高中物理圆周运动中的“双星模型”.docx

合集下载

双星系统

双星系统
一、双星模型 (1)定义:绕公共圆心转动的两个星体组成的系统 ,我们称之为双星系统,如图所示.
(2)特点: ①各自所需的向心力由彼此间的万有引力相互提供 ②两颗星的周期及角速度都相同 ③两颗星的半径与它们之间的距离关系为 (3)两颗星到圆心的距离与星体质量成反比,与星体 运动的线速度成反比.
拓展: 1.若在双星模型中,图中L、m1、m2、G为已知量, 双星运动的周期如何表示? 2.若双星运动的周期为T,双星之间的距离为L,G 已知,双星的总质量如何表示?
球的影响,可以将月球和地球看成 上述星球A和B,月球绕其轨道中 心运行的周期记为T1ቤተ መጻሕፍቲ ባይዱ但在近似处 理问题时,常常认为月球是绕地心
做圆周运动的,这样算得的运行周 期为T2。已知地球和月球的质量分 别为5.98×1024 kg和7.35×1022 kg 。求T2与T1两者的平方之比。(结果 保留3位小数)
[典例2] (多选)宇宙间存在一些离其他恒星较远的三星 系统,其中有一种三星系统如图所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为R,忽略
其他星体对它们的引力作用,三星在同一平面内绕三角 形中心O做匀速圆周运动,万有引力常量为G,则
(1)每颗星做圆周运动的线速度? (2)每颗星做圆周运动的角速度? (3)每颗星做圆周运动的周期?
(二)宇宙三星模型 (1)定义:所研究星体的万有引力的合力提供做圆周运 动的向心力,除中央星体外,各星体的角速度或周期 相同. (2)三星模型: ①三颗星位于同一直线上,两颗环绕
星围绕中央星在同一半径 为R的圆形轨道上运行 ②三颗质量均为m的星体位 于等边三角形的三个顶点 上(如图乙所示).
(三)宇宙四星模型
万有引力的合力提供做圆周运动的向心力,除中央 星体外,各星体的角速度或周期相同.

双星多星专题

双星多星专题

专题强化 双星或多星模型命题点 双星或多星模型1.双星模型 (1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω12r 1,Gm 1m 2L 2=m 2ω22r 2 ②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为:r1+r2=L(3)两颗星到圆心的距离r1、r2与星体质量成反比,即m1m2=r2r1.2.多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).例1(2015·安徽理综·24)由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图4为A、B、C三颗星体质量不相同时的一般情况).若A星体质量为2m、B、C两星体的质量均为m,三角形的边长为a,求:(1)A星体所受合力大小F A;(2)B星体所受合力大小F B;(3)C星体的轨道半径R C;(4)三星体做圆周运动的周期T.1.(2013·山东理综·20)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为()A.n3k2T B.n3k TC.n2k T D.nk T2.银河系的恒星中大约四分之一是双星.如图5所示,某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点O做匀速圆周运动.由天文观察测得它们的运动周期为T,若已知S1和S2的距离为r,引力常量为G,求两星的总质量M.。

高一物理【双星问题】专题

高一物理【双星问题】专题

高一物理【双星问题】专题1.双星模型宇宙中往往会有相距较近、质量相当的两颗星球,它们离其他星球都较远,因此其他星球对它们的万有引力可以忽略不计。

在这种情况下,它们将各自围绕它们连线上的某一固定点O 做同周期的匀速圆周运动。

这种结构叫作双星模型(如图所示)。

2.双星的特点(1)由于双星和该固定点O 总保持三点共线,所以在相同时间内转过的角度必然相等,即双星做匀速圆周运动的角速度必然相等,因此周期也必然相等。

(2)由于每颗星球的向心力都是由双星间相互作用的万有引力提供的,因此大小必然相等,即m 1ω2r 1=m 2ω2r 2,又r 1+r 2=L (L 是双星间的距离),可得r 1=m 2m 1+m 2L ,r 2=m 1m 1+m 2L ,即固定点离质量大的星球较近。

(3)列式时需注意:万有引力定律表达式中的r 表示双星间的距离,该处按题意应该是L ,而向心力表达式中的r 表示它们各自做圆周运动的轨道半径。

宇宙中两颗相距较近的天体称为双星,它们以二者连线上的某一点为圆心做匀速圆周运动,而不至于因相互之间的引力作用吸引到一起。

设两者相距为L ,质量分别为m 1和m 2。

(1)试证明它们的轨道半径之比、线速度之比都等于质量的反比; (2)试写出它们角速度的表达式。

[解析] 双星之间相互作用的引力满足万有引力定律,即F =G m 1m 2L 2,双星依靠它们之间相互作用的引力提供向心力,又因为它们以二者连线上的某点为圆心,所以半径之和为L 且保持不变,运动中角速度不变,如图所示。

(1)分别对m 1、m 2应用牛顿第二定律列方程, 对m 1有G m 1m 2L 2=m 1ω2r 1①对m 2有G m 1m 2L 2=m 2ω2r 2②由①②得r 1r 2=m 2m 1;由线速度与角速度的关系v =ωr ,得v 1v 2=r 1r 2=m 2m 1。

(2)由①得r 1=Gm 2L 2ω2,由②得r 2=Gm 1L 2ω2,又L =r 1+r 2,联立以上三式得ω=G (m 1+m 2)L 3。

2025届高考物理一轮复习课件第五章第3课时专题强化:卫星变轨问题双星模型

2025届高考物理一轮复习课件第五章第3课时专题强化:卫星变轨问题双星模型

m2 2G r2
√B.每颗星体运行的周期均为 2π
r3 3Gm
C.若 r 不变,星体质量均变为 2m,则星体的角速度变为原来的 4 倍
D.若 m 不变,星体间的距离变为 4r,则星体的线速度变为原来的14
考点二 双星或多星模型
任意两颗星体间的万有引力大小 F0=Gmr22, 每颗星体受到其他两个星体的引力的合力为 F=2F0cos 30°= 3Gmr22,A 错误; 由牛顿第二定律可得 F=m(2Tπ)2r′,
考点三 星球“瓦解”问题 黑洞
2.黑洞 黑洞是一种密度极大、引力极大的天体,以至于光都无法逃逸,科学家 一般通过观测绕黑洞运行的天体的运动规律间接研究黑洞。当天体的逃 逸速度(逃逸速度为其第一宇宙速度的 2倍)超过光速时,该天体就是黑洞。
考点三 星球“瓦解”问题 黑洞
例6 2018年2月,我国500 m口径射电望远镜(天眼)发现毫秒脉冲星
考点一 卫星的变轨和对接问题
(3)周期 卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期T1、T2、T3的关系为 T1<T2<T3 。 (4)机械能 在一个确定的圆(椭圆)轨道上机械能守恒 。若卫星在 Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,从轨道 Ⅰ到轨道Ⅱ和从轨道Ⅱ到轨道Ⅲ都需要点火加速, 则机械能关系为 E1<E2<E3 。
卫星的变轨和对接问题
考点一 卫星的变轨和对接问题
1.卫星发射模型
(1)为了节省能量,在赤道上顺着地球自转方向先发射卫星到圆轨道Ⅰ上, 卫星在轨道Ⅰ上做匀速圆周运动,有GMr1m2 =mvr12,如图所示。 (2)在A点(近地点)点火加速,由于速度变大,所需向心 力变大,GMr1m2 <mvrA12,卫星做离心运动进入椭圆轨道Ⅱ。 (3)在椭圆轨道 B 点(远地点),GMr2m2 >mvrB22,将做近心运 动,再次点火加速,使 GMr2m2 =mvBr′2 2,进入圆轨道Ⅲ。

高中物理复习 双星问题,天体追击

高中物理复习 双星问题,天体追击

一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。

2.模型条件: (1)两颗星彼此相距较近。

(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。

(3)两颗星绕同一圆心做圆周运动。

3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。

(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。

(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。

(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。

②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。

(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。

②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。

二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。

(完整版)“双星”问题及天体的追及相遇问题

(完整版)“双星”问题及天体的追及相遇问题
(2)根据两星追上或相距最近时满足两星运行的角度差等于2π的整数倍,相距最远时,两星运行的角度差等于π的奇数倍。
在与地球上物体追及时,要根据地球上物体与同步卫星角速度相同的特点进行判断。
题型一 双星规律的应用
【例题】2017年6月15日,我国在酒泉卫星发射中心用长征四号乙运载火箭成功发射硬X射线调制望远镜卫星“慧眼”。“慧眼”的成功发射将显著提升我国大型科学卫星研制水平,填补我国国X射线探测卫星的空白,实现我国在空间高能天体物理领域由地面观测向天地联合观测的超越。“慧眼”研究的对象主要是黑洞、中子星和射线暴等致密天体和爆发现象。在利用“慧眼”观测美丽的银河系时,若发现某双黑洞间的距离为L,只在彼此之间的万有引力作用下做匀速圆周运动,其运动周期为T,引力常量为G,则双黑洞总质量为()
【例题】太阳系中某行星运行的轨道半径为 ,周期为 .但科学家在长期观测中发现,其实际运行的轨道与圆轨道总存在一些偏离,且周期性地每隔 时间发生一次最大的偏离.天文学家认为形成这种现象的原因可能是该行星外侧还存在着一颗未知行星,则这颗未知行星运动轨道半径为 ( )
A. B.
C. D.
【解析】:由题意可知轨道之所以会偏离那是因为受到某颗星体万有引力的作用相距最近时
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型
(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.
(2)三星模型: ①三颗ቤተ መጻሕፍቲ ባይዱ位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).
【解析】已知地球绕太阳的公转周期为 设火星的公转周期为 根据开普勒第三定律 得 又根据 化简得

第七章 专题强化:双星或多星模型 课件 -高一下学期物理人教版(2019)必修第二册

第七章 专题强化:双星或多星模型 课件 -高一下学期物理人教版(2019)必修第二册
间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,
若已知某双星系统的运转周期为T,两星到共同圆心的距离分别为R1和R2,引力常 量为G,那么下列说法正确的是
A.这两颗恒星的质量必定相等
√B.这两颗恒星的质量之和为4π2R1+R23 GT 2
√C.这两颗恒星的质量之比m1∶m2=R2∶R1 √D.其中必有一颗恒星的质量为4π2R1R1+R22
一种三星系统如图所示.三颗质量均为m的星体位于等边三角形的三个 顶点,三角形边长为R.忽略其他星体对它们的引力作用,三星在同一 平面内绕三角形中心O做匀速圆周运动,万有引力常量为G,则
质量表达式为 M1=ωG2L2R2=4GπT2L22R2,M2=ωG2L2R1=4GπT2L22R1,两天体总质 量表达式为 M1+M2=ωG2L3=4GπT2L23,两天体的总质量不变,天体之间的距离 L 不变,因此天体的周期 T 和角速度 ω 也不变,质量较小的黑洞 M2 的质量 增大,因此恒星的圆周运动半径增大,根据 v=2πTR,可知,恒星的线速度 增大,故 C 正确,D 错误。
1.(双星模型)(多选)有一对相互环绕旋转的超大质量双黑洞系统,如图所
示.若图中双黑洞的质量分别为M1和M2,它们以两者连线上的某一点为 圆心做匀速圆周运动.根据所学知识,下列说法中正确的是
A.双黑洞的角速度之比ω1∶ω2=M2∶M1
√B.双黑洞的轨道半径之比r1∶r2=M2∶M1
C.双黑洞的线速度大小之比v1∶v2=M1∶M2
30°=2×GMRM2 ×
3= 2
3GMRM2 ,星体运动的轨道半径
r=23Rcos30°=23×R×
3= 2
33R,
万有引力提供向心力 F= 3GMRM2 =Mω2r,解得ω=

双星模型的分析与应用

双星模型的分析与应用
天文学家将 宇宙中相隔一 定距离,且都 在绕连线上某 点做匀速圆周 运动的天体称 为双星。 请注意观察双星的运动特点
双星模型特点:
受力特点:
二者间的万有引 力提供向心力
运动特点:
1.轨迹是同心圆,圆 心在二者连线上 2.角速度相同 3.周期相同 4.二者轨道半径之和 等于二者间距 F1 F2
T=5s
三星模型:宇宙中存在一些离其它恒星较 远的、由质量相等的三颗星组成的三星 系统,通常可忽略其它星体对它们的引 力作用。已观测到稳定的三星系统存在 两种基本的构成形式: 1.三颗星位于同一直线上,两颗星围绕中 央星在同一半径为R的圆轨道上运行; 2.三颗星位于等边三角形的三个顶点上, 并沿外接于等边三角形的圆形轨道运行。
练习2、甲、乙两名溜冰运动员,M甲=80 kg,M乙 =40 kg,面对面拉着弹簧秤做圆周运动的溜冰表演, 如图所示.两人相距0.9 m,弹簧秤的示数为9.2 N,下 列判断中正确的是( ) A.两人的线速度相同,约为40 m/s B.两人的角速度相同,为6 rad/s C.两人的运动半径相同,都是0.45 m D.两人的运动半径不同,甲为0.3 m,乙为0.6 m
例1、两颗靠得很近的恒星,必定以相同 的角速度绕两者连线上的一点转动才不 至于由于万有引力作用而吸在一起.已知 两颗星的质量分别为m1和m2,两者中心 之间的距离为L,引力常量为G.试求两颗 星的周期和双星旋转的中心位置。
练习1、双星系统在银河系中很普遍,利用双 星系统中两颗恒星的运动特征可推算出它们的 总质量。已知某双星系统中两颗恒星围绕它们 连线上的某一固定点分别做匀速圆周运动,周 期均为T,两颗恒星的距离为r,试推算这个双星系统的总质量。(引力常量为G)

(完整版)双星三星四星问题

(完整版)双星三星四星问题

双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。

2.模型条件: (1)两颗星彼此相距较近。

(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。

(3)两颗星绕同一圆心做圆周运动。

3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。

(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。

(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。

(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。

②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。

(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。

②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。

二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。

双星模型知识点总结

双星模型知识点总结

双星模型知识点总结双星模型(Dual Star Model)是一种用于研究宇宙中双星系统的模型,这是一种包括一颗恒星和另一颗天体(通常是另一个恒星)的天体系统。

在宇宙中,双星系统是非常普遍的一种天体系统。

在这种系统中,两颗天体围绕着彼此运转,并由于引力相互作用而产生一系列复杂的现象。

因此,研究双星系统可以帮助我们更深入地了解宇宙的一些基本物理规律,例如引力相互作用、恒星演化、宇宙起源等。

双星系统的构成双星系统通常由两种类型的天体组成,分别为主要成员(Primary)和次要成员(Secondary)。

主要成员通常是一颗恒星,而次要成员则可以是其他类型的天体,例如行星、白矮星或中子星。

在一些情况下,双星系统的两颗天体都是恒星,这样的系统被称为双星。

双星的形成双星系统的形成有多种机制。

一种常见的形成机制是原始星团或星云中的恒星形成,这些恒星在形成过程中可能由于相互间的引力相互作用而形成双星系统。

另一种形成机制是两颗恒星在宇宙中产生的碰撞或者合并。

除此之外,还有一种形成机制是一颗恒星向另一颗恒星捕获而形成。

双星系统分类根据双星系统的性质和构成,我们可以根据多种分类方法对双星系统进行分类。

其中一个常见的分类方法是根据双星系统的物理间距来分类。

按照这种分类方法,双星系统可以被分为紧密双星系统和松散双星系统。

紧密双星系统是指两颗天体之间距离很近,它们之间的引力相互作用非常显著,造成一系列复杂的演化过程和现象。

而松散双星系统的两颗天体之间间距较大,它们之间引力相互作用较小。

另一个常见的分类方法是根据双星系统的构成类别来分类。

按照这种分类方法,我们可以将双星系统分为天体-恒星双星系统、恒星-恒星双星系统、行星-行星双星系统等等。

双星的运动规律双星系统的运动规律是由两颗天体间的引力相互作用决定的。

在双星系统中,两颗天体围绕着彼此运转。

根据牛顿引力定律,两颗天体之间的引力与它们之间的质量和距离成反比。

因此,双星系统中的天体将沿着椭圆轨道相互运转。

双星三星四星问题

双星三星四星问题

=m1ω2r1①=m2ω2r2②由①+②得:=ω2L∴m1+m2=Gm1m2Gm1m2G m1+m2ω2L3L2L2L2G双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。

2.模型条件:(1)两颗星彼此相距较近。

(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。

(3)两颗星绕同一圆心做圆周运动。

3.模型特点:(1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。

(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。

(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。

(4)巧妙求质量和:4.解答双星问题应注意“两等”“两不等”(1)“两等”:①它们的角速度相等。

②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。

(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。

②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。

二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。

2024届高考物理微专题:双星或多星模型

2024届高考物理微专题:双星或多星模型

微专题35双星或多星模型1.双星问题中各自所需的向心力由彼此间的万有引力提供,即Gm 1m 2L 2=m 1ω2r 1,Gm 1m 2L 2=m 2ω2r 2,其中r 1+r 2=L .2.“双星问题”的隐含条件是两者受到的向心力相等,周期相同,角速度相同;双星轨道半径与质量成反比.3.多星问题中,每颗星体做圆周运动所需的向心力由其他星体对该星的引力的合力提供,即F 合=m v 2r.1.(2023·广东深圳市调研)由于潮汐等因素影响,月球正以每年约3至5厘米的速度远离地球.如图所示,地球和月球可以看作双星系统,它们绕O 点做匀速圆周运动.多年以后,地球()A .与月球之间的万有引力变大B .绕O 点做圆周运动的周期不变C .绕O 点做圆周运动的角速度变小D .绕O 点做圆周运动的轨道半径变小答案C解析地球和月球间距离变大,两星的质量不变,由万有引力定律可知,地球与月球之间的万有引力变小,故A 错误;设地球与月球的质量分别为m 1和m 2,做圆周运动的半径分别为R 1和R 2,地球和月球间距离为L ,则有L =R 1+R 2,由万有引力提供向心力,根据牛顿第二定律有,Gm 1m 2L 2=m 1(2πT )2R 1=m 1ω2R 1,Gm 1m 2L 2=m 2(2πT )2R 2=m 2ω2R 2,联立可得G m 1+m 2 L 2=4π2L T 2=ω2L ,R 1=m 2Lm 1+m 2,地球和月球间距离增大,则地球绕O 点做圆周运动的周期T 变大,地球绕O 点做圆周运动的角速度变小,地球绕O 点做圆周运动的轨道半径变大,故B 、D 错误,C 正确.2.(多选)(2023·湖南衡阳市联考)科学家发现距离地球2764光年的宇宙空间存在适合生命居住的双星系统,这一发现为人类研究地外生命提供了新的思路和方向.假设宇宙中有一双星系统由质量分别为m 和M 的A 、B 两颗星体组成.这两颗星体绕它们连线上的O 点在二者万有引力作用下做匀速圆周运动,如图所示,A 、B 两颗星的距离为L ,引力常量为G ,则()A.因为OA>OB,所以m>MB.两恒星做圆周运动的周期为2πL3G M+mC.若恒星A由于不断吸附宇宙中的尘埃而使得质量缓慢增大,其他量不变,恒星A的周期缓慢增大D.若恒星A由于不断吸附宇宙中的尘埃而使得质量缓慢增大,其他量不变,则恒星A的轨道半径将缓慢减小答案BD解析设A、B两颗星体的轨道半径分别为R1、R2,双星之间的万有引力提供向心力,则有GmM L2=m 4π2T2R1,①GmML2=M 4π2T2R2,②两式联立得mR1=MR2,③OA>OB,即R1>R2,所以有m<M,A错误;联立①②得两颗星体的周期为T=2πL3G M+m ,若m缓慢增大,其他量不变,周期T变小,故B正确,C错误;由几何关系R1+R2=L,结合③式可得R1=MM+mL,若m缓慢增大,A的轨道半径将缓慢减小,D正确.3.(多选)(2023·甘肃天水市秦安县诊断测试)多国科学家联合宣布人类第一次直接探测到来自“双中子星”合并的引力波信号.假设双中子星在合并前,两中子星A、B的质量分别为m1、m2,两者之间的距离为L,如图所示.在双中子星互相绕行过程中两者质量不变,距离逐渐减小,则()A.A、B运动的轨道半径之比为m1m2B .A 、B 运动的速率之比为m 2m 1C .双中子星运动周期逐渐增大D .双中子星系统的引力势能逐渐减小答案BD解析双中子星的周期、角速度、向心力大小相同,根据Gm 1m 2L 2=m 1ω2R 1=m 2ω2R 2,可得R 1R 2=m 2m 1,故A 错误;双中子星的角速度相同,根据v =ωr ,可得v 1v 2=R 1R 2=m 2m 1,故B 正确;由Gm 1m 2L 2=m 1ω2R 1=m 2ω2R 2,R 1+R 2=L ,又角速度为ω=2πT,可得T =2πL 3G m 1+m 2,L 减小,则T减小,故C 错误;双中子星相互靠近过程中引力做正功,引力势能减小,故D 正确.4.(多选)(2023·新疆博乐市诊断)双星的运动是引力波的来源之一,假设宇宙中有一双星系统由P 、Q 两颗星体组成,这两颗星体绕它们连线上的某一点在二者之间万有引力作用下做匀速圆周运动,测得P 星的角速度为ω,P 、Q 两颗星体之间的距离为L ,Q 、P 两颗星体的轨道半径之差为Δr (P 星的质量大于Q 星的质量),引力常量为G ,则()A .P 、Q 两颗星体的向心力大小相等B .P 、Q 两颗星体的向心加速度大小相等C .P 、Q 两颗星体的线速度大小之差为ωΔrD .P 、Q 两颗星体的质量之比为L -Δr L +Δr答案AC解析P 、Q 两颗星体的向心力都等于两者之间的万有引力,因此P 、Q 两星体的向心力大小相等,故A 正确;两颗星体的质量不相等,根据F 向=ma 可知,两星体的向心加速度不相等,故B 错误;根据圆周运动公式v =ωr ,可知Δv =v P -v Q =ω(R P -R Q )=ωΔr ,故C 正确;对于两颗星体有F 向=m P ω2R P =m Q ω2R Q ,所以m P m Q =R QR P,又因为m P >m Q ,所以R P <R Q ,根据题意R Q -R P =Δr ,R P +R Q =L ,解得m P m Q =R Q R P =L +ΔrL -Δr,故D 错误.5.由三个星体构成的系统,叫作三星系统.有这样一种简单的三星系统,质量刚好都相同的三个星体甲、乙、丙在三者相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做周期相同的圆周运动.若三个星体的质量均为m ,三角形的边长为a ,引力常量为G ,则下列说法正确的是()A .三个星体做圆周运动的半径均为aB.三个星体做圆周运动的周期均为2πa a3GmC.三个星体做圆周运动的线速度大小均为3GmaD.三个星体做圆周运动的向心加速度大小均为3Gma2答案B解析质量相等的三星系统的位置关系构成一等边三角形,其中心O即为它们的共同圆心,由几何关系可知三个星体做圆周运动的半径r=33a,故选项A错误;每个星体受到的另外两星体的万有引力的合力提供向心力,其大小F=3·Gm2a2,则3Gm2a2=m4π2T2r,得T=2πa a3Gm,故选项B正确;v=2πrT得v=Gma,故选项C错误;向心加速度大小a n=Fm=3Gma2,故选项D错误.6.(2023·四川广安市二中模拟)2021年11月,中科院国家天文台发布了目前世界上最大时域多星光谱星表,为科学家研究宇宙中的多星系统提供了关键数据支持.已知宇宙中存在着由四颗星组成的孤立星系,一颗母星处在正三角形的中心,三角形的顶点各有一个质量相等的小星围绕母星做圆周运动,如图所示.如果两颗小星间的万有引力大小为F,母星与任意一颗小星间的万有引力大小为6F,则下列说法中正确的是()A.母星受到的合力大小为(33+3)FB.每颗小星受到的合力大小为(32+6)FC.母星的质量是每颗小星质量的3倍D.母星的质量是每颗小星质量的2倍答案D解析母星与任意一颗小星间的万有引力大小为6F,母星受到的三个万有引力大小相等,夹角均为120°,故根据合成可知,母星受到的合力为零,故A错误;根据受力分析可知,每颗小星受到其余两颗小星和一颗母星的引力,其合力指向母星以提供向心力,即每颗小星受到的万有引力为F′=6F+2F cos30°=(3+6)F,故B错误;假设每颗小星的质量为m,母星的质量为M,等边三角形的边长为a,则小星绕母星运动轨道半径为r=33a,根据万有引力定律,两颗小星间的万有引力为F=G mma2,母星与任意一颗小星间的万有引力为6F=GMmr2,解得母星的质量是每颗小星质量的2倍,故D正确,C错误.7.(多选)宇宙中存在一些离其他恒星较远的由四颗星体组成的四星系统.若某个四星系统中每个星体的质量均为m,半径均为R,忽略其他星体对它们的引力作用,忽略星体自转,则可能存在如下运动形式:四颗星体分别位于边长为L的正方形的四个顶点上(L远大于R),在相互之间的万有引力作用下,绕某一共同的圆心做角速度相同的圆周运动.已知引力常量为G,则关于此四星系统,下列说法正确的是()A.四颗星体做圆周运动的轨道半径均为L2B.四颗星体表面的重力加速度均为G mR2C.四颗星体做圆周运动的向心力大小为Gm2L2(22+1)D.四颗星体做圆周运动的角速度均为 4+2 Gm2L3答案BD解析任意一颗星体在其他三颗星体的万有引力的作用下,合力方向指向正方形对角线的交点,围绕正方形对角线的交点做匀速圆周运动,轨道半径均为r=22L,故A错误;星体表面的物体受到的万有引力等于它受到的重力,即G mm′R2m′g,解得g=GmR2,故B正确;由万有引力定律可得四颗星体做圆周运动的向心力大小为F n=Gm22L 2+2Gm2L2cos45°=Gm2 L2(12+2),故C错误;由牛顿第二定律得F n=Gm2L2(12+2)=mω2·22L,解得ω=4+2 Gm2L3,故D正确.。

高一物理力学专题提升专题19双星和多星问题

高一物理力学专题提升专题19双星和多星问题

专题19 双星和多星问题【专题概述】 1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω 21r 1,Gm 1m 2L2=m 2ω 22r 2 ②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为:r 1+r 2=L (3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1. 2.多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R 的圆形轨道上运行(如图甲所示). ②三颗质量均为m 的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).【典例精讲】1. 双星问题典例1:2016年2月11日,美国科学家宣布探测到引力波的存在,引力波的发现将为人类探索宇宙提供新视角,这是一个划时代的发现.在如图所示的双星系统中,A、B两个恒星靠着相互之间的引力正在做匀速圆周运动,已知恒星A的质量为太阳质量的29倍,恒星B的质量为太阳质量的36倍,两星之间的距离L=2×105m,太阳质量M=2×1030kg,引力常量G=6.67×10-11N·m2/kg2,π2=10.若两星在环绕过程中会辐射出引力波,该引力波的频率与两星做圆周运动的频率具有相同的数量级,则根据题目所给信息估算该引力波频率的数量级是( )A.102 Hz B.104 Hz C.106 Hz D.108 Hz【答案】A由①得T = 4π2L3×3665GM B ,则f =1T=GM B4π2L 3×3665=6.67×10-11×36×2×10304×10×2×1053×3665Hz≈1.6×102Hz. 典例2:经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形式和分布情况有了较深刻的认识,双星系统由两个星体组成,其中每个星体的线度都远小于两星体之间的距离,一般双星系统距离其他星体很远,可以当成孤立系统来处理.现根据对某一双星系统的测量确定,该双星系统中每个星体的质量都是M ,两者相距L ,它们正围绕两者连线的中点做圆周运动.(1)计算出该双星系统的运动周期T ;(2)若该实验中观测到的运动周期为T 观测,且T 观测∶T =1∶N (N >1).为了理解T 观测与T 的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质.作为一种简化模型,我们假定在以这两个星体连线为直径的球体内均匀分布这种暗物质.若不考虑其他暗物质的影响,根据这一模型和上述观测结果确定该星系间这种暗物质的密度.【答案】(1)πL2LGM(2)3N -1M2πL32. 三星问题:典例3:由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图为A、B、C三颗星体质量不相同时的一般情况).若A星体质量为2m、B、C两星体的质量均为m,三角形的边长为a,求:(1)A星体所受合力大小F A;(2)B星体所受合力大小F B;(3)C星体的轨道半径R C;(4)三星体做圆周运动的周期T.【答案】(1)23G m2a2(2)7Gm2a2(3)74a(4)πa3Gm(3)由于m A =2m ,m B =m C =m通过分析可知,圆心O 在BC 的中垂线AD 的中点 则R C =⎝ ⎛⎭⎪⎫34a 2+⎝ ⎛⎭⎪⎫12a 2=74a (4)三星体运动周期相同,对C 星体,由F C =F B =7G m 2a 2=m (2πT )2R C ,可得T =πa 3Gm. 典例4: 宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为R ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,万有引力常量为G ,则( )A .每颗星做圆周运动的线速度为 Gm RB .每颗星做圆周运动的角速度为 3GmR 3C .每颗星做圆周运动的周期为2πR 33GmD .每颗星做圆周运动的加速度与三星的质量无关 【答案】ABC3. 四星问题:典例5:宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为a 的正方形的四个顶点上.已知引力常量为G.关于宇宙四星系统,下列说法错误的是( )A . 四颗星围绕正方形对角线的交点做匀速圆周运动B . 四颗星的轨道半径均为C.四颗星表面的重力加速度均为D.四颗星的周期均为2πa【答案】B【总结提升】我们在解双星问题时应该有这样的思路:1 要明确双星中两个子星做匀速圆周运动的向心力来源。

宇宙双星模型

宇宙双星模型
转解析
.
三、规律方法
➢3.规律方法
.
规律方法 双星问题的“两等”“两不等”
(1)双星问题的“两等”: ①它们的角速度相等. ②双星受到的向心力大小总相等. (2)“两不等”: ①双星做匀速圆周运动的圆心是它们连线上的一点,它 们的轨道半径之和等于它们之间的距离. ②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与 r2一般也不相等.
根据双星模型的特点分析 本题各物理量的比值
.
转解析
【拓展延伸】在【例 4】中若双黑洞间的距离为 L,其运动周期为
T,引力常量为 G,则双黑洞总质量为( )
GL3
4π2L3 4π2L3 4π2T3
A.4π2T2 B.3GT2 C. GT2 D. GL2
解析 设双黑洞质量分别为 M1 和 M2,绕连线上 O 点做匀速圆周 运动的半径分别为 r1、r2, 则有 r1+r2=L。
由万有引力提供向心力得 GML1M2 2=M1(2Tπ)2r1=M2(2Tπ)2r2,
得 M2=G4πT22r1L2,M1=G4πT22r2L2,
总质量 M1+M2=4GπT2L23,选项 C 正确。
答案 C
解析显隐
.
物理建模
(二)宇宙三星模型
宇宙三星模型
(1)如图 4-5-8 所示,三颗质量相等的行
2a 4+ 2Gm
解析
.
【备选】 (2013·山东卷,20)双星系统由两颗恒星组成,两恒星
在相互引力的作用下,分别围绕其连线上的某一点做周期相同
的匀速圆周运动.研究发现,双星系统演化过程中,两星的总
质量、距离和周期均可能发生变化.若某双星系统中两星做圆
周运动的周期为T,经过一段时间演化后,两星总质量变为原来

高一物理力学专题提升专题19双星和多星问题

高一物理力学专题提升专题19双星和多星问题

专题19 双星和多星问题【专题概述】 1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω 21r 1,Gm 1m 2L2=m 2ω 22r 2 ②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为:r 1+r 2=L (3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1. 2.多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R 的圆形轨道上运行(如图甲所示). ②三颗质量均为m 的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).【典例精讲】1. 双星问题典例1:2016年2月11日,美国科学家宣布探测到引力波的存在,引力波的发现将为人类探索宇宙提供新视角,这是一个划时代的发现.在如图所示的双星系统中,A、B两个恒星靠着相互之间的引力正在做匀速圆周运动,已知恒星A的质量为太阳质量的29倍,恒星B的质量为太阳质量的36倍,两星之间的距离L=2×105m,太阳质量M=2×1030kg,引力常量G=6.67×10-11N·m2/kg2,π2=10.若两星在环绕过程中会辐射出引力波,该引力波的频率与两星做圆周运动的频率具有相同的数量级,则根据题目所给信息估算该引力波频率的数量级是( )A.102 Hz B.104 Hz C.106 Hz D.108 Hz【答案】A由①得T = 4π2L 3×3665GM B ,则f =1T=GM B4π2L 3×3665=6.67×10-11×36×2×103053×3665Hz≈1.6×102Hz. 典例2:经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形式和分布情况有了较深刻的认识,双星系统由两个星体组成,其中每个星体的线度都远小于两星体之间的距离,一般双星系统距离其他星体很远,可以当成孤立系统来处理.现根据对某一双星系统的测量确定,该双星系统中每个星体的质量都是M ,两者相距L ,它们正围绕两者连线的中点做圆周运动.(1)计算出该双星系统的运动周期T ;(2)若该实验中观测到的运动周期为T 观测,且T 观测∶T =1∶N (N >1).为了理解T 观测与T 的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质.作为一种简化模型,我们假定在以这两个星体连线为直径的球体内均匀分布这种暗物质.若不考虑其他暗物质的影响,根据这一模型和上述观测结果确定该星系间这种暗物质的密度.【答案】(1)πL2LGM(2)N -M2πL2. 三星问题:典例3:由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图为A、B、C三颗星体质量不相同时的一般情况).若A星体质量为2m、B、C两星体的质量均为m,三角形的边长为a,求:(1)A星体所受合力大小F A;(2)B星体所受合力大小F B;(3)C星体的轨道半径R C;(4)三星体做圆周运动的周期T.【答案】(1)23G m2a2(2)7Gm2a2(3)74a(4)πa3Gm(3)由于m A =2m ,m B =m C =m通过分析可知,圆心O 在BC 的中垂线AD 的中点 则R C =⎝ ⎛⎭⎪⎫34a 2+⎝ ⎛⎭⎪⎫12a 2=74a (4)三星体运动周期相同,对C 星体,由F C =F B =7G m 2a 2=m (2πT )2R C ,可得T =πa 3Gm. 典例4: 宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为R ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,万有引力常量为G ,则( )A .每颗星做圆周运动的线速度为 Gm RB .每颗星做圆周运动的角速度为 3GmR 3C .每颗星做圆周运动的周期为2πR 33GmD .每颗星做圆周运动的加速度与三星的质量无关 【答案】ABC3. 四星问题:典例5:宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为a 的正方形的四个顶点上.已知引力常量为G.关于宇宙四星系统,下列说法错误的是( )A . 四颗星围绕正方形对角线的交点做匀速圆周运动B . 四颗星的轨道半径均为C.四颗星表面的重力加速度均为D.四颗星的周期均为2πa【答案】B【总结提升】我们在解双星问题时应该有这样的思路:1 要明确双星中两个子星做匀速圆周运动的向心力来源。

“双星”模型的构建及应用

“双星”模型的构建及应用

“双星”模型的构建及应用作者:刘道浅来源:《物理教学探讨》2010年第10期1 构建受力特点:两个物体在相互间力的作用下,绕着它们的中心连线上某一点做匀速圆周运动。

运动规律:(1)两个物体做匀速圆周运动的周期T相同、频率f相同、角速度ω相同。

(2)两个物体做匀速圆周运动的半径与物体的质量成反比。

若物体的质量分别为m1和m2,物体的运动半径分别为r1和r2,则F引=m1r1ω2=m2r2ω2,得到m1r1=m2r2。

(3)两个物体做匀速圆周运动的线速度大小与物体的质量成反比。

若物体做匀速圆周运动的线速度大小分别为v1和v2,由F 引=m1v1ω=m2v2ω,得到m1v1=m2v2。

能量变化的情况:物体受到相互作用力的方向始终与速度方向垂直,作用力不做功,物体的动能保持不变。

2 应用2.1 在“双人转”中的应用例1 甲、乙两名溜冰运动员,面对面拉着转动做匀速圆周运动的溜冰表演,如图1所示。

已知M甲=60kg,M乙=40kg,两人相距1.5m。

下列判断正确的是A.两人运动半径不同,甲为0.60m,乙为0.90mB.两人转动的频率不相同C.两人的角速度相同D.两人的线速度相同解析甲、乙两运动员在相互间拉力的作用下做匀速圆周运动的频率f相同、角速度ω相同,拉力提供向心力,由M甲r1=M乙r2,r1+r2=1.5m,可求得r1=0.60m,r2=0.90m,又由M甲v1=M乙v2,可得v12.2 在地月系统中的应用例2(2010年高考理综I卷) 如2图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间的距离为L。

已知A、B的中心和O三点始终共线,A和B分别在O的两侧。

引力常数为G。

(1)求两星球做圆周运动的周期;(2)在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1。

但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T2。

高中物理 圆周运动中的“双星模型”

高中物理 圆周运动中的“双星模型”

圆周运动中的“双星模型”之马矢奏春创作宇宙中往往会有相距较近,质量可以相比的两颗星球,它们离其它星球都较远,因此其它星球对它们的万有引力可以忽略不计。

在这种情况下,它们将各自围绕它们连线上的某一固定点O 做同周期的匀速圆周运动。

如图6所示,这种结构叫做双星.双星问题具有以下两个特点:⑴由于双星和该固定点O总坚持三点共线,所以在相同时间内转过的角度必相等,即双星做匀速圆周运动的角速度必相等,因此周期也必定相同。

⑵由于每颗星的向心力都是由双星间相互作用的万有引力提供的,因此大小必定相等,由可得,可得,,即固定点O离质量大的星较近。

列式时须注意:万有引力定律表达式中的r暗示双星间的距离,按题意应该是L,而向心力表达式中的r暗示它们各自做圆周运动的半径,在本题中为r1、r2,千万不成混淆。

【例1】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX-3双星系统,它由可见星A和不成见的暗星B构成。

两星视为质点,不考虑其它天体的影响,A、B围绕两者连线上的O点做匀速圆周运动,它们之间的距离坚持不变,如图1所示。

引力常量为G,由观测能够得到可见星A的速率v和运行周期T。

如图1(1)可见星A所受暗星B的引力F A可等效为位于O点处质量为m’的星体(视为质点)对它的引力,设A和B的质量分别为m1、m2,试求m’(用m1、m2暗示);(2)求暗星B的质量m2与可见星A的速率v、运行周期T 和质量m1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量m s的2倍,它将有可能成为黑洞。

若可见星A的速率v=2.7×105m/s,运行周期T=4.7π×104s,质量m1=6m s,试通过估算来判断暗星B有可能是黑洞吗?(G=6.67×10-11N·m2/kg2,m s=2.0×1030kg)解析:设A、B的圆轨道半径分别为,由题意知,A、B做匀速圆周运动的角速度相同,设其为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动中的“双星模型”
宇宙中往往会有相距较近,质量可以相比的两颗星球,它们离其它星球都较远,因此其它星球对它们的万有引力可以忽略不计。

在这种情况下,它们将各自围绕它们连线上的某一固定
点 O做同周期的匀速圆周运动。

如图 6 所示,这种结构叫做双星.双星问题具有以下两个特点:
⑴由于双星和该固定点 O总保持三点共线,所以在相同时间内转过的角度必相等,即双星做
匀速圆周运动的角速度必相等,因此周期也必然相同。

⑵由于每颗星的向心力都是由双星间相互作用的万有引力提供的,因此大小必然相等,
由可得,可得,,即固定点 O离质量大的星较近。

列式时须注意:万有引力定律表达式中的r表示双星间的距离,按题意应该是L,而向心力表达式中的r表示它们各自做圆周运动的半径,在本题中为r 1、 r 2,千万不可混淆。

【例 1】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是
观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX-3双星系统,它由可见星 A 和不可见的暗星 B 构成。

两星视为质点,不考虑其它天体的影响,A、 B 围绕两者连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图1所示。

引力常量为G,由观测能够得到可见星 A 的速率 v 和运行周期T。

(1)可见星 A 所受暗星 B 的引力 F A可等效为位于 O点处质量为 m’的星体(视为质点)
对它的引力,设 A 和 B 的质量分别为 m1、 m2,试求 m’(用 m1、 m2表示);
(2)求暗星 B 的质量 m2与可见星 A 的速率 v、运行周期 T 和质量 m1之间的关系式;
(3)恒星演化到末期,如果其质量大于太阳质量如图1
m s的 2 倍,它将有可能成为黑洞。

若可见星 A 的速率 v= 2.7× 105m/s,运行周期T= 4. 7π× 104s,质量 m1= 6m s,试通过估算来判断暗星 B 有可能是黑洞吗?( G= 6. 67× 10-112230kg)
N·m/kg , m= 2.0× 10
s
解析:设 A、B 的圆轨道半径分别为,由题意知, A、B 做匀速圆周运动的角速度相同,设其为。

由牛顿运动定律,有,,
设 A、B 间距离为,则
由以上各式解得
由万有引力定律,有,代入得
令,通过比较得
( 2)由牛顿第二定律,有
而可见星 A 的轨道半径
将代入上式解得
(3)将代入上式
得代入数据得
设,将其代入上式得
可见,的值随的增大而增大,试令,得
可见,若使以上等式成立,则必大于 2,即暗星 B 的质量必大于,由此可得出结论:暗星 B
有可能是黑洞。

【例2】两个带异种电荷的粒子 A 和B,带电量分别为5q和— q,质量分别为5m

m,两者相距L,它们之间除了相互作用的电场力之外,不受其他力的作用。

若要始终保持粒子A、B 之间的距离不变,则关于这两粒子运动情况的描述正确的是()A.都做匀速圆周运动,且运动速率相同
B.都做匀速圆周运动,且运动周期相同
C.都做匀速圆周运动,且向心加速度大小相同
D.不一定做匀速圆周运动
分析:要始终保持粒子A、 B 之间的距离不变,它们必须绕共同质心做匀速圆周运。

这类
似天体运动中的“双星模型”。

运用“双星模型”的求解方法就可以简便地求解本题。

设它们做圆周运动的角速度为ω,如图所示:
A L 1L 2
根据向心力公式可得:O
5q 2
5m m 2
=m L 2ω
2
有因为 L=L1+ L2
k 2= 5 m L 1ωL
A1kq2
B
25kq2
解得 v =ω L=v=
6mL
6mL
所以只有 B 正确。

评析:这道题是电学中的力学题目,电荷间的库仑力与天体运动中的万有引力非常相似。

因此我们用“双星模型”来解这道电学题目,就可以问题得到简单化。

通过例子我们可以总结建立物理模型的基本程序
( 1)通过审题,摄取题目信息。

如物理现象(圆周运动、某个方向抛出、磁场或电
场中偏转等)、物理事实(发热、停下来、匀速、平衡等)、物理情景、物理状态、物理过程。

( 2)弄清题目中所给信息的诸多因数中什么是其主要因数。

例如在受力分析时,物体受重力、支持力、拉力、摩擦力等作用,当我们分析水平面上的运动情况时,有时就可忽略掉竖直方向上的作用。

又如在分析带电粒子(质子、电子、α粒子等基本粒子)在电场、磁场或电场和磁场组成的复合场中的受力时,往往可以忽略掉重力的作用(有特别说明例外)。

( 3)在寻找与已有信息(某种知识、方法、模型)的相识、相近或联系,通过类比联想或抽象概括,或逻辑推理,或原型启发,建立新的物理模型,将新情景问题“难题”转化为常规命题。

( 4)选择相关的物理规律求解。

相关文档
最新文档