地质雷达实验报告封面报告

合集下载

地质调查项目成果报告封面格式

地质调查项目成果报告封面格式

地质调查项目成果报告(小三号、楷体、加粗、左对齐)
(地质调查项目名称)
成果报告
(小一号、黑体、加粗、居中)
项目工作单位(三号、仿宋粗体、居中)
年月日(汉字、小三号、仿宋体、居中)
(地质调查项目名称)
成果报告
(二号、宋体、加粗、居中)
项目编码:(四号、仿宋体)
任务书编号:(四号、仿宋体)
工作起止年限:(四号、仿宋体)
项目负责人:(四号、仿宋体)
报告主编:(四号、仿宋体)
报告编写人:(四号、仿宋体)
单位负责人:(四号、仿宋体)
总工程师:(四号、仿宋体)
提交单位(盖章):(四号、仿宋体)
提交时间:(四号、仿宋体)
计划项目名称:(四号、仿宋体)
实施单位:(四号、仿宋体)
附件三《固体矿产勘查报告格式规定(DZT0131-94)》主要格式
附件四
实物地质资料目录清单(表一)
填表人:年月日
实物地质资料目录清单(表二)
说明:有钻探工程的项目除填报表一外,还应填报此表。

实物地质资料目录清单(表三)
说明:区调项目除填报表一外,还应填报此表。

11。

雷达的使用实验报告

雷达的使用实验报告

雷达的使用实验报告一、引言雷达(Radar)是一种利用电磁波进行探测的设备,广泛应用于军事、天气预报、航空等领域。

雷达通过发送电磁波,并通过接收返回的信号来测量目标的位置、速度等信息。

本实验旨在通过自行搭建雷达实验装置,了解雷达的工作原理和基本应用。

二、实验装置本实验所用的雷达实验装置包括雷达发射器、接收器、信号处理系统和显示及记录装置。

雷达发射器负责发射脉冲电磁波,接收器用于接收返回的信号,信号处理系统对接收到的信号进行处理,显示及记录装置用于显示和记录结果。

三、实验步骤1. 首先,将雷达装置搭建起来,并确保所有连接正确。

检查电源、天线等部件是否正常工作。

2. 设置雷达发射器的参数,包括频率、脉宽等。

根据实验要求和具体情况进行调整。

3. 打开雷达发射器,并观察接收器上是否有返回信号。

若有,表示雷达正常工作。

4. 将接收到的信号传递给信号处理系统进行处理。

根据需要,可以对信号进行滤波、放大等处理。

5. 最后,将处理后的信号连接至显示及记录装置,以便进行观测和记录。

四、实验结果经过实验,我们观察和记录了几组雷达信号的实验结果,其中包括目标的位置、速度等信息。

通过分析实验数据,我们可以看出雷达能够有效地探测到目标,并获取准确的信息。

五、实验分析本实验通过自行搭建雷达实验装置,对雷达的工作原理和应用进行了初步了解。

通过观察和分析实验结果,我们发现雷达可以在一定范围内探测到目标的位置和速度等信息,这对军事、天气预报等领域具有重要意义。

然而,在实际应用中,还需要考虑到这样的因素,如天气、地形对雷达信号的影响,以及其他干扰对雷达探测的影响等。

因此,我们需要进一步开展相关实验和研究,以完善雷达的性能和提高其应用效果。

六、实验总结通过本次实验,我对雷达的工作原理和基本应用有了更进一步的了解。

实验过程中,通过搭建和调试雷达装置,我熟悉了雷达的基本构成和工作流程;通过观察和分析实验结果,我了解了雷达的探测能力和信号处理方法。

探地雷达实习报告中国地质大学

探地雷达实习报告中国地质大学

探地雷达实习报告中国地质大学一、实习目的《煤矿地质学》课程的认识实习是有关地质科学的野外实习,是提高学生理论联系实际能力,也是加深课堂教学的重要内容。

这次实习是该课程课堂教学的继续,也是该课程的一个重要的教学环节。

通过实习,能够使我们进一步巩固课堂上所学的地质学基础理论知识。

运用这些知识去观察、研究、分析和判断各种地质现象解决实际问题。

培养我们理论联系实际,实事求是的工作作风,锻炼我们吃苦耐劳,不畏艰险的地质精神。

树立热爱专业以及勤奋学习的思想和决心。

实习的主要任务:1、在野外对各种内、外地质促进作用展开初步观测分析,着重点就是外力地质促进作用的观测分析。

2、初步对三大类岩石、地质构造和矿产进行观察认识,了解它们在自然界的分布状况。

3、学会地质罗盘的采用、手标本收集、地质现象观测和叙述记录等野外地质工作的基本方法。

二、实习情况(一)时间20xx年x月2日至20xx年x月4日,野外实习共三天。

(二)小组成员王xx 王xx 王xx 吴xx 武xx 薛xx(三)进修路线(1) 20xx年1月2日星期四晴河南省xx市辉县市上八里乡薄壁镇鸭口村(2)20xx年1月3日星期五晴河南省焦作市龙洞乡xx村后沟(3)20xx年x月4日星期六晴河南省焦作市沁阳市常平乡向南米左右三、实习内容1、重新认识进修区常用的矿物和岩石,学会区分三大类岩石。

2、认识实习区地层剖面,了解地层划分,对比方法,熟悉地层时代。

3、重新认识进修区地质构造(褶皱、节理、断层)学会识别方法。

4、学会使用地质罗盘,测量岩层(断层)产状。

5、学会搞标准的野外地质记录。

6、编写实习报告第二章地层地层:是地壳发展过程中所形成的层状岩石的总称,包括沉积岩,火成岩和变质岩。

地层可以显示地层形成的先后顺序,因此它和一定得时间含义相联系。

所以在底层形成以后,老地层在下,新地层在上,此种顺序称为正常层序。

区域内砾石与发育的地层由旧至崭新主要存有:太古界变质岩系则、元古界震旦系、下古生界寒武~奥陶系、上古生界石炭二叠系、新生界第三~第四系,其中,二叠系下统,为区内主要含煤地层。

《地质雷达》实验报告封面报告

《地质雷达》实验报告封面报告

地质雷达实验报告成绩:系别:资源勘查与土木工程系专业班级:姓名:学号:指导教师:年月日实验项目名称:地质雷达的操作及应用同组学生姓名:实验地点:结构检测实验室91110 实验日期:年月日1.1 实验目的(1)了解地质雷达基本构造、性能和工作原理。

(2)掌握地质雷达的操作步骤和使用方法。

1.2 实验原理及方法通过发射天线向地下发射宽频带高频电磁波。

在传播过程中,当遇到存在电性差异的地下介质或目标体时,雷达波会发生反射返回地面,并由接收天线接收,并以波或图像的形式,存储在电脑中。

1.3 仪器设备OKO-2俄罗斯地质雷达。

1.4 实验步骤(1)连好数据线;(2)打开主机和天线上的电源开关;(3)运行采集软件;(4)设置参数;(5)数据采集并保存数据;(6)关机、拆线。

1.5 数据处理主要包括两个方面:即增益和滤波。

增益的目的是放大深部信号的增幅,使较弱的信号能被识别,滤波的种类很多,一般包括中值滤波、平均值滤波、带通滤波和巴特沃斯带通滤波等等。

1.6 注意事项在运用雷达过程中,须掌握雷达工作的三个重要参数:环境电导率、介电常数和探测频率。

环境电导率σ是表征介质导电能力的参数,它决定了电磁波在介质中的穿透深度,其穿透深度随电导率的增加而减小,当介质的电导率σ>10-2S/m时,电磁波衰减极大,难于传播,雷达方法不宜使用,如:湿粘土、湿页岩、海水、海水冰、湿沃土、金属物等。

介电常数是影响应用效果的另一个重要因素,它决定了高频电磁波在介质中的传播速度,并且反射信号的强弱也取决于介电常数的差异。

电磁波在介质中的传播速度可采用下式近似考虑:rCV ε≈式中: C ─ 电磁波在真空中的传播速度,C =0.30m/ns (光速),r ε─ 介质的相对介电常数。

介质的介电常数主要受介质的含水量以及孔隙率的影响,相对介电常数与水含量的关系曲线,相对介电常数的范围为:1(空气)~81(水),多数干燥的地下介质,其相对介电常数值均小于10。

地质雷达NDT检测报告

地质雷达NDT检测报告

地质雷达NDT无损检测报告一、目的要求1.无损检测技术NDT是无损检测的英文(Nondestructive Testing)的缩写。

NDT是指对材料或工件实施一种不损害或不影响其未来使用性能或用途的检测手段。

通过使用NDT,能发现材料或工件内部表面所存在的欠缺,能测量工件的几何特征和尺寸,能测定材料或工件内部组成、结构、物理性能和状态等。

他能应用于产品设计、材料选择、交工制造、成品检验、在役检查(维修保养)等多方面,在质量控制与降低成本之间能起最优化作用。

无损检测还有助于保证产品的安全运行和有效使用。

常用的无损测试技术有:①射线探伤。

利用X射线或 射线在穿透被检物各部分时强度衰减的不同,检测被检物的缺陷。

若将受到不同程度吸收的射线投射到X射线胶片上,经显影后可得到显示物体厚度变化和内部缺陷情况的照片。

如用荧光屏代替胶片,可直接观察被检物体的内部情况。

②超声检测。

利用物体自身或缺陷的声学特性对超声波传播的影响,来检测物体的缺陷或某些物理特性。

在超声检测中常用的超声频率为0.5~5兆赫(MHz)。

最常用的超声检测是脉冲探伤。

③声发射检测。

通过接收和分析材料的声发射信号来评定材料的性能或结构完整性。

材料中因裂缝扩展、塑性变形或相变等引起应变能快速释放而产生应力波的现象称为声发射。

材料在外部因素作用下产生的声发射,被声传感器接收转换成电信号,经放大后送至信号处理器,从而测量出声发射信号的各种特征参数。

④渗透探伤。

利用某些液体对狭窄缝隙的渗透性来探测表面缺陷。

常用的渗透液为含有有色染料或荧光的液体。

⑤磁粉探伤。

通过磁粉在物体缺陷附近漏磁场中的堆积来检测物体表面或近表面处的缺陷,被检测物体必须具有铁磁性。

此外,中子射线照相法、激光全息照相法、超声全息照相法、红外检测、微波检测等无损测试新技术也得到了发展和应用。

2.地质雷达的优越性地质雷达(Ground Penetrating Radar(GPR))是探测地下物体的地质雷达的简称。

地质雷达检测报告

地质雷达检测报告

检测报告报告编号:R-04003检测对象:**铁路齐**隧道出口混凝土衬砌委托单位:中铁*局(集团)有限公司**公司检测日期:****年11月27日检测目的:检测拱顶二衬混凝土是否有脱空检测二衬混凝土厚度及混凝土缺陷中铁*局集团有限公司**测试中心****.11.30一、概述1、****年11月27日,中铁*局集团公司计量测试中心受中铁**局集团公司隧道公司委托,对**铁路***隧道出口段混凝土衬砌进行雷达检测,主要目的是检测隧道衬砌拱顶是否有脱空以便进行压浆处理、混凝土衬砌厚度是否满足设计要求、衬砌混凝土是否存在较大的缺陷及缺陷位置,附带检测衬砌背后隧道围岩是否存在地质缺陷。

2、检测里程及测线布置:DK371+318.0~DK371+783.0(洞口),465米。

分左右拱脚、拱顶、左右边墙共测五道纵剖面。

由于场地条件限制,DK371+517.3~+783.0(洞口)的左右拱脚及拱顶未测。

二、检测技术与方法1、地质雷达工作原理与方法地质雷达由主机、天线和配套软件等几部分组成,根据电磁波在有耗介质中的传播特性,发射天线向被测介质发射高频脉冲电磁波,当其遇到不均匀体(界面)时会反射一部分电磁波,其反射系数主要取决于被测介质的介电常数,雷达主机通过对此部分的反射波进行适时接收和处理,达到探测识别目标物体的目的(见图一)。

图一地质雷达基本原理示意图电磁波在特定介质中的传播速度是不变的,因此根据地质雷达记录的电磁波传播时间ΔT,即可据下式算出异常介质的埋藏深度H:H V T =•∆2 (1)式中,V 是电磁波在介质中的传播速度,其大小由下式表示:V C =ε (2)式中,C 是电磁波在大气中的传播速度,约为3.0×108m/s ;ε为相对介电常数,不同的介质其介电常数亦不同。

雷达波反射信号的振幅与反射系统成正比,在以位移电流为主的低损耗介质中,反射系数可表示为:2121εεεε+-=r (3) 反射信号的强度主要取决于上、下层介质的电性差异,电性差越大,反射信号越强。

初支检测报告(地质雷达)

初支检测报告(地质雷达)

瓦窑隧道施工质量检测成果报告里程范围:K5+980~K5+960检测内容:喷层厚度、强度、钢支撑数量和间距喷层与围岩结合部空洞和密实性初期支护内轮廓断面检测方法:地质雷达法、回弹法、激光断面检测法监理单位: 云南省XX监理公司施工单位:云南省XX公司昆明XX水电工程物探检测有限公司金六公路检测项目部二○○九年三月二十八日项目经理:校核:编制:检测人员:检测单位:昆明XX水电工程物探检测有限公司地址:云南省昆明邮政编码:XXXXX电话:0871XXXXXX传真:0871XXXXXXE-MAIL:1 概述受金六公路建设指挥部委托,昆明XX水电工程物探检测有限公司(金六公路检测项目部)于2009年3月7日~3月20日对金六公路瓦窑隧道K5+980~K5+960里程段的初期支护进行施工质量检测,检测剖面和测点布置见图1-1。

图1-1 初期支护混凝土质量检测剖面和测点布置图工作中采用地质雷达法检测喷层厚度、喷层与围岩结合部空洞和密实性、钢支撑位置和间距,检测剖面从顶拱中线起每2m布置1条测线,沿隧道轴线总共布置11条剖面(图中A~K剖面);采用回弹法检测喷层混凝土强度,每1延米布置1个测区,测区布置于右边墙或右边墙(图中F或K位置),且满足每个检测单元不少于10个测区;用激光断面检测法检测初期支护内轮廓断面,每10m布置1个断面,从拱脚起每5°检测1个点(点间距0.4m~0.6m),每个断面共检测37个点;对质量有疑问的洞段或剖面段,将检测剖面加密为0.5m,另外适当增加环向检测剖面。

2 执行规范及评定标准。

检测工作执行中华人民共和国行业标准JTG F80/1-2004《公路工程质量检验评定标准》第10.7条、附录E关于喷射混凝土质量检验评定标准和第10.12条关于钢支撑支护质量检验评定标准。

检测项目的评定标准见表2-1。

表2-1 初期支护混凝土质量评定标准3 检测成果3.1 厚度检测喷层厚度检测成果见附图1“喷层厚度平面等值线图”,断面数据见附表1,统计成果见表3-1。

雷达技术实验报告样本

雷达技术实验报告样本

雷达技术实验报告雷达技术实验报告专业班级:姓名:学号:一、实验内容及环节1.产生仿真发射信号:雷达发射调频脉冲信号,IQ两路;2.观测信号波形,及在时域和频域包络、相位;3.产生回波数据:设目的距离为R=0、5000m;4.建立匹配滤波器,对回波进行匹配滤波;5.分析滤波之后成果。

二、实验环境matlab三、实验参数脉冲宽度 T=10e-6;信号带宽 B=30e6;调频率γ=B/T;采样频率 Fs=2*B;采样周期 Ts=1/Fs;采样点数 N=T/Ts;匹配滤波器h(t)=S t*(-t)时域卷积conv ,频域相乘fft, t=linspace(T1,T2,N);四、实验原理1、匹配滤波器原理:在输入为确知加白噪声状况下,所得输出信噪比最大线性滤波器就是匹配滤波器,设一线性滤波器输入信号为)x:(ttx+=t s)(tn)()(其中:)(t s为确知信号,)(tn为均值为零平稳白噪声,其功率谱密度为2/No 。

设线性滤波器系统冲击响应为)(t h ,其频率响应为)(ωH ,其输出响应:)()()(t n t s t y o o += 输入信号能量:∞<=⎰∞∞-dt t s s E )()(2输入、输出信号频谱函数:dt e t s S t j ⎰∞∞--=ωω)()()()()(ωωωS H S o =ωωωπωωd eS H t s tj o ⎰∞-=)()(21)(输出噪声平均功率:ωωωπωωπd P H d P t n E n n o o⎰⎰∞∞-∞∞-==)()(21)(21)]([22)()()(21)()(2122ωωωπωωπωωd P H d eS H SNR n t j o o⎰⎰∞∞-∞∞-=运用Schwarz 不等式得:ωωωπd P S SNR n o ⎰∞∞-≤)()(212上式取等号时,滤波器输出功率信噪比o SNR 最大取等号条件:otj n e P S H ωωωαω-=)()()(* 当滤波器输入功率谱密度是2/)(o n N P =ω白噪声时,MF 系统函数为: ,)()(*o t j e kS H ωωω-=oN k α2=k 为常数1,)(*ωS 为输入函数频谱复共轭,)()(*ωω-=S S ,也是滤波器传播函数 )(ωH 。

雷达报告样本

雷达报告样本

隧道衬砌质量无损测试检测报告编号 04检字GZ-001(样本)项目名称:地点:类别:隧道衬砌检测二○○四年十一月注意事项1.复制的报告或有涂改的报告无效。

2.报告无审核人及批准人签字无效。

3.对报告若有异议,应于收到报告之日起十五日内向监测单位提出。

地址:邮政编码:电话:传真:电子邮件:一、工程概况受委托,公司于二○○四年九月二十四日至十月八日对的隧道衬砌,进行无破损法检测,目的是检测衬砌结构的厚度、衬砌密实性、衬砌内部钢筋分布、钢筋保护层厚度以及衬砌背后缺陷分布情况。

考虑本工程的具体情况,经建设单位研究协商,确定本次检测在隧道内布设3条雷达纵测线,钢筋测定分布在左右边墙相间50m,现将检测情况及结果报告如下:二、工程地质、水文地质概况本区段线路经过的地貌类型主要为珠江河流堆积阶地,地层从上至下依次为:填土层、冲洪积砂层、冲积洪积土层、残积土层、残积土、岩石全风化层、强风化层、岩石中风化层和岩石微风化层。

该段抗震设防的地震基本烈度为Ⅶ。

本区间属平缓坡地,地形较平坦,地面高程为12.66—13.98m。

基岩是白垩系地层,以粗碎屑岩为主,处于天河向斜的北翼,倾向向南,与线路基本垂直,倾角约13—30度,隧道穿越的地层主要是强风化白垩系地层三元里段砂砾岩,残积土和粉质粘土,整个区间无不良地质体。

本区间地下水有两种类型,第四系松散层和全风化带潜水型孔隙水和岩层强风化—中风化带的微承压型裂隙水。

粘性土层为贫水地层,风化岩层为中等富水地层,地下水对混凝土无腐蚀性。

本区间属平缓坡地,地形较平坦,上部为第四系残积土层,下部为白垩系碎屑岩。

隧道洞身主要穿越强风化和中风化泥质粉砂岩和砂砾岩以及残积土,隧道底板基本上是中风化、微风化岩,隧道拱部位于强风化岩、残积土及粉质粘土层中,地下水主要为强风化及中风化砾岩,泥质粉砂岩中的裂隙水,受基岩裂隙发育程度影响,地下水量变化较大,地下水对混凝土无腐蚀性。

三、检测内容及标准1、检测内容:(1)探地雷达检测二次衬砌厚度和衬砌背后空洞;(2)钢筋位置定位仪检测保护层厚度和钢筋间距;2、检测标准:(1)铁路隧道工程质量检验评定标准,TB10417-98;(2)铁路混凝土与砌体工程施工及验收规范,TB10210-97;(3)混凝土结构工程质量验收规范,GB50204-2002;四、隧道衬砌设计资料表1 隧洞衬砌类型统计表续表1 隧洞衬砌类型统计表使用地质雷达方法,对隧道工程衬砌质量进行无损检测。

高速公路隧道地质雷达检测报告(全面)

高速公路隧道地质雷达检测报告(全面)

宜张高速公路隧道地质雷达检测报告宜张高速公路总监办中心试验室二○一四年十一月根据宜张高速公路总监办及合同要求,中心试验室于5日~7日对土建2标的丁家坪隧道、灯盏窝隧道、长岭岗隧道砼衬砌质量采用地质雷达仪进行了质量抽检.一、检测内容根据隧道结构受力的特点,本次隧道砼衬砌质量检测采用对两侧拱腰及拱顶三条线检测,检测内容为:砼衬砌(二衬)质量、厚度及初衬后缺陷情况.二、检测仪器设备本次工作使用仪器设备如下:雷达:瑞典产RA米AC/GPR地质雷达,选用500米Hz屏蔽天线.采集软件:RA米AC GroundVision V1.4.4版1、仪器介绍RA米AC/GPR地质雷达是一种宽带高频电磁波信号探测方法,它是利用电磁波信号在物体内部传播时电磁波的运动特点进行探测的.雷达组成及探测方法如下:地质雷达系统主要由以下几部分组成(如下图所示):雷达系统组成示意图①、控制单元:控制单元是整个雷达系统的管理器,计算机(32位处理器)对如何测量给出详细的指令.系统由控制单元控制着发射机和接收机,同时跟踪当前的位置和时间.②、发射机:发射机根据控制单元的指令,产生相应频率的电信号并由发射天线将一定频率的电信号转换为电磁波信号向地下发射,其中电磁信号主要能量集中于被研究的介质方向传播.③、接收机:接收机把接收天线接收到的电磁波信号转换成电信号并以数字信息方式进行存贮.④、电源、光缆、通讯电缆、触发盒、测量轮等辅助元件.2、雷达检测基本原理探地雷达(Ground Penetrating Radar,简称GPR)依据电磁波脉冲在地下传播的原理进行工作.发射天线将高频(106~109Hz或更高)的电磁波以宽带短脉冲形式送入检测层,被检测层介质(或埋藏物)反射,然后由接收天线接收(如下图). 探地雷达主要利用宽带高频时域电磁脉冲波的 反射探测目的 体.由公式v x z t 224+=雷达根据测得的 雷达波走时,自动求出反射物的深度 z 和范围.雷达的 测试原理及其探测方法根据电磁波理论,当雷达脉冲在地下传播过程中,遇到不同电性介质交界面时,由于上下介质的 电磁特性不同而产生折射和反射.使用相应雷达数据处理软件,进行资料处理.对数据文件进行了 预处理、增益调整、滤波和成图等方法的 处理.最终得到各测线的 成果图,以此对隧道内部砼质量、厚度 等指标进行分析评价工作.三、检测依据1、《公路工程质量检验评定标准》(JTG F80/1-2004);2、《公路隧道施工技术规范》(JTG F60-2009);3、《公路隧道设计规范》(JTG D70-2004);4、相关设计图纸、文件.四、检测情况1、检测部位由于隧道结构受力的特点,本次检测以对最不利位置进行检测为原则,选取检测部位为左拱腰(测线A)、拱顶(测线B)、右拱腰(测线C)三条线纵向连续检测.检测位置断面图如下:2、检测工作情况中心试验室于5日~7日,采用地质雷达仪圆满完成了对丁家坪隧道、灯盏窝隧道、长岭岗隧道砼衬砌质量抽检工作.具体检测工作完成情况如下:丁家坪隧道:ZK63+020-ZK63+320、ZK63+970-ZK64+170、YK62+900-YK63+200、YK64+030-YK64+230段灯盏窝隧道:ZK62+100-ZK64+400、YK62+150-YK62+450段长岭岗隧道:ZK74+230-ZK74+530、YK74+355-YK74+555段五、检测结果(一)、对厚度检测本次检测依照《公路工程质量检验评定标准》(JTG F80/1-2004)要求,砼衬砌厚度按不小于设计值评判,每测线每10米检测一点,计算合格率,具体检测结果如下(单点检测记录附后):二衬厚度检测情况汇总表从检测结果来看,丁家坪隧道、灯盏窝隧道、长岭岗隧道砼衬砌(二衬)厚度合格率均不足90%.(二)、砼衬砌(二衬)、初衬及初衬后围岩质量的检测从本次对砼衬砌(二衬)、初期支护及初支后围岩质量的检测结果来看,各隧道砼衬砌及初支总体质量满足设计要求,但存在局部砼衬砌内部不密实、衬砌砼与初衬脱空等问题,具体检测发现的问题如下:1、丁家坪隧道ZK63+083-088拱顶二衬局部砼脱空2、丁家坪隧道ZK63+120-124拱顶二衬局部脱空不密实,且存在夹层3、丁家坪隧道YK62+919-923拱顶二衬与初支局部脱空,砼不密实4、丁家坪隧道YK63+172-178左侧拱腰二衬与初支存在脱空,局部砼不密实5、灯盏窝隧道YK62+425-417拱顶二衬局部脱空,砼不密实6、灯盏窝隧道ZK62+248-252右侧拱腰二衬与初支间局部脱空7、灯盏窝隧道ZK62+291-286拱顶二衬与初支局部脱空.8、灯盏窝隧道ZK62+278-282、ZK62+286-292右侧拱腰二衬与初支局部脱空.9、灯盏窝隧道ZK62+360-363右侧拱腰二衬与初支局部脱空10、长岭岗隧道YK74+371-377右侧拱腰二衬与初支局部脱空11、长岭岗隧道ZK74+279-281拱顶二衬局部空洞,ZK74+285-291砼不密实12、长岭岗隧道ZK74+485-488拱顶二衬局部空洞,ZK74+479-474二衬与初支间脱空13、长岭岗隧道ZK74+514-510拱顶二衬与初支局部脱空,砼不密实(三)、砼衬砌(二衬)局部厚度存在严重不足情况通过对砼衬砌(二衬)、初支及初支雷达检测断面图分析,个别隧道局部存在砼衬砌(二衬)厚度偏薄.具体部位如下:1、丁家坪隧道ZK63+062-071拱顶二衬砼厚度偏薄,平均厚度为:21厘米.2、丁家坪隧道ZK64+025-027右侧拱顶、拱腰二衬砼厚度偏薄,平均厚度为:25厘米.附件:各隧道砼衬砌厚度检测记录丁家坪隧道砼衬砌厚度检测记录表灯盏窝隧道砼衬砌厚度检测记录表长岭岗隧道砼衬砌厚度检测记录表。

雷达报告样本

雷达报告样本

隧道衬砌质量无损测试检测报告编号 04检字GZ-001(样本)项目名称:地点:类别:隧道衬砌检测二○○四年十一月注意事项1.复制的报告或有涂改的报告无效。

2.报告无审核人及批准人签字无效。

3.对报告若有异议,应于收到报告之日起十五日内向监测单位提出。

地址:邮政编码:电话:传真:电子邮件:一、工程概况受委托,公司于二○○四年九月二十四日至十月八日对的隧道衬砌,进行无破损法检测,目的是检测衬砌结构的厚度、衬砌密实性、衬砌内部钢筋分布、钢筋保护层厚度以及衬砌背后缺陷分布情况。

考虑本工程的具体情况,经建设单位研究协商,确定本次检测在隧道内布设3条雷达纵测线,钢筋测定分布在左右边墙相间50m,现将检测情况及结果报告如下:二、工程地质、水文地质概况本区段线路经过的地貌类型主要为珠江河流堆积阶地,地层从上至下依次为:填土层、冲洪积砂层、冲积洪积土层、残积土层、残积土、岩石全风化层、强风化层、岩石中风化层和岩石微风化层。

该段抗震设防的地震基本烈度为Ⅶ。

本区间属平缓坡地,地形较平坦,地面高程为12.66—13.98m。

基岩是白垩系地层,以粗碎屑岩为主,处于天河向斜的北翼,倾向向南,与线路基本垂直,倾角约13—30度,隧道穿越的地层主要是强风化白垩系地层三元里段砂砾岩,残积土和粉质粘土,整个区间无不良地质体。

本区间地下水有两种类型,第四系松散层和全风化带潜水型孔隙水和岩层强风化—中风化带的微承压型裂隙水。

粘性土层为贫水地层,风化岩层为中等富水地层,地下水对混凝土无腐蚀性。

本区间属平缓坡地,地形较平坦,上部为第四系残积土层,下部为白垩系碎屑岩。

隧道洞身主要穿越强风化和中风化泥质粉砂岩和砂砾岩以及残积土,隧道底板基本上是中风化、微风化岩,隧道拱部位于强风化岩、残积土及粉质粘土层中,地下水主要为强风化及中风化砾岩,泥质粉砂岩中的裂隙水,受基岩裂隙发育程度影响,地下水量变化较大,地下水对混凝土无腐蚀性。

三、检测内容及标准1、检测内容:(1)探地雷达检测二次衬砌厚度和衬砌背后空洞;(2)钢筋位置定位仪检测保护层厚度和钢筋间距;2、检测标准:(1)铁路隧道工程质量检验评定标准,TB10417-98;(2)铁路混凝土与砌体工程施工及验收规范,TB10210-97;(3)混凝土结构工程质量验收规范,GB50204-2002;四、隧道衬砌设计资料表1 隧洞衬砌类型统计表续表1 隧洞衬砌类型统计表使用地质雷达方法,对隧道工程衬砌质量进行无损检测。

雷达技术扫描实验报告(3篇)

雷达技术扫描实验报告(3篇)

第1篇一、实验目的1. 了解雷达的基本原理和组成。

2. 掌握雷达扫描技术的应用和操作方法。

3. 通过实验,验证雷达系统在实际场景中的性能。

二、实验原理雷达(Radio Detection and Ranging)是一种利用电磁波探测目标位置、速度和距离的技术。

雷达系统主要由发射机、天线、接收机、信号处理器等组成。

雷达工作原理如下:1. 发射机产生高频电磁波,经天线辐射出去。

2. 电磁波遇到目标后,部分能量被反射回来。

3. 接收机接收反射回来的电磁波,经信号处理器处理,得到目标信息。

三、实验设备1. 雷达系统:包括发射机、天线、接收机、信号处理器等。

2. 实验场地:开阔地带,距离目标物一定距离。

3. 计算机软件:用于雷达数据处理和分析。

四、实验步骤1. 安装雷达系统,确保各个部分连接正确。

2. 打开雷达系统电源,启动计算机软件。

3. 设置雷达工作参数,如频率、脉冲宽度、脉冲重复频率等。

4. 开始雷达扫描实验,记录数据。

5. 对雷达数据进行处理和分析,得出实验结果。

五、实验数据与分析1. 雷达系统工作正常,发射机、接收机、天线等部分均无异常。

2. 实验过程中,雷达系统对目标物进行扫描,记录了目标物的距离、方位角、仰角等数据。

3. 对雷达数据进行处理,得到以下结果:(1)目标物距离:雷达系统准确测量了目标物的距离,误差在±1%以内。

(2)目标物方位角:雷达系统准确测量了目标物的方位角,误差在±1°以内。

(3)目标物仰角:雷达系统准确测量了目标物的仰角,误差在±1°以内。

(4)目标物速度:雷达系统无法直接测量目标物的速度,但可通过多普勒效应原理进行估算。

六、实验结论1. 通过本次实验,我们掌握了雷达扫描技术的原理和应用。

2. 雷达系统在实际场景中具有较好的性能,能够准确测量目标物的位置、距离、方位角、仰角等信息。

3. 雷达技术在军事、民用等领域具有广泛的应用前景。

地质雷达报告

地质雷达报告

地质雷达报告福州绕城公路东南段南峰隧道超前地质预报(地质雷达)编号:BG-CQYB-A16-001合同段:A16合同段施⼯单位:中铁⼗七局集团第⼀⼯程有限公司探测范围:右线出⼝LYK8+335~LYK8+310编制:校核:检测单位:中国科学院武汉岩⼟⼒学研究所检测⽇期:2013年12⽉27⽇报告⽇期:2013年12⽉27⽇⼀、⼯作概况2013年12⽉27⽇,中国科学院武汉岩⼟⼒学研究所对福州绕城公路东南段A16合同段南峰隧道出⼝右洞进⾏了超前地质预报,采⽤GSSI公司⽣产的SIR-20地质雷达进⾏数据采集,配属100MHZ的屏蔽天线进⾏了探测。

本次探测范围为右线出⼝LYK8+335~LYK8+310,共25m。

⼆.预报的⽅法技术(⼀)地质雷达超前预报的基本原理地质雷达(Ground Penetrating Radar,简称GPR)是近年来应⽤于浅层地质构造、岩性检测的⼀项新技术,其特点是快速、⽆损、连续检测,并以实时成象⽅式显⽰地下结构剖⾯,使探测结果⼀⽬了然,分析、判读直观⽅便。

因探测精度⾼、样点密、⼯作效率⾼⽽倍受关注。

随着该项技术的不断完善和发展,其应⽤领域不断扩展。

隧道地质雷达超前预报⽅法是⼀种⽤于确定隧道掌⼦⾯前⽅介质分布变化的⼴谱电磁波技术。

如图1所⽰,利⽤⼀个天线向掌⼦⾯前⽅发射⽆载波电磁脉冲,另⼀个天线接收由岩体中不同介质界⾯反射的回波,利⽤电磁波在岩体介质中传播时,其路径、电磁场强度与波形将随所通过介质的电性质(如介电常数Er) 及⼏何形态的变化差异,根据接收到的回波旅⾏时间、幅度和波形等信息,来探测掌⼦⾯前⽅介质的地层结构与异常地质体。

理论研究与实验室模拟试验证明,电磁波在物体或介质中的传播速度v、⾛时t 、与介质的相对介电常数Er 有如下关系:vx z t 224+=rcv ε=式中:z 为反射界⾯深度,x 为发射天线到接收天线间的距离,v 为电磁波在介质中传播的波速,c 为光速(c=0.3m/ns ,),εr 为介质的相对介电常数,当波速v 已知时,通过读取雷达剖⾯上⾏程时间来计算界⾯深度z 值。

探地雷达课内实验报告

探地雷达课内实验报告

河南工程学院《探地雷达原理》课内实验报告专业:姓名:学号:日期:2019 年 6 月27 日《探地雷达原理》课内实验报告评分标准评阅人日期一、实验目的此次实习为探地雷达实习,通过本次实习进一步巩固课堂所学的基本理论,掌握实际工作方法,培养学生的动手能力、独立分析和解决实际问题的能力,使学生学会掌握客观地观察问题的方法、科学的思维方式,树立严谨的治学态度,实事求是的工作作风和开拓创新的精神,以便将来能够胜任地球物理勘探工作和相应的科研工作。

此次实习任务为在2号实验楼东北方操作实验仪器,熟悉简单资料处理与解释。

掌握精度分配的原则和单项技术指标的要求,确保所得到的数据真实可靠,通过本次实习使学生了解探地雷达在生产中普遍应用;了解实际生产的各个环节、各工种之间的关系,加深对应用地球物理勘探的理解;了解探地雷达各方法常规数据流程;了解应用地球物理资料的地质解释的方法步骤。

二、探地雷达系统组成及工作原理2.1 探地雷达系统探地雷达探测是一种快速、连续、非接触电磁波探测技术,具有采集速度快、分辨率高的特点。

探地雷达向地下发送脉冲形式的高频宽带电磁波,电磁波在地下介质传播的过程中,当遇到存在电性目标体时,如空洞、分界面时,电磁波便会发生反射,返回到地面时由接收天线所接收;对接收到的电磁波进行信号处理与分析,根据信号波形、强度、双程走时等参数来推断地下目标体的空间位置、结构、电性及几何形态,从而达到对地下隐蔽目标体的探测。

探地雷达主要由主机(主控单元)、发射机、发射天线、接收机、接收天线五部分组成。

其他还可能包括定位装置(如GPS、里程计或打标器(MARK))、电源以及手推车等。

发射和接收天线成对出现,用于向地下发射和接收来自地下反射的雷达波。

主机是一个采集系统,用于向发射机发送发射和接收控制命令(包括起止时问、发射频率、重复次数等参数)。

发射机根据主机命令向地下发射雷达波.而接收机根据控制命令开始数据采集。

经过采样和A/D转换,接收的反射信号转换成数字信号被显示和保存。

地震雷达解析实验报告(3篇)

地震雷达解析实验报告(3篇)

第1篇一、实验目的本次实验旨在通过地震雷达技术,了解地震波的产生、传播及接收原理,掌握地震雷达的基本操作方法,并学会通过地震雷达数据解析地震活动的基本特征。

二、实验原理地震雷达技术是一种基于电磁波传播原理的地震监测方法。

通过发射特定频率的电磁波,当电磁波遇到地下介质时,会发生反射和折射现象。

通过分析反射和折射波的传播路径及时间,可以推断地下介质的分布情况,从而监测地震活动。

三、实验仪器与材料1. 地震雷达系统2. 地震雷达数据采集软件3. 地震雷达数据解析软件4. 地震观测站(可选)5. 地震数据记录设备四、实验步骤1. 系统搭建:根据实验要求,搭建地震雷达系统,包括地震雷达发射器、接收器和数据处理计算机。

2. 数据采集:启动地震雷达系统,进行数据采集。

根据实验要求,设置合适的参数,如发射频率、采样率等。

3. 数据处理:将采集到的地震雷达数据导入地震雷达数据解析软件,进行初步处理,包括去噪、滤波等。

4. 地震雷达数据解析:a. 地震波传播路径分析:通过分析地震雷达数据,确定地震波在地下介质中的传播路径。

b. 地震波速度分析:根据地震波传播路径,计算地震波在不同介质中的传播速度。

c. 地震活动特征分析:通过分析地震雷达数据,确定地震活动的发生时间、地点、震级等特征。

5. 实验结果分析:将实验结果与已有地震资料进行对比,验证实验结果的准确性。

五、实验结果与分析1. 地震波传播路径分析:通过地震雷达数据解析,成功确定了地震波在地下介质中的传播路径。

2. 地震波速度分析:根据地震波传播路径,计算得到地震波在不同介质中的传播速度,与已有资料基本吻合。

3. 地震活动特征分析:通过地震雷达数据解析,成功确定了地震活动的发生时间、地点、震级等特征,与已有地震资料基本一致。

六、实验结论本次实验通过地震雷达技术,成功实现了对地震活动的监测。

实验结果表明,地震雷达技术在地震监测方面具有广阔的应用前景。

同时,实验过程中发现以下问题:1. 地震雷达数据采集过程中,部分数据存在噪声,影响数据解析的准确性。

隧道工字钢地质雷达探测报告

隧道工字钢地质雷达探测报告

隧道工字钢地质雷达探测报告
隧道工字钢地质雷达探测报告一般包括以下几个方面:
1. 探测目的和范围:简要介绍探测的目的和范围,例如探测隧道地质情况、确定隧道埋深、识别隧道周边的地质灾害等。

2. 探测结果:详细描述雷达探测的结果,包括探测深度、雷达反射率、地质结构等信息。

一般会根据探测结果绘制雷达剖面图、探测深度图等,以便更加直观地了解隧道周边的地质情况。

3. 地质分析:根据探测结果,对隧道周边的地质情况进行分析,包括地质构造、地层情况、岩性等。

同时,结合历史地震、地质灾害等信息,对隧道周边的地质稳定性进行评估,以便制定相应的安全措施。

4. 建议措施:根据探测结果和地质分析,提出相应的建议措施,例如加强隧道监测、改造隧道结构等,以确保隧道施工安全和正常运行。

隧道工字钢地质雷达探测报告需要全面、系统地反映探测结果和地质分析,同时提出相应的建议措施,以便更好地保障隧道施工安全和正常运行。

29172地质预报雷达法报告

29172地质预报雷达法报告

第1页共 7 页隧道超前地质预报试验检测报告QB021301试验室名称:葛洲坝集团试验检测有限公司报告编号:GSJ-1404320-34试验:审核:签发:日期:年月日(专用章)附件:受巴东县交通运输局三峡库区巴东新县城至野三关公路工程建设指挥部的委托(委托编号为WJ2014/02634,样品编号YPJ2014/04320,条码号1000000768602),我公司于2015年03月27日对三峡库区巴东新县城至野三关公路工程桐木园隧道进行了超前地质预报。

现依据相关规范提供超前地质预报报告。

1.检测依据(1)《湖北省公路隧道施工地质预报规程》(DB42/T 561-2009)(2)《铁路隧道超前地质预报技术指南》(铁建设[2008]105号);(3)隧道设计文件。

2.检测内容本次采用地质雷达法探测隧道掌子面前方30米范围内岩溶、断层破碎带、软弱夹层等不均匀地质体或者其它含水地质体的发育情况。

3.检测方法探地雷达是近年来一种新兴的地下探测与混凝土构筑物无损检测的新技术,它是利用宽频带高频电磁波信号探测介质结构位臵和分布的非破坏性的探测仪器,是目前国内外用于测量混凝土内部缺陷最先进、最便捷的仪器之一,天线屏蔽抗干扰性强,探测范围广,分辨率高,具有实时数据处理和信号增强,可进行连续透视扫描,现场实时显示二维黑白或彩色图像。

探地雷达工作示意图见图3-1。

探地雷达通过雷达天线对隐蔽目标体进行全断面扫描的方式获得断面的垂直二维剖面图像,具体工作原理是:当雷达系统利用天线向地下发射宽频带高频电磁波,电磁波信号在介质内部传播时遇到介电差异较大的介质界面时,就会发生反射、透射和折射。

两种介质的介电常数差异越大,反射的电磁波能量也越大;反射回的电磁波被与发射天线同步移动的接收天线接收后,由雷达主机精确记录下反射回的电磁波的运动特征,再通过信号技术处理,形成全断面的扫描图,工程技术人员通过对雷达图像的判读,判断出地下目标物的实际结构情况。

地质雷达检测报告

地质雷达检测报告

检测报告报告编号:R-04003检测对象:**铁路齐**隧道出口混凝土衬砌委托单位:中铁*局(集团)有限公司**公司检测日期:****年11月27日检测目的:检测拱顶二衬混凝土是否有脱空检测二衬混凝土厚度及混凝土缺陷中铁*局集团有限公司**测试中心****.11.30一、概述1、****年11月27日,中铁*局集团公司计量测试中心受中铁**局集团公司隧道公司委托,对**铁路***隧道出口段混凝土衬砌进行雷达检测,主要目的是检测隧道衬砌拱顶是否有脱空以便进行压浆处理、混凝土衬砌厚度是否满足设计要求、衬砌混凝土是否存在较大的缺陷及缺陷位置,附带检测衬砌背后隧道围岩是否存在地质缺陷。

2、检测里程及测线布置:DK371+318.0~DK371+783.0(洞口),465米。

分左右拱脚、拱顶、左右边墙共测五道纵剖面。

由于场地条件限制,DK371+517.3~+783.0(洞口)的左右拱脚及拱顶未测。

二、检测技术与方法1、地质雷达工作原理与方法地质雷达由主机、天线和配套软件等几部分组成,根据电磁波在有耗介质中的传播特性,发射天线向被测介质发射高频脉冲电磁波,当其遇到不均匀体(界面)时会反射一部分电磁波,其反射系数主要取决于被测介质的介电常数,雷达主机通过对此部分的反射波进行适时接收和处理,达到探测识别目标物体的目的(见图一)。

图一地质雷达基本原理示意图电磁波在特定介质中的传播速度是不变的,因此根据地质雷达记录的电磁波传播时间ΔT,即可据下式算出异常介质的埋藏深度H:H V T =•∆2 (1)式中,V 是电磁波在介质中的传播速度,其大小由下式表示:V C =ε (2)式中,C 是电磁波在大气中的传播速度,约为3.0×108m/s ;ε为相对介电常数,不同的介质其介电常数亦不同。

雷达波反射信号的振幅与反射系统成正比,在以位移电流为主的低损耗介质中,反射系数可表示为:2121εεεε+-=r (3) 反射信号的强度主要取决于上、下层介质的电性差异,电性差越大,反射信号越强。

地质雷达仪器实验报告(3篇)

地质雷达仪器实验报告(3篇)

第1篇一、实验目的本次实验旨在了解地质雷达的工作原理,掌握地质雷达仪器的操作方法,并通过实际操作,验证地质雷达在探测地下结构、岩土工程等领域中的应用效果。

二、实验原理地质雷达(Ground Penetrating Radar,GPR)是一种利用高频电磁波探测地下结构、岩土工程等的非接触式探测技术。

其工作原理是:主机通过天线向地下发射高频电磁波,当电磁波遇到不同电性差异的目标体或不同介质的界面时,会发生反射与透射。

反射波返回地面后,被接收天线所接收。

主机记录下电磁波从发射到接收的双程时间t和幅度与波形资料,通过对图像进行解释和分析,确定不同界面及深度、空洞等。

三、实验仪器1. 地质雷达主机:美国SIR-20型地质雷达。

2. 天线:270MHz和100MHz高频天线。

3. 数据采集系统:与主机相连的笔记本电脑。

四、实验步骤1. 确定探测区域:选择合适的探测区域,并对区域进行清理,确保无障碍物。

2. 测线布置:根据探测深度要求,选择合适的天线。

本次实验采用270MHz和100MHz高频天线。

针对地下通道,测线垂直通道延伸的方向布设;针对城墙,测线沿城墙走向及垂直城墙走向进行探测。

3. 测量参数设置:根据《岩土工程勘察规范》(GB50021-2001),设置测量参数,包括时窗范围、采样率、扫描率等。

4. 数据采集:启动地质雷达主机,进行连续测量,记录下电磁波从发射到接收的双程时间t和幅度与波形资料。

5. 数据处理与分析:将采集到的数据导入数据处理软件,对数据进行滤波、去噪等处理,分析地下结构、岩土工程等信息。

五、实验结果与分析1. 地下通道探测:通过对地下通道的探测,发现地下通道的走向、深度、宽度等信息。

结果显示,地下通道的走向与测线布置方向一致,深度约为5.0m,宽度约为2.0m。

2. 城墙探测:通过对城墙的探测,发现城墙的厚度、结构等信息。

结果显示,城墙的厚度约为1.5m,结构较为完整。

3. 数据处理与分析:通过对数据的滤波、去噪等处理,提高了探测结果的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地质雷达实验报告封面
报告
Document number:PBGCG-0857-BTDO-0089-PTT1998
地质雷达实验报告
成绩:
系别:资源勘查与土木工程系
专业班级:
姓名:
学号:
指导教师:
年月日
实验项目名称:地质雷达的操作及应用
同组学生姓名:
实验地点:结构检测实验室91110 实验日期:年月日
实验目的
(1)了解地质雷达基本构造、性能和工作原理。

(2)掌握地质雷达的操作步骤和使用方法。

实验原理及方法
通过发射天线向地下发射宽频带高频电磁波。

在传播过程中,当遇到存在电性差异的地下介质或目标体时,雷达波会发生反射返回地面,并由接收天线接收,并以波或图像的形式,存储在电脑中。

仪器设备
OKO-2俄罗斯地质雷达。

实验步骤
(1)连好数据线;
(2)打开主机和天线上的电源开关;
(3)运行采集软件;
(4)设置参数;
(5)数据采集并保存数据;
(6)关机、拆线。

数据处理
主要包括两个方面:即增益和滤波。

增益的目的是放大深部信号的增幅,使较弱的信号能被识别,滤波的种类很多,一般包括中值滤波、平均值滤波、带通滤波和巴特沃斯带通滤波等等。

注意事项
在运用雷达过程中,须掌握雷达工作的三个重要参数:环境电导率、介电常数和探测频率。

环境电导率σ是表征介质导电能力的参数,它决定了电磁波在介质中的穿透深度,其穿透深度随电导率的增加而减小,当介质的电导率σ>10-2S/m时,电磁波衰减极大,难于传播,雷达方法不宜使用,如:湿粘土、湿页岩、海水、海水冰、湿沃土、金属物等。

介电常数是影响应用效果的另一个重要因素,它决定了高频电磁波在介质中的传播速度,并且反射信号的强弱也取决于介电常数的差异。

电磁波在介质中的传播速度可采用下式近似考虑:
r
C
V ε≈
式中: C ─ 电磁波在真空中的传播速度,C =ns (光速),
r ε─ 介质的相对介电常数。

介质的介电常数主要受介质的含水量以及孔隙率的影响,相对介电常数与水含量的关系曲线,相对介电常数的范围为:1(空气)~81(水),多数干燥的地下介质,其相对介电常数值均小于10。

探测频率不但是制约探测深度的一个关键因素,同时也决定了探测的分辨率;探测频率越高,探测深度越浅,探测的垂直分辨率和水平分辨率越高。

高频
电磁波在传播过程中发生衰减,其衰减的程度随电磁波频率的增加而增加,这也是造成探测频率越高,探测深度越浅的原因。

因此,在实际工作时,必须根据目标体的探测深度选用合理的探测频率。

附图(不少于6张图片)
结论:。

相关文档
最新文档