常见有机化合物的裂解方式和规律
断裂机理-不同类型化合物谱图-2016年

脱离掉的中性小分子及所产生的重排离子均符合氮规 则。 从离子的质量数的奇、偶性可区分经简单断裂所产生 的碎片离子和脱离中性小分子所产生的重排离子。
重排离子质量数为偶数。
麦氏重排条件:
· 含有C=O, C=N,C=S及碳碳双键 · 与双键相连的链上有碳,并在 碳有H原子(氢) · 六圆环过度,H 转移到杂原子上,同时 键发生断裂,
④ 腙:
R H H C N N(CH3)2 R C CH2 H N m/z =86 N(CH3)2
⑤ 环氧化合物:
H O HO
m/z = 58
⑥ 不饱和醇:
C2H5 CH HC H O H2 C2H5 C C CH2 H m/z = 70
⑦ 羧酸:
R CH H O OH OH m/z = 60 OH
(2) 环状化合物的裂解
逆Diels-Alder反应(Retro-Diels-Alder, RDA) 当分子中存在含一个 键的六员环时,可发生RAD反应。
+ +
e
.
+
.
+
.
m/z 54
说明:该重排正好是Diels-Alder反应的逆反应; 含原双键的部分带正电荷的可能性大些; 当环上有取代基时,正电荷也有可能在烯的碎片上
不饱和烃类化合物
R1 HC CH CH2 R2 R1 CH CH CH2 -e R1 R1 CH CH CH2
- R2
R2
CH CH
CH2
从热力学角度出发,在分子离子断裂过程中,能够生成 稳定碎片离子的过程总是优先进行,观测到的碎片离子 丰度也高。
烷基苯化合物
CH2
R
CH2 -e -R
质谱仪裂解方式

质谱仪裂解方式
质谱仪裂解方式是质谱仪技术中的一项重要技术标准,主要针对分
子化合物进行分析。
其分析方式基于激光照射样品分子,使分子碎裂,生成的碎片离子通过电场加速到探测器中,采用质谱谱图进行检测分析。
质谱仪裂解方式主要包括以下几种类型:
1. 电子轰击(EI)裂解法:电子轰击是质谱仪常见的裂解方式之一,
针对易挥发性有机化合物,该方式要求样品要能够承受高能电子轰击,然后将其离子化。
电子轰击方式具有良好的重现性和灵敏度,对于小
分子杂质具有较高的识别能力。
2. 化学电离(CI)裂解法:化学电离是一种标准的质谱仪裂解方式,
适用于气态或液态中分子的化学反应。
样品被注入到质谱仪中,与反
应气体碰撞并电离,产生离子质谱谱图,可以用于大分子和极性化合
物的鉴定。
3. 电喷雾(ESI)裂解法:电喷雾是质谱仪常见的裂解方式之一,适合
处理高分子量和极性化合物,通过喷雾将样品离子化,进行荧光检测
分析。
该方式具有高灵敏度、高分辨率、较快的扫描速率,并且能够
检测到比较大的化合物。
4. 坍缩区域电离(CID)裂解法:坍缩区域电离是通过使用二级质谱仪
对分子离子进行分析,它可以分离出复杂的分子结构,提高它们在质
谱谱图中的可读性和可识别性,它具有灵敏度和分离力高的优点,适
用于小分子和大分子杂质的检测。
质谱仪裂解方式是质谱研究不可或缺的一部分,它的发展促进了化学
分析领域的进步,为大多数领域的化学家提供了重要的测量手段。
随
着新技术的不断涌现,质谱仪裂解方式的研究必将不断提高,为我们
展示更加精准的化学分析结果,为化学领域的未来发展注入强大动力。
有机质谱中的裂解反应

4. 羰基化合物的裂解
自由基引发的均裂及正电荷诱导的异裂。 自由基引发的均裂及正电荷诱导的异裂。
5. 逆 Diels-Alder 反应( retro- Diels-Alder ) 反应(
6. 氢的重排反应
1) Mclafferty 重排 )
2)自由基引发或正电荷诱导,经过四、五、六元环过渡氢的重排 )自由基引发或正电荷诱导,经过四、
正癸烷
100 % O F BASE PEAK 90 80
m/z=43 C3 C4 m/z=57
n-Hexadecane
70 60 50 40 m/z=29 C2 30 20 10 m/z=85 C6 99 169 183 197 C7 113 127 141 155 C8 C C C1 1 C1 2 C1 3 C1 4 10 9 C5 m/z=71
异裂
半异裂: 半异裂: X
Y
X+ . Y
X+
+
.Y
简单开裂从裂解机制可分为以下主要三种: 简单开裂从裂解机制可分为以下主要三种: (1) α-裂解 ) 裂解 由自由基引发的、由自由基重新组成新键而在α 由自由基引发的、由自由基重新组成新键而在α位导致碎裂的过程称为α 裂解 位导致碎裂的过程称为α-裂解。 碎裂的过程称为 裂解。
各类有机化合物的质谱
1. 烷烃
直链烷烃: )显示弱的分子离子峰。 直链烷烃:1)显示弱的分子离子峰。 2)由一系列峰簇组成,峰簇之间差14个单位。 )由一系列峰簇组成,峰簇之间差 个单位 个单位。 (29、43、57、71、85、99…) 、 、 、 、 、 ) 3)各峰簇的顶端形成一平滑曲线,最高点在C3或C4。 )各峰簇的顶端形成一平滑曲线,最高点在 4)比 M+. 峰质量数低的下一个峰簇顶点是 M-29。 ) - 。 而有甲基分枝的烷烃将有 M-15,这是直链烷烃 - , 与带有甲基分枝的烷烃相区别的重要标志。 与带有甲基分枝的烷烃相区别的重要标志。
质谱裂解机理中的特征裂解方式

质谱裂解机理中的特征裂解方式有机质谱中的裂解是极其复杂的,但是通过对其质谱裂解方式和机理的探讨研究,我们可以发现有一些特征结构裂解方式在有机质谱的裂解中是普遍存在的,是世界上的大量质谱学家通过对大量的有机质谱裂解方式进行观察、研究后的概括性总结。
所以其具有很重要的参考价值和应用价值,所以在有机质谱解析过程中,必须予以遵循,如此方能得到合理的质谱裂解方式和解析结果。
通过概括总结我们发现有机质谱中大部分化合物具有以下几种特征裂解方式:α裂解、苄基裂解、烯丙基裂解、麦氏重排裂解、DRA 裂解(逆狄尔斯阿尔德反应),几种特征裂解方式的强弱顺序如下:苄基裂解>α裂解、i 裂解>麦氏重排裂解、DRA 裂解>烯丙基裂解当然这种顺序不是一成不变的,随着化合物的结构发生改变,这些特征裂解方式的顺序有可能会发生改变,有机化合物质谱裂解大致可以分为两类α裂解(均裂)、β裂解,我们上面所讲的苄基裂解、烯丙基裂解、麦氏重排裂解、DRA 裂解都属于β裂解。
下面我们对几种特征裂解方式做以说明。
1、特征裂解方式一、α裂解α裂解是指凡具有C-X 单键基团和C=X 双键基团(其中X=C 、O 、S 、Cl 等)的有机分子,与该基团原子相连接的单键、称之为α键,在电子轰击条件下,该键很容易断裂因而称之为α断裂。
断键时成键的两个原子各自收回一个电子,这是由游离基中心引发的反应,原动力来自游离基的电子强烈配对倾向,所以α断裂属于均裂。
其裂解的机理及通式如下: I 饱和中心R 2C YR +H 2CCH2+ II 不饱和杂原子R RCY +几类化合物的α裂解 (1)H 3CCH 2OH 3H 2COH + (2)H 3CH 2C H 2CCH 3H 2COH 2CCH 3+3(3)CH 3OαO+H 2C CH 3(4)H NOCH 3O αH NO+OCH 3引发α断裂的倾向是由游离基中心给电子的能力决定的,一般来讲N>S 、O 、π、烷基>Cl 、Br>H ,同时α断裂遵循最大烷基游离基丢失的原则。
第4章 重要有机物的质谱图及裂解规律

.
举例
以丁苯的各种裂解为例,说明苯环化合物断裂规律及其质谱图的特征:
CH2 α C3H7
C4H9
m/z 91 扩 环
m/z 134
H
CH3 CH
H2C C H2
m/z 134
CH3CH CH2 H2C m/z 92
C4H9
m/z 91
CH CH
m/z 65
CH CH
C3H3 m/z 39
m/z 77 CH CH
第四章 质谱分析
质谱图与结构解析
(有机化合物的裂解规律)
.
一、饱和烷烃的质谱图
(1)直链烷烃的质谱特征
① 直链烷烃分子离子峰强度不高,强度随碳链增长而降低,通 常碳数<40的烷烃分子离子峰(M+. )尚可观察到。
② 有相差14个质量数的一系列奇质量数的峰(CnH2n+1 ),即有质 荷比m/z=29、43、57、71、85、99……一系列篱笆离子的峰, m/z>57后强度逐渐减弱。直链烷烃篱笆离子的峰顶联结起来 成为一个圆滑的抛物线,在分子离子峰处略有抬高。支链烷 烃无此特征。
27 41 55 69
③单烯的σ-断裂得到CnH2n-1 的峰即m/z27、41、55、69、 83……即27+14n一系列的峰。
.
.
④环烯烃容易发生反狄-阿裂解
┐ RDA
HO
┐ +
OH
⑤烯烃含Cγ和Hγ 发生麦氏重排形成偶质量数的CnH2n正离
子的峰
H3C H
CH CH2┐
H2C
CH
CH2
m/z 84
m/z 106
m/z 105
m/z29- H2 =27 , m* =25.14 m/z43- H2 =41 , m* =39.09
有机质谱裂解机理中的特征裂解方式

质谱裂解机理中的特征裂解方式有机质谱中的裂解是极其复杂的,但是通过对其质谱裂解方式和机理的探讨研究,我们可以发现有一些特征结构裂解方式在有机质谱的裂解中是普遍存在的,是世界上的大量质谱学家通过对大量的有机质谱裂解方式进行观察、研究后的概括性总结。
所以其具有很重要的参考价值和应用价值,所以在有机质谱解析过程中,必须予以遵循,如此方能得到合理的质谱裂解方式和解析结果。
通过概括总结我们发现有机质谱中大部分化合物具有以下几种特征裂解方式:α裂解、苄基裂解、烯丙基裂解、麦氏重排裂解、DRA 裂解(逆狄尔斯阿尔德反应),几种特征裂解方式的强弱顺序如下:苄基裂解>α裂解、i 裂解>麦氏重排裂解、DRA 裂解>烯丙基裂解当然这种顺序不是一成不变的,随着化合物的结构发生改变,这些特征裂解方式的顺序有可能会发生改变,有机化合物质谱裂解大致可以分为两类α裂解(均裂)、β裂解,我们上面所讲的苄基裂解、烯丙基裂解、麦氏重排裂解、DRA 裂解都属于β裂解。
下面我们对几种特征裂解方式做以说明。
1、特征裂解方式一、α裂解α裂解是指凡具有C-X 单键基团和C=X 双键基团(其中X=C 、O 、S 、Cl 等)的有机分子,与该基团原子相连接的单键、称之为α键,在电子轰击条件下,该键很容易断裂因而称之为α断裂。
断键时成键的两个原子各自收回一个电子,这是由游离基中心引发的反应,原动力来自游离基的电子强烈配对倾向,所以α断裂属于均裂。
其裂解的机理及通式如下: I 饱和中心R 2C YR +H 2CCH2+ II 不饱和杂原子R RCY +几类化合物的α裂解 (1)H 3CCH 2OH 3H 2COH + (2)H 3CH 2C OH 2CCH 3H 2COH 2CCH 3+CH 3(3)CH 3OαO+H 2C CH 3(4)H NOCH 3O αH NO+OCH 3引发α断裂的倾向是由游离基中心给电子的能力决定的,一般来讲N>S 、O 、π、烷基>Cl 、Br>H ,同时α断裂遵循最大烷基游离基丢失的原则。
有机分子裂解类型与过程新

-H
R
+
+
H + -H + R
烷基苯
+
2.逆Diels-Alder反应 (RDA):
RDA(in MS) DA(有机合成)
+
+
.
.
+
.
+
or
+
+
.
+
3、四元过渡重排
常见化合物类型 :醚、酯、酚、胺、酰胺 (1)分子离子的四元环过渡重排
+. Y R z H CH R' R YH
·
·+
羧酸酯
+ OH · OCH3
醛
酮 腈
44
58 41
+NH ·
+ OH ·
·
或
甲酸酯
酰胺 硝基化合物
46
59 61
+ OH · O H + OH
H
+ OH
·
· + NH
NH 2 OH +N · O
R 羰基化合物
H + O R' +
-H
R
O+
+
R'
R' = H, R, OR, OH, NH2 R 烯烃化合物 H
X Y X+ + Y 或 X Y + X + Y
用整箭头形式“
O
R1
”表示一对电子的转移。
O + R1 + C
C
R2
R2
异裂伴随正电荷的 转移,均裂正电荷的位置不变。 3.半异裂 已离子化的σ键发生断裂,仅存的一个 成键电子转移到一个碎片上。
各类有机化合物质谱的裂解规律

各类有机化合物质谱的裂解规律烃类化合物的裂解规律:烃类化合物的裂解优先失去大的基团生成稳定的正碳离子含杂原子化合物的裂解(羰基化合物除外):正电荷在杂原子上,异裂羰基化合物的裂解:直链烷烃的质谱特点: 1.直链烷烃显示弱的分子离子峰。
2.直链烷烃的质谱由一系列峰簇(C n H2n-1, CnH2n, C n H2n+1)组成,峰簇之间差14个质量单位。
3.各峰簇的顶端形成一平滑曲线,最高点在C3或C4支链烷烃的质谱特点: 1.支链烷烃的分子离子峰较直链烷烃降低。
2.各峰簇顶点不再形成一平滑曲线。
因在分枝处易断裂,其离子强度增强。
3.在分枝处的断裂,伴随有失去单个氢的倾向,产生较强的C n H2n离子,有时可强于相应的C n H2n+1离子。
环烷烃的质谱特点: 1.分子离子峰的强度相对增加。
2.质谱图中可见m/z为41,55,56,69,70等C n H2n-1和C n H2n的碎片离子峰。
3.环的碎化特征是失去C2H4(也可能失去C2H5)。
链状不饱和脂肪烃的质谱特点:1.双键的引入,可增加分子离子峰的强度2.仍形成间隔14质量单位的一系列峰簇,但峰簇内最高峰为CnH2n-1 出现m/z 41, 55, 69, 83等离子峰。
3.长碳链烯烃具有γ-H原子的可发生麦氏重排反应,产生28,42,56,70,……CnH2n系列峰环状不饱和脂肪烃的质谱特点:1.当符合条件时环状不饱和脂肪烃可发生RDA反应。
2.环状不饱和脂肪烃支链的质谱碎裂反应类似于链烃的断裂方式。
芳烃:1. 分子离子峰较强2. 简单断裂生成苄基离子当苯环连接CH2时,m/z 91 的峰一般都较强。
3. MacLafferty 重排当相对苯环存在 氢时,m/z 92 的峰有相当强度。
4. 苯环碎片离子依次失去C2H2化合物含苯环时,一般可见m/z 39、51、65、77 等峰醇:1.醇类分子离子峰都很弱,有的甚至不出现分子离子峰。
2.容易发生α断裂反应,生成较强的CnH2n+1O+特征碎片离子,伯醇R-OH,则生成CH2=O+H,m/z为31的特征峰,仲醇则产生m/z为45的特征峰,叔醇则产生m/z为59的特征峰。
化合物的裂解-1

CH2 CH3 CH3 m/z=55 H3C
100
% OF BASE PEAK
CH3 CH C CH2 m/z=69
CH
C
90 80 70 60 50 40 30 20 10 0
55 27
69
84(M )
41+14n
0 10 20 30 40 50
60 70 80
90 100 110
3-甲基戊烯-2
+. O H C
+. OH
H 重排
+
C CH2
m/z 86
+. O H C .
+ O
+
i 裂解
C
α裂解 α裂解
+ O C
m/z 128
m/z 71
+
.
m/z 43
m/z 85
i 裂解 m/z 57
环酮发生复杂开裂
+. O . + O H + O . . + O
芳酮还可以脱CO
+. O CO +.
- [CH2 CH2 CH3]
m/z=57(75%)O H3C H2C C
- [H3C H2C]
O C m/z=71(48%) CH2 CH2 CH3
3.
具有γ氢的酮,能发生麦氏重排离子
+. O +. OH CH2 CH2
H CH2
H 重排
C CH2 Bu
+
CH2
C Bu
CH2
m/z 100 正辛酮 M 128
(二)醇 类
分子离子峰很小;
易发生α裂解;
化合物的裂解

141 (CH2)9CH3
80 70 60 50 40 30 20 10 0
C6 m/z=85 m/z=71 C5 m/z=99 C7
113 C8 C9 C10
C12
M M 15 C16
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210220 230
结构中可能具有苯环
由m/z 91,65 提示有卓蓊离子存在,即有C7H7
单元,分子式中还有C2H3O2,分子中含2个O很可能为酸和酯。 (5) 可能的结构
CH2 C O OCH3
O
或
CH2
O
C
CH3
(6)
CH2
用碎片离子验证结构的合理性
+. O CO CH2 H CH2 + O H CO . CH2 CH2 +. OH
CH3 CH3 + CH3
一个未知物的质谱如图所示,试确定其分子结构。
(1) 质谱:分子离子峰的质量数为偶数,说明未知物不含氮
或含偶数个氮。由同位素峰强比说明不含C1、Br及S。具
有很强的,m/z 91,说明未知物可能具有烷基取代苯。 (2) 分子式:nc = 9, nO = 2 (3) 不饱和度 = 5 (4)谱图解析 分子式C9H10O2
86
129
114
(五)醛类
1.分子离子峰明显,芳醛比脂醛峰强度大; 2.易发生α裂解,产生R+及M-1峰;
H CH2 CH2 CH2
+. O C H
. CH2 CH2 CH2
+ OH C H
常见有机化合物的裂解方式和规律

CH2CH2CH3
m/z=134
m/z=39 HC
m/z=65 CH
HC CH
CH2 m/z=91
m/z=91
H2 C
CH2 CH H CH3
CH2 HC
CH3
CH
CH2 H H m/z=92
HC CH
m/z=134
m/z=39 HC
m/z=65 CH
HC CH
m/z=91 m/z=91
H2 C
CH2 CH H CH3
• (正离子稳定性顺序R3C+> R2C+H> C+H2> C+H3)
3.烯烃 H3C
CH3 CH C CH2 CH3
CH2 CH3 m/z=55 CH3
% OF BASE PEAK
H3C
100 90 80 70 60 50 40 30 20 10 0
CH C 41
55 27
H3C
CH3
CH3
CH C CH2
C2H5+( m/z =29)→ C2H3+( m/z =27)+H2
2.支链烷烃
% OF BASE PEAK
m/z=43
5-Methylpentadecane
100
C3
169 141
90
80 70 60
m/z=57 C4
CH3(CH2)3 CH (CH2)9CH3 CH3
50
C6 m/z=85
57 85
R1
-
R2 C OH
R3
m/z: 31,59,73,
H
OH
RHC
CH2
(CH2)n
常见有机化合物的裂解方式和规律

光裂解反应机理
光引发裂解
光能激发有机物分子,使化学键断裂。
光敏剂作用
光敏剂吸收光能后,将能量传递给有机物分 子,引发裂解反应。
光波长和强度
不同波长和强度的光对裂解反应有不同影响 。
电裂解反应机理
电场作用
电场作用下,有机物分子中电荷分布发生变化, 导致化学键断裂。
电极反应
电极表面发生氧化或还原反应,引发有机物分子 的裂解。
3
优点
高灵敏度、高分辨率、可提供分子结构信外光的吸收,得到其红外光 谱图,进而推断分子结构。
应用
适用于含官能团的有机物,如羧酸、酯类、酰 胺等。
优点
特征性强、样品用量少、无损分析。
核磁共振法
原理
利用裂解产物中原子核在外加磁场作用下的自旋运动,产生核磁共 振信号进行分析。
电流强度和电压
不同电流强度和电压对裂解反应有不同影响。
催化裂解反应机理
催化剂作用
01
催化剂降低裂解反应的活化能,加速反应进行。
酸碱催化
02
酸碱催化剂对有机物分子进行质子化或去质子化,改变分子结
构引发裂解。
金属催化
03
金属催化剂与有机物分子形成配合物,改变分子间相互作用力
引发裂解。
04
常见有机化合物的裂解 规律
通过裂解反应可以合成具有特定药理活性的 药物分子。例如,某些抗生素的合成需要通 过裂解反应将天然产物转化为目标分子。
药物改性
利用裂解反应对药物分子进行结构修饰,以 改善其药代动力学性质、降低毒性或提高疗 效。例如,通过酯键的裂解将药物分子中的 羧酸转化为酯,以提高其脂溶性。
其他领域的应用
燃料制备
通过裂解反应可以将重质烃转化为轻质烃, 用作燃料或燃料添加剂。例如,石油裂化过 程中,重质油在催化剂作用下裂解为汽油、 柴油等轻质油。
断裂机理-不同类型化合物谱图

键的断裂也有键的生成。重排产生了在原化合物中不 存在的结构单元的离子。 最常见的重排反应是氢重排裂解。
化合物分子中含有C X(X为O,N,S,C)基团, 而且于这个基团相连的链上有γ氢原子,这种化合 物的分子离子破碎时, γ氢原子可以转移到X原子 上去,同时发生β键断裂。
+.
O
RCH
.
+
R +HC O
+
O
.
+
R C O R'
R+R'O C O
+
O
R C+O H
O
R C R'
.
+
R +HO C O
.
+
R +R'C O
电荷位置引发的裂解反应
+
i
RYR '
R ++Y R '
O+
R' C R
R' + R
C
+ O
i
+ R
+
CO
自由基位置引发的重排反应
+ H
X W
C Y
CH2 R
-R CH2
m/z 91
基峰
3. Stevenson规则
奇电子离子裂解过程中,自由基留在电离 电位(IP)较高的碎片上,而正电荷留在IP 较低的碎片上。
.
A+ BCD
A+
+
.
BCD
A +.BCD
A. + +BCD
第3节 有机分子裂解类型

H H 2C H 2C OH H 3C C CH2 CH2 CH CH3 O C CH2
H CH
CH3 CH2
CH2 OH H 2C H2C CH2 CH2 CH2 H CH m/z=100 CH3 C
m/z=58
H H 2C H 2C OH H 2C H C C H2 O CH2 m/z=88 C H2 O C
H
CH2 CH2 OH
O
CH2 CH2
H 2C C O H 2C C H m/z=88 H2 OH H 2C C OH
OH H 3C C O
H 2C
CH2
m/z=60
4.苄基裂解
5. 烯丙基裂解
具双键的烃链中,常发生烯丙裂解,在β 处开裂,
形成烯丙离子。
6. 逆狄尔斯—阿德耳裂解
(Retro-Diels-Alder reacrion RDA)
H + O R' +
-H
R
O+
+
R'
R' = H, R, OR, OH, NH2 R 烯烃化合物 H
-H
R
+
+
H + -H + R
烷基苯
+
43 57 29 58 71 85 86 100 128(M )
20 30 40 50 60 70 80 90 100 110 120 130 m/z
m/z: 31,59,73,
④醇类质谱中可观察到M-1、M-2甚至M-3峰。
H
R c O H R C O H R C O R C三 O | | | H H
H
有机化合物裂解的一般规律

有机化合物裂解的一般规律有机化合物裂解是有机化学中一个重要的反应过程,也是研究有机化合物性质和结构的基础。
在有机化合物裂解的过程中,会发生一系列的化学反应,按照一定的规律进行。
一般来说,有机化合物裂解的规律可以归纳为以下几个方面:1. 热裂解:热裂解是指在高温条件下,有机化合物发生分解反应。
热裂解是有机化合物加热分解的最常见方式之一。
在高温下,有机化合物分子内部的键能发生断裂,从而形成不同的产物。
热裂解可产生大量的气体,如烃类、醇类、酮类等。
2. 光裂解:光裂解是指在光照条件下,有机化合物发生分解反应。
光裂解一般需要有机化合物具有特定的结构,如含有共轭体系或芳香环等。
光裂解一般是通过激发有机化合物中的电子,使其跃迁到高能级轨道,从而使化学键发生断裂。
3. 自由基裂解:自由基裂解是指有机化合物中的化学键发生断裂,生成自由基物种。
自由基裂解是一种常见的有机反应类型,很多有机化合物在光照或加热条件下都可以发生自由基裂解反应。
自由基裂解一般是通过断裂键的断裂,生成含有未成对电子的自由基。
4. 酸碱裂解:酸碱裂解是指在酸碱条件下,有机化合物发生分解反应。
酸碱裂解是一种常见的有机反应类型,常见的酸碱裂解反应包括酯水解、醇脱水、胺与酸反应等。
在酸碱条件下,有机化合物的官能团与酸碱反应,发生断裂并生成新的产物。
5. 氧化裂解:氧化裂解是指有机化合物在氧化剂的作用下发生分解反应。
氧化裂解一般是通过氧化剂从有机化合物中夺取电子,使化学键发生断裂。
氧化裂解常见的反应有燃烧、氧化脱氢等。
有机化合物裂解是一个复杂的过程,受到多种因素的影响,如温度、光照、酸碱条件等。
不同的有机化合物在裂解过程中会产生不同的产物,这些产物的生成与有机化合物的结构、官能团有关。
因此,研究有机化合物裂解的规律对于理解有机化学的基本原理和应用具有重要意义。
各类有机化合物质谱的裂解规律

各类有机化合物质谱的裂解规律烃类化合物的裂解规律:烃类化合物的裂解优先失去大的基团生成稳定的正碳离子含杂原子化合物的裂解(羰基化合物除外):正电荷在杂原子上,异裂羰基化合物的裂解:直链烷烃的质谱特点: 1.直链烷烃显示弱的分子离子峰。
2.直链烷烃的质谱由一系列峰簇(Cn H2n-1, CnH2n, CnH2n+1)组成,峰簇之间差14个质量单位。
3.各峰簇的顶端形成一平滑曲线,最高点在C3或C4支链烷烃的质谱特点: 1.支链烷烃的分子离子峰较直链烷烃降低。
2.各峰簇顶点不再形成一平滑曲线。
因在分枝处易断裂,其离子强度增强。
3.在分枝处的断裂,伴随有失去单个氢的倾向,产生较强的Cn H2n离子,有时可强于相应的CnH2n+1离子。
环烷烃的质谱特点: 1.分子离子峰的强度相对增加。
2.质谱图中可见m/z为41,55,56,69,70等Cn H2n-1和CnH2n的碎片离子峰。
3.环的碎化特征是失去C2H4(也可能失去C2H5)。
链状不饱和脂肪烃的质谱特点:1.双键的引入,可增加分子离子峰的强度2.仍形成间隔14质量单位的一系列峰簇,但峰簇内最高峰为CnH2n-1 出现m/z 41, 55, 69, 83等离子峰。
3.长碳链烯烃具有γ-H原子的可发生麦氏重排反应,产生28,42,56,70,…… CnH2n系列峰环状不饱和脂肪烃的质谱特点:1.当符合条件时环状不饱和脂肪烃可发生RDA反应。
2.环状不饱和脂肪烃支链的质谱碎裂反应类似于链烃的断裂方式。
芳烃:1. 分子离子峰较强2. 简单断裂生成苄基离子当苯环连接 CH2时,m/z 91 的峰一般都较强。
3. MacLafferty 重排当相对苯环存在 氢时,m/z 92 的峰有相当强度。
4. 苯环碎片离子依次失去 C2H 2化合物含苯环时,一般可见 m/z 39、51、65、77 等峰醇:1.醇类分子离子峰都很弱,有的甚至不出现分子离子峰。
2.容易发生α断裂反应,生成较强的CnH2n+1O+特征碎片离子,伯醇R-OH,则生成CH2=O+H,m/z为31的特征峰 ,仲醇则产生m/z为45的特征峰 ,叔醇则产生m/z为59的特征峰。
质谱裂解机理中的特征裂解方式

质谱裂解机理中的特征裂解方式有机质谱中的裂解是极其复杂的,但是通过对其质谱裂解方式和机理的探讨研究,我们可以发现有一些特征结构裂解方式在有机质谱的裂解中是普遍存在的,是世界上的大量质谱学家通过对大量的有机质谱裂解方式进行观察、研究后的概括性总结。
所以其具有很重要的参考价值和应用价值,所以在有机质谱解析过程中,必须予以遵循,如此方能得到合理的质谱裂解方式和解析结果。
通过概括总结我们发现有机质谱中大部分化合物具有以下几种特征裂解方式:α裂解、苄基裂解、烯丙基裂解、麦氏重排裂解、DRA裂解(逆狄尔斯阿尔德反应),几种特征裂解方式的强弱顺序如下:苄基裂解>α裂解、i裂解>麦氏重排裂解、DRA裂解>烯丙基裂解当然这种顺序不是一成不变的,随着化合物的结构发生改变,这些特征裂解方式的顺序有可能会发生改变,有机化合物质谱裂解大致可以分为两类α裂解(均裂)、β裂解,我们上面所讲的苄基裂解、烯丙基裂解、麦氏重排裂解、DRA裂解都属于β裂解。
下面我们对几种特征裂解方式做以说明。
1、特征裂解方式1、α裂解α裂解是指凡具有C-X单键基团和C=X双键基团(其中X=C、O、S、Cl等)的有机分子,与该基团原子相连接的单键、称之为α键,在电子轰击条件下,该键很容易断裂因而称之为α断裂。
断键时成键的两个原子各自收回一个电子,这是由游离基中心引发的反应,原动力来自游离基的电子强烈配对倾向,所以α断裂属于均裂。
其裂解的机理及通式如下:I饱和中心II不饱和杂原子几类化合物的α裂解(1)(2)(3)(4)引发α断裂的倾向是由游离基中心给电子的能力决定的,一般来讲N>S、O、π、烷基>Cl、Br>H,同时α断裂遵循最大烷基游离基丢失的原则。
2、苄基裂解通常烷基苯、烷基吲哚、烷基萘、烷基喹啉等化合物具有苄基断裂的特征裂解方式,苄基裂解也属于α裂解。
以丙基苯为例对其裂解机理做以说明在电子的轰击下,苯环上的一对π电子被电离,游离基中心定域到苯环上,诱导α键发生断裂,形成α键的一对电子中的单电子与被电离后的π键的孤电子形成新键,失去烷基自由基,生成偶电子离子。
长链羰基化合物的质谱裂解规律及其分子式的计算

长链羰基化合物的质谱裂解规律及其分子式的计算长链羰基化合物是一类含有羰基官能团的有机化合物,其分子中碳原子数量较多,通常大于10个。
由于长链羰基化合物的碳框架较长,质谱裂解规律相对较为复杂。
本文将从两个方面探讨长链羰基化合物的质谱裂解规律和分子式的计算。
一、长链羰基化合物的质谱裂解规律1.α-断裂:长链羰基化合物的质谱中常见的裂解方式是α-断裂,即在羰基中心的碳原子处发生断裂。
在α-断裂过程中,生成的离子中带正电荷的碳原子成为裂解质子,而带负电荷的碳原子成为负离子。
α-断裂路径主要是通过产生酮基离子([R-CO]+•)或羧酸酐离子([RCO-OH]-•)。
2.β-断裂:在长链羰基化合物中,β-断裂是指在羰基官能团的相邻碳原子上发生的断裂。
β-断裂产物通常是醇或羧酸。
3.边链骨架断裂:在长链羰基化合物中,还会出现边链骨架断裂。
这种断裂通常发生在侧链上,产生离子中的侧链辛基碳离子或酮离子。
4.串联反应:长链羰基化合物的质谱裂解中还可能发生串联反应。
串联反应是指离子的一个断裂会引起另一个断裂,生成多个碎片离子。
这种反应机制在长链羰基化合物的质谱中较为常见。
其次,通过观察质谱图中的裂解质子离子峰([M-H]+)和其他离子峰,可以推导出化合物分子中不同官能团的存在。
例如,通过观察[RCO-OH]-•离子可以推测出羧酸官能团的存在。
最后,计算长链羰基化合物的官能团数目,并结合已知的官能团的相对分子质量,可以计算出分子式。
例如,如果已知羟基的相对分子质量为17,羧酸官能团的相对分子质量为45,那么测得有3个羧酸官能团和2个羟基官能团的化合物的分子质量为3×45+2×17=149、通过推测出的分子中的碳原子数量和测得的分子质量,可以计算出其分子式。
综上所述,长链羰基化合物的质谱裂解规律相对复杂,常见的裂解方式有α-断裂、β-断裂、边链骨架断裂和串联反应。
通过质谱图中的峰值,可以推导出长链羰基化合物的分子式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CH2 HC
CH3
CH2
H H m/z=92
CH2CH2CH2CH3 m/z=134
C4H9 m/z=77
HC CH m/z=51
三.醇类
• ①分子离子峰很小,随C链↑而↓, 甚至消失(C>5时),(易脱 水)。
• ②易发生α裂解,31+14n
• ③脱水重排,M-18峰
• ④直链伯醇含羟基碎片(31,45, 59),烷基离子(29,43,57) 及链烯离子 (27,41,55)三种 系统的离子,质谱峰多
• (正离子稳定性顺序R3C+> R2C+H> C+H2> C+H3)
3.烯烃 H3C
CH3 CH C CH2 CH3
CH2 CH3 m/z=55 CH3
% OF BASE PEAK
H3C
100 90 80 70 60 50 40 30 20 10 0
CH C 41
55 27
H3C
CH3
CH3
CH C CH2
一、烃
二、芳烃
第四节
常见有机化合物的 裂解方式和规律
三、醇 四、醛、酮
五、酸和酯类
一、烃的质谱图
1.直链烷烃
43
29 15
57
71 85 99 113 142
m/z
16 15
methane M=16
m/z
43
29 15
57
71 85 99 113 142
正癸烷
m/z
❖分子离子:C1(100%), C10(6%), C16(小), C45(0) ❖有m/z :29,43,57,71,……CnH2n+1 系列峰(σ—断裂) ❖有m/z :27,41,55,69,……CnH2n-1 系列峰
特点
• M+较强 • C6H5-R, β-裂解,m/z91(C7H7+基峰) • C6H5-R, α-裂解,m/z77 (C6H5+) • r-氢的C6H5-R,Melafferty重
排,C7H8+(m/z92)
β裂解
91
α裂解
77
Melafferty重排,C7H8+(m/z92)
CH2 CH2 CH2 CH3
M - (Alkene + H2O) M-46
H
- H
CH2
H2C
RHC HC
- CHH22C
H2 R C CH
-H2O
HCH3 C CH2 H
C CH3 H2C CH R
H2C
M-60
CH2 R
H2 CH2 C CH
M-76
% OF BASE PEAK
100 CH2OH
90 80 70 60 50 40 30
80 70
H2C
OCH3
O
158(M) 159(M+1)
60 50 40 30
CH2CH2OCH3
O
87
COCH3
160(M+2) M
20 10 0
59
121[M-31] M+1
M+2
0 10 20 30 40 50 60பைடு நூலகம்70 80 90 100110120130140150 160
Figure 2.14. Methyl Ocatanoate
1-PenTanol MW88
M - (H2O and CH2 CH2) CH3(CH2)3
CH2OH
M - (H2O and CH3)
31
M - H2O Cα-C β断裂
20
10
M-1
0
0 10 20 30 40 50 60 70 80 90 100110120130140150
四、 醛、酮的质谱图
C2H5+( m/z =29)→ C2H3+( m/z =27)+H2
2.支链烷烃
% OF BASE PEAK
m/z=43
5-Methylpentadecane
100
C3
169 141
90
80 70 60
m/z=57 C4
CH3(CH2)3 CH (CH2)9CH3 CH3
50
C6 m/z=85
57 85
• α裂解,M-1峰(羧酸)
• γ-H麦氏重排
α裂解
六、胺和酰胺
1、脂肪胺的分子离子峰很弱或者消失, 芳香胺及酰胺的分子离子峰较强 2、发生β-裂解:
. R
CH2
+ NH2
m/e30
.+ +
R
C H2 N H2
57
100
% OF BASE PEAK
90
80
CH3(CH2)7CHO
70
60
MW 142
44
50
40 30
20 10
0 0
10 20 30 40 50
60 70
M-44 M-43
M-CH2CH2 M-H2O
M-1 M
80 90 100 110 120 130 140 150
+.
O
RCH
• M+明显 • α-裂解, M-1峰 • γ-H麦氏重排,44 • β裂解
R1
-
R2 C OH
R3
m/z: 31,59,73,
H
OH
RHC
CH2
(CH2)n
R3 R1
α裂解
C OH
R2
H OH
RHC
CH2
(CH2)n
-H2O
M-18峰
RHC
CH2
(CH2)n
RHC or
CH2
(CH2)n
H O+
脱水脱烯
H
- CH2 H2C CH2
RHC
CH2
CH2
H O+
-H2O
H2C CH R
m/z=69
69 84(M )
0 10 20 30 40 50 60 70 80 90 100 110
1) 分子离子峰较稳定; 2) 41+14n峰 3) β-裂解,41强 4) CnH2n ,42,重排离子峰(麦氏
重排) 5)环状稀烃能发生RDA裂解
β-裂解
% OF BASE PEAK
100 90 80 70 60 50 40 30 20 10
40
m/z=71
30
C5 m/z=99
20 10
C7
113 C8
C9
C10
M C12 M 15 C16
0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210220230
• 裂解容易发生在分支部位, 优先失去最大的烷基,形成 稳定的仲碳或叔碳阳离子
0
0
67 54
41 27 39
10 20 30 40 50 60 70
82 M
80 90 100
二、芳烃的质谱图
% OF BASE PEAK
91
100
90
CH2 CH2 CH2 CH3
80
70
92
60
50
40
30
134(M )
20 10
39 51 65 77
0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
CH2CH2CH3
m/z=134
m/z=39 HC
m/z=65 CH
HC CH
CH2 m/z=91
m/z=91
H2 C
CH2 CH H CH3
CH2 HC
CH3
CH
CH2 H H m/z=92
HC CH
m/z=134
m/z=39 HC
m/z=65 CH
HC CH
m/z=91 m/z=91
H2 C
CH2 CH H CH3
Ch3(CH2)4CO
(small) 99
CH3(CH2)4 71
CH3(CH)3 57
CH3(CH2)2 43 CH3CH2 29
CH3 CH2 CH2
87
CH2 73
O
CH2 C OH
45
CO2H
59(small)
CH2CO2H
(CH2)2CO2H
(CH2)3CO2H
• 一元饱和羧酸及酯的 分子离子峰弱,芳酸 及酯强
+ R CO
+ HCO
R+
55
O
100
42
90
80
% OF BASE PEAK
70 60
50
40
30
27
20
10
69 98 M
0
0 10 20 30 40 50 60 70 80 90 100
五、酸和酯类
% OF BASE PEAK
100
OH
74 Methyl octanoate
90
C
CH3(CH2)6COOCH 3