向量公式汇总
向量的基本运算公式大全
![向量的基本运算公式大全](https://img.taocdn.com/s3/m/dcc87b834128915f804d2b160b4e767f5bcf8065.png)
向量的基本运算公式大全下面是向量的基本运算公式大全:1.向量加法:o a + b = b + a(交换律)o(a + b) + c = a + (b + c)(结合律)2.向量减法:o a - b = a + (-b)3.向量数量乘法:o ka = ak(交换律,其中k是标量)o(kl)a = k(la)(结合律)4.零向量:o a + 0 = ao a + (-a) = 05.向量点乘(内积):o a·b = b·a(交换律)o(ka)·b = k(a·b) = a·(kb)(分配律)o a·(b + c) = a·b + a·c(分配律)6.向量叉乘(外积):o a×b = -(b×a)(反对称性)o a×(b + c) = a×b + a×c(分配律)o(ka)×b = k(a×b) = a×(kb)(分配律)7.向量混合积:o a·(b×c) = b·(c×a) = c·(a×b)8.长度(模):o||a|| = √(a·a)9.单位向量:o一个向量除以其长度得到单位向量: a/||a||10.平行和垂直:o两个向量平行:a与b平行,当且仅当存在标量k,使得a = kb或b = ka。
o两个向量垂直:a与b垂直,当且仅当a·b = 0。
这些是向量的基本运算公式,它们形成了向量运算的基础,可以用于解决向量计算和几何问题。
需要注意的是,这些公式适用于向量的二维、三维或更高维度空间。
具体运用时,根据具体的向量运算要求和问题,选择合适的公式和运算规则。
(完整版)向量公式汇总
![(完整版)向量公式汇总](https://img.taocdn.com/s3/m/a2cdca3add3383c4ba4cd246.png)
向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。
若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。
向量公式大全
![向量公式大全](https://img.taocdn.com/s3/m/d0c0f334102de2bd970588cb.png)
向量公式大全向量公式大全1. 向量加法AB+BC=AC a+b=(x+x' ,y+y') a+0=0+a=a 运算律:交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c)2. 向量减法AB-AC二CB即“共同起点,指向被减”如果a、b 是互为相反的向量,那么a=-b ,b=-a,a+b=0.0 的反向量为0 a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3. 数乘向量实数入和向量a的乘积是一个向量,记作入a,且I入a I = I入I ? I a I当入〉0时,入a与a同方向当入v0时,入a与a反方向当入=0时,入a=0,方向任意当a=0时,对于任意实数入,都有入a=0『ps.按定义知,如果入a=0,那么入=0或a=0』实数入向量a的系数,乘数向量入a的几何意义就是将表示向量a的有向线段伸长或压缩当I入1> 1时,表示向量a的有向线段在原方向(入〉0)或反方向(入v 0)上伸长为原来的I入I倍当I入Iv 1时,表示向量a的有向线段在原方向(入〉0)或反方向(入v 0)上缩短为原来的I入I倍数乘运算律:结合律:(入a)?b二入(a ?b)=(a ?入b)向量对于数的分配律(第一分配律):(入+卩)a=入a+卩a.数对于向量的分配律(第二分配律):入(a+b)=入a+入b.数乘向量的消去律:① 如果实数入工0且入a二入b,那么a=b② 如果a z 0且入a=卩a,那么入=卩4. 向量的数量积定义:已知两个非零向量a,b作OA二a,OB=b则/ AOB称作a和b 的夹角,记作〈a,b〉并规定0W〈a,b > <n两个向量的数量积(内积、点积)是一个数量,记作a?b 若a、b 不共线,则a?b=|a| ?|b| ?cos〈a,b〉若a、b 共线,则a?b=+-I aII b I向量的数量积的坐标表示:a?b=x?x'+y ?y'向量数量积运算律a?b=b?a( 交换律)(入a) ?b=入(a ?b)(关于数乘法的结合律)(a+b) ?c=a?c+b?c( 分配律)向量的数量积的性质a?a=|a|2a丄b 〈 => a?b=0|a ?b| < |a| ?|b|向量的数量积与实数运算的主要不同点『重要』1、(a?b)?c 丰 a?(b ?c)例如:(a ?b)2 丰 a2?b22、由a ?b=a?c (a 工0),推不出b=c3、|a?b| 丰 |a| ?|b|4、由|a|=|b| ,推不出a=b 或a=-b5、向量向量积定义:两个向量a和b的向量积是一个向量,记作a x b.若a、b 不共线,则a x b 的模是:l a x b I =|a| ?|b| ?sin 〈a, b> .a x b 的方向是:垂直于a和b,且a、b和a x b按这个次序构成右手系.若a、 b 共线,则a x b=0.性质I a x b I是以a和b为边的平行四边形面积a x a=0a//b 〈=> a x b=0运算律a x b=-b x a(入a)x b二入(a x b)=a x (入b)(a+b)x c=a x c+b x c.『ps.向量没有除法“向量AB/向量CD是没有意义的』6. 向量的三角形不等式II a I - I b ll<l a+b l<l a I + I b I①当且仅当a、b 反向时,左边取等号②当且仅当a、b 同向时,右边取等号I I a I - I b II<I a-b I<I a I + I b I①当且仅当a、b 同向时,左边取等号②当且仅当a、b 反向时,右边取等号三点共线定理若0C=\ OA +卩OB ,且入+ □ =1 ,贝S A、B、C三点共线三角形重心判断式在厶ABC中,若GA +GB +GC=OU GABC的重心向量共线的重要条件若b z0,则a//b的重要条件是存在唯一实数入,使a二入b, xy'-x'y=0『零向量0 平行于任何向量』向量垂直的充要条件a丄b的充要条件是a ?b=0 xx'+yy'=07. 定比分点定比分点公式P1P二入?PP2设P1、P2是直线上的两点,P是直线上不同于P1、P2的任意一点则存在一个实数入,使P1P=X? PP2,入叫做点P分有向线段P1P2 所成的比若P1(x1,y1), P2(x2,y2), P(x,y),则有0P=(0P1 哉0P2)(1 + 入)(定比分点向量公式)x=(x1+ 入x2)/(1+ 入)y=(y1+入y2)/(1+入)(定比分点坐标公式)。
向量公式汇总
![向量公式汇总](https://img.taocdn.com/s3/m/ed73170849649b6649d747cb.png)
向量公式汇总Newly compiled on November 23, 2020向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC二AC。
a+b= (x+x‘ , y+y')。
a+0二0+a二a。
向量加法的运算律:交换律:a+b二b+a;结合律:(a+b) +c二a+ (b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a二-b, b二-a, a+b二0. 0的反向量为0 AB-AOCB.即“共同起点,指向被减”a二(x, y) b= (x f, y')贝!| a-b= (x-x‘,y-y' ).3、数乘向量实数X和向量a的乘积是一个向量,记作入a,且| ha |二丨入| | a |。
当入>0时,Aa与a同方向;当入<0时,入a与a反方向;当入二0时,X a=0,方向任意。
当a二0时,对于任意实数X,都有X a=0o注:按定义知,如果X a=0,那么入二0或a二0。
实数X叫做向量a的系数,乘数向量入a的儿何意义就是将表示向量a的有向线段伸长或压缩。
当丨入丨> 1时,表示向量a的有向线段在原方向(入>0)或反方向(X <0)上伸长为原来的|入|倍;当I入I < 1时,表示向量a的有向线段在原方向(X >0)或反方向(X <0)上缩短为原来的|入|倍。
数与向量的乘法满足下面的运算律结合律:(入a) b二入(ab)二(a入b)。
向量对于数的分配律(第一分配律):(A + U)a=Aa+Ua.数对于向量的分配律(第二分配律):X (a+b)=X a+Xb.数乘向量的消去律:①如果实数入工0且X a=Xb,那么a二b。
②如果aHO且A, a= P a,那么X = p o4、向量的的数量积定义:已知两个非零向量a, b。
作OA=a, OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0W〈a,b〉Wn定义:两个向量的数量积(内积、点积)是一个数量,记作ab。
向量公式汇总
![向量公式汇总](https://img.taocdn.com/s3/m/f26c7a0bdd3383c4bb4cd2b1.png)
向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)b=λ(ab)=(aλb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作ab。
若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。
向量的数量积的坐标表示:ab=xx'+yy'。
向量公式汇总
![向量公式汇总](https://img.taocdn.com/s3/m/81a4aa4b1711cc7931b716e1.png)
向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)?b=λ(a?b)=(a?λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。
若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。
向量公式汇总
![向量公式汇总](https://img.taocdn.com/s3/m/1af3a37c5901020207409c8a.png)
向量公式汇总文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)b=λ(ab)=(aλb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作ab。
若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。
向量公式汇总
![向量公式汇总](https://img.taocdn.com/s3/m/da9f0227dd3383c4ba4cd282.png)
向量公式汇总平面向量1、向量得加法向量得加法满足平行四边形法则与三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法得运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量得减法如果a、b就是互为相反得向量,那么a=-b,b=-a,a+b=0、0得反向量为0 AB-AC=CB、即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y')、3、数乘向量实数λ与向量a得乘积就是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a得系数,乘数向量λa得几何意义就就是将表示向量a得有向线段伸长或压缩。
当∣λ∣>1时,表示向量a得有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来得∣λ∣倍;当∣λ∣<1时,表示向量a得有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来得∣λ∣倍。
数与向量得乘法满足下面得运算律结合律:(λa)•b=λ(a•b)=(a•λb)。
向量对于数得分配律(第一分配律):(λ+μ)a=λa+μa、数对于向量得分配律(第二分配律):λ(a+b)=λa+λb、数乘向量得消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
4、向量得得数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a与向量b 得夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量得数量积(内积、点积)就是一个数量,记作a•b。
若a、b 不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。
向量公式大全
![向量公式大全](https://img.taocdn.com/s3/m/80d22eaba0116c175f0e482b.png)
大全式公向量加粗字母表示向量』ps.『向量加法1. AB+BC=AC y+y') ,=(x+x'b+a a=a+0=0+a运算律:a+b=b+a交换律:) c+b+(a=c)+b+a(结合律:向量减法2.即“共同起点,指向被减” AB-AC=CB ,a=-b,b=-a 是互为相反的向量,那么b、a如果 . 0=b+a0的反向量为0 =(x-x',y-y'). b-a则=(x',y') b=(x,y) a数乘向量3.=∣aλ,且∣aλ的乘积是一个向量,记作a 和向量λ实数∣a∣•∣λ∣λ时,0>λ当同方向a与aa与aλ时,0<λ当反方向,方向任意0=aλ时,0=λ当0=aλ,都有λ时,对于任意实数0=a当』0=a或0=λ,那么0=aλ按定义知,如果ps.『λ实数的有向线段伸长a的几何意义就是将表示向量aλ的系数,乘数向量a向量或压缩<λ(或反方向)0>λ(的有向线段在原方向a表示向量时,1∣>λ当∣上伸长)0 ∣倍λ为原来的∣(的有向线段在原方向a表示向量时,1∣<λ当∣上缩短)0<λ(或反方向)0>λ ∣倍λ为原来的∣数乘运算律: b•λa)=(b•a(λ=b)•aλ(结合律:) +aλ=a)μ+λ(:)第一分配律(向量对于数的分配律. aμ+aλ)=b+a(λ:)第二分配律(数对于向量的分配律. bλa,那么bλ=aλ且0≠λ如果实数数乘向量的消去律:①0≠a如果② b==λ,那么aμ=aλ且μ向量的数量积4.的夹角,b和a称作AOB则∠,b,OB=aOA=作 b,a已知两个非零向量定义:π〉≤b,a≤〈0〉并规定b,a记作〈若b•a是一个数量,记作)内积、点积(两个向量的数量积不共线,则b、ab、a若〉b,a〈osc|•b|•|a=|b•a ∣b∣∣a∣=+-b•a 共线,则=x•x'+y•y'b•a向量的数量积的坐标表示:向量数量积运算律 ) 交换律(a•b=b•a•a(λ=b)•aλ( ) 关于数乘法的结合律)(b ) 分配律(c•b+c•a=c)•b+a( 向量的数量积的性质|a=|a•a2 0=b•a〉=〈 b⊥a | b|•|a|≤|b•a|向量的数量积与实数运算的主要不同点『重要』a(、 1 a≠)b•a(例如:) c•b•(a≠c)•b•222b•(c•a=b•a、由 2 c=b,推不出)0≠ab•a|、3 | b|•|a|≠| ,推不出| b|=|a| 、由4 b=-a或b=a、向量向量积5定义:两个向量不共线,则b、a若.b×a的向量积是一个向量,记作b和a a∣的模是:b×a和a垂直于的方向是:b×a.〉b,a〈|•sinb|•|a=|∣b×、a且,b×a共线,则b、a若.按这个次序构成右手系b×a和b. 0=b 性质为边的平行四边形面积b和a∣是以b×a∣0=a×a0=b×a〉=〈b//a运算律a×b=-b×a)aλ( ) bλ(×a)=b×a(λ=b×+a( . c×b+c×a=c×)b向量没有除法ps.『”是没有意义的』CD向量AB/“向量向量的三角形不等式 6. b∣+∣a∣≤∣b+a∣∣≤∣b∣-∣a∣∣∣反向时,左边取等号b、a当且仅当① 同向时,右边取等号b、a当且仅当② ∣b∣+∣a∣≤∣b-a∣∣≤∣b∣-∣a∣∣① 同向时,左边取等号b、a当且仅当反向时,右边取等号b、a当且仅当② ————————————————————————————————三点共线定理三点共线C、B、A则=1 ,μ+λ且OB ,μOA +λOC=若三角形重心判断式的重心ABC为△G则GA +GB +GC=O,中,若ABC 在△向量共线的重要条件的重要条件是存在唯一实数a//b,则0≠b若 xy'-x'y=0 ,bλa=,使λ于任何向量』平行0『零向量向量垂直的充要条件的充要条件是b⊥a xx'+yy'=0 b=0 •a 于任何向量』垂直0『零向量定比分点7.PPλ•=PP 定比分点公式 12则存在一的任意一点P、P是直线上不同于P是直线上的两点,P、P设 1212 所成的比PP分有向线段P叫做点λ,PPλ•=PP,使λ 个实数2121 P若定比分点向量)(λ)(1+P Oλ+P OP=(O,则有(x,y)P,),y(xP,),y(x22211121)公式) λ)/(1+xλ+x=(x21)定比分点坐标公式) (λ)/(1+yλ+y=(y 12。
向量公式大全
![向量公式大全](https://img.taocdn.com/s3/m/7b18db1b6bd97f192279e917.png)
向量公式设a=(x,y),b=(x',y')。
1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
3、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。
若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。
向量的基本运算公式大全
![向量的基本运算公式大全](https://img.taocdn.com/s3/m/4a8bf554ae1ffc4ffe4733687e21af45b307fea2.png)
向量的基本运算公式大全(实用版)目录1.向量的加法和减法2.向量的数乘3.向量的点积4.向量的叉积5.向量的模和夹角6.齐次坐标和变换正文一、向量的加法和减法向量的加法和减法是向量运算中最基本的运算,其定义和规则与我们熟悉的数值加减法类似。
给定两个向量 A 和 B,其加法和减法定义如下:A +B = (a1 + b1, a2 + b2, a3 + b3)A -B = (a1 - b1, a2 - b2, a3 - b3)二、向量的数乘向量的数乘是向量与标量的乘积,其结果是一个向量,其模长是原向量模长的 k 倍,方向与原向量相同或相反,k 为标量。
给定一个向量 A 和一个标量 k,其数乘定义如下:kA = (ka1, ka2, ka3)三、向量的点积向量的点积,又称内积,是一种计算两个向量之间相似度的方法。
其结果是一个标量,其值等于两个向量模长的乘积与它们的夹角的余弦值的乘积。
给定两个向量 A 和 B,其点积定义如下:A·B = |A|*|B|*cosθ四、向量的叉积向量的叉积,又称外积,是一种计算两个向量之间垂直度的方法。
其结果是一个向量,其模长等于两个向量模长的乘积与它们的夹角的正弦值的乘积,方向垂直于两个向量构成的平面。
给定两个向量 A 和 B,其叉积定义如下:A ×B = (a2*b3 - a3*b2, a3*b1 - a1*b3, a1*b2 - a2*b1)五、向量的模和夹角向量的模,又称向量的长度,是向量的一种度量,等于向量对应端点之间的距离。
给定一个向量 A,其模定义如下:|A| = √(a1^2 + a2^2 + a3^2)向量的夹角,是向量 A 与向量 B 之间的角度,其范围在 0 到π之间。
给定两个向量 A 和 B,它们的夹角定义如下:θ = arccos(A·B / (|A|*|B|))六、齐次坐标和变换齐次坐标是一种用于表示向量的简化方法,它可以将向量的三个分量表示为一个三个元素的序列。
向量公式汇总
![向量公式汇总](https://img.taocdn.com/s3/m/f0de589bd15abe23482f4da4.png)
向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)?b=λ(a?b)=(a?λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。
若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。
向量运算公式大全
![向量运算公式大全](https://img.taocdn.com/s3/m/9fd91a32178884868762caaedd3383c4ba4cb45d.png)
向量运算公式大全向量是数学中一个非常重要的概念,它在物理、工程、计算机科学等领域都有着广泛的应用。
向量运算是对向量进行各种操作的过程,包括加法、减法、数量乘法、点积、叉积等。
本文将为大家介绍向量运算的各种公式,希望能帮助大家更好地理解和运用向量。
1. 向量加法。
向量加法是指两个向量相加的运算。
设有两个向量a和b,它们的加法运算可以表示为:a +b = (a1 + b1, a2 + b2, ..., an + bn)。
其中a1, a2, ..., an分别表示向量a的各个分量,b1, b2, ..., bn分别表示向量b的各个分量。
这个公式表明,向量加法就是将两个向量对应分量相加得到新的向量。
2. 向量减法。
向量减法是指一个向量减去另一个向量的运算。
设有两个向量a和b,它们的减法运算可以表示为:a b = (a1 b1, a2 b2, ..., an bn)。
与向量加法类似,向量减法也是将两个向量对应分量相减得到新的向量。
3. 数量乘法。
数量乘法是指一个向量乘以一个标量的运算。
设有一个向量a和一个标量k,它们的数量乘法运算可以表示为:k a = (k a1, k a2, ..., k an)。
这个公式表明,数量乘法就是将向量的每个分量都乘以标量得到新的向量。
4. 点积。
点积是指两个向量之间的一种运算。
设有两个向量a和b,它们的点积可以表示为:a ·b = a1 b1 + a2 b2 + ... + an bn。
点积的结果是一个标量,它等于两个向量对应分量相乘再相加得到的值。
5. 叉积。
叉积是指两个向量之间的另一种运算。
设有两个向量a和b,它们的叉积可以表示为:a ×b = (a2 b3 a3 b2, a3 b1 a1 b3, a1 b2 a2 b1)。
叉积的结果是一个新的向量,它的方向垂直于原来两个向量所在的平面,大小等于这两个向量构成的平行四边形的面积。
以上就是向量运算的一些基本公式,通过这些公式我们可以进行各种向量运算,包括向量的加法、减法、数量乘法、点积、叉积等。
向量的基本运算公式大全
![向量的基本运算公式大全](https://img.taocdn.com/s3/m/249ca5172bf90242a8956bec0975f46527d3a79c.png)
向量的基本运算公式大全向量是数学中的重要概念,常用于描述物理、几何和计算机图形学等领域。
在向量的运算中,包括向量的加法、减法、数量乘法、点积和叉积等基本运算。
下面将分别介绍这些向量运算的公式。
1. 向量的加法:设向量a=(a1, a2, ..., an),b=(b1, b2, ..., bn),则向量a和向量b的加法定义为:a +b = (a1 + b1, a2 + b2, ..., an + bn)2. 向量的减法:设向量a=(a1, a2, ..., an),b=(b1, b2, ..., bn),则向量a和向量b的减法定义为:a -b = (a1 - b1, a2 - b2, ..., an - bn)3. 向量的数量乘法:设向量a=(a1, a2, ..., an),k为常数,则向量a乘以k的结果为:k * a = (k * a1, k * a2, ..., k * an)4. 向量的点积(内积):设向量a=(a1, a2, ..., an),b=(b1, b2, ..., bn),则向量a和向量b的点积定义为:a ·b = a1 * b1 + a2 * b2 + ... + an * bn5. 向量的叉积(外积):设向量a=(a1, a2, a3),b=(b1, b2, b3),则向量a和向量b的叉积定义为:a ×b = (a2 * b3 - a3 * b2, a3 * b1 - a1 * b3, a1 * b2 - a2 * b1)6. 向量的模(长度):设向量a=(a1, a2, ..., an),则向量a的模(长度)定义为:|a| = sqrt(a1^2 + a2^2 + ... + an^2)7. 向量的单位化:设向量a=(a1, a2, ..., an),则向量a的单位向量定义为:u = a / |a| = (a1/|a|, a2/|a|, ..., an/|a|)8. 向量的投影:设向量a=(a1, a2, ..., an),向量b=(b1, b2, ..., bn),则向量a在向量b上的投影为:proj_b a = (a · b) / |b| * (b1/|b|, b2/|b|, ..., bn/|b|)9. 向量的夹角:设向量a和向量b的夹角为θ,则夹角θ的余弦定义为:cosθ = (a · b) / (|a| * |b|)以上是向量的基本运算公式大全,这些公式在数学和物理中有着广泛的应用。
向量公式大全
![向量公式大全](https://img.taocdn.com/s3/m/e1008556bf1e650e52ea551810a6f524ccbfcb48.png)
向量公式⼤全向量公式⼤全『ps.加粗字母表⽰向量』1.向量加法羈AB+BC=ACa+b=(x+x',y+y')a+0=0+a=a运算律:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)2.向量减法罿AB-AC=CB 即“共同起点,指向被减”如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3.数乘向量实数λ和向量a的乘积是⼀个向量,记作λa,且∣λa∣=∣λ∣?∣a∣当λ>0时,λa与a同⽅向当λ<0时,λa与a反⽅向当λ=0时,λa=0,⽅向任意当a=0时,对于任意实数λ,都有λa=0『ps.按定义知,如果λa=0,那么λ=0或a=0』实数λ向量a的系数,乘数向量λa的⼏何意义就是将表⽰向量a的有向线段伸长或压缩当∣λ∣>1时,表⽰向量a的有向线段在原⽅向(λ>0)或反⽅向(λ<0)上伸长为原来的∣λ∣倍当∣λ∣<1时,表⽰向量a的有向线段在原⽅向(λ>0)或反⽅向(λ<0)上缩短为原来的∣λ∣倍数乘运算律:结合律:(λa)?b=λ(a?b)=(a?λb)向量对于数的分配律(第⼀分配律):(λ+µ)a=λa+µa.数对于向量的分配律(第⼆分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b②如果a≠0且λa=µa,那么λ=µ4.向量的数量积定义:已知两个⾮零向量a,b作OA=a,OB=b,则∠AOB称作a和b的夹⾓,记作〈a,b〉并规定0≤〈a,b〉≤π两个向量的数量积(内积、点积)是⼀个数量,记作a?b若a、b不共线,则a?b=|a|?|b|?c os〈a,b〉若a、b共线,则a?b=+-∣a∣∣b∣向量的数量积的坐标表⽰:a?b=x?x'+y?y'向量数量积运算律a?b=b?a(交换律)(λa)?b=λ(a?b)(关于数乘法的结合律)(a+b)?c=a?c+b?c(分配律)向量的数量积的性质a?a=|a|2a⊥b〈=〉a?b=0|a?b|≤|a|?|b|向量的数量积与实数运算的主要不同点『重要』1、(a?b)?c≠a?(b?c) 例如:(a?b)2≠a2?b22、由a?b=a?c (a≠0),推不出b=c3、|a?b|≠|a|?|b|4、由|a|=|b| ,推不出a=b或a=-b5、向量向量积定义:两个向量a和b的向量积是⼀个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉.a×b的⽅向是:垂直于a和b,且a、b和a×b按这个次序构成右⼿系.若a、b共线,则a×b=0.性质∣a×b∣是以a和b为边的平⾏四边形⾯积a×a=0a//b〈=〉a×b=0运算律a×b=-b×a(λa)×b=λ(a×b)=a×(λb)(a+b)×c=a×c+b×c.羀『ps.向量没有除法“向量AB/向量CD”是没有意义的』6.向量的三⾓形不等式∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣①当且仅当a、b反向时,左边取等号②当且仅当a、b同向时,右边取等号∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣①当且仅当a、b同向时,左边取等号②当且仅当a、b反向时,右边取等号————————————————————————————————三点共线定理若OC=λOA +µOB ,且λ+µ=1 ,则A、B、C三点共线三⾓形重⼼判断式在△ABC中,若GA +GB +GC=O,则G为△ABC的重⼼向量共线的重要条件若b≠0,则a//b的重要条件是存在唯⼀实数λ,使a=λb,xy'-x'y=0膂『零向量0平⾏于任何向量』向量垂直的充要条件a⊥b的充要条件是a?b=0 xx'+yy'=0蒈『零向量0垂直于任何向量』7.定⽐分点定⽐分点公式P1P=λ? PP2设P1、P2是直线上的两点,P是直线上不同于P1、P2的任意⼀点则存在⼀个实数λ,使P1P=λ? PP2,λ叫做点P分有向线段P1P2所成的⽐若P1(x1,y1),P2(x2,y2),P(x,y),则有OP=(O P1+λO P2)(1+λ) (定⽐分点向量公式)x=(x1+λx2)/(1+λ)y=(y1+λy2)/(1+λ) (定⽐分点坐标公式)。
向量定理七个公式
![向量定理七个公式](https://img.taocdn.com/s3/m/a6dc486df56527d3240c844769eae009581ba218.png)
向量定理七个公式平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。
平面向量用a,b,c 上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
输入分数,查看能上的大学测一测能上的大学1向量的加法1、向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=(x+x',y+y').a+0=0+a=a.2、向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).2向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3向量的的数量积1、定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.2、向量的数量积的坐标表示:a•b=x•x'+y•y'.3、向量的数量积的运算律a•b=b•a(交换律);(λa)•b=λ(a•b)(关于数乘法的结合律);(a+b)•c=a•c+b•c(分配律);4、向量的数量积的性质a•a=|a|的平方.a⊥b 〈=〉a•b=0.|a•b|≤|a|•|b|.5、向量的数量积与实数运算的主要不同点(1)向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2.(2)向量的数量积不满足消去律,即:由a•b=a•c (a≠0),推不出b=c.(3)|a•b|≠|a|•|b|(4)由|a|=|b| ,推不出a=b或a=-b.4数乘向量1、实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣.当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.2、数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.5向量的向量积1、定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.2、向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a‖b〈=〉a×b=0.3、向量的向量积运算律a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的.6向量的三角形不等式1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;① 当且仅当a、b反向时,左边取等号;② 当且仅当a、b同向时,右边取等号.2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.① 当且仅当a、b同向时,左边取等号;② 当且仅当a、b反向时,右边取等号.7定比分点定比分点公式(向量P1P=λ•向量PP2)设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数λ,使向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比.若P1(x1,y1),P2(x2,y2),P(x,y),则有OP=(OP1+λOP2)(1+λ);(定比分点向量公式)x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ).(定比分点坐标公式)我们把上面的式子叫做有向线段P1P2的定比分点公式8其他公式1、三点共线定理若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线2、三角形重心判断式在△ABC中,若GA +GB +GC=O,则G为△ABC的重心3、向量共线的重要条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb. a//b的重要条件是xy'-x'y=0.4、零向量0平行于任何向量.5、向量垂直的充要条件a⊥b的充要条件是a•b=0.a⊥b的充要条件是xx'+yy'=0.6、零向量0垂直于任何向量.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量公式汇总Newly compiled on November 23, 2020
向量公式汇总
平面向量
1、向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').
3、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律
结合律:(λa)b=λ(ab)=(aλb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积
定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作ab。
若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。
向量的数量积的坐标表示:ab=xx'+yy'。
向量的数量积的运算律
ab=ba(交换律);
(λa)b=λ(ab)(关于数乘法的结合律);
(a+b)c=ac+bc(分配律);
向量的数量积的性质
aa=|a|的平方。
a⊥b 〈=〉ab=0。
|ab|≤|a||b|。
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:
(ab)^2≠a^2b^2。
2、向量的数量积不满足消去律,即:由 ab=ac (a≠0),推不出 b=c。
3、|ab|≠|a||b|
4、由 |a|=|b| ,推不出 a=b或a=-b。
5、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。
若a、b不共线,则a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。
若a、b共线,则
a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的。
向量的三角形不等式
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
①当且仅当a、b反向时,左边取等号;
②当且仅当a、b同向时,右边取等号。
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
①当且仅当a、b同向时,左边取等号;
②当且仅当a、b反向时,右边取等号。
6.定比分点
定比分点公式(向量P1P=λ向量PP2)
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。
则存在一个实数λ,使向量P1P=λ向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有
OP=(OP1+λOP2)(1+λ);(定比分点向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。
(定比分点坐标公式)
我们把上面的式子叫做有向线段P1P2的定比分点公式
三点共线定理
若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线
三角形重心判断式
在△ABC中,若GA +GB +GC=O,则G为△ABC的重心
[编辑本段]向量共线的重要条件
若b≠0,则a 空间向量 令a =(a 1,a 2,a 3),),,(321b b b b =,则
共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合. a ∥)(,,332211R b a b a b a b ∈===⇔λλλλ3
32211b a b a b a ==⇔ 如果三个向量....c b a ,,不共面...
:那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.
推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P, 都存在唯一的有序实数组x 、y 、z 使 OC z OB y OA x OP ++=(这里隐含x+y+z≠1). 向量垂直 0332211=++⇔⊥b a b a b a b a 。
空间两个向量的夹角公式
(a =123(,,)a a a ,b =123(,,)b b b )。
空间两点的距离公式:
212212212)()()(z z y y x x d -+-+-=.
利用法向量求点到面的距离:
如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平
面α的距离为||n .
.异面直线间的距离
||||
CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).
B 到平面α的距离
||||
AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈).
直线AB 与平面所成角
sin ||||
AB m arc AB m β⋅=(m 为平面α的法向量). 利用法向量求二面角的平面角: cos ||||m n arc m n θ⋅=或cos ||||m n arc m n π⋅-(m ,n 为平面α,β的法向量)。