第四章 约束非线性优化的理论与方法讲解

合集下载

非线性约束最优化

非线性约束最优化

⾮线性约束最优化CanChen ggchen@讲完了⼆次线性规划,这节课主要是讲了⼀般的⾮线性约束最优化怎么解。

等式约束-Lagrange-Newton先列Lagrange⽅程:然后⽤⽜顿法求⽅程的根(这个迭代⼜被称为Newton-Raphson迭代):Sequential Quadratic Programming这个问题是最泛化的优化问题了,先看看怎么根据KT条件写出原始优化问题这⼀步实际上是把⼀般的优化问题,转化成了多个⼆次函数优化问题,循环求解。

对于每个⼦问题,需要采⽤active set⽅法,每次只考虑等式约束,根据具体情况添加或者删除约束。

罚函数法实际中总是逐渐增⼤罚因⼦,求解⽆约束问题。

这种通过求解⼀系列⽆约束问题来获得约束最优化问题的最优解,称之为序贯⽆约束极⼩化技术。

罚函数经典三引理:这⾥的引理1是关键,其实也很好证明,就是根据两个x分别是最优解,得到两个不等式,简单处理⼀下就⾏了。

三个引理刻画了罚函数法动态变化的过程。

其中,第三个引理就是说,我迭代到⼀步,不想迭代了,这个时候实际上得到的解是把定义域扩⼤了之后的解。

乘⼦罚函数这⾥实际上就是⽬标函数,加朗格朗⽇项,加罚项。

使⽤罚函数,必须要求罚因⼦趋于⽆穷⼤,然⽽这在实际中很难办到。

这⾥引⼊朗格朗⽇项,让罚因⼦不⽤趋于⽆穷,就能得到结果。

本质是就是将乘⼦罚函数在迭代中寻找和拉格朗⽇函数的关系,从⽽将带约束问题转化为⽆约束问题。

这⾥给出了带约束问题的⼆阶充分条件,⾮常⽜逼,之前只是必要条件。

障碍函数法这个实际上通过⽆限限制边界,将有约束问题转化为⽆约束问题。

内点法这个实际上是改变互补松弛条件,sz=u>0, 所以s>0,所以⼀定是内点。

本质上还是在求解KT系统,把不等式改造成等式,还在内部,这个⽐较野蛮。

后⾯凸优化就是⼲这个。

障碍函数法和内点法本质是⼀样的。

最优化方法-约束非线性最优化方法

最优化方法-约束非线性最优化方法

充分条件: 如果 L( X *, ) 0 且行列式方程:
所有根Zj>0(j=1,2,…,n-l),则X*为局部极小点;反 之所有Zj<0,为局部极大点;有正有负非极值点
例题4-1用拉格朗日乘子算法求解:
max f ( X ) x12 , s.t. h1 ( x) 2x12 2x1x2 24 0
1)K-T条件:
考虑两种情况:
0 无解 2 * * x1 x2 / 5 0 x1 0; x2 0; * 2 2)局部最小判别:看课本
3.罚函数法(外点法)
序列无约束最优化方法SUMT ( Sequential Unconstrained Minimization Technique) 1.罚函数概念: min f ( x) f : Rn R ( fgh) s.t. g i ( x ) 0, i 1, 2,..., m h j ( x) 0 j 1, 2,..., l 构造外部罚函数: P ( X , M k ) f ( X ) ( M k , g ( X ), h( X )) f ( X ) M k { [min(0, g i ( X ))] [( h j ( X ))]2 }
L [m(uij ) m 1 dij2 ] 0; uij [ 2 ]1/( m 1) uij mdij

i 1 ij

i 1
m
2 dij
m
i1[
c
1 1/(m1) ] 1 2 dij
所以
uij

[ l 1
c
1 dij dlj
]2/( m2)
FCM的中心迭代过程

第四章 约束非线性优化的理论与方法

第四章 约束非线性优化的理论与方法


h( x) x1 x2 6 0.
f
解:
(
x
)

(2
x1,1)T ,g1(
2x1 1
x) (1,0)T
21 x2 1
, g2 0,
(
x
)

(
2
x1
,2
x2
)T
,
h1
(
x
)

(1,1)
;
K T条件为

1 22 x2 1 0,
x* (1,0)T 是 最 优 点 , 起 作 用 约 束I ( x*) {1,3},f ( x*) (1,0)T
g1( x*) (0,1)T , g3 ( x*) (0,1)T , 显 然 找 不 到1 , 3 0, 使 f ( x*) 1g1( x*) 5g3 ( x*)成 立 。
F(x0)= f (x0) + g (x0)=0.
若 F ( x0 , h) hT 2F ( x0 )h 0, h 0
gi ( x0; h) 0, i 1,2,, m
则x0是局部极小点。 二,具不等式约束的问题
1,下降方向和可行方向
考虑一般非线性约束优化问题:
满足:
f
(
x

)

m

i 1
1 ,m T ;
p
i gi ( x ) jhj ( x
j1
1 )
,,
0
ቤተ መጻሕፍቲ ባይዱ

p
T

i gi ( x ) 0, i 0, i 1,, m
称上式为K-T条件,满足上式的点称K-T点。

第四章约束问题的最优化方法

第四章约束问题的最优化方法

当limr(k) 0 k
则(x, r(k) ) f (x) , xk * x *
例: 用内点法求
min
f
(x)

x2 1

x2 2
s.t. g( x) 1 x1 0 的约束最优解。
解:
首先构造内点惩罚函数: (
x,
r)

x2 1

x2 2

rk
ln(x1
1)
用解析法求函数的极小值,运用极值条件:
二. 直接解法:
基本思想:合理选择初始点,确定搜索方向,以迭代公式 x(k+1)= x(k)+α(k)S(k)在可行域中寻优,经过若干次迭代,收敛至最优点。 适用范围:只能求解不等式约束优化问题的最优解。
基本要点:选取初始点、确定搜索方向及适当步长。
搜索原则:每次产生的迭代点必须满足可行性与适用性两个条件。 可行性:迭代点必须在约束条件所限制的可行域内,即满足
1
u1 gu (x)
② .(x, r(k) )
m
f (x) r(k)
1
u1 gu (x)
③ .(x, r (k) )
f (x)
m
r (k) u u 1
1 gu (x)
其中:gu (x) 0,u 1,2,...m
其中:gu (x) 0,u 1,2,...m
gu(x)0, u=1,2,…,p
适用性:当前迭代点的目标函数值较前一点是下降的,即满足 F(xk+1)<F(xk)
收敛条件:
• 边界点的收敛条件应该符合 K-T 条件;
• 内点的收敛条件为: xk1 xk 1

不等式约束的非线性优化问题

不等式约束的非线性优化问题

不等式约束的非线性优化问题非线性优化问题是当前研究领域中一个重要且复杂的研究方向,其中加入了不等式约束,则研究难度更大。

不等式约束可以帮助提供更多颜色的解决,从而丰富了非线性优化问题的研究内容,特别是在重要的科学技术领域,偏见较大的决策问题中。

例如,在金融行业,投资组合的构建问题依然是一个重要的研究难题,而有了不等式约束,就可以得到更加准确的优化结果,为投资者带来更多投资机会。

同时,不等式约束对于经济学研究领域也具有重要意义。

在计算机仿真中,不等式约束可以指导模拟结果如何随着市场环境的变化而变化。

而在关系分析的仿真建模中,不等式约束可以实质性地保证模型参数的稳定,从而让模型更具有可信度。

再者,由于不等式约束可以扩展多变量线性模型,因此可以解决复杂的决策问题,探索模型内部数据运动规律,有助于深入理解经济问题,特别是现代经济中复杂而多变的定量问题。

当然,由于非线性优化问题涉及到约束,数学模型的复杂性较大,因此算法的设计相对较困难。

传统的优化方法,例如随机搜索、梯度下降和牛顿法等,大多只能处理简单的线性约束,而在具有不等式约束的优化问题中,由于约束的复杂性,这些算法的效果可能不太理想。

为了克服这些问题,目前研究已经提出了一些新的算法,例如贪婪算法、自适应种群算法、可变群体算法等,这些都是针对不等式约束优化问题的有效算法。

除此之外,还有一些混合算法也非常有效,可以采用特定的算法组合,在多个算法之间进行灵活切换,来实现更加优秀的效果。

相比于传统的算法,这些新的算法性能更加稳定,可以在具有不等式约束的非线性优化问题中取得更优结果。

综上所述,不等式约束对于非线性优化问题具有重要作用,它不仅可以丰富研究问题,还可以为各个研究领域实现更准确和稳定的理论依据。

非线性优化与约束优化问题的求解方法

非线性优化与约束优化问题的求解方法

非线性优化与约束优化问题的求解方法非线性优化问题是在目标函数和约束条件中包含非线性项的优化问题。

约束优化问题是在目标函数中加入了一些约束条件的优化问题。

解决这些问题在实际应用中具有重要意义,因此研究非线性优化和约束优化问题的求解方法具有重要的理论和实际意义。

一、非线性优化问题的求解方法非线性优化问题的求解方法有很多,下面介绍几种常见的方法:1. 黄金分割法:黄金分割法是一种简单但有效的搜索方法,它通过不断缩小搜索范围来逼近最优解。

该方法适用于目标函数单峰且连续的情况。

2. 牛顿法:牛顿法利用目标函数的一阶和二阶导数信息来逼近最优解。

该方法收敛速度较快,但在计算高阶导数或者初始点选取不当时可能产生不稳定的结果。

3. 拟牛顿法:拟牛顿法是对牛顿法的改进,它通过逼近目标函数的Hessian矩阵来加快收敛速度。

拟牛顿法可以通过不同的更新策略来选择Broyden-Fletcher-Goldfarb-Shanno(BFGS)方法或者DFP方法。

4. 全局优化方法:全局优化方法适用于非凸优化问题,它通过遍历搜索空间来寻找全局最优解。

全局优化方法包括遗传算法、粒子群优化等。

二、约束优化问题的求解方法约束优化问题的求解方法也有很多,下面介绍几种常见的方法:1. 等式约束问题的拉格朗日乘子法:等式约束问题可以通过引入拉格朗日乘子来转化为无约束优化问题。

通过求解无约束优化问题的驻点,求得原始约束优化问题的解。

2. 不等式约束问题的罚函数法:不等式约束问题可以通过引入罚函数来转化为无约束优化问题。

罚函数法通过将违反约束条件的点处添加罚项,将约束优化问题转化为无约束问题。

3. 逐次二次规划法:逐次二次规划法是一种常用的求解约束优化问题的方法。

该方法通过依次处理逐个约束来逼近最优解,每次处理都会得到一个更小的问题,直至满足所有约束条件。

4. 内点法:内点法是一种有效的求解约束优化问题的方法。

该方法通过向可行域内部逼近,在整个迭代过程中都保持在可行域内部,从而避免了外点法需要不断向可行域逼近的过程。

第四章 约束非线性优化

第四章 约束非线性优化
* * 则存在非零向量 * (1* , 2 , ..., m )T 使得
m * 0 f ( x * ) i*ci ( x * ) 0, i 1 *c ( x * ) 0, * 0, i 1, 2, ..., m; * 0. i 0 i i
f ( x* d ) f ( x* ) 且 ci ( x * d ) 0
对于0 = 都成立,这与已知x*为局部极小矛盾.
最优化方法之约束非线性规划 怀化学院数学系
最优性条件
定理4.1( Fritz John一阶必要条件)
设x*为(1)的局部极小点且f ( x ), ci ( x )(1 i m )在点x*可微,
i 1 m
最优化方法之约束非线性规划
怀化学院数学系
最优性条件
Gordan引理的几何意义为:
不存在向量d 使aiT d 0( i 1, ..., m ),是指向量a1 , a2 , ..., am不同时
处于过原点的任何超平面的同一侧.
这时,总可以适当放大或缩小各向量的长度,使变化后 各向量的组合为零向量. 引理4.3(几何最优性条件) 在问题(1)中,假定x*为(1)的局部
% % 不等式约束ci ( x ) 0为x的有效约束;反之,若有ci ( x ) 0, % % 则称不等式约束ci ( x ) 0为x的非有效约束.称所有在x处的 有效约束的下标组成的集合
% % I ( x ) {i | ci ( x ) 0} {1, 2, ..., m}
% % 为x处的有效约束指标集, 简称x处的有效集. 在讨论两个重要引理前先给出凸锥的定义. 定义4.2 设非空集合C Rn , 某一点x C .对d Rn和t 0, 当x d C时,必有x td C , 则称C为以x为顶点的锥.当C

非线性优化的基本理论

非线性优化的基本理论

非线性优化的基本理论引言非线性优化是数学和计算机科学领域的一个重要研究方向。

它研究的是在给定约束条件下,如何寻找某个目标函数的最优解。

与线性优化问题不同,非线性优化问题涉及非线性函数的优化,更具有挑战性。

基本概念1.目标函数(Objective Function):非线性优化问题中需要优化的目标函数,通常表示为f(x),其中x表示自变量。

2.约束条件(Constraints):非线性优化问题中限制目标函数的函数或等式,通常表示为g(x) <= 0和h(x) = 0。

3.最优解(Optimal Solution):非线性优化问题中使目标函数取得最小(或最大)值的自变量的取值。

4.局部最优解(Local Optimum):非线性优化问题中某个点附近的最优解,但不一定是全局最优解。

5.全局最优解(Global Optimum):非线性优化问题中使目标函数取得最小(或最大)值的自变量的取值,是优化问题的最优解。

基本原理非线性优化的基本原理是寻找目标函数在给定约束条件下的最优解。

常用的方法包括梯度下降法、牛顿法和拟牛顿法等。

1. 梯度下降法(Gradient Descent)梯度下降法是一种基于目标函数梯度信息的迭代优化方法。

它的基本思想是通过不断迭代调整自变量的取值,使目标函数逐渐收敛到最优解。

具体步骤如下:1. 初始化自变量的取值。

2. 计算目标函数在当前自变量取值下的梯度。

3. 根据梯度的方向和步长,更新自变量的取值。

4. 重复步骤2和步骤3,直到满足停止准则。

2. 牛顿法(Newton’s Method)牛顿法是一种基于目标函数二阶导数信息的迭代优化方法。

它的基本思想是通过将目标函数进行二阶泰勒展开,以二阶导数的倒数作为步长,调整自变量的取值。

具体步骤如下: 1.初始化自变量的取值。

2. 计算目标函数在当前自变量取值下的一阶导数和二阶导数。

3. 根据一阶导数和二阶导数,更新自变量的取值。

带约束的非线性优化问题解法小结

带约束的非线性优化问题解法小结

(1)带约束的非线性优化问题解法小结考虑形式如下的非线性最优化问题(NLP):min f(x)「g j (x )“ jI st 彳 g j (x)=O j L其 中, ^(x 1,x 2...x n )^ R n, f : R n > R , g j :R n > R(j I L) , I 二{1,2,…m }, L ={m 1,m 2...m p}。

上述问题(1)是非线性约束优化问题的最一般模型,它在军事、经济、工程、管理以 及生产工程自动化等方面都有重要的作用。

非线性规划作为一个独立的学科是在上世纪 50年 代才开始形成的。

到70年代,这门学科开始处于兴旺发展时期。

在国际上,这方面的专门性 研究机构、刊物以及书籍犹如雨后春笋般地出现,国际会议召开的次数大大增加。

在我国, 随着电子计算机日益广泛地应用,非线性规划的理论和方法也逐渐地引起很多部门的重视。

关于非线性规划理论和应用方面的学术交流活动也日益频繁,我国的科学工作者在这一领域 也取得了可喜的成绩。

到目前为止,还没有特别有效的方法直接得到最优解,人们普遍采用迭代的方法求解: 首先选择一个初始点,利用当前迭代点的或已产生的迭代点的信息,产生下一个迭代点,一 步一步逼近最优解,进而得到一个迭代点列,这样便构成求解( 1)的迭代算法。

利用间接法求解最优化问题的途径一般有:一是利用目标函数和约束条件构造增广目标 函数,借此将约束最优化问题转化为无约束最优化问题,然后利用求解无约束最优化问题的 方法间接求解新目标函数的局部最优解或稳定点,如人们所熟悉的惩罚函数法和乘子法;另 一种途径是在可行域内使目标函数下降的迭代点法,如可行点法。

此外,近些年来形成的序 列二次规划算法和信赖域法也引起了人们极大的关注。

在文献[1]中,提出了很多解决非线性 规划的算法。

下面将这些算法以及近年来在此基础上改进的算法简单介绍一下。

1. 序列二次规划法序列二次规划法,简称SQ 方法.亦称约束变尺度法。

第四章 非线性规划 山大刁在筠 运筹学讲义

第四章  非线性规划  山大刁在筠 运筹学讲义

第四章 非线性规划教学重点:凸规划及其性质,无约束最优化问题的最优性条件及最速下降法,约束最优化问题的最优性条件及简约梯度法。

教学难点:约束最优化问题的最优性条件。

教学课时:24学时主要教学环节的组织:在详细讲解各种算法的基础上,结合例题,给学生以具体的认识,再通过大量习题加以巩固,也可以应用软件包解决一些问题。

第一节 基本概念教学重点:非线性规划问题的引入,非线性方法概述。

教学难点:无。

教学课时:2学时主要教学环节的组织:通过具体问题引入非线性规划模型,在具体讲述非线性规划方法的求解难题。

1、非线性规划问题举例例1 曲线最优拟合问题已知某物体的温度ϕ 与时间t 之间有如下形式的经验函数关系:312c t c c t e φ=++ (*)其中1c ,2c ,3c 是待定参数。

现通过测试获得n 组ϕ与t 之间的实验数据),(i i t ϕ,i=1,2,…,n 。

试确定参数1c ,2c ,3c ,使理论曲线(*)尽可能地与n 个测试点),(i i t ϕ拟合。

∑=++-n 1i 221)]([ min 3i t c i i e t c c ϕ例 2 构件容积问题通过分析我们可以得到如下的规划模型:⎪⎪⎩⎪⎪⎨⎧≥≥=++++=0,0 2 ..)3/1( max 212121222211221x x S x x x x a x x t s x x a V ππππ基本概念设n T n R x x x ∈=),...,(1,R R q j x h p i x g x f n j i :,...,1),(;,...,1),();(==,如下的数学模型称为数学规划(Mathematical Programming, MP):⎪⎩⎪⎨⎧===≤q j x h p i x g t s x f j i ,...,1,0)( ,...,1,0)( ..)( min约束集或可行域X x ∈∀ MP 的可行解或可行点MP 中目标函数和约束函数中至少有一个不是x 的线性函数,称(MP)为非线性规划令 T p x g x g x g ))(),...,(()(1=T p x h x h x h ))(),...,(()(1=,其中,q n p n R R h R R g :,:,那么(MP )可简记为⎪⎩⎪⎨⎧≤≤ 0)( 0 ..)( min x h g(x)t s x f 或者 )(min x f X x ∈ 当p=0,q=0时,称为无约束非线性规划或者无约束最优化问题。

第四章 非线性规划5-可行方向法

第四章 非线性规划5-可行方向法

第五节 可行方向法(FDM )可行方向法是用梯度去求解约束非线性最优化问题的一种有代表性的直接探索方法,也是求解大型约束优化设计问题的主要方法之一。

其收敛速度快,效果较好,适用于大中型约束最优化问题,但程序比较复杂。

可行方向法(Feasible Direction Method)是一种直接搜索方法,其搜索方向的获取利用了目标函数和约束函数的梯度信息。

用目标函数的梯度可以得到目标函数值的下降方向,而利用约束函数的梯度则可以得到可行的搜索方向。

因此,可行方向法的搜索方向实质上是既使目标函数值下降,同时又可行的方向,即可行下降方向。

满足这一条件的方法就称为可行方向法。

一、基本原理当求解目标函数的极小值min () ..()0 1,2,3,nu f X X R s t g X u m ⎧∈⎨≤=⎩ 当设计点()k X 处于起作用约束i g 上时,下降可行方向S 必须同时满足条件: ()0T k i S g X ∇≤()0T k S f X ∇<由于于多数非线性规划的最优点都处在可行区的约束边界上或者几个约束边界的交点上,因此最优搜索如能沿着约束边界附近进行,就有可能加速最优化搜索的进程。

按照这一基本思路,在任意选定—初始点后到最后得到最优点必须解决三个问题: 一是如何尽快使最优搜索从初始点到达约束边界二是到达边界后怎样判断所找到的边界点是否是最优点;三是如果边界点经判断不是最优点,那么下一步应如何进行最优搜索。

二、如何从初始点尽快到达边界在任意选定初始点0X 之后,首先判断0X 是否为可行点,若是可行点,则选择目标函数的负梯度方向作为下一步的搜索方向。

若是非可行点,则选择目标函数的梯度方向为搜索方向。

搜索的步长可采用试探的方法逐步缩小,直到最后到达边界。

如图5-13表示了初始点为可行点时的搜索过程。

从初始点0X 出发沿0()f X -∇方向,取步长为t ,进行搜索,得到1X100()X X t f X =-∇若1X 仍在可行区内,则把步长加大一倍继续搜索得到2112()X X t f X =-∇若1X 仍在可行区内,则把步长再加大一倍继续搜索,如此方法得到新点只要仍在可行区内,则加大步长只到得到的点进入非可行区。

第四章约束问题的最优化方法

第四章约束问题的最优化方法

迭代,产生的极值点 xk*(r(k))
4
序列从可行域外部趋向原目标
函数的约束最优点 x* 。
外点法可以用来求解含不等式和等式约束的优化问题。
二. 惩罚函数的形式:
m
l
( x, r) f ( x) r max[0, gi ( x)]2 r [hj ( x)]2
i1
j1
• 惩罚因子rk 是递增的,rk1 a rk ,a为递增系数,a 1
惩罚项:当迭代点在非可行域或不满足不等式约束条件时,在迭 代过程之中迫使迭代点逼近约束边界或等式约束曲面。
加权因子(即惩罚因子): r1 , r2
无约束优化问题:min . (x, r1, r2 )
Φ函数的极小点序列 x (k)* ( r1 (k) , r2 (k) ) k= 0,1,2…
其收敛必须满足:
这种方法是1968年由美国学者A.V.Fiacco和 G.P.Mcormick提出的,把不等式约束引入数学模型中,为求多 维有约束非线性规划问题开创了一个新局面。
适用范围:求解等式约束优化问题和一般约束优化问题。
§4.2 内点惩罚函数法(障碍函数法)
一. 基本思想: 内点法将新目标函数 Φ( x , r ) 构筑在可行域 D 内,随着惩罚
六. 举例:盖板问题
设计一个箱形截面的盖板。 已知:长度 l0= 600cm,宽度 b = 60cm, h 侧板厚度 ts = 0.5cm,翼板厚度为 tf(cm),高 度为 h(cm),承受最大的单位载荷 q = 0.01Mpa。
tf ts
b
要求:在满足强度、刚度和稳定性等条件下,设计一个最轻结构。
f (x) r1G[gu (x)] r2 H[hv (x)]

数学中的非线性优化问题

数学中的非线性优化问题

数学中的非线性优化问题在数学领域中,非线性优化问题是一类重要而复杂的问题。

它主要研究的是在某些约束条件下,如何寻找一个满足给定目标函数的最优解。

非线性优化问题的求解过程具有广泛的实际应用,包括经济学、工程学、物理学等领域。

本文将介绍非线性优化问题的定义、常用的解法以及相关应用。

一、非线性优化问题的定义非线性优化问题是在给定一组约束条件下,寻找某个函数的最优解的问题。

与线性优化问题不同的是,非线性优化问题中目标函数可以是非线性的,约束条件也可以是非线性的。

通常情况下,非线性优化问题的目标是最小化或最大化一个目标函数。

例如,考虑一个简单的非线性优化问题:$\min_{x \in \mathbb{R}^n} f(x)$subject to $g_i(x) \leq 0, \quad i=1,2,...,m$$h_j(x) = 0, \quad j=1,2,...,p$其中,$f(x)$是定义在$\mathbb{R}^n$上的目标函数,$g_i(x)$和$h_j(x)$是定义在$\mathbb{R}^n$上的约束条件。

优化问题的目标是寻找一组变量$x$的取值,使得$f(x)$达到最小值,并且满足约束条件$g_i(x) \leq 0$和$h_j(x) = 0$。

二、非线性优化问题的解法非线性优化问题的解法有多种,常见的包括梯度下降法、牛顿法、拟牛顿法等。

1. 梯度下降法梯度下降法是一种常用的迭代算法,用于求解无约束非线性优化问题。

它通过不断沿着负梯度的方向更新变量值,直到达到最优解。

其基本思想是在每一次迭代中,通过计算目标函数的梯度来确定下降的方向和步长。

梯度下降法的优点是易于实现,但可能陷入局部最优解。

2. 牛顿法牛顿法是一种迭代算法,用于求解非线性优化问题。

它利用目标函数的函数值和梯度信息来近似地构造二次模型,并通过求解二次模型的最小值来确定下一步的迭代点。

牛顿法通常收敛速度较快,但需要计算目标函数的梯度和Hessian矩阵,且在某些情况下可能会出现数值不稳定的情况。

第四章 非线性回归模型的线性化讲解

第四章 非线性回归模型的线性化讲解
第四章 非线性回归模型的线性化
线性回归模型 最小二乘法求解 若不是线性回归模型,又该如何求解呢?
(一)变量关系非线性问题:
若:(1)、变量

Y 和
X 1 , X K
之间不存在
多元线性随机函数关系
Y 0 1 X 1 K X K

那么我们如何估计出模型中的未知参数呢?
Dependent Variable: Y Method: Least Squares Date: 10/08/08 Time: 13:51 Sample: 1980 1996 Included observations: 17 Variable Coefficient C -10.46551 X1 1.021132 X2 1.472202 R-squared Adjusted R-squared S.E. of regression
(2)可线性化的非线性回归模型: 虽然被解释变量Y与解释变量X1X 2 .....X k以及与未知 参数 0 1...... k 之间都不存在线性关系,但是可以转化 为线性函数。例如: 生产函数模型: Y AK L e 转化为: ln Y LnA LnK LnL (3)不可线性化的非线性回归模型: 被解释变量Y与解释变量X1X 2 .....X k以及与未知 参数 0 1...... k 之间都不存在线性关系,而且无法转化 为线性函数。 例如:Y 0 1e 1x1 2 e 2 x2
0.99841 S.D. dependent var 0.029873 Akaike info criterion
变量间的非线性关系
(1)非标准线性回归模型: 虽然被解释变量Y与解释变量X1X 2 .....X k 之间 不存在线性关系,但与未知参数 0 1...... k 之间 存在线性关系。例如: 根据平均成本与产量为U型曲线理论,总成本C 可以用产量X的三次多项式来近似表示,得到总成 本函数模型如下: C 0 1 X 2 X 2 3 X 3

大学数学非线性优化与最优化理论

大学数学非线性优化与最优化理论

大学数学非线性优化与最优化理论数学是一门广泛应用于各个领域的学科,其中非线性优化与最优化理论被广泛运用于解决实际问题。

本文将介绍大学数学中的非线性优化与最优化理论,深入探讨其基本原理和应用。

一、非线性优化与最优化理论的基本概念和原理1.1 非线性优化的概念非线性优化是指在约束条件下,求解非线性函数的最优解。

与线性优化相比,非线性优化问题更加困难,因为非线性函数的特性使得求解过程更加复杂。

1.2 最优化理论的基本原理最优化理论是指通过建立适当的数学模型,寻求使特定目标函数取得极大或极小值的方法。

最优化理论可以包括线性优化、非线性优化、凸优化等不同的分支。

1.3 非线性优化与最优化理论的区别与联系非线性优化是最优化理论中的一个重要分支,它研究的是求解非线性函数的最优解问题。

非线性优化与最优化理论之间存在紧密的联系,但非线性优化更加具体,更加专注于非线性函数的求解方法和优化算法。

二、非线性优化与最优化理论的应用领域2.1 金融领域非线性优化与最优化理论在金融领域广泛应用于投资组合优化、风险管理、资产定价等问题。

通过建立适当的数学模型,可以帮助金融机构以及个人投资者在获得最大利润的同时降低风险。

2.2 物流与供应链管理在物流与供应链管理中,非线性优化与最优化理论可以应用于路线优化、资源分配、库存管理等问题。

通过求解非线性函数的最优解,可以提高物流效率、降低成本。

2.3 工程领域非线性优化与最优化理论在工程领域中有广泛的应用,如结构优化、参数估计、信号处理等。

通过对非线性函数进行求解,可以优化工程设计方案、提高系统性能。

2.4 人工智能当前人工智能领域中,非线性优化与最优化理论也发挥着重要作用。

在机器学习、深度学习等算法中,通过优化模型参数,使得模型在给定任务上取得最佳性能。

三、非线性优化与最优化理论的解法与算法3.1 基于梯度的方法梯度是许多非线性优化算法中的重要工具,通过计算目标函数的梯度信息,可以确定当前点的搜索方向和步长。

约束优化法

约束优化法

约束优化法约束优化法分为两种,一种是线性规划,另一种是非线性规划。

线性规划问题中,约束条件和目标函数都是线性的,求解方法较为简单;非线性规划问题中,约束条件和目标函数均为非线性的,求解方法相对复杂,需要使用数值方法进行近似求解。

在约束优化法中,约束条件是对决策变量的限制,而目标函数则是我们所期望最大化或最小化的指标。

例如,一个企业决定购买机器时,它需要考虑到各种成本,如购买成本、运输成本、维修成本等等。

它需要最小化这些成本,同时确保机器的质量符合要求。

这就是一个典型的约束优化问题,它的决策变量是机器的数量和型号,约束条件是成本和质量要求,目标函数是成本的最小化。

数学上,约束优化法可以形式化地表达为:\begin{aligned} \max_{x} \qquad & f(x)\\ \text{s.t.} \qquad & g_i(x) \leq 0, \; i=1,\dots,m \\ & h_j(x) = 0, \; j=1,\dots,p \\ \end{aligned}其中,x是决策变量向量,f(x)是目标函数,g_i(x)是不等式约束条件,h_j(x)是等式约束条件,m和p分别是不等式约束条件和等式约束条件的个数。

通常情况下,决策变量向量包含多个变量,而不等式和等式约束条件则限制了这些变量的取值范围,使其满足某些条件。

目标函数则是根据实际需求确定的指标,它的取值与决策变量有关。

线性规划问题可以通过线性规划算法求解,常见的有单纯形法、内点法等。

这些算法的核心思想是在变量的可行域中不断移动到更优值,直到找到最优的值;这就要求问题满足某些性质,如线性性、可凸性等。

非线性规划问题比较困难,通常需要使用近似求解方法,如牛顿法、拟牛顿法、共轭梯度法等。

不管是线性规划还是非线性规划,约束优化方法在实际问题中广泛应用。

例如,企业生产和分配问题中需要优化各种资源的利用,以获得最大的利润;金融领域中需要优化投资组合,以获得最大的收益且风险最小化;交通规划中需要优化城市道路布局,以达到最小的通行成本和最大的交通流量等等。

运筹学 — 无约束非线性规划,约束非线性优化解析

运筹学 — 无约束非线性规划,约束非线性优化解析

则 x是 f (x) 的R上的最小点(全局极小点)
• 凸规划:
定义:若 R En 为凸集, f ( x) 是R上的凸函数, 则称规划:
min f (x) s.t. x R
为凸规划
定义:若规划问题:
min f (x) s.t. gi (x) 0 i 1, 2, m
其中 f (x) 为凸函数, gi (x) 为凹函数(或 gi (x) 为凸函数) ,则该规划问题为凸规划。
x
k+1
=x +k P
k
k
检查得到的新点x是否为极小值点或近似极小值点。若是, 停止迭代。否则,令 k:=k+1,回2步继续迭代。
• 确定最优步长
k: min f (x +P )
k k
求以 为变量的一元函数 f (xk +Pk ) 的极小值点 (一维搜索)
一维搜索重要性质:在 搜索方向上所得最优点 处的梯度和该搜索方向 正交。
t

(t1 ) 0.2082 (t2 ) 0.0611
b-t1=1.146-0.438>0.5
0 t1
t2
1.416
t
4、第四轮:
a = 0.438, t1=0.708, t2=0.876, b=1.146

(t1 ) 0.0611 (t2 ) 0.0798
b-t1=1.146-0.708<0.5 0
第四章非线性规划
凌翔 龙建成 交通运输工程学院
凸函数定义:
设 f (x) 为定义在n维欧氏空间E中某个凸集R上的函数,若 对任何实数 0 1 以及R中的任意两点 x1 和 x2 ,恒有:
f ( x1 (1 )x2 ) f (x1 ) (1 ) f (x2 )

非线性优化问题的理论与算法

非线性优化问题的理论与算法

非线性优化问题的理论与算法一、引言优化问题是数学中的一个重要研究领域,其目标是找到使某个目标函数取得最优值的变量取值。

在实际应用中,很多问题都可以被抽象为优化问题,例如机器学习、经济学、工程设计等领域。

非线性优化问题是其中一类具有广泛应用的问题,本文将介绍非线性优化问题的理论与算法。

二、非线性优化问题的定义非线性优化问题是指目标函数或约束条件中至少存在一个非线性项的优化问题。

与线性优化问题相比,非线性优化问题更加复杂,因为非线性函数的性质往往难以直接求解。

因此,研究非线性优化问题的理论与算法具有重要意义。

三、非线性优化问题的数学建模在解决非线性优化问题之前,首先需要将实际问题转化为数学模型。

通常,非线性优化问题可以通过以下方式进行数学建模:1. 目标函数的建模:将实际问题中的目标转化为一个数学函数,该函数的取值与问题的最优解相关。

2. 约束条件的建模:将实际问题中的约束条件转化为一组等式或不等式约束,以限制变量的取值范围。

3. 变量的定义:将实际问题中的变量进行定义,并确定其取值范围。

通过以上步骤,可以将实际问题转化为一个数学模型,从而为后续的优化算法提供基础。

四、非线性优化问题的求解方法针对非线性优化问题,有多种求解方法可供选择。

以下介绍两种常用的非线性优化算法:1. 梯度下降法:梯度下降法是一种基于迭代的优化算法,其思想是通过迭代地沿着目标函数的负梯度方向进行搜索,以逐步逼近最优解。

梯度下降法的优点是简单易实现,但在处理复杂的非线性问题时,可能会陷入局部最优解。

2. 牛顿法:牛顿法是一种基于二阶导数信息的优化算法,其思想是通过多次迭代来逼近最优解。

相比于梯度下降法,牛顿法具有更快的收敛速度,但也存在计算复杂度高和可能陷入局部最优解的问题。

除了以上两种算法,还有其他一些常用的非线性优化算法,例如拟牛顿法、共轭梯度法等。

选择合适的优化算法需要根据具体问题的特点和求解需求进行权衡。

五、非线性优化问题的理论研究除了算法的研究,非线性优化问题的理论研究也具有重要意义。

数学与应用数学专业赛课非线性优化理论与算法研究

数学与应用数学专业赛课非线性优化理论与算法研究

数学与应用数学专业赛课非线性优化理论与算法研究在数学与应用数学专业的赛课中,非线性优化理论与算法是一个重要的研究领域。

随着科技的不断发展和应用的广泛推广,非线性问题越来越多地出现在实际工程和科学计算中,因此非线性优化理论与算法的研究对于解决实际问题具有重要意义。

本文将对非线性优化理论与算法进行深入探讨。

一、非线性优化理论的基本概念在非线性优化理论中,我们首先需要了解一些基本概念。

非线性优化问题可以表达为如下形式的数学模型:min f(x)s.t. g(x) ≤ 0h(x) = 0其中,f(x)是目标函数,g(x)是不等式约束条件,h(x)是等式约束条件。

非线性优化问题与线性优化问题的最大的不同之处在于目标函数和约束条件的非线性性质。

二、非线性优化算法的分类及特点非线性优化算法主要可以分为两大类:直接搜索法和数学规划法。

1. 直接搜索法直接搜索法是一种基于搜索的优化方法,常用的有最速下降法、共轭梯度法、牛顿法和拟牛顿法等。

这些方法主要通过迭代来搜索使目标函数值最小化或最大化的最优解,但不保证能找到全局最优解。

2. 数学规划法数学规划法是一种基于数学规划理论的优化方法,常用的有线性规划、二次规划和动态规划等。

这些方法主要通过建立数学模型,并应用数学规划理论来求解最优解,可以保证找到全局最优解。

三、非线性优化算法的应用非线性优化算法在实际工程和科学计算中有着广泛的应用。

以下是一些典型的应用领域:1. 机器学习在机器学习领域,非线性优化算法被广泛应用于模型训练和参数优化。

例如,神经网络的训练过程可以看作一个非线性优化问题,通过调整网络中的参数来最小化预测误差。

2. 金融风险管理在金融风险管理中,非线性优化算法可以帮助寻找最优的资产配置方案,以实现风险最小化或收益最大化。

3. 交通网络优化在交通领域,非线性优化算法可以用于优化交通信号配时、路线规划和交通拥堵控制等问题,以提高道路通行效率。

四、非线性优化算法的挑战与展望虽然非线性优化算法在实际应用中起着重要作用,但仍面临一些挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1) 下降方向的选择 如果方向P在点x0处是下降方向,则P应与-f (x0)同侧, 即: T f ( x ) P 0
0
T F { P f ( x0 ) P 0} 为点x0处的下降方向集。 记 0
2) 可行方向的选择 在x0处的可行方向应满足:
gi ( x0 P ) 0, i 1,2,, m hj ( x0 P ) 0, j 1,2,, p
注1 注2
g1 ( x0 ),, gm ( x0 ) 是x0处法空间的一组基。
方程组
的一组线 g i ( x0 , h) 0, i 1,2, , m 性无关的解构成曲面S上x0处切空间的一组基。 min f (x,y) S.t. g (x,y)=0 0,则f (x0,y0)与g (x0,y0)

j
g i ( x 0 ) h j 0, i 1,2, , m x j g m ( x 0 ) x1 g1 ( x 0 ), g m ( x 0 ) g m ( x 0 ) x n

系数矩阵
满秩,则称x0为曲面S上的一个正规点。
m in f ( x ) S x g ( x ) 0, h ( x ) 0, i 1, , m; j 1, , p i j
n f ( x ) x1 x2 S x x1 x 2 1 0,1 x1 0,1 x 2 0
2,具等式约束问题的极值必要条件 考虑二维问题:
结论1:若在极小点(x0,y0)处,g (x0,y0)
线性相关,即f (x0,y0) + g (x0,y0)=0。
结论2:(Lagrange乘子规则)设(x0,y0)是局部极小点,且g (x0,y0)
0,则存在常数 ,对函数F (x0,y0)= f (x0,y0)+ g (x0,y0),满足 F(x0,y0)= f (x0,y0) + g (x0,y0)=0.
结论3(充分条件):设点x0满足必要条件: F(x0)= f (x0) + g (x0)=0. 若 F ( x0 , h) hT 2 F ( x0 )h 0, h 0 g i ( x 0 ; h) 0, i 1,2, , m 则x0是局部极小点。 二,具不等式约束的问题 1,下降方向和可行方向 考虑一般非线性约束优化问题:
g ( x i i ) 为Fritz-John 条件。其中 iI x

g1 ( x ),, gm ( x ) 线性无关。
在最优点x*处应满足 f ( x ) g ( x ), i 0 i i i g ( x ) 0, i 1,, m i i Farkas引理:给定向量a i(i =1,2,…,k)与b,不存在向量P同
m i n f ( x) 的最优解,则x*处 G0 F0 gi ( x ) 0, i 1,, m n x R
换言之,在x*处满足 gi ( x ) P 0, i I ( x )
T


的方向P必有 称 f ( x )
T
f ( x ) P 0
T x* ( 1, 0 ) 是最优点,起作用约束 I ( x*) {1,3},f ( x*) ( 1,0)T
g1 ( x*) (0,1)T , g 3 ( x*) (0,1)T , 显然找不到1 , 3 0, 使 f ( x*) 1g1 ( x*) 5g 3 ( x*)成立。
第四章 约束非线性优化的理论与方法
一,等式约束问题 1,切向量与正规性 定义1 设x0 是由方程组gi(x)=0, i=1,2, …,m,确定的曲面 S上的一点,若在S上存在曲线x(t),x(0)= x0,x’(0)=h, 则称向量是曲面S上点x0处的切向量。 定义2:如果关于h 的线性方程组:
g i ( x 0 , h) g1 ( x 0 ) x1 g1 ( x 0 ) x n
时满足条件 aiT P 0, i 1,2,, k 和 bT P 0 的充要
条件是 向量b 在ai 所张成的凸锥内,即满足
b
a
i 1 i
k
i
, i 0
定理1:设x*为问题
的一个可行点,并且前t个约束为起作用约束,则x*为最 优解的一个必要条件是下式成立:
f ( x*)
结论1:若 x 0 S 所有方向P都是可行的。
T x S P 0 结论2:若 当 gi ( x0 ) 0, i I ( x0 ) {i gi ( x0 ) 0} 时
0
则P为可行方向。 记 G0 { P T gi ( x0 ) P 0, i I ( x0 )} 为可行方 向集。 注:对等式约束而言,所有约束都是起作用约束。 2,最优性条件 定义1:若对xC和0,有 xC ,则称C为锥,如果C是 凸的,则称其为凸锥。 定义2:设是约束集,称 D { P P 0, x0 P S , 0, 为x0处的可行方向锥。 下面进一步讨论最优性条件。设x*是问题
m i n f ( x ), x R n n a ij x i bi , i 1, , m i 1
a
i 1 i
t
i
, i 0
例:考虑问题
min f ( x ) x1 , g ( x) 3 ( 1 x ) x2 0, 1 1 g ( x ) x 0, g ( x ) x 0 1 3 2 2
相关文档
最新文档