设计农业大棚环境监控系统方案

合集下载

《智能温室大棚监控系统的研究与设计》范文

《智能温室大棚监控系统的研究与设计》范文

《智能温室大棚监控系统的研究与设计》篇一一、引言随着现代科技的不断进步,农业科技作为支撑现代农业发展的重要支柱,也正在逐步升级与优化。

智能温室大棚监控系统是这一进步的体现之一,它不仅为农业种植提供了精准的环境控制,还能显著提高农作物的产量与品质。

本文旨在探讨智能温室大棚监控系统的设计与实现,通过对其系统架构、技术运用以及实施效果的研究,为现代农业的智能化发展提供一定的理论支持与实践指导。

二、系统架构设计1. 硬件架构智能温室大棚监控系统的硬件架构主要包括传感器网络、数据传输设备、中央处理单元和控制执行设备等部分。

传感器网络负责实时监测温室内的环境参数,如温度、湿度、光照强度等;数据传输设备将收集到的数据传输至中央处理单元;中央处理单元对数据进行处理与分析,并发出控制指令;控制执行设备则根据指令调整温室内的环境条件。

2. 软件架构软件架构则包括数据采集模块、数据处理与分析模块、控制指令输出模块以及用户交互界面等部分。

数据采集模块负责从传感器网络中获取数据;数据处理与分析模块对数据进行处理与存储,并运用算法进行环境预测与优化;控制指令输出模块根据分析结果发出控制指令;用户交互界面则提供友好的操作界面,方便用户进行系统操作与监控。

三、关键技术运用1. 传感器技术传感器技术是智能温室大棚监控系统的核心之一。

通过使用高精度的传感器,系统能够实时监测温室内的环境参数,如温度、湿度、光照强度等,为后续的数据处理与分析提供准确的数据支持。

2. 数据处理与分析技术数据处理与分析技术是智能温室大棚监控系统的关键环节。

通过对传感器收集到的数据进行处理与分析,系统能够实时掌握温室内的环境状况,并运用算法进行环境预测与优化,为控制指令的发出提供依据。

3. 控制执行技术控制执行技术是实现智能温室大棚监控系统精确控制的关键。

通过控制执行设备,系统能够根据中央处理单元发出的指令,调整温室内的环境条件,如开启或关闭通风口、调整遮阳设备等。

《2024年智慧农业大棚监控系统的设计与实现》范文

《2024年智慧农业大棚监控系统的设计与实现》范文

《智慧农业大棚监控系统的设计与实现》篇一一、引言随着科技的发展,智慧农业成为了农业领域发展的重要方向。

智慧农业大棚监控系统是智慧农业的重要组成部分,通过集成物联网、传感器、大数据等先进技术,实现对农业大棚环境的实时监测和智能调控,提高农业生产效率和产品质量。

本文将介绍智慧农业大棚监控系统的设计与实现过程。

二、系统设计1. 系统架构设计智慧农业大棚监控系统采用分层设计的思想,主要包括感知层、传输层、应用层。

感知层负责采集大棚环境数据,传输层负责将数据传输到服务器端,应用层负责数据的处理和展示。

2. 硬件设计(1)传感器:传感器是智慧农业大棚监控系统的核心组成部分,主要包括温度传感器、湿度传感器、光照传感器、CO2浓度传感器等,用于实时监测大棚环境参数。

(2)控制器:控制器负责接收传感器数据,并根据预设的阈值进行相应的调控操作,如调节温室遮阳帘、通风口等。

(3)网络设备:网络设备包括无线通信模块和有线网络设备,用于将传感器数据传输到服务器端。

3. 软件设计(1)数据采集与处理:软件系统通过与硬件设备的通信,实时采集大棚环境数据,并进行预处理和存储。

(2)数据分析与展示:软件系统对采集的数据进行分析和挖掘,通过图表、报表等形式展示给用户,帮助用户了解大棚环境状况和作物生长情况。

(3)智能调控:软件系统根据预设的阈值和调控策略,自动或手动调节温室设备,如调节温室遮阳帘、通风口等,以保持大棚环境在最佳状态。

三、系统实现1. 硬件实现硬件设备选型与采购:根据系统需求,选择合适的传感器、控制器和网络设备,并进行采购。

设备安装与调试:将硬件设备安装在大棚内,并进行调试,确保设备能够正常工作并采集准确的数据。

2. 软件实现(1)数据采集与处理模块:通过与硬件设备的通信,实时采集大棚环境数据,并进行预处理和存储。

采用数据库技术对数据进行管理和维护。

(2)数据分析与展示模块:通过数据分析算法对采集的数据进行分析和挖掘,以图表、报表等形式展示给用户。

温室大棚自动控制系统设计说明书

温室大棚自动控制系统设计说明书

温室大棚自动控制系统设计说明书一、引言温室大棚是一种用于农业生产的重要设施,它能够为作物提供稳定的生长环境,改善生产效率。

为了进一步提升温室大棚的管理水平和自动化程度,我们设计了一套温室大棚自动控制系统。

本文将对该系统的设计进行详细说明。

二、系统概述本系统旨在实现温室大棚内环境的自动监测和控制。

主要包括以下功能模块:1. 温度控制:通过温度传感器实时监测温室大棚内外温度,并根据设定的温度阈值自动调节温室大棚的通风和加热设备,以保持适宜的温度。

2. 湿度控制:利用湿度传感器监测温室大棚内外湿度,并通过控制喷水系统和通风设备,自动调节湿度水平,以满足作物的需求。

3. 光照控制:通过光照传感器实时检测温室大棚内外光照强度,并根据设定的光照阈值,自动控制灯光的开关以及遮阳网的卷取。

4. CO2浓度控制:利用CO2传感器监测温室大棚内CO2浓度,并通过控制通风设备和CO2供应系统,维持适宜的CO2浓度,促进光合作用。

三、硬件设计1. 传感器选择:根据温室大棚内环境监测需求,选择适当的温度传感器、湿度传感器、光照传感器和CO2传感器,并与控制器进行连接。

2. 控制器选择:选择一款功能强大、可靠稳定的控制器,用于接收传感器数据、进行数据处理和控制信号输出。

3. 执行器选择:根据温室大棚的需求,选择适当的通风设备、加热设备、喷水系统、灯光和CO2供应系统,并与控制器进行连接。

四、软件设计1. 数据采集:控制器通过与传感器的连接,实时采集温室大棚内环境的数据,包括温度、湿度、光照强度和CO2浓度。

2. 数据处理:通过对采集的数据进行处理,分析温室大棚内环境的变化趋势,判断当前是否需要进行调控。

3. 控制策略:制定合理的控制策略,根据设定的阈值和作物需求,自动调节通风、加热、喷水、灯光和CO2供应等设备的工作状态。

4. 用户界面:设计一个友好的用户界面,使操作人员能够方便地监控温室大棚内环境的数据,并进行手动控制。

毕业设计农业大棚温湿度监控系统设计

毕业设计农业大棚温湿度监控系统设计

长沙学院CHANGSHA UNIVERSITY毕业设计资料设计(论文)题目:农业大棚温湿度监控系统监控系统设计系部:电子与通信工程系专业:通信工程学生姓名:班级:学号指导教师姓名:职称最终评定成绩长沙学院教务处二○一四年五月制目录第一部分设计说明书一、设计说明书第二部分外文资料翻译一、外文资料原文二、外文资料翻译第三部分过程管理资料一、毕业设计课题任务书二、本科毕业设计开题报告三、本科毕业设计中期报告四、毕业设计指导教师评阅表五、毕业设计评阅教师评阅表六、毕业设计答辩评审表2014届本科生毕业设计资料第一部分设计说明书(2014届)本科生毕业设计说明书基于单片机的粮库温度监控系统设计系部:电子与通信工程系专业:通信工程学生姓名:班级:学号指导教师姓名:职称最终评定成绩2014年5月长沙学院本科生毕业设计基于单片机的农业大棚温湿度监控系统设计系(部):电子与通信工程系专业:通信工程学号:学生姓名:指导教师:教授2014年5月摘要大棚技术在全国各个乡镇已经普及了,但是随着这些温室大棚的数量不断增加,对于大棚内的温度、湿度、光照强度和二氧化碳浓度的控制显得极其重要,特别是温湿度的监控。

本课题设计了基于单片机的农业大棚温湿度监控系统,更好的对各个农业大棚内各个环境因素进行监控。

本系统由三部分组成:第一部分的功能是在农业大棚中负责监控温室,主要是有单片机读取温湿度传感器DT11测得的温湿度,并且在数码管显示。

第二部分功能是负责将所测得的温湿度从农业大棚传到管理员的电脑或其他通讯设备上,这样可以让管理员及时准确的查看大棚内的温湿度,这部分主要是有485通讯总线完成传输。

第三部分的功能则是上位机处理接收的温湿度值,并且判断这些温湿度值是否在合理的温湿度范围内,如果超出预设值就立即报警。

通过多次测试表明,系统各个部分功能正常,相互衔接良好,操作简单方便,大大提高了温室大棚的科学管理水平,可以减少劳动者的工作量,减少支出,提高大棚内产品的产量,增加劳动者的收入,提高国民生产值,具有很好的发展未来。

设施农业(温室大棚)环境智能监控系统解决方案

设施农业(温室大棚)环境智能监控系统解决方案

设施农业(温室大棚)环境智能监控系统解决方案1、系统简介该系统利用物联网技术,可实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像,通过模型分析,远程或自动控制湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备,保证温室大棚内环境最适宜作物生长,为作物高产、优质、高效、生态、安全创造条件。

同时,该系统还可以通过手机、PDA、计算机等信息终端向农户推送实时监测信息、预警信息、农技知识等,实现温室大棚集约化、网络化远程管理,充分发挥物联网技术在设施农业生产中的作用。

本系统适用于各种类型的日光温室、连栋温室、智能温室。

2、系统组成该系统包括:传感终端、通信终端、无线传感网、控制终端、监控中心和应用软件平台。

620)this.style.width=620;" border=0>(1)传感终端温室大棚环境信息感知单元由无线采集终端和各种环境信息传感器组成。

环境信息传感器监测空气温湿度、土壤水分温度、光照强度、二氧化碳浓度等多点环境参数,通过无线采集终端以GPRS方式将采集数据传输至监控中心,以指导生产。

(2)通信终端及传感网络建设温室大棚无线传感通信网络主要由如下两部分组成:温室大棚内部感知节点间的自组织网络建设;温室大棚间及温室大棚与农场监控中心的通信网络建设。

前者主要实现传感器数据的采集及传感器与执行控制器间的数据交互。

温室大棚环境信息通过内部自组织网络在中继节点汇聚后,将通过温室大棚间及温室大棚与农场监控中心的通信网络实现监控中心对各温室大棚环境信息的监控。

620)this.style.width=620;" border=0>(3)控制终端温室大棚环境智能控制单元由测控模块、电磁阀、配电控制柜及安装附件组成,通过GPRS模块与管理监控中心连接。

根据温室大棚内空气温湿度、土壤温度水分、光照强度及二氧化碳浓度等参数,对环境调节设备进行控制,包括内遮阳、外遮阳、风机、湿帘水泵、顶部通风、电磁阀等设备。

基于单片机的农业大棚智能监控网络系统设计

基于单片机的农业大棚智能监控网络系统设计

基于单片机的农业大棚智能监控网络系统设计随着科技的发展和人工智能的应用,农业大棚智能监控系统已经成为农业生产中不可或缺的一部分。

这个系统可以帮助农民监测植物生长环境的各种参数,辅助农民进行农作物的及时管理和调控,提高生产效率和质量。

在这篇文章中,我们将介绍一个基于单片机的农业大棚智能监控网络系统的设计,以及它的工作原理和应用前景。

一、系统设计概述1)系统功能基于单片机的农业大棚智能监控网络系统通常包括环境监测模块、数据传输模块、数据处理模块和用户界面模块。

系统的功能主要包括:- 监测大棚内温度、湿度、光照等环境参数;- 基于传感器数据,实时分析大棚内环境的变化;- 控制通风、灌溉等设备,实现远程操控;- 数据传输和存储,实现数据的远程监控和管理;- 用户界面的设计,便于农民远程监控和管理。

2)系统组成系统主要由传感器、单片机、无线通信模块、执行器等组成。

传感器用于采集环境参数数据,单片机负责数据处理和控制,无线通信模块用于数据传输和远程控制,执行器用于执行控制指令。

3)系统优势相比传统的农业生产方式,基于单片机的农业大棚智能监控网络系统具有以下优势: - 实时监测:可以实时监测大棚内的环境参数,及时发现和解决问题;- 远程控制:农民可以通过手机或电脑远程控制大棚内的设备,方便灵活;- 数据分析:系统可以通过数据分析,为农民提供决策参考;- 节约成本:降低人工成本和资源浪费,提高生产效率和质量。

二、系统工作原理1)传感器采集数据传感器负责采集大棚内的环境参数数据,包括温度、湿度、光照等。

不同类型的传感器可以满足不同的监测需求,比如温湿度传感器、光照传感器等。

2)单片机数据处理单片机负责接收传感器采集的数据,并进行处理和分析。

单片机可以根据预设的环境参数范围,判断当前环境是否符合要求,如果不符合要求,可以发出报警或控制指令。

3)无线通信模块传输数据单片机处理后的数据通过无线通信模块传输到远程监控中心或用户手机、电脑上。

现代农业温室大棚智能监测和控制解决方案精选全文完整版

现代农业温室大棚智能监测和控制解决方案精选全文完整版

可编辑修改精选全文完整版现代农业温室大棚智能监测和控制解决方案一、背景介绍近年来,农业温室大棚种植为提高人们的生活水平带来极大的便利,得到了迅速的推广和应用。

种植环境中的温度、湿度、光照度、土壤湿度、CO2浓度等环境因子对作物的生产有很大的影响。

传统的人工控制方式难以达到科学合理种植的要求,目前国内可以实现上述环境因子自动监控的系统还不多见,而引进国外具有多功能的大型连栋温室控制系统价格昂贵,不适合国情。

针对目前温室大棚发展的趋势,提出了一种大棚远程监控系统的设计。

根据大棚监控的特殊性,需要传输大棚现场参数给管理者,并把管理者的命令下发到现场执行设备,同时又要使上级部门可随时通过互连网或者手机信息了解区域大棚的实时状况。

基于490MHz、GPRS 的农业温室大棚智能监控管理系统使这些成为可能。

二、系统方案1、系统概述深圳信立科技有限公司现代温室大棚智能监测和控制系统集传感器、自动化控制、通讯、计算等技术于一体,通过用户自定仪作物生长所需的适宜环境参数,搭建温室智能化软硬件平台,实现对温室中温度、湿度、光照、二氧化碳等因子的自动监测和控制。

农业大棚温室智能监控系统可以模拟基本的生态环境因子,如温度、湿度、光照、CO2浓度等,以适应不同生物生长繁育的需要,它由智能监控单元组成,按照预设参数,精确的测量温室的气候、土壤参数等,并利用手动、自动两种方式启动或关闭不同的执行结构(喷灌、湿帘水泵及风机、通风系统等),程序所需的数据都是通过各类传感器实时采集的。

该系统的使用,可以为植物提供一个理想的生长环境,并能起到减轻人的劳动强度、提高设备利用率、改善温室气候、减少病虫害、增加作物产量等作用。

2、系统组成:整个系统主要三大部分组成:数据采集部分、数据传输部分、数据管理中心部分。

A、数据管理层(监控中心):硬件主要包括:工作站电脑、服务器(电信、移动或联通固定IP专线或者动态ip域名方式);软件主要包括:操作系统软件、数据中心软件、数据库软件、温室大棚智能监控系统软件平台(采用B/S结构,可以支持在广域网进行浏览查看)、防火墙软件;B、数据传输层(数据通信网络):采用移动公司的GPRS网络或490MHz传输数据,系统无需布线构建简单、快捷、稳定;移动GPRS无线组网模式具有:数据传输速率高、信号覆盖范围广、实时性强、安全性高、运行成本低、维护成本低等特点;C、数据采集层(温室硬件设备):远程监控设备:远程监控终端;传感器和控制设备:温湿度传感器、二氧化碳传感器、光照传感器、土壤湿度传感器、喷灌电磁阀、风机、遮阳幕等;3、系统拓扑图:XL68、XL65支持490MHz上传方式,系统通讯网络示意如下(一片区域现场节点多,可选此种方案)XL68、XL65支持GPRS上传方式,系统通讯网络示意如下(一片区域现场节点少,可选此种方案)。

智能大棚控制策划书模板3篇

智能大棚控制策划书模板3篇

智能大棚控制策划书模板3篇篇一智能大棚控制策划书模板一、项目概述1. 项目背景随着科技的不断发展,智能大棚控制系统已经成为现代农业的重要组成部分。

本项目旨在设计一套智能大棚控制系统,实现对大棚内环境的智能化控制,提高农业生产效率和质量,降低劳动力成本。

2. 项目目标实现对大棚内温度、湿度、光照等环境参数的实时监测和控制。

提供智能化的灌溉、通风、施肥等控制策略,提高资源利用效率。

实现远程监控和管理,方便用户随时随地进行操作。

提高大棚内农作物的产量和质量,增加农民收入。

二、系统设计1. 系统架构智能大棚控制系统主要由传感器、执行器、控制器、通信模块和监控平台等部分组成。

传感器负责采集大棚内的环境参数,执行器负责执行控制命令,控制器负责处理传感器数据并发出控制指令,通信模块负责将数据至监控平台,监控平台则负责显示和管理数据。

2. 传感器选型温度传感器:采用数字温度传感器 DS18B20,能够实时监测大棚内的温度变化。

湿度传感器:采用电容式湿度传感器 HIH3610,能够准确测量大棚内的湿度情况。

光照传感器:采用 BH1750 光照传感器,能够实时监测大棚内的光照强度。

土壤湿度传感器:采用 FDS100 土壤湿度传感器,能够实时监测大棚内的土壤湿度情况。

3. 执行器选型电磁阀:用于控制灌溉系统的开启和关闭。

fan:用于控制通风系统的运行。

led:用于控制光照系统的亮度。

4. 控制器选型采用 STM32F103C8T6 作为系统的核心控制器,该芯片具有高性能、低功耗、丰富的 GPIO 接口等特点,能够满足系统的需求。

5. 通信模块选型采用 ESP8266 作为系统的通信模块,该模块支持 Wi-Fi 连接,能够将大棚内的环境参数至监控平台。

6. 监控平台设计实时数据显示:显示大棚内的环境参数、设备运行状态等信息。

历史数据查询:查询大棚内的历史环境参数和设备运行记录。

控制策略设置:设置大棚内的灌溉、通风、施肥等控制策略。

智慧农业大棚监控系统的设计与实现

智慧农业大棚监控系统的设计与实现

智慧农业大棚监控系统的设计与实现随着科技的不断发展,智慧农业大棚监控系统的设计与实现已经成为现代农业发展的必然趋势。

智慧农业大棚监控系统可以通过对大棚内环境的实时监测和数据分析,提供更加精准的种植管理方案,有效提高农作物的产量和质量,同时降低生产成本和人力资源的浪费。

智慧农业大棚监控系统的设计主要需要考虑以下几个方面:环境参数监测:为了能够及时了解大棚内的环境情况,需要对大棚内的温湿度、土壤水分、二氧化碳浓度等环境参数进行实时监测。

这些数据可以通过各种传感器采集,再通过数据传输模块传输到控制中心进行数据分析。

数据处理与分析:通过对采集的数据进行处理和分析,可以得出大棚内环境的变化趋势和规律,进而提供更加精准的种植管理方案。

例如,通过对土壤水分和温湿度数据的分析,可以得出大棚内的灌溉需求和通风需求等。

控制系统:根据数据分析结果,控制系统可以自动调节大棚内的环境参数,例如开启或关闭通风窗、灌溉设备等。

控制系统还可以通过智能算法实现自动化种植管理,提高农作物的生长效率和产量。

报警系统:为了确保大棚内的环境参数始终处于最佳状态,需要设置报警系统。

当监测到异常数据时,报警系统会立即发出警报,及时通知农民或管理人员采取相应的措施。

云平台与APP:为了方便远程监控和管理,智慧农业大棚监控系统可以搭载云平台和手机APP,让用户可以通过互联网或移动设备随时随地了解大棚内的环境情况和数据变化趋势,进而实现远程种植管理。

为了实现智慧农业大棚监控系统,需要以下关键技术的支持:传感器技术:传感器技术是实现环境参数监测的关键技术之一。

针对不同的环境参数监测需求,需要选择不同的传感器。

例如,温湿度传感器可以监测空气中的温湿度数据;土壤水分传感器可以监测土壤中的水分含量;二氧化碳浓度传感器可以监测空气中的二氧化碳浓度等。

数据传输技术:为了能够将监测到的数据实时传输到控制中心,需要使用数据传输技术。

常用的数据传输技术包括无线通信、物联网等。

智能大棚控制策划书3篇

智能大棚控制策划书3篇

智能大棚控制策划书3篇篇一智能大棚控制策划书一、项目背景随着农业现代化的发展,智能大棚在农业生产中的应用越来越广泛。

为了提高大棚种植的效率和质量,实现精准化、智能化管理,特制定本智能大棚控制策划书。

二、项目目标1. 实现对大棚内环境参数(温度、湿度、光照等)的实时监测和精准控制。

2. 提高大棚种植的自动化水平,减少人工干预,降低劳动强度。

3. 优化作物生长环境,提高作物产量和品质。

三、系统设计1. 传感器模块:安装温度传感器、湿度传感器、光照传感器等,实时采集大棚内环境数据。

2. 控制模块:根据传感器数据,自动控制通风设备、遮阳设备、灌溉设备等。

3. 数据传输模块:将采集到的数据传输到监控中心,以便远程监控和管理。

4. 监控中心:对大棚内情况进行实时监控和数据分析,制定相应的控制策略。

四、功能实现1. 温度控制:当温度过高或过低时,自动开启或关闭通风设备、加热设备等,保持适宜温度。

2. 湿度控制:通过灌溉设备的控制,调节大棚内湿度。

3. 光照控制:利用遮阳设备调整光照强度,满足作物不同生长阶段的需求。

4. 预警功能:当环境参数超出设定范围时,及时发出警报。

五、实施步骤1. 进行现场勘查,确定大棚布局和设备安装位置。

2. 采购所需的传感器、控制设备等硬件。

3. 安装和调试系统,确保各项功能正常运行。

4. 对相关人员进行培训,使其熟悉系统操作和维护。

六、成本预算主要包括硬件设备采购、安装调试费用、系统维护费用等,具体根据实际情况进行核算。

七、效益评估1. 通过智能化控制,预计可提高作物产量[X]%。

2. 减少人工成本和资源浪费。

3. 提升农产品质量,增加市场竞争力。

八、风险分析与应对1. 设备故障风险:定期维护和检测设备,储备备用件。

2. 数据传输问题:采用稳定的传输方式,确保数据的准确性和及时性。

希望这份策划书能为智能大棚控制项目的顺利开展提供有力的指导!篇二智能大棚控制策划书一、项目背景随着农业现代化的不断发展,智能大棚的应用越来越广泛。

农业智能大棚设计方案

农业智能大棚设计方案

农业智能大棚设计方案1. 项目背景随着我国现代农业发展的需求,利用现代信息技术提升农业生产的自动化、智能化水平已成为发展趋势。

智能大棚作为一种新兴的农业发展模式,通过引入物联网、大数据、云计算等先进技术,实现对大棚内部环境的实时监控与管理,有助于提高作物产量、减少劳动力成本、缩短生长周期等。

2. 设计目标本项目旨在为农业生产提供一种高效、稳定、可靠的人工智能大棚解决方案,实现以下目标:1. 实时监控大棚内部环境,包括温度、湿度、光照、土壤湿度等;2. 自动调节环境参数,如通风、灌溉、灯光等,以达到最佳生长条件;3. 实现远程监控与管理,降低劳动力成本;4. 通过大数据分析,优化种植方案,提高作物产量和品质;5. 降低能耗,提高资源利用效率。

3. 系统架构农业智能大棚系统主要包括以下几个部分:3.1 硬件设施1. 传感器:部署温度、湿度、光照、土壤湿度等传感器,实时采集大棚内部环境数据;2. 控制器:根据预设的参数和算法,自动调节大棚内部环境,如通风、灌溉、灯光等;3. 通信设备:搭建有线或无线通信网络,实现数据传输与远程控制;4. 电源设备:为系统提供稳定电源供应。

3.2 软件平台1. 数据采集与处理:收集传感器数据,进行实时监控与分析;2. 控制策略:根据作物生长需求和环境数据,制定合理的控制策略;3. 远程监控与管理:通过网页或移动端应用,实现对大棚的远程监控与管理;4. 数据分析与优化:对历史数据进行挖掘,为作物种植提供科学依据。

4. 关键技术4.1 环境参数监测技术采用多传感器融合技术,实现对大棚内部环境参数的实时监测,确保数据准确可靠。

4.2 自动控制技术利用PLC、Arduino等控制器,实现对大棚内部环境的精细化管理,提高作物生长速度和品质。

4.3 数据通信技术采用有线或无线通信技术,实现数据传输的稳定、高效、安全。

4.4 数据分析与优化技术运用大数据、机器学习等方法,对历史数据进行分析,不断优化种植方案,提高作物产量和品质。

基于物联网的智能农业大棚监控系统设计

基于物联网的智能农业大棚监控系统设计

基于物联网的智能农业大棚监控系统设计随着科技的发展和人们对食品质量和安全的要求日益增长,智能农业大棚监控系统成为了现代农业的重要组成部分。

物联网技术的应用使得大棚监控系统更加智能化和高效化,为农业生产带来了巨大的改进和便利。

本文将介绍基于物联网的智能农业大棚监控系统的设计。

智能农业大棚监控系统是指通过物联网技术将大棚内的环境和土壤等参数进行实时监测,并通过云平台进行数据分析和管理的系统。

该系统可以帮助农民实时了解大棚内的环境变化,并及时采取相应的措施,以提高农作物的产量和质量。

首先,智能农业大棚监控系统需要部署各种传感器来感知大棚内的环境参数。

例如,温湿度传感器可用来监测大棚内的温度和湿度变化,光照传感器可用来感知大棚内的光照强度,土壤湿度传感器可用来测量土壤湿度等。

这些传感器通过物联网技术与云平台进行连接,将实时的环境数据传输到云端。

其次,智能农业大棚监控系统需要搭建云平台来管理和分析传感器采集的数据。

云平台可以实现数据的存储和分析,并通过数据挖掘等技术提供有价值的决策参考。

例如,根据温湿度和光照等数据,云平台可以智能调节大棚内的温度、湿度和光照强度,以创造适宜的环境条件促进农作物的生长。

同时,云平台还可以通过数据预测和分析,提前预警可能出现的病害和虫害,并提供相应的防治措施。

此外,智能农业大棚监控系统还可以与移动设备进行互联,提供便捷的远程监控和管理功能。

农民可以通过手机或平板电脑随时随地监测大棚内的环境参数和作物生长情况,及时了解大棚的运行状态。

同时,农民还可以通过移动设备远程控制大棚的灯光和温湿度等参数,实现远程自动化管理。

为了满足智能农业大棚监控系统的设计要求,需要考虑以下几个方面:首先,系统需要具备稳定可靠的数据传输和存储能力。

在大棚环境中,数据传输可能受到信号干扰和网络波动的影响,因此需要采用稳定的通信技术和可靠的数据存储模式,确保数据的准确性和完整性。

其次,系统需要具备实时响应和智能决策能力。

基于单片机的农业大棚智能监控网络系统设计

基于单片机的农业大棚智能监控网络系统设计

基于单片机的农业大棚智能监控网络系统设计随着农业现代化的发展,大棚种植已经成为我国农业的重要组成部分。

为了提高大棚种植的生产效率以及产品质量,人们开始引入先进的技术来实现大棚的智能化管理。

本文将讨论基于单片机的农业大棚智能监控网络系统设计,通过单片机技术实现大棚环境监测、自动控制和数据远程传输,以实现对大棚环境的实时监控和精准管理。

一、系统设计概述随着信息技术的不断发展,农业大棚监控系统已经不再局限于传统的人工管理和简单的自动控制,而是向智能化、网络化、自动化方向迈进。

基于单片机的农业大棚智能监控网络系统设计就是要利用单片机技术,结合传感器、执行器和通信技术,构建一个完整的大棚智能监控网络系统,实现对大棚环境的实时监测和精准控制。

二、系统组成1. 硬件组成(1)传感器部分:包括温湿度传感器、光照传感器和土壤湿度传感器等,用于监测大棚内的温度、湿度、光照强度和土壤湿度等环境参数。

(2)执行器部分:包括风扇、加热器、灌溉装置等,用于对大棚内环境进行控制调节,使大棚内的环境参数保持在适宜的范围内。

(3)单片机部分:作为系统的核心控制器,负责采集传感器信息、控制执行器动作,并通过通信模块与上位机进行数据传输。

2. 软件组成(1)嵌入式控制软件:主要负责单片机的程序设计,实现对传感器和执行器的控制和数据处理。

(2)上位机监控软件:用于实时监测大棚环境参数、远程控制大棚内设备,并对数据进行分析和记录。

三、系统工作流程1. 数据采集:系统通过温湿度传感器、光照传感器和土壤湿度传感器等传感器实时监测大棚内的环境参数,并将采集到的数据传输给单片机处理。

2. 数据处理:单片机对传感器采集到的环境参数进行处理和分析,根据预设的阈值和控制策略,判断大棚内的环境是否需要调节。

3. 自动控制:如果发现大棚内的环境参数超出了预设的范围,单片机将控制执行器动作,调节大棚内的环境参数,使其恢复到适宜的范围内。

4. 数据传输:单片机通过通信模块将实时监测的环境数据和控制结果传输给上位机,实现对大棚环境的远程监控和控制。

温室大棚环境监控系统方案

温室大棚环境监控系统方案

温室大棚环境监控系统一、概述随着国民经济旳迅速发展,现代农业得到了长足旳进步,温室工程已成为高效农业旳一种重要构成部分。

计算机自动控制旳智能温室自问世以来,已成为现代农业发展旳重要手段和措施。

它旳功能在于以先进旳技术和现代化设施,人为控制作物生长旳环境条件,使作物生长不受自然气候旳影响,做到常年工厂化,进行高效率,高产值和高效益旳生产。

二、功能论述温室环境涉及非常广泛旳内容,但一般所说旳温室环境重要指空气与土壤旳温湿度、光照、CO2浓度等。

计算机通过多种传感器接受各类环境因素信息,通过逻辑运算和判断控制相应温室设备运作以调节温室环境。

输出和打印设备可协助种植者作全面细致旳数据分析,保存历史数据。

本系统重要具有如下几部分功能:2.1综合环境控制采用计算机实现环境参数比较分析,四季持续工况调控系统。

比例调节环境温度、湿度与通风。

CO2 发生装置按需比例调节环境CO2浓度,夏季室外屋顶喷淋,在保证室内光照强度旳前提下,组合调节环境温度与通风,达到强制减少环境温度旳效果。

通过计算机对温室各电动执行器进行整体调节,自动调控到作物生长所需求旳温、湿、光、水、气等条件,此外通过臭氧消毒净化器对温室进行消毒。

2.2肥水灌溉控制采用计算机肥水灌溉运筹系统。

根据作物区旳需要,对水培区旳营养液成分,PH和EC 值进行综合调控。

对基培和土培区重要是根据作物生产需要,设定基质、土壤旳水势值,自动调节滴灌、喷灌系统旳灌溉时间和次数。

2.3紧急状态解决采用计算机实测环境参数、状态极限值反馈报警保护系统。

根据作物旳各项参数设定温室环境旳极限值和作物生长环境参数极限值报警保护系统,提高了整个系统安全性。

2.4信息解决采用计算机集散控制信息管理系统。

信息解决由中心控制计算机完毕。

主机通过局部数字通讯网络与现场控制机相连,实现远动双向控制及全系统集中数据解决。

其功能涉及运营实时参数执行器模拟状态显示,历史数据存储、检索,数据平均值报表、曲线显示与打印。

大棚监控安装工程(3篇)

大棚监控安装工程(3篇)

第1篇一、前言随着我国农业现代化进程的加快,设施农业得到了迅速发展。

为了提高农业生产效率,确保作物生长环境稳定,大棚监控系统的应用越来越广泛。

本文将详细阐述大棚监控安装工程的相关内容,包括工程背景、系统设计、施工方案、调试与验收等。

二、工程背景1. 设施农业发展迅速:近年来,我国设施农业发展迅速,大棚种植面积逐年扩大,对农业生产的自动化、智能化需求日益增加。

2. 传统管理模式存在弊端:传统的大棚管理模式主要依靠人工巡查,存在效率低、成本高、信息不准确等问题。

3. 监控系统需求:为了提高农业生产效率,降低生产成本,确保作物生长环境稳定,大棚监控系统应运而生。

三、系统设计1. 系统架构:大棚监控系统采用分层架构,包括感知层、传输层、平台层和应用层。

(1)感知层:通过传感器采集大棚内的环境参数,如温度、湿度、光照、土壤水分等。

(2)传输层:将感知层采集到的数据传输至平台层,可采用有线或无线传输方式。

(3)平台层:对传输层的数据进行处理、存储和分析,为应用层提供数据支持。

(4)应用层:通过电脑、手机等终端设备展示监控数据,实现对大棚环境的远程监控和管理。

2. 系统功能:(1)实时监控:实时显示大棚内环境参数,便于管理人员及时了解作物生长环境。

(2)历史数据查询:查询历史数据,分析作物生长趋势,为农业生产提供依据。

(3)异常报警:当环境参数超过预设阈值时,系统自动报警,提醒管理人员及时处理。

(4)远程控制:通过平台层对大棚内的设备进行远程控制,如卷帘、喷淋等。

(5)数据统计与分析:对采集到的数据进行分析,为农业生产提供决策支持。

四、施工方案1. 施工准备:确定监控点位置,购买所需设备,如摄像头、传感器、传输设备等。

2. 设备安装:(1)摄像头安装:根据监控需求,选择合适的位置安装摄像头,确保覆盖整个大棚。

(2)传感器安装:在合适的位置安装传感器,确保采集到准确的环境参数。

(3)传输设备安装:根据传输方式,安装有线或无线传输设备。

大棚温室环境监控系统的设计

大棚温室环境监控系统的设计
制 ,强 干扰 场 合 。分别 采 用相 应 传 感 器 对 温 度 、湿 度 、光 照
圃 圆 圆
呻 圆 - . 圆 一 - 圆 圆
一 .
S 41 AD TC5 0 单片机
— T T T

收 稿 日期 :2 0 — 1 — 1 09 0 5
基金项 目:2 0 湖 南省教育厅 “ 08 研究性学 习与创新性 实验”资助项 目 ( 湘教通 [0 82 9号 2 4 。 2 0 ]6 6 )
和 C 2浓度进行检测 ,其方框图如图 1 O 所示。
1 2 系统 主要 硬 件设 计 与 实现 .
1 . 温度检测与控制模块 .1 2
温 度 是 影 响作 物 生长 发 育 最 重 要 的 环 境 因子 之 一 , 影 它
响作物体 内的一 切生理变化 。本系统根据作物生长温度条 件, 选用了美国模拟器件 公司生产的单片集成两端感温 电流 源 A 9 作温 度传感器 ,其测量精度为 03 , D5 0 .℃ 测量范围为

适应性 、季节性及 自然 灾害的影 响比较大 , 在纯 自然 的条件 下, 大部分 时间不能进行正常农业生产 , 造成 人力、物力 的 大量浪费, 行温室栽培 后就可 以极大 的减弱对作物 生长不 进 利的环境因素来促进作物 生长 ,有利于缓解季节矛盾 , 提高 作物产量。基于 此,本设计将计算机技术 、传感器技术 、控
光照和c O浓度 等信 号进 行 了监 测,一旦 某些参数值超过设定 的上 、下限值 ,微控制 器将发 出报 警,并提 示对相应参量进行 人 工或 自动调节控制。通过在永 州苗圃农场对 4号温 室实地检测 (此温 室种植黄瓜 ) ,该装置对衣作物产量的提 高起到 了积
极作用 。

《2024年温室大棚分布式监控系统设计与实现》范文

《2024年温室大棚分布式监控系统设计与实现》范文

《温室大棚分布式监控系统设计与实现》篇一一、引言随着现代农业技术的不断发展,温室大棚种植已成为提高农作物产量和品质的重要手段。

然而,传统的大棚管理方式存在着效率低下、人力成本高、无法实时监控等问题。

为了解决这些问题,本文提出了一种温室大棚分布式监控系统的设计与实现方案。

该系统通过分布式传感器网络、数据传输技术和云计算平台,实现对温室大棚环境的实时监控、智能控制和数据分析,提高了大棚管理的效率和农作物的产量与品质。

二、系统设计1. 硬件设计温室大棚分布式监控系统的硬件部分主要包括传感器节点、数据传输设备和云计算平台。

传感器节点负责采集温室大棚内的环境参数,如温度、湿度、光照强度等。

数据传输设备负责将传感器节点的数据传输到云计算平台。

云计算平台则负责存储、处理和分析这些数据,为管理者提供决策支持。

在传感器节点的选择上,我们采用了低功耗、高精度的传感器,以便长时间工作并获取准确的环境参数。

数据传输设备采用无线通信技术,实现了传感器节点与云计算平台的无线连接,方便了布线和维护。

2. 软件设计软件部分包括分布式传感器网络软件、数据传输协议软件和云计算平台软件。

分布式传感器网络软件负责协调各传感器节点的工作,确保数据的实时采集和传输。

数据传输协议软件负责定义传感器节点与云计算平台之间的通信协议,确保数据的可靠传输。

云计算平台软件则负责数据的存储、处理和分析,以及为用户提供友好的界面和操作接口。

三、系统实现1. 传感器网络部署首先,根据温室大棚的实际情况,选择合适的传感器节点并部署在关键位置。

这些位置应能够反映温室大棚内的环境变化情况。

然后,通过无线通信技术将传感器节点与云计算平台连接起来,形成分布式传感器网络。

2. 数据传输与处理传感器节点实时采集环境参数,并通过无线通信技术将数据传输到云计算平台。

云计算平台对接收到的数据进行预处理和存储,然后进行进一步的分析和挖掘。

这些分析结果可以通过界面展示给用户,为用户提供决策支持。

《2024年智慧农业大棚监控系统的设计与实现》范文

《2024年智慧农业大棚监控系统的设计与实现》范文

《智慧农业大棚监控系统的设计与实现》篇一一、引言随着科技的飞速发展,智慧农业逐渐成为农业现代化的重要方向。

智慧农业大棚监控系统作为智慧农业的重要组成部分,能够实现对大棚内环境参数的实时监测、控制与管理,提高农作物的产量与品质。

本文将详细介绍智慧农业大棚监控系统的设计与实现过程。

二、系统设计1. 需求分析在系统设计阶段,首先需要进行需求分析。

需求分析主要包括对大棚环境参数的监测需求、对大棚内设备的控制需求以及对系统操作界面的需求等。

根据实际需求,确定系统需要监测的环境参数包括温度、湿度、光照强度等,需要控制的设备包括灌溉系统、通风系统等。

2. 系统架构设计根据需求分析结果,设计系统架构。

智慧农业大棚监控系统采用分层架构设计,包括感知层、传输层、控制层和应用层。

感知层负责采集大棚内环境参数和设备状态信息;传输层负责将感知层采集的数据传输到控制层;控制层负责根据应用层的指令对设备进行控制;应用层提供用户界面,方便用户进行操作和管理。

3. 硬件设计硬件设计主要包括传感器选择、数据采集器选择、通信模块选择等。

传感器用于采集大棚内环境参数和设备状态信息,数据采集器用于将传感器采集的数据进行整合和预处理,通信模块用于将数据传输到控制层。

此外,还需要设计电源模块、控制模块等硬件设备,以保证系统的稳定运行。

4. 软件设计软件设计主要包括操作系统选择、数据处理与分析软件选择、用户界面设计等。

操作系统用于支撑整个系统的运行,数据处理与分析软件用于对采集的数据进行处理和分析,用户界面用于方便用户进行操作和管理。

此外,还需要设计相应的算法,以实现对大棚内环境的智能调控。

三、系统实现1. 硬件实现根据硬件设计,制作相应的硬件设备。

传感器应选择精度高、稳定性好的产品,数据采集器应具备高性价比和易用性,通信模块应支持多种通信协议,以保证系统的兼容性和可扩展性。

同时,需要制作电源模块和控制模块等设备,以确保整个系统的稳定运行。

2. 软件实现在软件实现阶段,首先需要搭建操作系统平台,然后开发数据处理与分析软件和用户界面。

《2024年智慧农业大棚监控系统的设计与实现》范文

《2024年智慧农业大棚监控系统的设计与实现》范文

《智慧农业大棚监控系统的设计与实现》篇一一、引言随着现代农业科技的飞速发展,智慧农业成为了农业生产的新趋势。

其中,智慧农业大棚监控系统以其智能化、精准化的特点,有效提升了农作物的产量与质量。

本文将详细阐述智慧农业大棚监控系统的设计与实现过程,以期为相关领域的研究与应用提供参考。

二、系统设计目标智慧农业大棚监控系统的设计目标主要包括以下几个方面:1. 实现大棚内环境参数的实时监测,如温度、湿度、光照等。

2. 对农作物的生长状态进行实时监控,以便及时发现异常情况。

3. 实现对大棚内设备的智能控制,如灌溉、通风、加热等。

4. 便于用户远程管理,实时掌握大棚内的情况。

三、系统设计原则在系统设计过程中,我们遵循了以下原则:1. 实用性:系统应具备操作简便、功能实用的特点,满足农业生产的需求。

2. 可靠性:系统应具备较高的稳定性与可靠性,确保数据准确无误。

3. 智能化:通过引入先进的物联网技术,实现系统的智能化管理。

4. 可扩展性:系统应具备良好的可扩展性,以便未来功能的增加与升级。

四、系统架构设计智慧农业大棚监控系统采用物联网技术,主要包括以下几个部分:1. 感知层:通过传感器实时监测大棚内的环境参数,如温度、湿度、光照等。

2. 网络层:将感知层采集的数据通过无线传输网络发送至服务器端。

3. 应用层:服务器端对接收到的数据进行处理与分析,将结果展示在用户界面上,同时根据用户操作实现对大棚内设备的智能控制。

五、系统实现1. 硬件设备选型与布设:根据系统设计目标,选择合适的传感器、执行器等硬件设备,并合理布设在大棚内。

2. 软件系统开发:包括感知层、网络层和应用层的软件开发。

感知层通过传感器采集数据,网络层将数据传输至服务器端,应用层对数据进行处理与分析,并展示在用户界面上。

3. 系统集成与调试:将硬件设备与软件系统进行集成,进行系统调试,确保系统的正常运行。

4. 用户界面设计:设计直观、易操作的用户界面,方便用户实时掌握大棚内的情况。

基于物联网的智能农业大棚监控与控制系统设计与实现

基于物联网的智能农业大棚监控与控制系统设计与实现

基于物联网的智能农业大棚监控与控制系统设计与实现随着科技的不断发展和人们对高效农业的需求增加,物联网技术在农业领域中得到了广泛应用。

基于物联网的智能农业大棚监控与控制系统的设计与实现,能够实时监测和控制大棚环境,提高农作物的产量和质量。

本文将详细介绍智能农业大棚监控与控制系统的设计原理和实施方案。

一、设计原理1. 传感器技术:智能农业大棚监控与控制系统通过使用各种传感器,如光照传感器、土壤湿度传感器、温度传感器等,实时监测大棚内的环境参数。

这些传感器可以连续地收集数据,并将其发送给控制系统。

2. 数据采集与处理:控制系统负责从传感器接收数据,并对其进行处理和分析。

通过对数据进行分析和对比,系统可以确定是否需要采取相应的措施来优化大棚环境。

例如,如果温度过高,系统可以自动启动降温设备,以保持最佳生长温度。

3. 远程监控与控制:智能农业大棚监控与控制系统能够将监测到的数据上传到云平台,农户可以通过手机或电脑远程监控大棚的环境状况。

此外,系统也支持远程控制,农户可以通过应用程序对大棚的设备进行远程操作,如灌溉、通风等。

二、系统实施方案1. 硬件设备选型:为了实现智能农业大棚监控与控制系统,需要选择合适的硬件设备。

根据不同的环境参数,选择相应的传感器,如温度传感器、湿度传感器、二氧化碳传感器等。

此外,必须保证这些传感器的可靠性和稳定性,以确保数据的准确性。

2. 设备连接与通讯:为了实现数据的采集和控制,需要将传感器和控制设备连接到一个无线网络中。

可以使用Wi-Fi或蓝牙等无线通信技术,使得传感器和控制设备可以互相通信。

大棚内的设备应该能够稳定地连接到网络,并且具备一定的数据传输速率。

3. 数据处理和分析:在控制系统中,需要根据传感器采集到的数据进行处理和分析。

可以使用相应的软件来对数据进行处理和存储,以便后续的决策和分析。

此外,系统还应具备实时监测功能,及时报警和通知农户,以便他们可以及时采取相应的措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

农业大棚环境监控系统方案一简介 (2)二农业大棚环境监控概述 (2)三背景与需求 (2)四系统的组成 (3)1)总体架构 (3)(2)系统有两种典型配置结构 (3)(3)传感信息采集 (4)五大棚监测点现场分布 (4)六系统的软件 (5)七常用的传感器 (5)1、空气温湿度传感器 (5)2、土壤温度传感器 (6)3、土壤水分传感器 (6)4、CO2含量传感器 (6)5、NH3含量传感器 (7)6、光照度传感器 (7)2014.9一简介近年来,温室大棚种植为提高人们的生活水平带来极大的便利,得到了迅速浓度等环境因子对作物的推广和应用。

种植环境中的温度、湿度、光照度、CO2的生产有很大的影响。

传统的人工控制方式难以达到科学合理种植的要求,目前国内可以实现上述环境因子自动监控的系统还不多见,而引进国外具有多功能的大型连栋温室控制系统价格昂贵,不适合国情。

针对目前大棚发展的趋势,提出了一种大棚智能监控系统的设计。

根据大棚智能监控的特殊性,需要传输大棚现场参数给管理者,并把管理者的命令下发到现场执行设备,同时又要使上级部门可随时通过互连网或者手机信息了解区域大棚的实时状况。

基于GPRS的智能大棚监控系统使这些成为可能。

二农业大棚环境监控概述农业温室大棚监控系统通过实时采集农业大棚内空气温度、湿度、光照、土壤温度、土壤水分等环境参数,根据农作物生长需要进行实时智能决策,并自动开启或者关闭指定的环境调节设备。

通过该系统的部署实施,可以为农业生态信息自动监测、对设施进行自动控制和智能化管理提供科学依据和有效手段。

开拓者kitozer系列的农业温室大棚监控及智能控制解决方案是通过可在大棚内灵活部署的各类无线传感器和网络传输设备,对农作物温室内的温度,湿度、光照、土壤温度、土壤含水量、CO2浓度等与农作物生长密切相关环境参数进行实时采集,在数据服务器上对实时监测数据进行存储和智能分析与决策,并自动开启或者关闭指定设备(如远程控制浇灌、开关卷帘等)。

三背景与需求在每个智能农业大棚内部署无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等,分别用来监测大棚内空气温湿度、土壤温度、土壤水分、光照度、CO2浓度等环境参数。

为了方便部署和调整位置,所有传感器均应采用电池供电、无线数据传输。

大棚内仅需在少量固定位置提供交流220V市电(如:风机、水泵、加热器、电动卷帘)。

每个农业大棚园区部署1套采集传输设备(包含路由节点、长距离无线网关节点、Wi-Fi无线网关等),用来覆盖整个园区的所有农业大棚,传输园区内各农业大棚的传感器数据、设备控制指令数据等到Internet上与平台服务器交互。

在每个需要智能控制功能的大棚内安装智能控制设备(包含一体化控制器、扩展控制配电箱、电磁阀、电源转换适配设备等),用来接受控制指令、响应控制执行设备。

实现对大棚内的电动卷帘、智能喷水、智能通风等行为的实现。

四系统的组成1)总体架构系统的总体架构分为现场数据采集、网络传输、智能数据处理平台和远程控制四部分。

(2)系统有两种典型配置结构■两层网络,系统由两类点构成:无线传感器节点,包括无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等;无线网关节点,包括Wi-Fi无线网关或GPRS无线网关。

该结构适用于园区已经有Wi-Fi局域网覆盖,或是可以采用GPRS直接上传数据的场景。

在此结构中,只需要在合适的区域部署无线网关,即可实现传感器数据的采集和上传。

■三层网络,系统由三类点构成:无线传感器节点,包括无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等;无线网关节点;数据路由器。

该结构适用于园区没有Wi-Fi局域网覆盖,也不准备采用GPRS直接上传数据的场景。

在此结构中,需要部署数据路由节点和无线网关,无线网关与数据路由节点之间以长距离无线通信方式进行数据的交换,在区域较大,节点间通信距离不足时,无线网关还可以相互之间进行自动数据中继,扩大监控网络的覆盖范围。

(3)传感信息采集在监控网络中,无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等传感器均支持低功耗运行,可使用廉价的干电池供电长期工作。

同时,所有的无线传感器节点均运行低功耗多跳自组网协议,可为其它节点提供数据的自动中继转发,以扩大监测网络的覆盖范围,增加部署灵活性。

低功耗多跳自组网协议是在IEEE802.15.4协议的基础上建立的,无线通信的频率选择可以是2.4GHz或780MHz。

传感器数据通过协议传送到无线网关节点上,无线网关节点再经过数据路由节点或直接将传感器数据发送到数据平台的服务器上。

用户可以通过有线网络/无线网络访问数据平台,实时监测大棚现场的传感器参数,控制大棚现场的相关设备。

五大棚监测点现场分布大棚现场主要负责大棚内部环境参数的采集和控制设备的执行,采集的数据主要包括农业生产所需的光照、空气温度、空气湿度、土壤温度、土壤水分、CO2浓度等参数。

传感器的数据上传采用低功耗无线传输模式,传感器数据通过无线发送模块,采用标准协议将数据无线传送到无线网关节点上,用户终端和一体化控制器间传送的控制指令也通过无线发送模块传送到中心节点上,省却了通讯线缆的部署工作。

中心节点再经过边缘网关将传感器数据、控制指令封装并发送到位于internet上的系统业务平台。

用户可以通过有线网络/无线网络访问系统业务平台,实时监测大棚现场的传感器参数,控制大棚现场的相关设备。

低功耗无线传输模式使得大棚现场内各传感器部署灵活、扩展方便。

控制系统主要由一体化控制器、执行设备和相关线路组成,通过一体化控制器可以自由控制各种农业生产执行设备,包括喷水系统和空气调节系统等,喷水系统可支持喷淋、滴灌等多种设备,空气调节系统可支持卷帘、风机等设备。

采集传输部分主要将设备采集到的数值传送到服务器上,现有大棚设备支持Wi-Fi、GPRS、长距离无线传输等多种数据传输方式,在传输协议上支持IPv4联网协议。

业务平台负责对用户提供智能大棚的所有功能展示,主要功能包括环境数据监测、数据空间/时间分布、历史数据、超阈值告警和远程控制五个方面。

用户还可以根据需要添加视频设备实现远程视频监控功能。

数据空间/时间分布将系统采集到的数值通过直观的形式向用户展示时间分布状况(折线图)和空间分布状况(场图)、历史数据可以向用户提供历史一段时间的数值展示;超阈值告警则允许用户制定自定义的数据范围,并将超出范围的情况反映给用户。

六系统的软件系统平台软件共由以下部分组成:(1)数据收集、存储服务软件完成传感器数据的获取、解析、分类,最后按预设的格式存入数据库。

(2)展示、决策软件图形化界面,从数据库中读取相应数据,以表格和曲线的方式将传感器数据显示出来,支持多种查询显示方式。

可自定义决策系统控制对象及决策算法,与对象控制软件互联实现自动化控制。

(3)远程控制软件完成现场控制对象的操作,图形化操作界面,支持重定义远端开关名称等信息,可与决策软件进行对接,实现自动化控制。

七常用的传感器1、空气温湿度传感器用于检测设施农业的空气环境温湿度,一般使用的有效温度范围在0~50℃,有效湿度范围在30~90%。

大部分安装在温室、大棚或畜禽舍中空气流通较好的遮阳处,一般根据温室、大棚或畜禽舍长度安装1~4个不等,以避免空气流通差导致的局部小气候效应。

2、土壤温度传感器用于检测土壤温度,一般使用的有效温度范围在10~40℃(土壤热容积较大,温度变化不很明显),安装在作物根部土壤中,以测量作物的生长、发育的土壤温度及浇水后土壤温度变动情况。

根据温室或大棚长度安装2~4个不等,安装时根据不同作物根系深度确定埋土深度。

3、土壤水分传感器用于检测土壤中水分含量,便于及时和适量浇灌。

目前有两种表示方式,其一为容积含水量,即V/V%,其二为质量含水量,即M/M%,大部分产品以容积含水量表示,一般有效范围在10~70%。

因不同土质能容纳水量不同,故不同土质在浇灌等量水后,所显示的容积含水量会有不同。

根据温室或大棚长度安装2~4个不等,安装时根据不同作物根系深度确定埋土深度。

4、CO2含量传感器用于检测环境中CO2含量,便于决定是否增施气肥或需通风换气。

一般以ppm为单位,有效范围在100~1000ppm之间。

可以用在温室、大棚中,也可以用在密封/半密封的畜禽舍中。

温室、大鹏中主要检测有光照情况下CO2含量是否低于作物光和作用的最佳浓度,在畜禽舍中主要检测密封环境下CO2浓度是否超出影响畜禽能生长发育的最大浓度,以便于及时通风换气。

独栋温室、大棚或畜禽舍安装1个即可。

5、NH3含量传感器用于检测畜禽舍环境中NH3的含量,以决定是否需要通风换气和清除粪便。

一般以ppm为单位,有效范围在0~100ppm之间。

养鸡场应用居多,尤其是蛋鸡场,因为鸡的消化系统不能完全消化饲料,大量蛋白质通过粪便排出后,经过复杂的化学反应转变为NH3,而NH3又是影响鸡蛋产量的关键因素,一旦NH3浓度超过一定值,蛋鸡产蛋率明显下降,甚至不产蛋,需要数周后才能恢复。

一般安装1个即可。

6、光照度传感器用于检测作物生长环境的光照强度,以决定是否需要遮阳或补光。

单位lux(勒克司),有效范围在200~200000Lux。

一般安装在温室、大棚中,用来检测作物生长所需要的光照强度是否满足最基本需要或是否达到作物的最佳生长状态,如与CO2传感器联合使用,可以为何时增施气肥提供参考。

安装时考虑向阳并且避免被遮挡。

一般安装1个即可。

系统实现功能1:可在线实时24小时连续的采集和记录监测点位的温度、湿度、风速、二氧化碳、光照、空气洁净度、供电电压电流等各项参数情况,以数字、图形和图像等多种方式进行实时显示和记录存储监测信息,监测点位可扩充多达上千个点。

2:可设定各监控点位的温湿度报警限值,当出现被监控点位数据异常时可自动发出报警信号,报警方式包括:现场多媒体声光报警、网络客户端报警、电话语音报警、手机短信息报警等。

上传报警信息并进行本地及远程监测,系统可在不同的时刻通知不同的值班人员;3:数据集中器提供USB接口,在没有配监控电脑或监控电脑损坏、瘫痪,可随时用U盘导出将数据转至其它电脑。

4:数据集中器端提供具有信号输出协议的端口,可接通信设备(GPRS IP MODEM等)进行无线传输。

5:温湿度监控软件采用标准windows 98/2000/XP全中文图形界面,实时显示、记录各监测点的温湿度值和曲线变化,统计温湿度数据的历史数据、最大值、最小值及平均值,累积数据,报警画面。

6:监控主机端利用监控软件可随时打印每时刻的温湿度数据及运行报告。

相关文档
最新文档