统计和统计案例(教师版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三 年级 数学 科辅导讲义(第 讲)

学生姓名: 授课教师: 授课时间:

第一部分 基础知识梳理

1.随机抽样

(1)简单随机抽样特点是从总体中逐个抽取.适用范围:总体中的个体较少.

(2)系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取.适用范围:总体中的个体数较多.

(3)分层抽样特点是将总体分成几层,分层进行抽取.适用范围:总体由差异明显的几部分组成. 2.常用的统计图表 (1)频率分布直方图 ①小长方形的面积=组距×

频率

组距

=频率; ②各小长方形的面积之和等于1;

③小长方形的高=频率组距,所有小长方形的高的和为1

组距.

(2)茎叶图

在样本数据较少时,用茎叶图表示数据的效果较好. 3.用样本的数字特征估计总体的数字特征 (1)众数、中位数、平均数

(2)方差:s 2=1

n

[(x 1-x )2+(x 2-x )2+…+(x n -x )2].

标准差: s =

1

n

[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 4.独立性检验

对于取值分别是{x 1,x 2}和{y 1,y 2}的分类变量X 和Y ,其样本频数列联表是

则K 2

(χ2

)=n (ad -bc )2

(a +b )(c +d )(a +c )(b +d )

(其中n =a +b +c +d 为样本容量).

第二部分 考点解析

热点一 抽样方法

例1 (1)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ) A .11 B .12 C .13 D .14

(2)某学校共有师生3 200人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是________.

思维启迪 (1)系统抽样时需要抽取几个个体,样本就分成几组,且抽取号码的间隔相同;(2)分层抽样最重要的是各层的比例. 答案 (1)B (2)200

解析 (1)由840

42=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12.

(2)本题属于分层抽样,设该学校的教师人数为x ,所以

1603 200=160-150

x

,所以x =200. 思维升华 (1)随机抽样各种方法中,每个个体被抽到的概率都是相等的;(2)系统抽样又称“等距”抽样,被抽到的各个号码间隔相同;分层抽样满足:各层抽取的比例都等于样本容量在总体容量中的比例.

(1)某校高一、高二、高三分别有学生人数为495,493,482,现采用系统抽样方法,抽取49人

做问卷调查,将高一、高二、高三学生依次随机按1,2,3,…,1 470编号,若第1组有简单随机抽样方法抽取的号码为23,则高二应抽取的学生人数为( )

A .15

B .16

C .17

D .18

(2)(2014·广东)已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )

A .200,20

B .100,20

C .200,10

D .100,10

答案 (1)C (2)A

解析 (1)由系统抽样方法,知按编号依次每30个编号作为一组,共分49组,高二学生的编号为496到988,在第17组到第33组内,第17组抽取的编号为16×30+23=503,为高二学生,第33组抽取的编号为32×30+23=983,为高二学生,故共抽取高二学生人数为33-16=17,故选C. (2)该地区中、小学生总人数为3 500+2 000+4 500=10 000,

则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20,故选A. 热点二 用样本估计总体

例2 (1)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为(

)

A .6

B .8

C .12

D .18

(2)PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是根据某地某日早7点至晚8点甲、乙两个PM 2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( ) A .甲 B .乙 C .甲乙相等

D .无法确定

思维启迪 (1)根据第一组与第二组的人数和对应频率估计样

本总数,然后利用第三组的频率和无疗效人数计算;(2)直接根据公式计算方差. 答案 (1)C (2)A

解析 (1)志愿者的总人数为

20

(0.16+0.24)×1

=50,

所以第三组人数为50×0.36=18,

甲 乙 2 0.04 1 2 3 6 9 3 0.05 9 6 2 1 0.06 2 9 3 3 1 0.07 9 6 4 0.08 7

7

0.09

2

4 6

相关文档
最新文档