之积,求出未知数即可.解答:解:(1)5:4=x:244x=5×244x÷4=5×24÷4x=30;(2)1.5:0.18=x:180.18x=1.5×180.18x÷0.18=1.5×18÷0.18x=150;(3)8:15=24:x8x=15×248x÷8=15×24÷8x=45;(4)36:12=9:x36x=12×936x÷36=12×9÷36x=3;(5)x:0.5=9:55x=0.5×95x÷5=0.5×9÷5x=0.9.故答案为:30,150,45,3,0.9.点评:此题主要是考查解比例,解比例与解方程类似,要注意书写格式.解比例的依据是比例的基本性质及等式的性质.三.解答题(共11小题)18.计算:4:5=(χ+5):10.考点:解比例.专题:简易方程.分析:根据两内项之积等于两外项之积,把比例式转化成方程,再根据等式的性质求解即可.解答:解:4:5=(x+5):104×10=5×(x+5)40=5x+255x=40﹣25x=15÷5x=3.点评:掌握比例的基本性质是解题的关键.19.解比例.(1)6:15=x:20(2):x=3:8(3):=:x(4)=(5)x:15=1:2.4(6)8:x=3:1.考点:解比例.专题:比和比例.分析:根据两内项之积等于两外项之积,把比例式转化成方程,再根据等式的性质求解即可.解答:解:(1)6:15=x:2015x=6×2015x÷15=120÷15x=8(2):x=3:83x=3x÷3=6÷3x=2(3)x=(4)0.75x=0.5×60.75x÷0.75=3÷0.75x=4(5)x:15=1:2.42.4x=1×152.4x÷2.4=15÷2.4x=6.25(6)8:x=3=8×x=3点评:掌握比例的基本性质是解题的关键.20.求未知数x的值.:0.05=1:x x﹣1=x+x+x+x+x.考点:解比例;方程的解和解方程.专题:用字母表示数.分析:(1)根据比例的基本性质转化为x=×,再根据等式的基本性质,方程的两边同除以即可;(2)先计算x+x+x+x+x=x,再根据等式的基本性质,方程的两边同x,再加上1即可.解答:解::0.05=1:x,x=×,x÷=×÷,x=;(2)x﹣1=x+x+x+x+x,x﹣1=x,x﹣1﹣x=x﹣x,x﹣1=0,x﹣1+1=0+1,x=1,x=32.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解答时注意对齐等号.21.解方程.X:1.2=3:4=30%X﹣X=.考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)根据比例的基本性质:两内项之积等于两外项之积可得4x=1.2×3,再利用等式的性质两边同时除以4即可解答;(2)可以写成x:4=3:10,根据比例的基本性质:两内项之积等于两外项之积可,10x=4×3,再利用等式的性质两边同时除以10即可解答;(3)先把左边计算出来得:x=,再利用等式的性质,两边同时乘,即可解答.解答:解:(1)x:1.2=3:4,4x=1.2×3,4x÷4=3.6÷4,x=0.9,(2)=30%,x:4=3:10,10x=4×3,10x÷10=12÷10,x=1.2,(3)x﹣x=,x=,x×=×,x=2.点评:此题考查了利用比例的基本性质解比例和利用等式的性质解方程的方法.22.一个数和的比等于8和1.6的比,求这个数.考点:解比例.分析:根据题意可以设这个数为x,组成比例,解比例即可.解答:解:设这个数为x.x:=8:1.61.6x=×8x=×8÷1.6x=4答:这个数是4.点评:此题主要考查解比例的方法.23.(•河池)求未知数x的值.(1):x=:8(2)1.7x﹣0.4x=3.9.考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)根据比例基本性质,两内项之积等于两外项之积化简方程,再依据等式的性质,方程两边同时除以求解,(2先化简方程,再依据等式的性质,方程两边同时除以1.3求解.解答:解:(1):x=:8,x=×8,x=,x=4;(2)1.7x﹣0.4x=3.9,1.3x=3.9,1.3x÷1.3=3.9÷1.3,x=3.点评:本题主要考查学生依据等式的性质以及比例的基本性质解方程的能力,解答时注意对齐等号.24.(•东莞市模拟)求x的值.6x﹣0.5×5=9.5:x=:0.75考点:解比例;方程的解和解方程.专题:简易方程.分析:①根据比例的性质变成x=×,再根据等式的性质,方程的两边同时除以即可;②6x﹣0.5×5=9.5,先计算0.5×5=2.5,再根据等式的性质,方程的两边同时加上2.5,再除以6即可;解答:解:①:x=:0.75,x=×,x=,x÷=÷,x=;②6x﹣0.5×5=9.5,6x﹣2.5=9.5,6x﹣2.5+2.5=9.5+2.5,6x=12,6x÷6=12÷6,x=2.点评:此题考查根据等式的性质和比例的性质解比例和解方程的能力,注意等号对齐.25.解比例:8:20=7.6:x.考点:解比例.专题:比和比例.分析:根据比例的基本性质,先把比例式转化成等式8x=20×7.6,再根据等式的性质,在方程两边同时除以2.5得解.解答:解:8:20=7.6:x8x=20×7.68x=1528x÷8=152÷8x=19.点评:本题主要考查了解比例,根据比例的性质先把比例式转化为乘积式是解题的关键;注意等号要对齐.26.解方程.(1)4.2:x=25(2)3.6x:=3.5(3)x:=(4)x:0.25=4.考点:解比例.专题:比和比例.分析:(1)根据比例的基本性质,两内项之积等于两外项之积,方程可化为25x=4.2,再依据等式的性质,两边同除以25即可求解;(2)根据比例的基本性质,两内项之积等于两外项之积,方程可化为3.6x= 3.5,再依据等式的性质,两边同除以3.6即可求解;(3)根据比例的基本性质,两内项之积等于两外项之积,方程可化为x=×,化简计算即可;(4)根据比例的基本性质,两内项之积等于两外项之积,方程可化为x=0.25×4,化简计算即可;解答:解:(1)4.2:x=2525x=4.225x÷25=4.2÷25x=0.168(2)3.6x:=3.53.6x= 3.53.6x÷3.6=1.75÷3.6x=0.486(3)x:=x=×x=(4)x:0.25=4x=0.25×4x=1点评:本题主要考查运用等式的性质以及比例的基本性质解方程的能力,注意等号对齐.27.解方程或解比例:8x÷(1.8÷3)=1.5.:=:(4﹣x)考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)先化简方程的左边,变成8x÷0.6=1.5,然后方程的两边同时乘上0.6,再同时除以8即可;(2)根据比例的基本性质,把方程变成×(4﹣x)=×,然后方程的两边同时除以,再同加上x,最后同时减去即可.解答:解:(1)8x÷(1.8÷3)=1.58x÷0.6=1.58x÷0.6×0.6=1.5×0.68x=0.98x÷8=0.9÷8x=0.1125;(2):=:(4﹣x)×(4﹣x)=××(4﹣x)÷=÷4﹣x=4﹣x+x=+xx+﹣=4﹣x=3.点评:本题考查了根据比例的基本性质以及等式的性质解方程的方法,计算时要细心,注意把等号对齐.28.求未知数x(1)6.5:x=314:4(2)8(x﹣2)=2(x+7)考点:解比例;方程的解和解方程.专题:简易方程;比和比例.分析:(1)先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以314即可;(2)先化简方程,再根据等式的性质,在方程两边同时减2x,加16,再同时除以6求解.解答:解:(1)6.5:x=314:4314x=6.5×4314x÷314=26÷314x=;(2)8(x﹣2)=2(x+7)8x﹣16=2x+148x﹣16+16﹣2x=2x+14﹣2x+166x=306x÷6=30÷6x=5.点评:此题考查了根据等式的性质解方程,即等式两边同时加、减、乘同一个数或除以同一个不为0的数,等式的左右两边仍相等;注意等号上下要对齐.B档(提升精练)一.选择题(共14小题)1.当x=()时,的比值恰好是最小的质数.A.B.C.考点:解比例.专题:比和比例.分析:最小的质数是2,所以可得的一个等式:=2,根据比与除法的关系即比的前项相当于除法的被除数,比的后项相当于除法的除数,比值相当于除法的商,然后再进行计算得到答案.解答:解;=2x=÷2,x=,答:当x=时,的比值恰好是最小的质数.故选:C.点评:解答此题的关键是确定比与除法之间的关系,然后再进行计算即可.2.解比例是根据()A.比的基本性质B.比例的基本性质C.比例的意义.考点:解比例.专题:比和比例.分析:解比例是求比例的解的过程,即先把比例改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,所以根据的是比例的基本性质.据此即可判断.解答:解:解比例是先把比例改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,所以解比例是根据比例的基本性质.故选:B.点评:本题考查了解比例的依据,明确解比例的定义是关键.3.如果3:5=x:2,那么x应该是()A.B.C.D.考点:解比例.专题:比和比例.分析:根据比例的性质,可得5x=3×2,再利用等式的性质两边同时除以5,即可得出x=,据此即可选择.解答:解:3:5=x:2,5x=3×2,5x÷5=6÷5,x=.故选:A.点评:熟练运用比例的基本性质,掌握比例式和等式的转化.4.解比例:=2:1,x=()A.6B.1.5C.0.7D.9考点:解比例.专题:比和比例.分析:根据比例的基本性质:两内项之积等于两外项之积,得出关于x的方程,再利用等式的性质解方程即可解答问题.解答:解:=2:1x:3=2:1x=6.故选:A.点评:此题考查了比例的基本性质和等式的性质的应用.5.解比例的根据是()A.比的基本性质B.比例的基本性质C.分数的基本性质考点:解比例.分析:首先要知道什么是解比例,然后分析每个选项,看哪一个最适合用来作为解比例的根据.解答:解:因为求比例的解的过程,叫做解比例.所以选项A:比的基本性质“比的前项和后项同时乘或除以相同的数(0除外),比值不变.”不能作为解比例的根据.选项B:比例的基本性质“两外项之积等于两内项之积”可以作为解比例的根据.选项C:分数的基本性质“分子和分母同时扩大或缩小相同的倍数,分数值不变.”也不能作为解比例的根据.故选B.点评:做这道题的关键是分清比、分数和比例的基本性质.6.(X﹣0.1):0.4=0.6:1.2 则X=()A.X=0.3B.X=0.9C.X=0.8考点:解比例.专题:比和比例.分析:根据比例基本性质,两内项之积等于两外项之积,化简方程,再依据等式的性质求解.解答:解:(X﹣0.1):0.4=0.6:1.2,(X﹣0.1)×1.2=0.6×0.4,(X﹣0.1)×1.2÷1.2=0.24÷1.2,X﹣0.1=0.2,X﹣0.1+0.1=0.2+0.1,X=0.3.故选:A.点评:本题主要考查学生依据等式的性质以及比例的基本性质解方程的能力,解方程时注意对齐等号.7.x=是比例()的解.A.2.6:x=1:8B.3:6=x:8C.:x=考点:解比例.专题:比和比例.分析:根据比例的基本性质,把x=代入各选项即可判断.解答:解:A、把x=代入2.6:x=2.6:=52:25,52:25≠1:8,所以把x=不是2.6:x=1:8的解;B、把x=代入x:8=:8=5:32,3:6≠5:32,所以把x=不是3:6=x:8的解;C、把x=代入:x=:=2:1,:=2:1,所以把x=是:x=:的解.故选:C.点评:本题主要考查学生依据等式的性质以及比例基本性质解方程的能力.8.(•荔波县模拟)如果比例的两个外项互为倒数,那么比例的两个内项()A.成反比例B.成正比例C.不成比例考点:解比例.专题:压轴题.分析:根据互为倒数的定义和比例的两内项之积等于两外项之积,可得比例的两个内项之积等于1,再根据成反比例的定义即可求解.解答:解:因为比例的两个外项互为倒数,那么比例的两个内项之积=1(为恒指),则比例的两个内项成反比例.故选:A.点评:本题考查了倒数的定义和成反比例的条件,两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定.这两种量叫做成反比例的量.它们的关系叫做反比例关系.9.已知:x=0.2:0.3,则x的值为()A.B.C.3考点:解比例.专题:比和比例.分析:先根据比例基本性质,两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以0.2求解.解答:解::x=0.2:0.3,0.2x=0.3×,0.2x=0.15,0.2x÷0.2=0.15÷0.2,x=,故选:A.点评:解答本题的关键是依据比例基本性质求解.解答时注意对齐等号.10.用4,0.8,5和x组成比例,并解比例,x有()种不同的解.A.1B.2C.3D.4考点:解比例.专题:比和比例.分析:根据比例的基本性质,4,0.8,5和x,组成比例的情况有12种,两内项之积等于两外项之积,这四个数可写成三个等式.据此解答.解答:解:根据分析知,4,0.8,5和x组成比例的情况有12种:(1)5:0.8=x:4,0.8:5=4:x,0.8:5=4:x,4:0.8=x:5,它们变形后都能写成0.8x=5×4,解相同.同理也有四个比例式变形后写成5x=4×0.8,和4x=5×0.8.故选:C.点评:本题考查了学生根据比例的基本性质解答问题的能力.11.解比例30:x=2:0.1,x=()A.6B.1.5C.0.7D.9考点:解比例.专题:比和比例.分析:先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以2求解.解答:解:30:x=2:0.1,2x=30×0.1,2x÷2=3÷2,x=1.5,故应选:B.点评:本题主要考查学生依据等式的性质以及比例基本性质解方程的能力,解方程时注意对齐等号.12.x=1.25是哪个比例的解?()A.2.6:x=6:3B.3:6=x:8C.:x=:考点:解比例.专题:简易方程.分析:把三个选项中的比例式,依据等式的性质,以及比例的基本性质,求出方程的解,再与x=1.25比较即可解答.解答:解:在选项A中:2.6:x=6:36x=2.6×36x÷6=7.8÷6x=1.3;在选项B中:3:6=x:86x=3×86x÷6=24÷6x=4;在选项C中::x=:x=x=x=1.25故选:C.点评:依据等式的性质,以及比例的基本性质,求出选项中各方程的解,是解答本题的关键.13.若已知2:3=(5﹣x):x,那么x等于()A.2B.3C.4D.6考点:解比例.专题:比和比例.分析:先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时加3x,最后同时除以5求解.解答:解:2:3=(5﹣x):x,15﹣3x=2x,15﹣3x+3x=2x+3x,15÷5=5x÷5,x=3.故选:B.点评:本题考查知识点:依据等式的性质,以及比例基本性质解方程.14.如果和相等,则m等于()A.B.C.D.考点:解比例.专题:比和比例.分析:依据题意可列比例式:=,先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以18即可求解.解答:解:=,18m=11×12,18m÷18=132÷18,m=,m=7.故答案为:A.点评:等式的性质,以及比例基本性质是解方程的依据,解方程时注意对齐等号.二.填空题(共14小题)15.(•新干县)若a与b互为倒数,且=,那么x=.√.(判断对错)考点:解比例.专题:比和比例.分析:若a与b互为倒数,且=,根据比例的基本性质可得:5x=ab=1,那么x=.解答:解:=,根据比例的基本性质可得:5x=ab=1,那么x=;故答案为:√.点评:此题考查了比例的基本性质的运用.16.(•东莞模拟)如果ҳ:=:,那么ҳ=.考点:解比例.分析:根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项.解答:解:ҳ:=:,X=×,X=,X=.故答案为:.点评:此题考查比例性质的运用即解比例.17.(•铁山港区模拟)下面表格中,如果x与y成正比例,“?”是32:如果x和y成反比例,“?”是8X16?y4896考点:解比例.专题:比和比例.分析:(1)如果x与y成正比例,由正比例的意义可得16:48=?:96,把?看作未知数,根据比例的基本性质进行解比例即可;(2)如果x和y成反比例,由反比例的意义可得96?=16×48,把?看作未知数,根据等式的性质进行解方程即可.解答:解:根据题意可得:(1)16:48=?:96,48?=16×96,48?=1536,48?÷48=1536÷48,?=32;所以,如果x与y成正比例,“?”是32;(2)96?=16×48,96?=768,96?÷96=768÷96,?=8;所以,如果x和y成反比例,“?”是8.故答案为:32,8.点评:本题主要考查正反比例的意义,然后根据题意列出比例或方程再进一步解答即可.18.(•沿河县模拟)根据比例关系填表:x43918152y601024考点:解比例.专题:比和比例.分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:因为24×15=360(一定)所以xy成反比例关系.360÷4=90,360÷3=120,360÷60=6,360÷9=40,360÷10=36,360÷18=20,360÷2=180.x43693618152y901206040102024180点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.19.(•靖江市)如果x与y成正比例,那么表中的△是 4.5;如果x与y成反比例,那么△是2.x3△y120180考点:解比例.专题:比和比例.分析:(1)如果表中x和y成正比例,说明x和y对应的比值一定,根据两个比的比值相等列比例,并解比例即可;(2)如果表中x和y成反比例,说明x和y对应的乘积一定,根据两个比的乘积相等列方程,并解方程即可.解答:解:(1)3:120=x:180,120x=3×180,120x÷120=540÷120,x=4.5;(2)180x=3×120,180x=360,180x÷180=360÷180,x=2;故答案为:4.5,2.点评:此题考查根据正、反比例的意义,解答时要根据已知两种相关联的量,看比值一定还是积一定.20.(•广州模拟)0.4:x=1:10.考点:解比例.分析:根据比例的基本性质,把原式转化为x=0.4×10,再根据等式的性质,在方程两边同时乘上求解,解答:解:0.4:x=1:10,x=0.4×10,x×=4×,x=.点评:本题主要考查了学生根据比例的基本性质和等式的性质解方程的能力.21.(•广州模拟)6:2.8=2.4:x.考点:解比例.分析:根据比例的基本性质,把原式转化为6x=2.8×2.4,再根据等式的性质,在方程两边同时除以6求解.解答:解:6:2.8=2.4:x,6x=2.8×2.4,6x÷6=6.72÷6,x=1.12.点评:本题考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.22.(•江宁区模拟)如果A与B成正比例,那么“?”是 3.2;如果A与B成反比例,那么“?”是5.A4?B200160考点:解比例.分析:这一题可由正比例的意义和反比例的意义解答即可.解答:解:(1)A与B成正比例,△,x=3.2;(2)A与B成反比例,160x=4×200,x=5;故答案为:3.2,5.点评:此题考查了对正比例与反比例意义的理解以及应用的能力,要灵活掌握正反比例的公式.23.(•广州模拟):=4:x.考点:解比例.分析:根据比例的基本性质,把原式转化为,再根据等式的性质,在方程两边同时乘上求解.解答:解::=4:x,,,x=.点评:本题考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.。

专题01 比例线段及黄金分割点压轴题型全攻略(原卷版)

专题01 比例线段及黄金分割点压轴题型全攻略(原卷版)

专题01 比例线段及黄金分割点压轴题型全攻略【考点导航】目录【典型例题】 (1)【考点一 比例线段的识别】 (1)【考点二 比例线段的计算】 (2)【考点三 黄金分割点的定义】 (2)【考点四 黄金分割点的应用】 (3)【考点五 黄金分割点的拓展提高】 (3)【过关检测】 (4)【典型例题】【考点一 比例线段的识别】【例题1】若a :b=2:3,则下列各式中正确的式子是( )A .2a=3bB .3a=2bC .D .【变式1】已知=,那么下列等式中,不一定正确的是( ).A .2a=5b B. a b 52= C. a+b=7 D.a b b 72+= 【变式2】由5a=6b (a≠0),可得比例式( )A .B .C .D .【考点二 比例线段的计算】【例题2】 设,求的值.432z y x ==2222232z xy x z yz x --+-【变式1】若=,则=().A. B. C. D. 无法确定【变式2】已知,(1)求的值;(2)如果,求x的值.【变式3【考点三黄金分割点的定义】【例题3】已知点P是线段AB的一个黄金分割点(AP>PB),则PB:AB的值为().A. B. C. D.【变式1】已知线段AB=10cm,C是AB的一个黄金分割点,且AC<BC,求AC长为__________cm;【变式2】已知线段AB=1,C是线段AB的黄金分割点,则AC的长度为()A. B.C. 或D.以上都不对【考点四黄金分割点的应用】【例题4】美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为().A.4cmB.6cmC.8cmD.10cm【变式1】如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割.已知AB=10cm,则AC的长约为__________cm(结果精确到0.1cm).【变式2△BDC 、△DEC 都是黄金三角形,已知AB=4,则DE=__________.【考点五 黄金分割点的拓展提高】【例题5】是黄金矩形(即=≈0.618),如果在其内作正方形CDEF ,得到一个小矩形ABFE ,试问矩形ABFE 是否也是黄金矩形?【变式1】如图,扇子的圆心角为x°,余下扇形的圆心角为y°,x 与y 的比通常按黄金比来设计,这样的扇子外形比较美观,若黄金比取0.6,则x 为( ).A. 144°B. 135°C. 136°D. 108°【变式2道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF 和一个矩形EFDC ,那么EFDC 这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.BC AB 215-【变式3】以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如图所示,(1)求AM ,DM 的长,(2)试说明AM 2=AD·DM(3)根据(2)的结论,你能找出图中的黄金分割点吗?【过关检测】一.选择题1.在比例尺为1︰1 000 000的地图上,相距3cm 的两地,它们的实际距离为( ).A .3 kmB .30 kmC .300 kmD .3 000 km2.已知线段满足把它改写成比例式,其中错误的是( ).A. B. C.D. 3. (2014•牡丹江)若x :y=1:3,2y=3z ,则的值是(). 4.如图,已知点P 是线段AB 的黄金分割点,且PA >PB ,若S 1表示以PA 为边的正方形的面积,S 2表示a 、b 、c 、d =ab cd ::b c d a =::a b c d =::c b a d =::a c d b =长为AB 、宽为PB 的矩形的面积,那么S 1( )S 2.A.>B.=C.<D.无法确定6. 宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD 、BC 的中点E 、F ,连接EF :以点F 为圆心,以FD 为半径画弧,交BC 的延长线于点G ;作GH ⊥AD ,交AD 的延长线于点H ,则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH 二. 填空题8.线段AB 长10cm ,点P 在线段AB 上,且满足=,那么AP的长为 cm . ,(填写一个即可).10.已知若若5x -4y=0,则x:y=________. -3=,=____;4x y x y y则三.综合题13.如果,一次函数经过点(-1,2),求此一次函数解析式.14.如图,在△ABC 中,点D 在边AB 上,且DB=DC=AC ,已知∠ACE=108°,BC=2.(1)求∠B 的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边 长①写出图中所有的黄金三角形,选一个说明理由;②求AD 的长;③在直线AB 或BC 上是否存在点P (点A 、B 除外),使△PDC 是黄金三角形?若存在,在备用图中画出点P ,简要说明画出点P 的方法(不要求证明);若不存在,说明理由.a b c d k b c d a c d a b d a b c====++++++++y kx m =+15. 如图,用长为40cm的细铁丝围成一个矩形ABCD(AB>AD).(1)若这个矩形的面积等于99cm2,求AB的长度;(2)这个矩形的面积可能等于101cm2吗?若能,求出AB的长度,若不能,说明理由;(3)若这个矩形为黄金矩形(AD与AB之比等于黄金比),求该矩形的面积.(结果保留根号)。

比例线段解题方法解题技巧经典例题与练习题

比例线段解题方法解题技巧经典例题与练习题

比 例 线 段◆比例线段1.相似形:在数学上,具有相同形状的图形称为相似形2.比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段3. 比例的项:已知四条线段a 、b 、c 、d ,如果a ∶b =c ∶d ,那么a 、b 、c 、d 叫做组成比例的项,线段a 、d 叫做比例的外项,线段b 、c 叫做比例的内项,线段d 叫做a 、b 、c 的第四比例项;比例中项:如果比例内项是两条相同的线段a ∶b =b ∶c ,即,那么线段b 叫做线段a 和c 的比例中项。

4. 比例的性质(1)基本性质:bc ad dc b a =⇔=, a ∶b =b ∶c ⇔b 2=ac 例1:6∶x = (5 +x )∶2 中的x = ;2∶3 = ( 5x -)∶x 中的x = 例2:若,则=________(2)合、分比性质:dd c b b a d c b a d d c b b a d c b a -=-⇒=+=+⇒=或 注意:此性质是分子加(减)分母比分母,不变的是分母.想想是否可以拓展呢?即分母加(减)分子,不变的是分子例1:若43=-b b a ,则ba =_________ 例2:如果,则=________(3)等比性质:若)0(≠+⋅⋅⋅+++=⋅⋅⋅===n f d b n m f e d c b a 则ba n f db m ec a =+⋅⋅⋅++++⋅⋅⋅+++. 例1:若9810z y x ==, 则 ______=+++z y z y x 例2:已知:,则=________;如果,那么=________例3:若a b+c =b c+a =c a+b=k ,求k 的值.(4)比例中项:若c a b c a b cb b a ,,2是则即⋅==的比例中项. 例1:已知:线段,若线段b 是线段a,c 的比例中项,则c =________例2: 2:)3(-a = )3(-a :8,则a =【练一练】1、 若a ∶3 =b ∶4 =c ∶5 , 且6=-+c b a , ___________,____,===c b a ;2、 已知x ∶y ∶z = 3∶4∶5 , 且12=++z y x , 那么_________,____,===z y x ;3、已知dc b a ==f e =2 (b +d +f ≠0),求:(1)f d be c a ++++;(2)f d b e c a +-+-; (3)f d b ec a 3232+-+-;(4)f b ea 55--.4、 已知x ∶4 =y ∶5 = z ∶6 , 则 ①x ∶y ∶z = , ② )(y x +∶____)(=+z y ;5、 若322=-y y x , 则_____=yx ; 6、若345x y z ==,则x y z z ++= .若x:y:z=2:3:4,则=+-+y x z y x 232 .7、如果 ,则 ,。

有关比例尺的全部题型及解析

有关比例尺的全部题型及解析

例11:下面四幅地图中。比例尺最大的一幅是( )
【解题思路】方法一:取1厘米线段,测量一下四幅图。在1厘米线段内 跨纬度多少(在同一条经线上1°纬度地上距离为111千米)少者为大比例 尺,多者为小比例尺。A图跨纬度和经度最少,所以比例尺最大。B、 C、D三幅图跨纬度都多,不能选。 方法二:取图上1°的经度和纬度,比较一下它们的图上距离,图上距离 大的比例尺大,图上距离小的比例尺小。通过比较发现A图的图上距离 最大,故A图的比例尺最大。 【答案】A 题型二 知比例尺,求其他 一、知比例尺,求地图上所表示的实际范围大小、表示的内容详略、精 确度高低。
【解题思路】根据例11的判断方法判断出,甲图的比例尺大于乙图的比 例尺,然后依据例12得出结果。 【答案】CD
高三地理考点:巧用数轴解地方时和区时试题 例1[04年全国文综卷] 我国沿海某省一个课外小组某日测得当地日出、日落时间为6:40和 16:40,回答: 1该地的经度为: A 1200E B 1250E C 1150E D 1100E
以两地的纬度差等于100。又因为在同一条经线上10纬度地上距离为111 千米,所以可以计算出甲乙两地的实际距离是111千米/10×100=1110千 米=111000000厘米。最后根据公式:比例尺=图上距离/实际距离,可以 求出该地图的比例尺是11.1厘米/111000000厘米=1/10000000。 【答案】D 例4.在北半球的一幅天气分析图上,A高气压1020HPa中心位于 (60°N,92°E),B高气压1030HPa中心位于(50°N,92°E),两地图 上距离为11.1厘米,则该天气分析图的比例尺是( ) A.1:500000 B.1:10000000 C.1:1500000 D.1:2000000 【解题思路】该题与上题有相同之处,都是直接给出了图上距离,间接

初三数学比例线段练习题

初三数学比例线段练习题

初三数学比例线段练习题1. 已知线段AB与线段CD的比为2:5,线段CD的长度为15cm,求线段AB的长度。

解析:设线段AB的长度为x cm。

根据题意,可以列出比例方程:2/5 = x/15。

通过交叉相乘可以得到:5x = 2 * 15。

解方程可知:5x = 30,得到x = 6。

所以,线段AB的长度为6 cm。

2. 若线段EF与线段GH的比为3:4,且线段EF的长度为24 cm,求线段GH的长度。

解析:设线段GH的长度为y cm。

根据题意,可以列出比例方程:3/4 = 24/y。

通过交叉相乘可以得到:3y = 4 * 24。

解方程可知:3y = 96,得到y = 32。

所以,线段GH的长度为32 cm。

3. 已知线段IJ与线段KL的比为7:3,且线段IJ的长度为21 cm,求线段KL的长度。

解析:设线段KL的长度为z cm。

根据题意,可以列出比例方程:7/3 = 21/z。

通过交叉相乘可以得到:7z = 3 * 21。

解方程可知:7z = 63,得到z = 9。

所以,线段KL的长度为9 cm。

4. 两条线段比值为9:7,若线段A的长度为63 cm,求线段B的长度。

解析:设线段B的长度为w cm。

根据题意,可以列出比例方程:9/7 = 63/w。

通过交叉相乘可以得到:9w = 7 * 63。

解方程可知:9w = 441,得到w = 49。

所以,线段B的长度为49 cm。

5. 两条线段比值为3:10,若线段A的长度为12 cm,求线段B的长度。

解析:设线段B的长度为v cm。

根据题意,可以列出比例方程:3/10 = 12/v。

通过交叉相乘可以得到:3v = 10 * 12。

解方程可知:3v = 120,得到v = 40。

所以,线段B的长度为40 cm。

通过以上练习题的解答,我们可以看出在比例问题中,可以用代数方法解决。

根据已知条件,设未知量,并列出比例方程,通过解方程求得未知量的值。

这样的练习题有助于我们加深对比例概念的理解,并提高解决实际问题时的数学能力。

生活中线段比例的例子-概念解析以及定义

生活中线段比例的例子-概念解析以及定义

生活中线段比例的例子-概述说明以及解释1.引言1.1 概述概述线段比例是数学中一个重要的概念,它不仅在数学问题中有着重要的应用,同时也贯穿于我们日常生活的方方面面。

无论是建筑、艺术、经济还是生活中的各种情境,线段比例都在起着重要的作用。

本文将从生活中的各种例子入手,介绍线段比例在我们生活中的应用,并探讨线段比例对我们的启示以及与数学的关系。

通过对生活中线段比例的例子的深入分析和思考,我们可以更好地理解数学知识在实际生活中的应用和意义。

1.2文章结构文章结构部分将包括引言、正文和结论三个部分。

引言部分将概述文章要探讨的主题,简要介绍线段比例的概念和重要性,引出文章的主题。

正文部分将分为三个小节。

第一小节将解释线段比例的概念,包括如何计算线段比例以及线段比例的意义和应用。

第二小节将展示生活中线段比例的例子,例如建筑中的比例尺、食物的分配比例等。

第三小节将探讨线段比例在生活中的重要性,如何通过线段比例来实现平衡和优化资源的分配。

结论部分将总结生活中线段比例的应用,提出线段比例的启示,并探讨生活中的线段比例与数学的关系,呼吁人们重视并学习线段比例的应用和意义。

1.3 目的:本文旨在探讨生活中线段比例的例子,并分析线段比例在日常生活中的重要性和应用。

通过具体的例子,展示线段比例在不同情境下的实际运用,并总结其对我们生活的启示。

同时,本文还将探讨生活中的线段比例与数学的关系,帮助读者更好地理解数学知识在日常生活中的实际应用。

通过阐述线段比例在生活中的意义和作用,引导读者更加深入地思考线段比例在我们生活中的重要性。

2.正文2.1 线段比例的概念线段比例是指两条或多条线段之间的比较关系。

在数学中,线段比例是指两条线段在长度上的比例关系。

如果两条线段AB和CD之间存在比例关系,可以表示为AB:CD。

在这个比例中,AB和CD分别代表两条线段的长度。

线段比例可以是等比例、不等比例或相似比例。

等比例线段是指两条线段在长度上成比例,即它们的长度之比始终保持不变。

比例线段及黄金分割点压轴题型全攻略(解析版)

比例线段及黄金分割点压轴题型全攻略(解析版)

比例线段及黄金分割点压轴题型全攻略【考点导航】1.目录【典型例题】1【考点一比例线段的识别】【考点二比例线段的计算】【考点三黄金分割点的定义】【考点四黄金分割点的应用】【考点五黄金分割点的拓展提高】【过关检测】4【典型例题】【考点一比例线段的识别】1【若a:b=2:3,则下列各式中正确的式子是( )A.2a=3bB.3a=2bC.ba =23D.a-bb=13【分析】根据比例的性质,对选项一一分析,选择正确答案.【答案】B.【详解】A、2a=3b⇒a:b=3:2,故选项错误;B、3a=2b⇒a:b=2:3,故选项正确;C、ba =23⇒b:a=2:3,故选项错误;D、a-bb =13⇒a:b=3:2,故选项错误.故选B.【点睛】考查了比例的性质.在比例里,两个外项的乘积等于两个内项的乘积.1.已知ab=52,那么下列等式中,不一定正确的是( ).A.2a=5bB.a5=b2C.a+b=7D.a+bb=72【答案】C.2.由5a=6b(a≠0),可得比例式()A.b6 =5aB.b5 =6aC.ab =56D.a-bb=15【答案】D .【解析】A 、b 6 =5a⇒ab =30,故选项错误;B 、b 5 =6a ⇒ab =30,故选项错误;C 、a b =56⇒6a =5b ,故选项错误;D 、a -b b=15⇒5(a -b )=b ,即5a =6b ,故选项正确.故选D .【考点二比例线段的计算】1设x 2=y 3=z4,求2x 2-3yz +z 2x 2-2xy -z 2的值.【分析】由已知条件利用解方程的思想不能求出x ,y ,z 的值,因此用设参数法代入化简.【详解】设x 2=y 3=z4=k则x =2k ,y =3k ,z =4k 原式=2×2k 2-3×3k ×4k +4k 22k 2-2×2k ×3k -4k2=-12k 2-24k 2=12【点睛】解此类题学生容易误认为设k 后,未知数越多更不易解出,实际上分子、分母能产生公因式约去.1.若x -y 13=y 7,则x +yy=( ).A.137B .207C . 277D . 无法确定【答案】C .2.已知x 2=y 3=z4,(1)求x -2y z 的值;(2)如果x +3=y -z ,求x 的值.(1)令x 2=y 3=z4=k ,则x =2k ,y =3k ,z =4k ,再代入代数式进行计算即可;(2)把x =2k ,y =3k ,z =4k 代入x +3=y -z ,求出k 的值即可.【解析】解:(1)∵x 2=y 3=z4,∴令x 2=y 3=z4=k ,则x =2k ,y =3k ,z =4k ,∴x -2y z =2k -6k 4k =-4k 4k=-1;(2)∵x =2k ,y =3k ,z =4k ,x +3=y -z ,∴x +3=(y -z )2,即2k +3=(3k -4k )2,解得k =-1或k =3(舍去),∴x =-2.【点睛】本题考查的是比例的性质,根据题意得出x =2k ,y =3k ,z =4k 是解答此题的关键.举一反三:3.已知:a b +c =b a +c =ca +b=k .求k 值.【答案】可分a+b+c=0和a+b+c≠0两种情况代入求值和利用等比性质求解.【答案与解析】①当a+b+c=0时,b+c=-a,c+a=-b,a+b=-c,∴k为其中任何一个比值,即k=a-a=-1;②a+b+c≠0时,k=a+b+cb+c+c+a+a+b =a+b+c2(a+b+c)=12.∴k=-1或12.【点睛】考查比例性质的应用;分两种情况探讨此题是解决本题的易错点.【考点三黄金分割点的定义】1已知点P是线段AB的一个黄金分割点(AP>PB),则PB:AB的值为( ).A.5-12B.3-52C.1+52D.3-54【答案】B.【详解】根据题意得AP=5-12AB,所以PB=AB-AP=3-52AB,所以PB:AB=3-5 2.1.已知线段AB=10cm,C是AB的一个黄金分割点,且AC<BC,求AC长为cm;【答案】根据黄金分割点的定义,知AC是较短线段,由黄金分割的公式:较短的线段=原线段的3-5 2倍,可得AC=10×3-52,计算即可;【解析】∵线段AB=10cm,C是AB的一个黄金分割点,且AC<BC,∴AC=10×3-52=15-55(cm);【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的3-52倍,较长的线段=原线段的5-12倍.2.已知线段AB=1,C是线段AB的黄金分割点,则AC的长度为()A.5-12B. 3-52C.5-12或3-52D. 以上都不对【答案】C.【解析】∵线段AB=1,C是线段AB的黄金分割点,当AC>BC,∴AC=5-12AB=5-12;当AC<BC,∴BC=5-12AB=5-12,∴AC=AB-BC=1-5-12=3-52.【考点四黄金分割点的应用】2美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( ).A.4cmB.6cmC.8cmD.10cm【答案】C.【详解】根据已知条件得下半身长是165×0.60=99cm,设需要穿的高跟鞋是ycm,则根据黄金分割的定义得:99+y165+y=0.618,解得:y≈8cm.故选C.1.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割.已知AB=10cm,则AC的长约为cm(结果精确到0.1cm).【答案】6.2或3.8【解析】由题意知AC:AB=BC:AC,∴AC:AB≈0.618,∴AC=0.618×10cm≈6.2(结果精确到0.1cm)或AC=10-6.2=3.8.故答案为:6.2或3.8.2.如图,△ABC顶角是36°的等腰三角形(底与腰的比为5-12的三角形是黄金三角形),若△ABC、△BDC、△DEC都是黄金三角形,已知AB=4,则DE=.【答案】6-25.【解析】根据题意可知,BC=5-12AB,∵△ABC顶角是36°的等腰三角形,∴AB=AC,∠ABC=∠C=72°,又∵△BDC也是黄金三角形,∴∠CBD=36°,BC=BD,∴∠ABD=∠ABC-∠CBD=36°=∠A,∴BD=AD,同理可证DE=DC,∴DE=DC=AC-AD=AB-BC=AB-5-12AB=6-25.故答案为:6-25.【考点五黄金分割点的拓展提高】3是黄金矩形(即ABBC=5-12≈0.618),如果在其内作正方形CDEF,得到一个小矩形ABFE,试问矩形ABFE是否也是黄金矩形?【分析】(1)矩形的宽与长之比值为5-12,则这种矩形叫做黄金矩形.(2)要说明ABFE是不是黄金矩形只要证明AEAB =5-12即可.【答案与详解】矩形ABFE是黄金矩形.理由如下:因为AEAB=AD-EDAB=ADAB-EDAB=25-1-1=25+15-15+1-1=5+12-1=5-12所以矩形ABFE也是黄金矩形.【点睛】判断四边形是否是黄金矩形,要根据实际条件灵活选择判断方法.1.如图,扇子的圆心角为x°,余下扇形的圆心角为y°,x与y的比通常按黄金比来设计,这样的扇子外形比较美观,若黄金比取0.6,则x为( ).A.144°B. 135°C. 136°D. 108°【答案】B.【解析】由扇子的圆心角为x°,余下扇形的圆心角为y°,黄金比为0.6,根据题意得:x:y=0.6=3:5,又∵x+y=360,则x=360×38=135【总结升华】此题考查了黄金分割,以及比例的性质,解题的关键是根据题意列出x与y的关系式.2.图1是一张宽与长之比为5-12:1的矩形纸片,我们称这样的矩形为黄金矩形.同学们都知道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF和一个矩形EFDC,那么EFDC这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.矩形EFDC是黄金矩形,【解析】证明:∵四边形ABEF是正方形,∴AB=DC=AF,又∵ABAD=5-12,∴AF AD =5-12,即点F是线段AD的黄金分割点.∴FD AF =AFAD=5-12,∴FD DC =5-12,3.以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图所示,(1)求AM,DM的长,(2)试说明AM2=AD·DM(3)根据(2)的结论,你能找出图中的黄金分割点吗?【答案】(1)∵正方形ABCD的边长是2,P是AB中点,∴AD=AB=2,AP=1,∠BAD=90°,∴PD=AP2+AD2=5。

初三成比例线段典型例题及练习题

初三成比例线段典型例题及练习题

初三成比例线段典型例题及练习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN【典型例题】类型一、比例线段例题1. (1)求证:如果,那么.(2)已知线段a、b、c、d,满足a cb d=,求证:a c ab d b+=+.类型二、相似图形例题2.(1)如果两个四边形的对应边成比例,能不能得出这两个四边形相似为什么(2)下面的四个图案是空心的矩形,正方形,等边三角形,不等边三角形,其中每个图案的边的宽度都相等,那么每个图案中边的内外边缘所围成的几何图形不相似的是()类型三、相似多边形例题3.(1)已知四边形与四边形相似,且.四边形的周长为26.求四边形的各边长.(2)等腰梯形与等腰梯形相似,,求出的长及梯形各角的度数.例题4. 某小区有一块矩形草坪长20米,宽10米,沿着草坪四周要修一宽度相等的环形小路,使得小路内外边缘所成的矩形相似,你能做到吗?若能,求出这一宽度;若不能,说明理由.考点集训图形的相似和比例线段(提高)一.选择题1. 在比例尺为1︰1 000 000的地图上,相距3cm的两地,它们的实际距离为( )A.3 km B.30 km C.300 km D.3 000 km2. 已知线段a、b、c、d满足=ab cd把它改写成比例式,其中错误的是()A.::b c d a= B.::a b c d= C.::c b a d= D.::a c d b=3. 已知△ABC的三边长分别为6cm、7.5cm、9cm,△DEF的一边长为4cm,当△DEF的另两边的长是下列哪一组时,这两个三角形相似( ) A.2cm,3cm B.4cm,5cm C.5cm,6cm D.6cm,7cmP64.△ABC与△A1B1C1相似且相似比为,△A1B1C1与△A2B2C2相似且相似比为,则△ABC与△A2B2C2的相似比为 ( )A.B.C.或D.5.下列两个图形:① 两个等腰三角形;② 两个直角三角形;③ 两个正方形;④ 两个矩形;⑤ 两个菱形;⑥ 两个正五边形.其中一定相似的有( )A. 2组B. 3组C. 4组D. 5组6.一个钢筋三角架三边长分别是20cm ,50cm ,60cm ,现要做一个与其相似的三角架,只有长30cm ,50cm 的两根钢筋,要求以其中一根为一边,从另一根截下两段(允许有余料)做为其他两边,则不同的截法有( ) A.一种 B.两种 C.三种 D.四种P7二. 填空题 7. 小明有一张的地图,他想绘制一幅较小的地图,若新地图宽为30cm ,则新地图长为_________cm.8. △ABC 的三条边长分别为、2、,△A ′B ′C ′的两边长分别为1和,且△ABC 与△A ′B ′C ′相似,那么△A ′B ′C ′的第三边长为____________9. 如图:梯形ADFE 相似于梯形EFCB,若AD=3,BC=4,则______.AEBE10.已知若-3=,=____;4x y xy y则若5-4=0,x y 则x :y =___.11.如图:AB:BC=________,AB:CD=_________,BC:DE=________,AC:CD=__________,CD:DE=________.P812. 用一个放大镜看一个四边形ABCD ,若四边形的边长被放大为原来的10倍,下列结论①放大后的∠B 是原来∠B 的10倍;②两个四边形的对应边相等;③两个四边形的对应角相等, 则正确的有 .三.综合题13.如果a b c dkb c d a c d a b d a b c====++++++++,一次函数y kx m=+经过点(-1,2),求此一次函数解析式.P914. 如图,在矩形ABCD中,AB=2AD,线段EF=10,在EF上取一点M,分别以EM、MF为一边作矩形EMNH、MFGN,使矩形MFGN与矩形ABCD相似.令MN=x,当x为何值时,矩形EMNH的面积S有最大值最大值是多少15. 从一个矩形中剪去一个尽可能大的正方形,如图所示,若剩下的矩形与原矩形相似,求原矩形的长与宽的比.。

六年级数学下册典型例题系列之第四单元比例尺部分(解析版)人教版

六年级数学下册典型例题系列之第四单元比例尺部分(解析版)人教版

2021-2022学年六年级数学下册典型例题系列之第四单元比例尺部分(解析版)编者的话:《2021-2022学年六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。

典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。

本专题是第四单元比例尺部分。

本部分内容主要考察比例尺的认识及应用,考点和题型相对简单,建议作为本章重点内容进行讲解,一共划分为十一个考点,欢迎使用。

【考点一】比例尺的意义。

【方法点拨】1.比例尺的意义:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺,一般用文字描述为图上1厘米表示实际距离多么厘米。

【典型例题】一幅地图的比例尺是1∶10000,图上1cm 的距离,表示实际( )m 。

解析:100【对应练习】比例尺1∶6000000表示图上1cm 的线段相当于实际距离( )km ;比例尺10∶1表示图上1cm 长的线段相当于实际( )mm 。

解析:60;1【考点二】比例尺的改写。

【方法点拨】1.比例尺主要有两种分类,即线段比例尺和数值比例尺。

2.比例尺三种形式的写法:①比的形式:比例尺是图上距离与实际距离的最简整数比,可以写成带比号的形式;②分数形式:也可以写成分数形式,即比例尺1∶2500也可以写成25001; ③线段形式: 注意:实际上,通常图上距离的单位是厘米,实际距离的单位是千米,因此计算时一定要进行单位换算。

【典型例题】地图上的线段比例尺是千米,把这个线段比例尺改成数值比例尺( )。

解析:1∶3000000这是一个( )比例尺,用数值比例尺表示是( )。

解析:线段;1∶4000000【对应练习2】是( )比例尺,把它改成数值比例尺是( )。

解析: 线段;1∶3000000【对应练习3】把改写成数值比例尺是( )。

线段比例定理与三角形的相似性应用解析

线段比例定理与三角形的相似性应用解析

线段比例定理与三角形的相似性应用解析线段比例定理是解决几何问题中常用的原理之一,它在求解线段的长度比例时起到了重要作用。

三角形的相似性应用则是在解决三角形问题时的关键概念,它可以帮助我们简化计算过程,得到更加准确的结果。

本文将详细介绍线段比例定理与三角形相似性应用的概念和具体解析方法。

一、线段比例定理线段比例定理是指在一个平面内,若点D在线段AB上,AD与DB 的比等于点C在线段AB上AC与CB的比,则有AD/DB = AC/CB。

这个定理通过比例的概念,帮助我们计算线段的长度比例,进而解决实际问题。

例题1:已知线段AB与线段CD的比为3:5,线段DE与线段BC 的比为4:9,求线段AE与线段AC的比。

解析:根据线段比例定理,我们可以得到AB/CD = 3/5,DE/BC = 4/9。

将两个等式相乘,得到(AB/CD)*(DE/BC) = (3/5)*(4/9),即(AB*DE)/(CD*BC) = 12/45。

移项后可得到(AB*DE)/(AE*CD) = 12/45。

同理可以得到(AE*AC)/(CD*AC) = 3/5。

由此可得(AE*AC)/(AE*CD) = 3/5,即AC/CD = 3/5。

最终我们得到线段AE与线段AC的比为3:5。

二、三角形的相似性应用三角形的相似性应用是指在两个或更多个三角形之间存在一定的比例关系,从而可以通过已知条件求解未知量。

三角形相似性应用在实际问题中有很多应用,比如求解高空物体的高度、测量难以到达的距离等。

例题2:如图所示,∠A = ∠D,∠B = ∠E,AB/DE = 3/5,AC = 12cm,求线段DF的长度。

(图示:三角形ABC和三角形DEF重合在角A和角D上,AC为线段AB的割线)解析:根据已知条件,我们可以得到三角形ABC与三角形DEF相似,且AB/DE = 3/5。

由线段比例定理可得AC/DF = AB/DE,即12/DF = 3/5。

通过交叉相乘避免分数相除,我们可以得到3DF = 5*12。

四条线段成比例问题1

四条线段成比例问题1
C.a=8,b=5,c=4,d=3
D.a=9,b= ,c=3,d=
“已知线段a=2,b=4,c=6,则d=?时,它们是成比例线段。”此问题很显然是第一种类型。按顺序性只能确定一种答案。
(3)已知1, ,2,x成比例线段,则x值为( )
(4)已知:a=3,b=4,c=5,请再添加一条线段,使这四条线段成比例线段.
2.没指出具体哪四条线段成比例(未确定顺序),一般考虑多种情况。
如:(1)已知三条线段的长分别是4cm,5cm和10cm,则再加一条( 或8或2cm)的线段,才能使这四条线段成比例.
(2)已知三条线段的长度为1,2, ,请你再添一条线段,使它们能构成一个比例式. , , .
3.判断已知四条线段是否成比例或是否成比例线段,方法是:一般把四个数大小排列,判断前后两组比是否相等;或看两个极值的积是否等于另两个数的积来判断。
如:(1)已知四条线段a、b、c、d的长度,试判断它们是否成比例?
关于四条线段成比例问题
关于四条线段成比例,个人认为有以下几种情况,供大家参考。
1.具体指出哪四条线段成比例,根据比例线段的顺序性,一般只有一种情况:
如:(1)已知四条线段a、b、c、d成比例,且a=2,b=3,c=4.则d= 66.
(2)线段a、b,c,d是成比例线段,若a=10、c=8、d=12,则b= 1515.
(1)a=1ห้องสมุดไป่ตู้cmb=8cmc=5cmd=10cm
(2)a=8cmb=5cmc=6cmd=10cm.
解:(1)∵8×10=80,16×5=80,∴能够成比例;
(2)∵8×6=48,10×5=50,∴不能够成比例.
再如:(2)下列四条线段为成比例线段的是(B)
A.a=10,b=5,c=4,d=7

初三成比例线段典型例题及练习题

初三成比例线段典型例题及练习题

【典型例题】类型一、比例线段 例题1. (1)求证:若是,那么.(2)已知线段a 、b 、c 、d ,知足a c b d = ,求证:a c a b d b+=+.类型二、相似图形例题2.(1) 若是两个四边形的对应边成比例,能不能得出这两个四边形相似?什么缘故?(2)下面的四个图案是空心的矩形,正方形,等边三角形,不等边三角形,其中每一个图案的边的宽度都相等,那么每一个图案中边的内外边缘所围成的几何图形不相似的是( )类型三、相似多边形 例题 3.(1) 已知四边形与四边形相似,且.四边形的周长为26.求四边形的各边长.(2)等腰梯形与等腰梯形相似,,求出的长及梯形各角的度数.(3)例题4. 某小区有一块矩形草坪长20米,宽10米,沿着草坪周围要修一宽度相等的环形小路,使得小路内外边缘所成的矩形相似,你能做到吗?假设能,求出这一宽度;假设不能,说明理由.考点集训图形的相似和比例线段(提高)一.选择题1. 在比例尺为1︰1 000 000的地图上,相距3cm的两地,它们的实际距离为( )A.3 km B.30 km C.300 km D.3 000 km2. 已知线段a、b、c、d知足=ab cd把它改写成比例式,其中错误的选项是()A.::b c d a= B.::a b c d= C.::c b a d= D.::a c d b=3. 已知△ABC的三边长别离为6cm、7.5cm、9cm,△DEF的一边长为4cm,当△DEF的另两边的长是以下哪一组时,这两个三角形相似( )A.2cm,3cm B.4cm,5cm C.5cm,6cm D.6cm,7cmP64.△ABC与△A1B1C1相似且相似比为,△A1B1C1与△A2B2C2相似且相似比为,那么△ABC与△A2B2C2的相似比为 ( )A.B.C.或D.5.以下两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中必然相似的有()A. 2组B. 3组C. 4组D. 5组6.一个钢筋三角架三边长别离是20cm,50cm,60cm,现要做一个与其相似的三角架,只有长30cm,50cm的两根钢筋,要求以其中一根为一边,从另一根截下两段(许诺有余料)做为其他两边,那么不同的截法有()A.一种B.两种C.三种D.四种P7二. 填空题 7. 小明有一张的地图,他想绘制一幅较小的地图,假设新地图宽为30cm ,那么新地图长为_________cm.8. △ABC 的三条边长别离为、二、,△A ′B ′C ′的两边长别离为1和,且△ABC 与△A ′B ′C ′相似,那么△A ′B ′C ′的第三边长为____________9. 如图:梯形ADFE 相似于梯形EFCB,假设AD=3,BC=4,那么______.AEBE10.已知假设-3=,=____;4x y x y y则若5-4=0,x y 则x :y =___.11.如图:AB:BC=________,AB:CD=_________,BC:DE=________,AC:CD=__________,CD:DE=________.P812. 用一个放大镜看一个四边形ABCD ,假设四边形的边长被放大为原先的10倍,以下结论①放大后的∠B 是原先∠B 的10倍;②两个四边形的对应边相等;③两个四边形的对应角相等,那么正确的有 . 三.综合题13.若是a b c dkb c d a c d a b d a b c====++++++++,一次函数y kx m=+通过点(-1,2),求此一次函数解析式.P914. 如图,在矩形ABCD中,AB=2AD,线段EF=10,在EF上取一点M,别离以EM、MF为一边作矩形EMNH、MFGN,使矩形MFGN与矩形ABCD相似.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?15. 从一个矩形中剪去一个尽可能大的正方形,如下图,假设剩下的矩形与原矩形相似,求原矩形的长与宽的比.。

比例线段与黄金分割典型例题讲解与练习

比例线段与黄金分割典型例题讲解与练习

⽐例线段与黄⾦分割典型例题讲解与练习个性化辅导讲义(2012 ~ 2013 学年第 1 学期)任教科⽬:数学授课题⽬:相似图形1年级:⼋年级任课教师:教导主任签名:__________⽇期:2013、4、28⼀.知识的回顾⽐例定义:表⽰两个⽐相等的式⼦叫⽐例.1、如果a与b的⽐值和c与d的⽐值相等,那么a c=b d或a∶b=c∶d,这时组成⽐例的四个数a,b,c,d叫做⽐例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项. 2、如果选⽤同⼀个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的⽐AB∶CD=m∶n,或写成AB m=CD n,其中,线段AB、CD分别叫做这两个线段⽐的前项和后项.3、如果把mn表⽰成⽐值k,则AB=CDk或AB=k?CD.4、四条线段a,b,c,d中,如果a与b的⽐等于c与d的⽐,即a c=b d,那么这四条线段a,b,c,d叫做成⽐例线段,简称⽐例线段.5、黄⾦分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果AC BC那么称线段AB被点C黄⾦分割(golden section),点C叫做线段AB的黄⾦分割点,AC与AB的⽐叫做黄⾦⽐.其中AC∶AB≈0.618.6、引理:平⾏于三⾓形的⼀边,并且和其他两边相交的直线,所截得的三⾓形的三边与原三⾓形三边对应成⽐例.相似三⾓形:三⾓对应相等,三边对应成⽐例的两个三⾓形叫做相似三⾓形.相似多边形:各⾓对应相等、各边对应成⽐例的两个多边形叫做相似多边形。

相似⽐:相似多边形对应边的⽐叫做相似⽐.⼆、⽐例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么a c=b d。

如果a c=b d(b,d都不为0),那么ad=bc.2、合⽐性质:如果a c=b d,那么a b c b=b d±±。

3、等⽐性质:如果a c m==b d n(b+d++n≠0),那么a+b+=b+d+bm an4、更⽐性质:若a c=b d,那么a b=c d。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型例题解析:比例线段
典型例题解析:比例线段
例题1.已知四条线段a 、b 、c 、d 的长度,试判断它们是否是成比例线段?
(1) a =16cm,b =8cm,c = 5cm,d = 10cm ;
(2) a = 8cm,b = 0.5cm, c = 0.6dm,d = 10cm .
把上述三个点的横坐标、纵坐标都乘以 2,得到A 、B > C 的坐标,
求出AB ;BC ;AC •的长.
(3) 这些线段成比例吗?
例题3.已知3』,求x
x 8 y
例题4.已知―三,求x 一
y 3z
的值
2 3 4 3x —y
例题5.若晋冷,则b 的值是 -------------------- 例题6.设亠二丄二亠二k ,求
k 的值
y+z z+x x+y
例题7.如果蓉卜沪,求:5^的值 例题 2. (1) 求出AB 、BC 、AC 的长.
(2) 如图,
例题8.线段x , y满足(x2• 4y2): xy = 4: 1,求x: y的值
例题9.如图,已知,在ABC中,D、E分别是AB、AC上的点,并且
AB = BC =AC =3,ABC的周长为12cm,求:UADE的周长
AD DE AE 2
参考答案
例题1分析观察四条线段是否成比例时,首先要把四条线段的单位都化成一致的单位,再把它们按从小到大的顺序排列,由比例线段的基本性质知ab=bc,即如果第一、四两个数的积等于第二四两个数的积,则四条线段成比例,否则不成比例.
解答 (1) c = 5cm, b =8cm,d = 10cm, a = 16cm,
b d =80,a c=80,bd = ac,
.b c
• • -- ~
a d '
•四条线段成比例.
(2) b = 0.5cm, c = 0.6dm = 6cm, a = 8cm, d = 10cm,
bd = 5, ca = 48,bd = ca,
•••这四条线段不成比例.
例题2分析利用勾股定理可以求出这些线段的长.
解答 (1) AB—.22 32— 13,BC=.52 12二26, AC = . 32 42 = 5 .
(2)A(0,4), B(4,2),C(6,4),
AB = 42 62 = 52 — 4 1 3 =2、13,
B C' hp lO2 22= :;104 二4 26 =2 26,
AC = .62 82 =10 .
“、…AB <13 1 BC 1 AC 1
(3)' -- = —= ---- ---- = - ---- =—
AB 2J13 2‘BC2‘AC2’
• AB BC AC
…AB 一BC 一AC,
这些线段成比例.
例题3.解答:由比例的基本性质得8(x • y) =11x
3x =8y
x 8
IT "" --- ~~
y 3
说明 本题考查比例的基本性质,易错点是由 3x=8y 化成比例式时错成 -,解题关键是运用比例的基本性质,本题还可以运用合比性质求解。

y 8
例题 4.解答:设-=-=-=k ,贝U x =2k , y =3k , z =4k
2 3 4
x - y 3z _2k -3k 3 4k _ 11
3x-y 3x2k-3k 3
说明 本题考查比例的性质,解题关键是设 -=^=-=k ,将x 、y 、z 统
2 3 4
一成k 。

例题5•解法1: 3
^-5b b 3a _ _8 5b 一 15 a 8 ■ __________ ______ ____________ b _ 9
解法2设,则-bk
由 3a 5b
b
3k 5 = 7
3 k 「8 9
解法3
3(3a 5b) =7b
9a - -8b
a _ 8
・■. =——
b 9
说明 本题考查比例的性质,解题关键是灵活运用比例的性质 3a 5b 5b 7 3a + 5b-5b _ 7-15 15, 5b - 15
x+y+z x+y+z
k 二
(y z) (z x) (x ■ y) 2(x y z)
正解:当x y
0时, 当 x y • z =0 时,
y z - -x
1
.k 或一1
2
说明错解中忽视了 x y ^0的情形
例题7•分析 可设-=c 二k = 0,则a 、b 、c 均可用k 来表示,把它 2 3 4 代入欲求值的代数式中,就可以求出它的值
解答设, 2 3 4
贝U a = 2k ,b = 3k ,c = 4k ,
5a -3b 2c 5 2k -3 3k 2 4k 9k 3 4a c-2b 4 2k 4k - 2 3k 6k 2
说明 设比例式的比值为k 的(比例系数),这是解比例式常用的有效方法, 要注意掌握。

例题8•分析 要直接求出x:y 比较困难,我们不妨先利用比例的基本性质, 求得x 与y 的关系式,再求x 与y 的比值
解答
(x 2 4y 2
): xy = 4:1, 2 2 x 4y 4xy
2
(x -2y)
x =2y
x
2 例题6 •错解: -x
y
例题9 .分析A D E勺周长二AD AE DE , AD AE DE
则由给出的比例式, 可以用AB BC AC表示
解答AB = BC =AC =3,
AD DE AE 2
AB BC AC 3
AD DE AE 一2
2 2
AD DE AE (AB BC AC) 12 =8cm
3 3
即. ADE的周长等于8cm。

相关文档
最新文档