短路电流及标幺值的计算
短路电流计算
在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。
阻抗常用Z表示,是一个复数,实部称为电阻,虚部称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗 ,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。
阻抗的单位是欧。
阻抗公式Z= R+j ( XL–XC)说明负载是电阻、电感的感抗、电容的容抗三种类型的复物,复合后统称“阻抗”,写成数学公式即是:[1]阻抗Z= R+j( XL – XC) 。
其中R为电阻,XL为感抗,XC为容抗。
如果( XL– XC) > 0,称为“感性负载”;反之,如果( XL – XC) < 0称为“容性负载”。
短路电流计算方法一、高压短路电流计算(标幺值法)1、基准值选择功率、电压、电流电抗的基准值分别为、、、时,其对应关系为:为了便于计算通常选为线路各级平均电压;基准容量通常选为100MVA。
由基准值确定的标幺值分别如下:式中各量右上标的“*“用来表示标幺值,右下标的“d”表示在基准值下的标幺值。
2、元件的标幺值计算(1)电源系统电抗标幺值—电源母线的短路容量(2)变压器的电抗标幺值由于变压器绕组电阻比电抗小得多,高压短路计算时忽略变压器的绕组电阻,以变压器的阻抗电压百分数(%)作为变压器的额定电抗,故变压器的电抗标幺值为:—变压器的额定容量,MVA(3)限流电抗器的电抗标幺值%—电抗器的额定百分电抗—电抗器额定电压,kV —电抗器的额定电流,A(4)输电线路的电抗标幺值已知线路电抗,当=时—输电线路单位长度电抗值,Ω/km3、短路电流计算计算短路电流周期分量标幺值为—计算回路的总标幺电抗值—电源电压标幺值,在=时,=1=短路电流周期分量实际值为=对于电阻较小,电抗较大(<1/3)的高压供电系统,三相短路电流冲击值=2.55三相短路电流最大有效值=1.52(=100MVA))基准电压)基准电流二、低压短路电流计算(有名值法)1.三相短路电流2.两相短路电流3.三相短路电流和两相短路电—三相短路电流,A—两相短路电流,A—变压器二次侧的额定电压,对于127、380、660和1140V电网分别为133、400、690和1200V。
短路计算公式及算例电路元件阻抗标幺值和有名值的换算公式
短路计算公式及算例电路元件阻抗标幺值和有名值的换算公式在电路分析中,短路计算是一种重要的方法,用于估算电路中元件的短路电流。
通过计算短路电流,我们可以确定电路的额定电流和短路计算能力,以确保电路的安全使用。
短路计算公式可以通过以下步骤进行推导:1. 根据电路图,确定需要计算短路电流的位置,将其作为短路点。
2. 将所有电源转化为短路电流源,根据其内阻计算短路电流源大小。
3. 将所有电感元件转化为短路电阻,根据其电感值和频率计算短路电阻大小。
4. 将所有电容元件转化为短路电导,根据其电容值和频率计算短路电导大小。
5. 将所有电阻元件保持不变。
6. 根据短路点位置,使用基尔霍夫电流定律和欧姆定律,建立短路方程。
7. 解决短路方程,计算出短路电流。
电路元件的阻抗标幺值和有名值的换算公式如下:1. 电感元件的阻抗(标幺值)= 2 * π * f * L,其中f为电路的频率,L为电感元件的电感值。
2. 电感元件的阻抗(有名值)= XL = 2 * π * f * L / ω,其中f为电路的频率,L为电感元件的电感值,ω为电路的角频率。
3. 电容元件的阻抗(标幺值)= 1 / (2 * π * f * C),其中f为电路的频率,C为电容元件的电容值。
4. 电容元件的阻抗(有名值)= XC = 1 / (2 * π * f * C * ω),其中f为电路的频率,C为电容元件的电容值,ω为电路的角频率。
在进行短路计算时,可以根据需要将标幺值转化为有名值,或将有名值转化为标幺值,以满足具体的计算要求。
这些换算公式提供了方便的工具,用于在短路计算中进行单位转换和数值比较。
总之,短路计算公式和电路元件阻抗的换算公式是电路分析中的基础知识,掌握它们可以帮助我们准确计算电路中的短路电流以及元件的阻抗。
标幺值法计算短路电流
标幺值法计算短路电流
标幺值法是一种用于计算短路电流的方法,可以简化计算过程并提高计算精度。
它基于对电气系统中各个元件的电阻、电抗的标幺化处理,并利用矩阵运算求解短路电流。
标幺值法的计算过程如下:
1.将电气系统中各个元件的电阻、电抗进行标幺化处理,即将其值除以基准值。
2.建立节点导纳矩阵和支路导纳矩阵,并计算总导纳矩阵。
3.在短路点处建立短路电流向量,利用矩阵运算求解短路电流。
标幺值法的优点在于计算精度高且计算过程简单,适用于各种电气系统的短路电流计算。
但是它需要对电气系统的元件进行标幺化处理,增加了一定的计算难度。
- 1 -。
短路及短路电流的相关概念及计算
2、1短路与短路电流有关概念短路是指不同电位的导电部分之间的低阻性短接。
短路后,短路电流比正常电流大很多,有时可达十几千安至几十千安。
造成短路的主要原因:电气设备载流部分的绝缘损坏、工作人员误操作、动物或植物跨越在裸露的相线之间或相线与接地物体之间。
短路电流的危害:(1)短路时要产生很大的电动力和很高的温度,造成元件和设备损坏。
(2)短路时短路电路中电压要骤降,严重影响其中电气设备的正常运行。
(3)短路会造成停电损失并影响电力系统运行的稳定性。
(4)不对称短路包括单相短路和两相短路,其短路电流将产生较强的不平衡交变磁场,对附近的通信线路、电子设备等产生干扰。
由于短路的后果十分严重,因此必须设法消除可能引起短路的一切因素;同时需要进行短路电流计算,以便正确地选择电气设备,使设备具有足够的动稳定性和热稳定性,以保证在发生可能有的最大短路电流时不致损坏。
短路的形式:在三相系统中,可能发生三相短路、两相相间短路、两相接地短路、单相接地短路。
其中三相短路属于对称性短路。
无限大容量电力系统:若系统容量相对于输配电系统系统中某一部分的容量大很多时,当该部分发生负荷变动甚至短路时,系统馈电母线上的电压能基本维持不变,或者系统电源总阻抗不超过短路电路总阻抗的5%-10%,或者系统容量大于该部分容量的50倍时,可将电力系统视为无限大容量电力系统。
将电力系统视为无限大容量的电源在计算系统发生三相短路的电流时更苛刻,所以通常的短路计算都是建立在将系统视为无限大容量电力系统的基础上。
短路计算的目的:(1)分析短路时的电压、电流特征。
(2)验算导体和电器的动、热稳定以及确定开关电器所需开断的短路电流及相关参数。
短路计算方法:分为欧姆法和标幺制法。
欧姆法又称有名单位制法,各物理量均以实际值参与计算;标幺制法又称相对单位制法,任一物理量的标幺值为该物理量的实际值与所选定的基准值的比值。
由于三相短路电流计算对设计选型及设备校验具有重要意义,下面重点讲述其计算方法。
电力系统短路电流计算及标幺值算法
Short Circuit Current Calculation§7-1 概述General Description一、短路的原因、类型及后果The cause, type and sequence of short circuit1、短路:是指一切不正常的相与相之间或相与地(对于中性点接地的系统)发生通路的情况。
2、短路的原因:⑴元件损坏如绝缘材料的自然老化,设计、安装及维护不良等所造成的设备缺陷发展成短路.⑵气象条件恶化如雷击造成的闪络放电或避雷器动作;大风造成架空线断线或导线覆冰引起电杆倒塌等.⑶违规操作如运行人员带负荷拉刀闸;线路或设备检修后未拆除接地线就加电压.⑷其他原因如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等.3、三相系统中短路的类型:⑴基本形式: —三相短路;—两相短路;—单相接地短路;—两相接地短路;⑵对称短路:短路后,各相电流、电压仍对称,如三相短路;不对称短路:短路后,各相电流、电压不对称;如两相短路、单相短路和两相接地短路.注:单相短路占绝大多数;三相短路的机会较少,但后果较严重。
4、短路的危害后果随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。
短路的危险后果一般有以下几个方面。
(1)电动力效应短路点附近支路中出现比正常值大许多倍的电流,在导体间产生很大的机械应力,可能使导体和它们的支架遭到破坏。
(2)发热短路电流使设备发热增加,短路持续时间较长时,设备可能过热以致损坏。
(3)故障点往往有电弧产生,可能烧坏故障元件,也可能殃及周围设备.(4)电压大幅下降,对用户影响很大.(5)如果短路发生地点离电源不远而又持续时间较长,则可能使并列运行的发电厂失去同步,破坏系统的稳定,造成大片停电。
这是短路故障的最严重后果。
(6)不对称短路会对附近的通讯系统产生影响。
二、计算短路电流的目的及有关化简The purpose and some simplification of short circuit Calculation1、短路计算的目的a、选择电气设备的依据;b、继电保护的设计和整定;c、电气主接线方案的确定;d、进行电力系统暂态稳定计算,研究短路对用户工作的影响;2、短路计算的简化假设a、不考虑发电机间的摇摆现象,认为所有发电机电势的相位都相同;b、不考虑磁路饱和,认为短路回路各元件的电抗为常数;c、不考虑发电机转子的不对称性,用来代表。
短路电流的计算
短路电流的计算本节课介绍供电系统中短路电流的两种计算方法:有名值法和相对值法。
一、有名值法(绝对值法、欧姆法)1、低压电网短路电流的计算:*计算电压取比线电压高5%。
*对于高压电路,一般只计电抗,不计电阻。
*对于低压短路时,当时才需计算电阻。
2、短路电流计算步骤:1)求短路回路中各元件阻抗。
(1)电源系统的阻抗(①一般可不考虑电阻。
②可由高压馈电线出口断路器的断流容量(极限短路容量)来估算,。
③由开断电流Ioc来计算其断流容量,):(2)变压器的阻抗:式3-12式3-13式3-14(3)输电线路的阻抗:(*1、线路的电阻Rwl。
可由导线电缆的单位长度电阻R0值求得。
Rwl=R0L。
2、线路的电抗Xwl。
可由导线电缆的单位长度电抗Xwl 值求得。
Xw=X0L。
)(4)限流电抗器的电抗:2)短路回路总阻抗的计算、折算。
(注意:等效阻抗的换算)。
3)短路电流的计算:(1)绘制短路计算电路图:标参数、找短路点。
(2)绘制等效电路图,标出各元件阻抗值。
(3)计算短路回路的阻抗。
(4)计算短路电流。
二、相对值法(标幺值法)1)相对值(标幺值法、相对单位制法)(*选基本容量,工程设计通常取Sd=100MVA。
基本电压选各元件及短路点线路的平均电压Uav):计算电压个元件线电压,公式3-24、25、26、27、28、29、30、31、32。
2)系统各元件相对基准电抗值的计算:(1)电源系统的相对基准电抗:式3-28、29。
(2)变压器的相对基准电抗:式3-30:(3)电抗器的相对基准电抗:式3-31。
X(4)线路的相对基准电抗:式3-32、33。
3、短路电流的计算:1)短路电流的相对基准值:式3-35。
2)短路电流的计算:式3-36。
3)三相短路容量:式3-37、38。
例3-2.三、不对称短路电流的计算两相短路、单相短路。
1、两相短路电流的计算:1)解析法计算两相短路电流:图3—8、式3-39、40、41。
忽略电阻。
短路阻抗的各类标幺值计算计算
【1】系统电抗的计算系统电抗,百兆为一。
容量增减,电抗反比。
100除系统容量例:基准容量100MVA。
当系统容量为100MVA时,系统的电抗为XS*=100/100=1当系统容量为200MVA时,系统的电抗为XS*=100/200=0.5当系统容量为无穷大时,系统的电抗为XS*=100/∞=0系统容量单位:MVA系统容量应由当地供电部门提供。
当不能得到时,可将供电电源出线开关的开断容量作为系统容量。
如已知供电部门出线开关为W-VAC 12KV 2000A 额定分断电流为40KA。
则可认为系统容量S=1.73*40*10000V=692MVA, 系统的电抗为XS*=100/692=0.144。
【2】变压器电抗的计算110KV, 10.5除变压器容量;35KV, 7除变压器容量;10KV{6KV}, 4.5除变压器容量。
例:一台35KV 3200KVA变压器的电抗X*=7/3.2=2.1875一台10KV 1600KVA变压器的电抗X*=4.5/1.6=2.813变压器容量单位:MVA这里的系数10.5,7,4.5 实际上就是变压器短路电抗的%数。
不同电压等级有不同的值。
【3】电抗器电抗的计算电抗器的额定电抗除额定容量再打九折。
例:有一电抗器U=6KV I=0.3KA 额定电抗X=4% 。
额定容量S=1.73*6*0.3=3.12 MVA. 电抗器电抗X*={4/3.12}*0.9=1.15电抗器容量单位:MVA【4】架空线路及电缆电抗的计算架空线:6KV,等于公里数;10KV,取1/3;35KV,取3%0电缆:按架空线再乘0.2。
例:10KV 6KM架空线。
架空线路电抗X*=6/3=210KV 0.2KM电缆。
电缆电抗X*={0.2/3}*0.2=0.013。
这里作了简化,实际上架空线路及电缆的电抗和其截面有关,截面越大电抗越小。
【5】短路容量的计算电抗加定,去除100。
例:已知短路点前各元件电抗标么值之和为X*∑=2, 则短路点的短路容量Sd=100/2=50 MVA。
电力系统短路电流计算及标幺值算法
电力系统短路电流计算及标幺值算法一、短路电流计算方法短路电流计算是电力系统设计和运行中的重要工作之一,它可以用来确定电力系统设备的选型和保护装置的设置。
一般而言,短路电流计算有三种主要的方法:解析法、计算机法和试验法。
1.解析法:解析法是利用电路的解析模型,通过简化的计算方法来估算短路电流。
该方法适用于简化的电路模型,如单相等效模型或对称分量法。
其中,单相等效模型是将三相系统简化为单相系统进行计算,对于简单的配电系统较为实用。
而对称分量法则是将三相系统分解为正序、负序和零序三部分进行计算,适用于较为复杂的计算。
2.计算机法:计算机法是运用电力系统仿真软件进行短路电流计算,其中最常用的软件包括PSS/E、ETAP、PowerWorld等。
该方法可以更加精确地模拟电力系统的实际运行情况,适用于复杂的大型电力系统。
通过输入系统的拓扑结构和参数,软件可以自动计算得到短路电流及其分布情况。
3.试验法:试验法是通过实际的短路试验来测量电力系统的短路电流。
该方法需要选取适当的试验装置和测试方法,并进行数据处理来得到准确的短路电流数值。
试验法适用于对系统的实测与验证,尤其对于重要设备或复杂系统来说更具可靠性。
标幺值是将物理量除以其基准值得到的比值,它可以用来统一比较和分析不同系统中的电流、电压等参数。
在电力系统中,短路电流的标幺值常用于比较不同设备和不同系统的短路能力。
短路电流的标幺值计算方法一般有以下几种:1.基准短路电流法:基准短路电流法是将电力系统的短路电流与一个基准电流进行比较,得到标幺值。
基准短路电流可以是短路电流中最大值,也可以是系统额定电流、设备额定电流等。
该方法适用于对系统整体的短路能力进行评估。
2.额定电流法:额定电流法是将短路电流与设备或系统的额定电流进行比较,得到标幺值。
该方法适用于对设备的短路能力进行评估,如断路器、开关等。
3.等值电路法:等值电路法是通过将电力系统简化为等效电路进行计算,然后将计算得到的电流与基准电流进行比较,得到标幺值。
电力系统短路电流计算及标幺值算法
电⼒系统短路电流计算及标⼳值算法第七章短路电流计算Short Circuit Current Calculation§7-1 概述General Description⼀、短路的原因、类型及后果The cause, type and sequence of short circuit1、短路:是指⼀切不正常的相与相之间或相与地(对于中性点接地的系统)发⽣通路的情况。
2、短路的原因:⑴元件损坏如绝缘材料的⾃然⽼化,设计、安装及维护不良等所造成的设备缺陷发展成短路.⑵⽓象条件恶化如雷击造成的闪络放电或避雷器动作;⼤风造成架空线断线或导线覆冰引起电杆倒塌等.⑶违规操作如运⾏⼈员带负荷拉⼑闸;线路或设备检修后未拆除接地线就加电压.⑷其他原因如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等.3、三相系统中短路的类型:⑴基本形式: )3(k—三相短路;)2(k—两相短路;)1(k—单相接地短路;)1,1(k—两相接地短路;⑵对称短路:短路后,各相电流、电压仍对称,如三相短路;不对称短路:短路后,各相电流、电压不对称;如两相短路、单相短路和两相接地短路.注:单相短路占绝⼤多数;三相短路的机会较少,但后果较严重。
4、短路的危害后果随着短路类型、发⽣地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运⾏。
短路的危险后果⼀般有以下⼏个⽅⾯。
(1)电动⼒效应短路点附近⽀路中出现⽐正常值⼤许多倍的电流,在导体间产⽣很⼤的机械应⼒,可能使导体和它们的⽀架遭到破坏。
(2)发热短路电流使设备发热增加,短路持续时间较长时,设备可能过热以致损坏。
及周围设备. (4)电压⼤幅下降,对⽤户影响很⼤. (5)如果短路发⽣地点离电源不远⽽⼜持续时间较长,则可能使并列运⾏的发电⼚失去同步,破坏系统的稳定,造成⼤⽚停电。
这是短路故障的最严重后果。
(6)不对称短路会对附近的通讯系统产⽣影响。
⼆、计算短路电流的⽬的及有关化简The purpose and some simplification of short circuit Calculation 1、短路计算的⽬的a 、选择电⽓设备的依据;b 、继电保护的设计和整定;c 、电⽓主接线⽅案的确定;d 、进⾏电⼒系统暂态稳定计算,研究短路对⽤户⼯作的影响; 2、短路计算的简化假设 a 、不考虑发电机间的摇摆现象,认为所有发电机电势的相位都相同;b 、不考虑磁路饱和,认为短路回路各元件的电抗为常数;c 、不考虑发电机转⼦的不对称性,⽤''''qd E X 和来代表。
通过短路电流折算阻抗标幺值方法
根据提供的系统或母线三相短路电流值,求基准容量的正序零序阻抗标幺值单相短路时:故障相(1).kA I 电流与序电流的关系如下:(1)(1)(1)(1)(1).....12013kAkA kA kA kA I I I I I ====可以得出如下关系:(1)(1)112033PkA kA U I I Z Z Z ∑∑∑==++,其中P U 为单相短路时的相电压。
假设100B S MVA =,34.5B U kV =(线电压),系统短路电流参数如下:假设为无穷大系统,基准100B S MVA =,34.5B U kV =(线电压)下,此短路电流(1)kA I 已知,求单相短路时的短路阻抗(1)120ZZ Z Z ∑∑∑=++,且12Z Z ∑∑=最终得到零序阻抗0Z ∑。
(1)(1)1(1)12033pB kAkA U IIZ Z Z Z ∑∑∑===++,从而得出(1)120kAZ Z Z Z ∑∑∑=++=需要求出各方式下的短路阻抗标幺值,先根据三相短路电流求出正序阻抗, 正序阻抗(3)12ZZ Z ∑∑==,从而根据已知的三相短路电流(3)k I,计算的正序阻抗标幺值:(3)(3)(3)(3)*(3)(3)(3)0.5181k B B B k k Z I ZZ I I =======通过单相短路,计算单相短路阻抗标幺值的方法如下:(1)(1)*(1)3 4.1152k kA B B kA kA Z I Z Z I ======, 从而,(1)(1)(3)0**1*2***2 4.115220.5181 3.079Z Z Z Z Z Z ∑∑∑=--=-=-⨯=据此,得出结果如下:Referenced voltage: 34.5kV, referenced capacity: 100MVA。
短路阻抗的各类标幺值计算计算
【1】系统电抗的计算系统电抗,百兆为一。
容量增减,电抗反比。
100除系统容量例:基准容量100MVA。
当系统容量为100MVA时,系统的电抗为XS*=100/100=1当系统容量为200MVA时,系统的电抗为XS*=100/200=0.5当系统容量为无穷大时,系统的电抗为XS*=100/∞=0系统容量单位:MVA系统容量应由当地供电部门提供。
当不能得到时,可将供电电源出线开关的开断容量作为系统容量。
如已知供电部门出线开关为W-VAC 12KV 2000A 额定分断电流为40KA。
则可认为系统容量S=1.73*40*10000V=692MVA, 系统的电抗为XS*=100/692=0.144。
【2】变压器电抗的计算110KV, 10.5除变压器容量;35KV, 7除变压器容量;10KV{6KV}, 4.5除变压器容量。
例:一台35KV 3200KVA变压器的电抗X*=7/3.2=2.1875一台10KV 1600KVA变压器的电抗X*=4.5/1.6=2.813变压器容量单位:MVA这里的系数10.5,7,4.5 实际上就是变压器短路电抗的%数。
不同电压等级有不同的值。
【3】电抗器电抗的计算电抗器的额定电抗除额定容量再打九折。
例:有一电抗器U=6KV I=0.3KA 额定电抗X=4% 。
额定容量S=1.73*6*0.3=3.12 MVA. 电抗器电抗X*={4/3.12}*0.9=1.15电抗器容量单位:MVA【4】架空线路及电缆电抗的计算架空线:6KV,等于公里数;10KV,取1/3;35KV,取3%0电缆:按架空线再乘0.2。
例:10KV 6KM架空线。
架空线路电抗X*=6/3=210KV 0.2KM电缆。
电缆电抗X*={0.2/3}*0.2=0.013。
这里作了简化,实际上架空线路及电缆的电抗和其截面有关,截面越大电抗越小。
【5】短路容量的计算电抗加定,去除100。
例:已知短路点前各元件电抗标么值之和为X*∑=2, 则短路点的短路容量Sd=100/2=50 MVA。
2.短路电流计算--标幺值计算
在对称的三相系统中,基准值满足如下约束:
S3B 3U LB ILB
U LB 3ILB ZB
ZB
U
2 LB
/
S3B
1/
YB
Ø说明: ILB S3B / 3U LB
•五个基准值之间有依存关系,一般只需确定三相基准 功率和基准线电压两个即可;
•SB多选择为100MVA、1000MVA 、系统总容量或某个 发电厂机组容量之和;
100 = 0.484(KA) 3 ×121
IB3 =
100 = 7.95(KA) 3 × 7.26
在各段将额定值下的值转换为基准值下 的标幺值:
X 1*
=
0.26
×
10.5 30
2
10.52 100
=
0.26× 100 30
=
0.87
X 2*
=
0.105 ×
100 31.5
=
0.33
X 3* = 0.22
=
10.5(KV
)
有何特点?
U B3
= 121×
6.6 110
=
7.26(KV
)
(三)近似计算法
Ø 准确算法计算量大,对复杂网络会出
现困难 Ø 主要困难因素是变压器变比,与两侧额 定电压之比可能不一样 Ø 主要计算是电抗的标幺值
★ 近似1:取基本段的电压基准值均为其平 均额定电压值
eg. UB2 = 115 (kV )
四、复杂网络中标幺值的计算
【例】
(双回)
4
(一)准确计算法——归一法
Ø选定某段作为基本段(如Ⅱ),一般选择 最高电压等级或中间段
Ø各参数均向基本段归算有名值: Z ×k2, E ×k, I / k, S ?
短路电流及标幺值的计算
第一苛标么值及其计算一、标么值的基本ft念在电力系统及电机参数计算中,常常采用“标么制气标么值),而不直接采用有名单位制(实际值儿采用标么值能使数字计算大为简化,概念明逾,并能减少计算错淚。
标么值,又称相对值或分数值,用公式表示为析么帖誉便(任聲重纲〉怀旧-基准值(与烯危同量纲5标么值没有单位。
例如,实际值为630kVA、1600kVA的容量,当选定lOOOkVA为容量的基准值时,则其标么值分别为0・63及1•附如果在汁算电力系统短路电流时■已知系统中某一元代的电压为<7,三相容量为S= /177八电流为八电抗为X(假设电阻尺=0),而所选定的基准电压、基准容笛、基准电流及基准电抗分别为U,、I,、S 八和X"则这一元件的各已知量的标么值分别为e S , / F /TtZ,,6严焉’人严厂/—=X =""卩蛍~6/0厂 / s如果选取各元件自身的额定值07八S"人)为基准值时,则各量的标么值分别为TT S 1U ■严方s. — L I — = T/y人X丿wX" J 5了"在计算电力系统短路电流时,若不待别说明,各元件的标么值总足相对干该元件的额定电圧而育.如发电机、变压器、电航器等铭牌上标明的标么值电抗•都是以该元件的额定值作基准值•工稈计算上通常先选定基准容最S,和基准电K"八与其相应的基准电流A和电抗X"均可由这两个基准值导出。
I • • • ■ ♦ - •——* . • •— V ... ■ ■ ' ■■ ■ ■ ■当从某一基唯值容畐S的标么值化到另一基准值容as 的标么值时X.=X・3备当从某一基准电压的标么值化到另一基准值电压tz*的标么值时,7;2X•严I赭当从巳知系统短路容量或与该系统连接的遮断容虽S'M匕到基准容量y的标么值时,三.电抗标么值和有名值的变换电抗标么值和有名值变换公式见表6 T 0四、各类元件的电抗平均值各类元件的电抗平均值见表6…2。
关于短路电流标幺值计算基准公式
关于短路电流标幺值计算基准公式
短路电流标幺值计算(Isc)是电力系统稳定性评估的一个重要参数,是预测电力系统稳定性的一个重要指标,也是发电厂投资规划、发电负荷
规划、电网容量规划等中重要的因素。
短路电流标幺值的计算基准公式一
般为:
Isc=∑ (Vk·Sck·Ik)
其中,Isc是短路电流标幺值,Vk是变压器的额定电压,Sck是电力
系统中各变压器连接方式的短路容量,Ik是变压器的额定电流。
一般情况,系统中的变压器为两组及以上,以PQ的方式连接,联结
变压器的短路容量可以使用以下公式来计算:
Sck=SQ·(Vk/VQ)2
其中,SQ是Q组变压器的短路容量,Vk是P组变压器的额定电压,VQ是Q组变压器的额定电压。
同时,系统短路电流标幺值的求解还可以应用电网短路比及电力系统
的功率因数、最大可能短路容量等方法来求解。
电网短路比,即短路有功功率与无功功率之比,常用公式为:
SC=(1-cos(θ))/SCF
其中,SC是短路电流标幺值,θ是电力系统的功率因数,SCF是最
大可能短路容量。
通常情况下,最大可能短路容量是指系统中所有变压器
的总容量。
计算出系统中的短路有功功率,可以应用以下短路有功功率的标幺值公式来计算:
Psc=∑ (Vk·Ik·cosθ)。
关于短路电流标幺值计算基准公式
9.16
5.50
1.56
0.502
基准电抗X(Ω)
0.0016
0.397
1.10
13.7
132三二、各元件的计算标公 Nhomakorabea三、不同基准值的互相换算
SUS?U?S2jX?X ??1、不同基准定量SU ?1?2Sjj1j3I??I?I2U ?SIJ1X?X不同基准电压2、jj ?1?22US2XJjX??X ?VXjj四、系统容量组合电抗标公值采用标准值后,SJ?X相电压和线电压标公值相同; ?Sd单相功率和三相功率标公值相同”系统短路容量)式中(SdS?I??
.
.
五、常用电气设备标公值和有名值计算公式
标公值
本名值
备注
动、电1机(MW)容量
S%Xjd?X?*d?cos/100Pe
U%Xjd??X*d?cos100P/e
为次暂去X%d电抗百分值
压2、变器)A(MV
SU%jdX??*d100Se
2UU%ed??X*dS100e
性U短路为d百分值
、电抗器3
??SV%Xkj??e??X???*d2100VI3??je
.
2UX%ed?X?KS100e
分为百X%K单电抗值,IeKA位为
4、线路
Sj?X?X?2Uj
Dlg.145X?0r7890.3dcsdac?dasD??
导线半径r为三相导线D间的平均距)(cm
Sj?K?K?2Uj
L??RS
2I11Kch21?IchI?(?)?.51≈ich六、短路全电流冲击短路电流;1.8″
.
关于短路电流标幺值计算基准公式
杭州市建筑设计研究所朱时光
一、常用基准值S=100(MVA)j基准电压
短路阻抗的各类标幺值计算计算
【1】系统电抗的计算之青柳念文创作系统电抗,百兆为一.容量增减,电抗反比.100除系统容量例:基准容量 100MVA.当系统容量为100MVA时,系统的电抗为XS*=100/100=1当系统容量为无穷大时,系统的电抗为XS*=100/∞=0系统容量单位:MVA系统容量应由当地供电部分提供.当不克不及得到时,可将供电电源出线开关的开断容量作为系统容量.如已知供电部分出线开关为WVAC 12KV 2000A 额定分断电流为40KA.则可认为系统容量S=1.73*40*10000V=692MVA, 系统的电抗为XS*=100/692=0.144.【2】变压器电抗的计算110KV, 10.5除变压器容量;35KV, 7除变压器容量;10KV{6KV}, 4.5除变压器容量.变压器容量单位:MVA这里的系数10.5,7,4.5 实际上就是变压器短路电抗的%数.分歧电压等级有分歧的值.【3】电抗器电抗的计算电抗器的额定电抗除额定容量再打九折.例:有一电抗器 U=6KV I=0.3KA 额定电抗 X=4% .电抗器容量单位:MVA【4】架空线路及电缆电抗的计算架空线:6KV,等于公里数;10KV,取1/3;35KV,取 3%0电缆:按架空线再乘0.2.例:10KV 6KM架空线.架空线路电抗X*=6/3=210KV 0.2KM电缆.电缆电抗X*={0.2/3}*0.2=0.013.这里作了简化,实际上架空线路及电缆的电抗和其截面有关,截面越大电抗越小.【5】短路容量的计算电抗加定,去除100.例:已知短路点前各元件电抗标么值之和为X*∑=2, 则短路点的短路容量Sd=100/2=50 MVA.短路容量单位:MVA【6】短路电流的计算6KV,9.2除电抗;10KV,5.5除电抗; 35KV,1.6除电抗; 110KV,0.5除电抗.0.4KV,150除电抗例:已知一短路点前各元件电抗标么值之和为X*∑=2, 短路点电压等级为6KV,则短路点的短路电流 Id=9.2/2=4.6KA.短路电流单位:KA【7】短路冲击电流的计算例:已知短路点{1600KVA变压器二次侧}的短路电流Id=4.6KA,则该点冲击电流有效值Ic=1.5Id,=1.5*4.6=7.36KA,冲击电流峰值ic=2.5Id=2.5*406=11.5KA.可见短路电流计算的关键是算出短路点前的总电抗{标么值}.但一定要包含系统电抗交直流电力系统中的大扰动主要有:发电机故障切除、直流输电系统因故障(或无故障)部分或全部切除、变压器和线路等元件故障并切除、大负荷的投入或切除.其中线路故障最为罕见,故障形式有各种短路、开路和复合故障.对于电力系统平平稳定要求,一般采取三道防线:罕见的单相短路,不采纳任何措施,网络自己需包管稳定要求;三相永久短路等少发的严重故障,采纳措施后全系统应坚持稳定;®三相短路后一相开关拒动等多重故障,可采纳系统解列措施,防止全系统发生崩溃.直流输电系统的故障如何与交流故障等值,一直没有明白的规定.今朝通常思索单极故障按类故障计,双极故障按类故障计.随着网络的扩展和最高电压等级网络的加强,系统失稳事故造成的损失显著增加,因此,平平稳定尺度要适度提高,如主网络需承受类故障,在计算中需思索网络维护引起的正常停运等.8 交直流电力系统小扰动动态仿真分析8.1 交直流电力系统小扰动动态稳定的含义小扰动动态稳定是指系统遭受到小扰动后坚持同步的才能,而本定义中的小扰动是指在分析中描绘系统响应的方程可以线性化.不稳定成果有两种形式:①山于缺乏同步转矩而引起发电机转子角度持续增大;②由于缺乏足够的阻尼力矩而引起的增幅转子振荡.在当今的实际电力系统中,小扰动动态稳定问题通常是阻尼缺乏的系统振荡问题之一. 交直流电力系统巾,小扰动动态稳定问题能够是部分性的,也能够是全局性的.部分性小扰动稳定问题只涉及系统的一部分,它也可分为电厂形式振荡、机间形式振荡和与节制相关的不稳定等.电厂形式振荡一台发电机或一个单独的电厂相对于系统其他部分的转子角振荡.机间形式振荡为几台临近的发电机转子之间的振荡.与节制相关的不稳定是由于节制的调整不适当引起的.全局性小扰动稳定问题由发电机组之间的相互影响造成,表示为一个区域里的一组发电机对另—区域的一组发电机发生摆动的振荡,这种振荡称为区域形式振荡.8.2 交直流电力系统小扰动动态稳定仿真分析8.2.1 交直流电力系统小扰动动态稳定仿真分析需要性交直流电力系统往往输电容量大、输电间隔远、系统布局和运行方式复杂,很能够出现低频振荡等小扰动动态稳定问题.电力系统稳定器PSS可以增加发电机转子振荡时的阻尼,装置电力系统稳定器PSS是抑制交盲流电力系统低频振荡的经济、有效手段之一.而要更好地发挥PSS的作用,需要通过小扰动稳定仿真分析,优化并协调各机组的PSS参数. 别的,操纵直流输电系统直流调制和运动无功抵偿器SVC 附加节制也可以提高交直流电力系统的小扰动稳定性,通过小扰动稳定仿真分析,可提高。
短路阻抗的各类标幺值计算计算
【1】系统电抗的计较之五兆芳芳创作系统电抗,百兆为一.容量增减,电抗正比.100除系统容量例:基准容量 100MV A.当系统容量为100MV A时,系统的电抗为XS*=100/100=1当系统容量为无穷大时,系统的电抗为XS*=100/∞=0系统容量单位:MV A系统容量应由当地供电部分提供.当不克不及得到时,可将供电电源出线开关的开断容量作为系统容量.如已知供电部分出线开关为WV AC 12KV 2000A 额外分断电流为40KA.则可认为系统容量S=1.73*40*10000V=692MV A, 系统的电抗为XS*=100/692=0.144.【2】变压器电抗的计较110KV, 10.5除变压器容量;35KV, 7除变压器容量;10KV{6KV}, 4.5除变压器容量.变压器容量单位:MV A这里的系数10.5,7,4.5 实际上就是变压器短路电抗的%数.不合电压等级有不合的值.【3】电抗器电抗的计较电抗器的额外电抗除额外容量再打九折.例:有一电抗器 U=6KV I=0.3KA 额外电抗 X=4% .电抗器容量单位:MV A【4】排挤线路及电缆电抗的计较排挤线:6KV,等于千米数;10KV,取1/3;35KV,取3%0电缆:按排挤线再乘0.2.例:10KV 6KM排挤线.排挤线路电抗X*=6/3=210KV 0.2KM电缆.电缆电抗X*={0.2/3}*0.2=0.013.这里作了简化,实际上排挤线路及电缆的电抗和其截面有关,截面越大电抗越小.【5】短路容量的计较电抗加定,去除100.例:已知短路点前各元件电抗标么值之和为X*∑=2, 则短路点的短路容量Sd=100/2=50 MV A.短路容量单位:MV A【6】短路电流的计较6KV,9.2除电抗;10KV,5.5除电抗; 35KV,1.6除电抗; 110KV,0.5除电抗.0.4KV,150除电抗例:已知一短路点前各元件电抗标么值之和为X*∑=2, 短路点电压等级为6KV,则短路点的短路电流 Id=9.2/2=4.6KA.短路电流单位:KA【7】短路冲击电流的计较例:已知短路点{1600KV A变压器二次侧}的短路电流Id=4.6KA,则该点冲击电流有效值Ic=1.5Id,=1.5*4.6=7.36KA,冲击电流峰值ic=2.5Id=2.5*406=11.5KA.可见短路电流计较的关头是算出短路点前的总电抗{标么值}.但一定要包含系统电抗交直流电力系统中的大扰动主要有:发电机毛病切除、直流输电系统因毛病(或无毛病)部分或全部切除、变压器和线路等元件毛病并切除、大负荷的投入或切除.其中线路毛病最为罕有,毛病形式有各类短路、开路和复合毛病.对于电力系统平平稳定要求,一般采取三道防地:罕有的单相短路,不采纳任何措施,网络自己需包管稳定要求;三相永久短路等少发的严重毛病,采纳措施后全系统应保持稳定;®三相短路后一相开关拒动等多重毛病,可采纳系统解列措施,避免全系统产生解体.直流输电系统的毛病如何与交换毛病等值,一直没有明确的规则.目前通常考虑单极毛病按类毛病计,双极毛病按类毛病计.随着网络的扩大和最高电压等级网络的增强,系统失稳事故造成的损失显著增加,因此,平平稳定尺度要适度提高,如主网络需承受-类毛病,在计较中需考虑网络维护引起的正常停运等.8 交直流电力系统小扰动动态仿真阐发8.1 交直流电力系统小扰动动态稳定的寄义小扰动动态稳定是指系统遭受到小扰动后保持同步的能力,而本定义中的小扰动是指在阐发中描述系统响应的方程可以线性化.不稳定结果有两种形式:①山于缺乏同步转矩而引起发电机转子角度持续增大;②由于缺乏足够的阻尼力矩而引起的增幅转子振荡.在当今的实际电力系统中,小扰动动态稳定问题通常是阻尼缺乏的系统振荡问题之一. 交直流电力系统巾,小扰动动态稳定问题可能是局部性的,也可能是全局性的.局部性小扰动稳定问题只涉及系统的一部分,它也可分为电厂模式振荡、机间模式振荡和与控制相关的不稳定等.电厂模式振荡一台发电机或一个单独的电厂相对于系统其他部分的转子角振荡.机间模式振荡为几台邻近的发电机转子之间的振荡.与控制相关的不稳定是由于控制的调整不适当引起的.全局性小扰动稳定问题由发电机组之间的相互影响造成,表示为一个区域里的一组发电机对另—区域的一组发电机产生摆动的振荡,这种振荡称为区域模式振荡.8.2 交直流电力系统小扰动动态稳定仿真阐发8.2.1 交直流电力系统小扰动动态稳定仿真阐发需要性交直流电力系统往往输电容量大、输电距离远、系统结构和运行方法庞杂,极可能出现低频振荡等小扰动动态稳定问题.电力系统稳定器PSS可以增加发电机转子振荡时的阻尼,装置电力系统稳定器PSS是抑制交盲流电力系统低频振荡的经济、有效手段之一.而要更好地阐扬PSS的作用,需要通太小扰动稳定仿真阐发,优化并协调各机组的PSS参数. 另外,利用直流输电系统直流调制和静止无功抵偿器SVC 附加控制也可以提高交直流电力系统的小扰动稳定性,通太小扰动稳定仿真阐发,可提高。
短路阻抗的各类标幺值计算计算
系统电抗,百兆为一。
容量增减,电抗反比。
100除系统容量例:基准容量 100MVA。
当系统容量为100MVA时,系统的电抗为XS*=100/100=1当系统容量为200MVA时,系统的电抗为XS*=100/200=当系统容量为无穷大时,系统的电抗为XS*=100/∞=0系统容量单位:MVA系统容量应由当地供电部门提供。
当不能得到时,可将供电电源出线开关的开断容量作为系统容量。
如已知供电部门出线开关为W-VAC 12KV 2000A 额定分断电流为40KA。
则可认为系统容量S=*40*10000V=692MVA, 系统的电抗为XS*=100/692=。
【2】变压器电抗的计算110KV, 除变压器容量;35KV, 7除变压器容量;10KV{6KV}, 除变压器容量。
例:一台35KV 3200KVA变压器的电抗X*=7/=一台10KV 1600KVA变压器的电抗X*==变压器容量单位:MVA这里的系数,7,实际上就是变压器短路电抗的%数。
不同电压等级有不同的值。
【3】电抗器电抗的计算电抗器的额定电抗除额定容量再打九折。
例:有一电抗器 U=6KV I= 额定电抗 X=4% 。
额定容量 S=*6*= MVA. 电抗器电抗X*={4/}*=电抗器容量单位:MVA【4】架空线路及电缆电抗的计算架空线:6KV,等于公里数;10KV,取1/3;35KV,取 3%0电缆:按架空线再乘。
例:10KV 6KM架空线。
架空线路电抗X*=6/3=210KV 0.2KM电缆。
电缆电抗X*={3}*=。
这里作了简化,实际上架空线路及电缆的电抗和其截面有关,截面越大电抗越小。
【5】短路容量的计算电抗加定,去除100。
例:已知短路点前各元件电抗标么值之和为X*∑=2, 则短路点的短路容量Sd=100/2=50 MVA。
短路容量单位:MVA【6】短路电流的计算6KV,除电抗;10KV,除电抗; 35KV,除电抗; 110KV,除电抗。
电力系统短路电流计算及标幺值算法之欧阳语创编
第七章短路电流计算Short Circuit Current Calculation§7-1 概述 General Description一、短路的原因、类型及后果The cause, type and sequence of short circuit 1、短路:是指一切不正常的相与相之间或相与地(对于中性点接地的系统)发生通路的情况。
2、短路的原因:⑴元件损坏如绝缘材料的自然老化,设计、安装及维护不良等所造成的设备缺陷发展成短路.⑵气象条件恶化如雷击造成的闪络放电或避雷器动作;大风造成架空线断线或导线覆冰引起电杆倒塌等.⑶违规操作如运行人员带负荷拉刀闸;线路或设备检修后未拆除接地线就加电压.⑷其他原因如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等.3、三相系统中短路的类型:⑴基本形式: )3(k—三相短路;)2(k—两相短路;)1(k—单相接地短路;)1,1(k—两相接地短路;⑵对称短路:短路后,各相电流、电压仍对称,如三相短路;不对称短路:短路后,各相电流、电压不对称;如两相短路、单相短路和两相接地短路.注:单相短路占绝大多数;三相短路的机会较少,但后果较严重。
4、短路的危害后果随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。
短路的危险后果一般有以下几个方面。
(1)电动力效应短路点附近支路中出现比正常值大许多倍的电流,在导体间产生很大的机械应力,可能使导体和它们的支架遭到破坏。
(2)发热短路电流使设备发热增加,短路持续时间较长时,设备可能过热以致损坏。
(3)故障点往往有电弧产生,可能烧坏故障元件,也可能殃及周围设备.(4)电压大幅下降,对用户影响很大.(5)如果短路发生地点离电源不远而又持续时间较长,则可能使并列运行的发电厂失去同步,破坏系统的稳定,造成大片停电。
这是短路故障的最严重后果。
(6)不对称短路会对附近的通讯系统产生影响。