第53讲波动光学——光的干涉第53讲波动光学——光的干涉2
第三章 光的干涉 波动光学课件
E (z,t)E 10exp[j(kzt10)]E 20exp[j(kzt20)] [E 10exp(j10)E 20exp(j20)]exp[j(kzt)] E 0exp[j(kzt)]
第 三 章 光的干涉
新的振幅和初位相,可利用三角和的公式求得:
E0E 10exp(j10)E20exp(j20) (E 10cos10E20cos20)j(E 10sin10E20sin20) E0exp(j0)
上面两种情况之间。 • 为了产生明显的干涉现象,要求二光束的振动方
向相同。
(3) 对二干涉光束相位差的要求: 为了获得稳定的干涉图形,二干涉光束的相位差必 须固定不变,即要求二等频单色光波的初相位差恒 定。实际上,考虑到光源的发光特点,这是最关键 的要求。
第 三 章 光的干涉
相干条件
两束光波发生干涉的三个必要条件: • 两束光波的频率应当相同; • 两束光波在相遇处的振动方向应当相同; • 两束光波在相遇处应有固定不变的相位差。
2) 产生干涉的条件
(1)对干涉光束的频率要求:
第 三 章 光的干涉
由二干涉光束相位差的关系式可以看出: • 当二光束频率相等,Δω=0时,干涉光强不随时
间变化,可以得到稳定的干涉条纹分布; • 当二光束的频率不相等,Δω≠0时,干涉条纹将
随着时间产生移动; • Δω愈大,条纹移动速度愈快,当Δω大到一定程
E (z,t)A ex p [j(kz t 0)
第 三 章 光的干涉
第 三 章 光的干涉
• 合成波是一个频率为 而振幅受到调制的波,它
的复数因子表示的波叫做“载波”,就是图(b) 中的高频振荡部分,它的波数、时间角频率、初 位相均等于两个分量波对应参量的平均值。 • 所谓载波,就是用来承载某种东西的波。 • 振幅中的余弦表示的是沿z方向传播的行波,称为 “调制波”,如图(c)所示。 • 图(d)表示的是调制波的强度。调制波就是载 波承载的东西,如果我们想通过光波来传播信号, 就是将信号调制到载波上去,无线电波就是这么 做的。
波动光学
x l tan l sin
消去,得r2
r1
d
x l
k
亮纹位置x k l d
条纹间距x 说法中正确的是
() A.用同一单色光做双缝干涉实验,能观察到明、暗相间的单色条纹 B.用同一单色光经双缝干涉后的明条纹距两缝的距离之差为该单色 光波长的整数倍 C.用同一单 色光经双缝干涉后的明条纹距两缝的距离之差一定为该 单色光波长的奇数 倍 D.用同一单色光经双缝干涉后的暗条纹距两缝的距离之差一定为该 单色光半波长的奇 数倍
波动光学
光的干涉
双缝干涉 实验
光的衍射 光的偏振
色散
激光
一、光的干涉
一、光的干涉 在两列光波叠加区域,某些区域加强,出现亮纹,某些区域相互减弱,出 现暗纹,且加强和减弱的区域相间,即亮纹和暗纹相间的现象。 干涉条件:光频率相同,振动情况相同且相位差恒定。
用双缝干涉测量光的波长 杨氏双缝
r2 r1 d sin
5
【例7】用单色光做双缝干涉实验和单缝衍射实验,比较屏上的条纹,下列说 法中正确的是( ) A.双缝干涉条纹是等间距的明暗相间的条纹 B.单缝衍射条纹是中央宽、两边窄的明暗相间的条纹 C.双缝干涉条纹是中央宽、两边窄的明暗相间的条纹 D.单缝衍射条纹是等间距的明暗相间的条纹
光的偏振 光是一种横波 偏振片的作用就是只保留光中的一个方向的振动。
光的色散 含有多种颜色的光被分解成单色光的现象叫做色散
三种常见途径: 1.薄膜干涉中的色散
2.衍射中的色散
3.折射时的色散
【例10】一束白光通过双缝后在屏上观察到干涉条纹,除中央白色条纹外, 两侧还有彩色条纹,是因为( ) A.各色光的波长不同,因而各色光产生的干涉条纹间距不同 B.各色光的速度不同,造成条纹间距不同 C.各色光的强度不同 D.各色光通过双缝的距离不同
第53讲 光的干涉、衍射和偏振 电磁波与相对论
第53讲光的干涉、衍射和偏振电磁波与相对论知识点一光的干涉1.产生条件两列光的频率相同,振动方向相同,且具有恒定的相位差,才能产生稳定的干涉图样.2.两种典型的干涉(1)杨氏双缝干涉.①原理如图所示.②明、暗条纹的条件(Ⅰ)单色光:形成明暗相间的条纹,中央为明条纹.a.光的路程差Δr=r2-r1=kλ(k=0、1、2,…),光屏上出现明条纹.b.光的路程差Δr=r2-r1=(2k+1)λ2(k=0、1、2,…),光屏上出现暗条纹.(Ⅱ)白光:光屏上出现彩色条纹,且中央亮条纹是白色(填写颜色).③相邻两个亮条纹或暗条纹的中心间距公式:Δx=ldλ.(2)薄膜干涉.①相干光:光照射到透明薄膜上,从薄膜的两个表面反射的两列光波.②图样特点:同双缝干涉,同一条亮(或暗)纹对应薄膜的厚度相等.单色光照射薄膜时形成明暗相间的条纹,白光照射薄膜时,形成彩色条纹.知识点二光的衍射偏振1.光的衍射(1)发生明显衍射的条件:只有当障碍物的尺寸与光的波长相差不多,甚至比光的波长还小的时候,衍射现象才会明显.(2)衍射条纹的特点:①单缝衍射和圆孔衍射图样的比较.②泊松亮斑(圆盘衍射):当光照到不透明(选填“透明”或“不透明”)的半径很小的小圆盘上时,在圆盘的阴影中心出现亮斑(在阴影外还有不等间距的明暗相间的圆环).2.光的偏振现象(1)偏振光波只沿某一特定的方向的振动.(2)自然光太阳、电灯等普通光源发出的光,包括在垂直于传播方向上沿一切方向振动的光,而且沿各个方向振动的光波的强度都相同,这种光叫做自然光.(3)偏振光在垂直于传播方向的平面上,只沿某个特定方向振动的光.光的偏振证明光是横波.自然光通过偏振片后,就得到了偏振光.知识点三电磁波与相对论1.电磁波的产生(1)麦克斯韦电磁场理论变化的磁场产生电场,变化的电场产生磁场.(2)电磁场变化的电场和变化的磁场总是相互联系成为一个完整的整体,这就是电磁场.(3)电磁波电磁场(电磁能量)由近及远地向周围传播形成电磁波.①电磁波是横波,在空间传播不需要介质;②真空中电磁波的速度为3.0×108 m/s;③v=λf对电磁波同样适用;④由磁波能产生反射、折射、干涉和衍射等现象.2.电磁波的发射和接收(1)发射电磁波的条件①要有足够高的振荡频率;②电路必须开放,使振荡电路的电场和磁场分散到尽可能大的空间.(2)调制有调幅和调频两种方式,解调是调制的逆过程.(3)电磁波谱①定义:按电磁波的波长从长到短分布是无线电波、红外线、可见光、紫外线、X射线和γ射线,形成电磁波谱;递变规律:直线传播能力增强,衍射能力减弱.②电磁波谱的特性、应用3.狭义相对论(1)狭义相对论的两个基本假设①狭义相对性原理:在不同的惯性参考系中,一切物理规律都是相同的.②光速不变原理:真空中的光速在不同的惯性参考系中都是相同的,光速与光源、观测者间的相对运动没有关系.(2)相对论的质速关系①物体的质量随物体速度的增加而增大,物体以速度v运动时的质量m与静止时的质量m0之间有如下关系:m=m01-(v c)2.②物体运动时的质量m总要大于静止时的质量m0.4.相对论质能关系用m表示物体的质量,E表示它具有的能量,则爱因斯坦质能方程为:E=mc2.(1)光的干涉和衍射现象说明了光是波,也能说明光是横波.(×)(2)在双缝干涉实验中,双缝的作用是使一束光变成两束完全相同的相干光.(√)(3)阳光在水面的反射光是偏振光.(√)(4)电磁波以一定的速度在空间传播,在传播过程中满足v=λf.(√)(5)波长不同的电磁波在本质上不相同.(×)(6)电磁波同机械波一样能发生干涉、衍射、反射、折射等现象.(√)1.(多选)关于以下几种电磁波的作用,说法正确的是(ABD)A.用红外线热像仪检测发热病人,利用了物体在不同温度下发射的红外线的频率和强度不同B.刑侦上用紫外线拍摄指纹照片,因为紫外线波长短,分辨率高C.红外遥感技术利用了红外线的显著热效应D.验钞机之所以利用紫外线验钞是因为紫外线具有荧光效应E.阴极射线是一种频率极高的电磁波解析:物体的温度越高,它辐射的红外线越强,波长越短,红外线热像仪利用物体在不同温度下发射的红外线的频率和强度不同检测发热病人,选项A正确;因为紫外线波长短,用紫外线拍摄指纹照片,分辨率高,选项B正确;红外遥感技术利用灵敏的红外线探测仪接收的物体发射的红外线探知物体的特征,选项C错误;紫外线具有荧光效应,可使钞票上的荧光物质发光,选项D正确;阴极射线实际是高速电子流,E错误.2.(多选)下面有关光纤及光纤通信的说法正确的是(ABE) A.光纤由内芯和外套两层组成,内芯的折射率比外套的大B.光在光纤中传输利用了全反射的原理C.光纤通信是一种以光波为传输介质的通信方式,光波按其波长长短,依次可分为红外线、可见光和紫外线,但红外线和紫外线属不可见光,它们都不可用来传输信息D.光波和无线电波同属电磁波,光波的频率比无线电波的频率低,波长比无线电波的波长长,在真空中传播的速度大小都约为3.0×108 m/sE.光纤通信的主要优点是容量大,此外,光纤传输还有衰减小、抗干扰性强等优点解析:发生全反射的条件是光必须从光密介质射入光疏介质,即从折射率大的介质射入折射率小的介质,且入射角大于临界角,当内芯的折射率比外套的折射率大时,光在界面上才能发生全反射,选项A、B正确;只要是光波,就能够在光导纤维中传播,不管是可见光还是不可见光,都可以用来传输信息,选项C错误;光波的频率比无线电波的频率高,波长比无线电波的波长短,选项D错误;光纤通信的优点有容量大、衰减小、抗干扰性强等,选项E正确.3.(多选)下列说法正确的是(ACE)A.用光导纤维束传输图像和信息,利用了光的全反射原理B.紫外线比红外线更容易发生明显的衍射现象C.经过同一装置所得的干涉条纹,红光比绿光的条纹宽度大D.光的色散现象都是由于光的干涉现象引起的E.光的偏振现象说明光是一种横波解析:用光导纤维束传输图像和信息,利用了光的全反射原理,A正确;紫外线的频率比红外线的大,故波长比红外线的小,所以二者相比,红外线更容易发生明显的衍射现象,B错误;根据干涉条纹间距公式Δx=ldλ知,波长越长,条纹间距越大,因为红光的波长大于绿光的波长,所以经过同一装置所得的干涉条纹,红光比绿光的条纹宽度大,C正确;光的折射、干涉都能引起光的色散,D错误;偏振是横波特有的,光的偏振现象说明光是横波,E正确.4.(多选)关于振动和波动,下列说法不可能的是(ACE)A.太阳光通过三棱镜形成彩色光谱是光的干涉现象B.在照相机镜头前加装偏振滤光片拍摄日落时的景物,可使景象更清晰C.无线电波的发射能力与频率有关,频率越高发射能力越弱D.一个单摆在海平面上的振动周期为T,那么将其放在某高山之巅,其振动周期一定变大E.根据单摆的周期公式T=2πlg,在地面附近,如果l→∞,则其周期T→∞解析:太阳光通过三棱镜形成彩色光谱是光的折射现象,选项A错误;在照相机镜头前装上一个偏振滤光片,利用了光的偏振原理,当偏振片的方向与偏振光的方向平行时,允许偏振光通过,当它们相互垂直时,偏振光不能通过,在照相机镜头前加装偏振滤光片拍摄日落时的景物,可以减弱反射光,使照片清楚,选项B正确;无线电波的发射能力与频率有关,频率越高发射能力越强,选项C错误;单摆的周期公式T=2πlg,当其放在某高山之巅时,因重力加速度变小,故其振动周期一定变大,选项D正确;根据单摆的周期公式T=2πlg,在地面附近,如果l→∞,则重力加速度变化,故选项E错误.知识点一光的干涉、衍射及偏振1.光的干涉(1)明暗条纹的判断方法①单色光a.如图所示,光源S1、S2发出的光到屏上P点的路程差r2-r1=kλ(k=0,1,2,…)时,光屏上出现亮条纹.b.光的路程差r2-r1=(2k+1)λ2(k=0,1,2,…)时,光屏上出现暗条纹.②白光:光屏上出现彩色条纹.③中央条纹为亮条纹.(2)双缝干涉条纹是等间距的相邻亮条纹(或暗条纹)间的距离与波长成正比(装置已确定的情况下).利用双缝干涉实验可测量光波的波长.(3)薄膜干涉①如图所示,竖直的肥皂薄膜,由于重力的作用,形成上薄下厚的楔形.②光照射到薄膜上时,在膜的前表面AA′和后表面BB′分别反射出来,形成两列频率相同的光波,并且叠加.③原理分析单色光a.在P1、P2处,两个表面反射回来的两列光波的路程差Δr等于波长的整数倍,即Δr=nλ(n=1,2,3,…),薄膜上出现亮条纹.b.在Q处,两列反射回来的光波的路程差Δr等于半波长的奇数倍,即Δr=(2n+1)λ2(n=0,1,2,3,…),薄膜上出现暗条纹.白光:薄膜上出现水平彩色条纹.(4)薄膜干涉的应用干涉法检查平面如图所示,两板之间形成一楔形空气膜,用单色光从上向下照射,如果被检平面是平整光滑的,会观察到平行且等间距的明暗相间的条纹;若被检平面不平整,则干涉条纹发生弯曲.2.光的干涉和衍射的比较(1)干涉和衍射的比较(2)对光的衍射的理解①干涉和衍射是波的特征,波长越长,干涉和衍射现象越明显.在任何情况下都可以发生衍射现象,只是明显与不明显的差别.②衍射现象说明“光沿直线传播”只是一种特殊情况,只有在光的波长比障碍物小得多时,光才可以看做是沿直线传播的.3.自然光与偏振光1.[光的干涉](多选)关于光的干涉,下列说法中正确的是(ABC)A.在双缝干涉现象里,相邻两明条纹和相邻两暗条纹的间距是相等的B.在双缝干涉现象里,入射光波长变短,相邻两个明条纹间距将变窄C.只有频率相同的两列光波才能产生干涉D.频率不同的两列光波也能产生干涉现象,只是不稳定E.频率不同的光不可能叠加解析:在双缝干涉现象中,相邻两明条纹和相邻两暗条纹的间距是相等的,入射光的波长越长,相邻两个明条纹的间距越大;两列波产生干涉时,频率必须相同,任何两列光波都能叠加.2.[衍射的应用] (多选)抽制高强度纤维细丝可用激光监控其粗细,如图所示,激光束越过细丝时产生的条纹和它通过遮光板的同样宽度的窄缝规律相同.观察光束经过细丝后在光屏上所产生的条纹即可判断细丝粗细的变化,下列叙述中正确的是(AD)A.这里应用的是光的衍射现象B.这里应用的是光的干涉现象C.如果屏上条纹变窄,表明抽制的丝变粗D.如果屏上条纹变宽,表明抽制的丝变细解析:由于是激光束越过细丝即绕过障碍物,所以是光的衍射现象,当抽制的丝变细的时候,丝的直径较接近激光的波长,条纹间距就大,A、D正确.3.[光的偏振现象](多选)光的偏振现象说明光是横波.下列现象中能反映光的偏振特性的是(ABC)A.一束自然光相继通过两个偏振片,以光束为轴旋转其中一个偏振片,透射光的强度发生变化B.一束自然光入射到两种介质的分界面上,当反射光线与折射光线之间的夹角恰好是90°时,反射光是偏振光C.日落时分,拍摄水面下的景物,在照相机镜头前装上偏振滤光片可以使景象更清晰D.通过手指间的缝隙观察日光灯,可以看到彩色条纹解析:在垂直于传播方向的平面上,沿着某个特定方向振动的光是偏振光,选项A、B反映了光的偏振特征,C是偏振现象的应用,D是光的衍射现象.知识点二实验:用双缝干涉测光的波长1.实验装置2.实验方法(1)根据公式Δx=ldλ得λ=dlΔx.(2)用刻度尺测出双缝到光屏的距离l,用测量头调节清晰的干涉条纹,测出n个亮纹间的距离a,则Δx=an-1.双缝间距d是已知的,这样就可以计算出波长λ.3.实验步骤(1)将光源、单缝、遮光筒、毛玻璃屏依次安装在光具座上.(2)接好光源,打开开关,使灯丝正常发光.(3)调节各器材的高度,使光源灯丝发出的一束光,能沿轴线到达光屏.(4)安装双缝,使双缝与单缝的缝平行,二者间距约5~10 cm,观察白光的干涉条纹.(5)在单缝和双缝间放上滤光片,观察单色光的干涉条纹,安装测量头,调节至可清晰观察到干涉条纹.(6)使分划板中心刻线对齐某明(或暗)条纹的中央,记下手轮上的读数a1,转动手轮使分划板中心刻线移动,记下干涉条纹的条数n和移动后手轮的读数a2,a1与a2的差即为n条亮纹的间距.(7)用刻度尺测量双缝到光屏的距离l(d是已知的).(8)重复测量、计算,求平均值作为波长的测量结果.(9)换用不同的滤光片,重复实验.4.注意事项(1)实验时应调整光源、单缝、双缝和光屏、测量头共轴,单缝和双缝安装时应竖直且相互平行,遮光筒的轴线要与光具座导轨平行.若不共轴或单缝与双缝不平行则会引起干涉条纹亮度小,不清晰,不便于观察和测量.(2)分划板上的刻线应与干涉条纹的亮(暗)线平行,否则会增大测量的误差.(3)双缝、测量头安装到遮光筒上时要装到底,使各部件的定位面紧密吻合,否则会影响测量结果.(4)双缝干涉演示仪的测量头有两种,一种相当于螺旋测微器,一种相当于游标卡尺,具体应用时要加以区别.(5)测量双缝至屏的距离l,要多次测量取平均值,同时要固定好双缝及屏,切勿松动.典例现有毛玻璃屏A、双缝B、白光光源C、单缝D和透红光的滤光片E等光学元件,要把它们放在如图所示的光具座上组装成双缝干涉装置,用以测量红光的波长.(1)将白光光源C放在光具座最左端,依次放置其他光学元件,由左至右,表示各光学元件的字母排列顺序应为C、________、A.(2)本实验的实验步骤有:①取下遮光筒左侧的元件,调节光源高度,使光束能直接沿遮光筒轴线把屏照亮;②按合理顺序在光具座上放置各光学元件,并使各元件的中心位于遮光筒的轴线上;③用米尺测量双缝到屏的距离;④用测量头(其读数方法同螺旋测微器)测量数条亮纹间的距离.在操作步骤②时还应注意________和________.(3)将测量头的分划板中心刻线与某亮纹中心对齐,将该亮纹定为第1条亮纹,此时手轮上的示数如图甲所示.然后同方向转动测量头,使分划板中心刻线与第6条亮纹中心对齐,记下此时图乙中手轮上的示数________mm,求得相邻亮纹的间距Δx为________mm.(4)已知双缝间距d为2.0×10-4m,测得双缝到屏的距离l为0.700 m,由计算公式λ=________,求得所测红光波长为________mm.【解析】(1)双缝干涉仪各组成部分在光具座上的正确排序为光源、滤光片、单缝、双缝、屏,因此应填:E、D、B.(2)单缝与双缝的间距为5~10 cm,使单缝与双缝相互平行.(3)甲图的读数为2.320 mm.乙图的读数为13.870 mmΔx =13.870-2.3206-1mm =2.310 mm (4)由Δx =l d λ可得:λ=d l Δx可求出λ=2.0×10-40.700×2.310 mm =6.6×10-4 mm. 【答案】 (1)E 、D 、B (2)单缝与双缝的间距为5~10 cm 使单缝与双缝相互平行(3)13.870 2.310 (4)d l Δx 6.6×10-4【突破攻略】 本题考查了实验仪器的安装、实验步骤及注意的问题.Δx 的测量和光的波长的计算.安装实验仪器要注意各种元件的安放顺序,实验步骤中需要牢记应注意的问题,另外还要准确掌握Δx 的测量方法和λ的计算方法.4.在双缝干涉实验中,分别用红色和绿色的激光照射同一双缝,在双缝后的屏幕上,红光的干涉条纹间距Δx 1与绿光的干涉条纹间距Δx 2相比,Δx 1>Δx 2(填“>”“=”或“<”).若实验中红光的波长为630 nm ,双缝与屏幕的距离为1.00 m ,测得第1条到第6条亮条纹中心间的距离为10.5 mm ,则双缝之间的距离为0.3 mm.解析:双缝干涉条纹间距Δx =l d λ,红光波长长,所以红光的双缝干涉条纹间距较大,即Δx 1>Δx 2,相邻条纹间距Δx =10.5 mm 5=2.1 mm =2.1×10-3 m ,根据Δx =l d λ可得d =lλΔx=0.3 mm.5.(2019·湖北八校联考)在“用双缝干涉测光的波长”的实验中,请按照题目要求回答下列问题.(1)图中甲、乙两图都是光的条纹形状示意图,其中干涉图样是甲.(2)将下表中的光学元件放在图丙所示的光具座上组装成用双缝干涉测光的波长的实验装置,并用此装置测量红光的波长.左至右,表示各光学元件的排列顺序应为CEDBA.(填写元件代号)(3)已知该装置中双缝间距d=0.50 mm,双缝到光屏的距离L=0.50 m,在光屏上得到的干涉图样如图甲所示,分划板在图中A位置时游标卡尺如图乙所示,则其示数为111.10 mm;在B位置时游标卡尺如图丙所示.由以上所测数据可以得出形成此干涉图样的单色光的波长为6.2×10-7 m.解析:(1)图甲中的条纹间距和宽度相同,是干涉图样,图乙是衍射图样.(2)光源发出的白光,各种频率都有,加上E后通过的只有红光了,变成单色光,加上D和B,就得到两列频率相同、步调一致的相干光,最后放置光屏,干涉条纹呈现在光屏上,所以顺序为CEDBA.(3)A位置的示数为111.10 mm,B位置的示数为115.45 mm,图甲中AB之间的距离为(115.45-111.10) mm=4.35 mm,则相邻条纹的间距为Δx=4.357 mm,再根据公式Δx=Ldλ,代入数据得波长为6.2×10-7 m.6.用双缝干涉测光的波长.实验装置如图甲所示,已知单缝与双缝间的距离L1=100 mm,双缝与屏的距离L2=600 mm,单缝宽d1=0.10 mm,双缝间距d2=0.20 mm.用测量头来测量光屏上干涉亮条纹到中心的距离.测量头由分划板、目镜、手轮等构成,转动手轮,使分划板左右移动,让分划板的中心刻线对准屏上亮纹的中心(如图乙所示),记下此时手轮上的读数为0.640 mm,转动测量头,使分划板中心刻线对准第7条亮纹的中心(如图丙所示),记下此时手轮上的读数10.295 mm.由此可以计算出这次实验中所测得的单色光的波长 5.4×10-7 m(结果保留两位有效数字).在本实验中如果增大双缝与屏的距离,则光屏上得到的条纹间距增大(选填“增大”“减小”或“不变”).解析:图丙中螺旋测微器的固定刻度读数为10.0 mm ,可动刻度读数为0.01×29.5 mm =0.295 mm ,所以最终读数为(10.0+0.295) mm =10.295 mm.根据双缝干涉条纹的间距公式Δx =L d λ得,λ=Δxd L =d (x 2-x 1)(7-1)L=0.2×10-3×(10.295-0.640)×10-36×600×10-3m =5.4×10-7 m. 若将双缝到屏的距离增大,即L 增大,则条纹间距变大.知识点三 电磁场和电磁波1.对麦克斯韦电磁场理论的理解2.对电磁波的理解(1)电磁波是横波.电磁波的电场、磁场、传播方向三者两两垂直,如图所示.(2)电磁波与机械波不同,机械波在介质中传播的速度只与介质有关,电磁波在介质中传播的速度与介质和频率均有关.3.电磁波谱分析及应用特别提醒:(1)波长不同的电磁波,表现出不同的特性.其中波长较长的无线电波和红外线等,易发生干涉、衍射现象;波长较短的紫外线、X射线、γ射线等,穿透能力较强.(2)电磁波谱中,相邻两波段的电磁波的波长并没有很明显的界线,如紫外线和X射线、X射线和γ射线都有重叠,但它们产生的机理不同.7.(多选)下列说法正确的是(BCD)A.根据麦克斯韦的电磁场理论,在变化的电场周围一定产生变化的磁场,在变化的磁场周围一定产生变化的电场B.发射电磁波的两个重要条件是采用高频和开放性LC电路C.机械波和电磁波都能产生干涉和衍射现象D.机械波的传播依赖于介质,而电磁波可以在真空中传播E.电磁波只能在真空中传播,因此当电磁波遇到介质时,会被介质挡住解析:在均匀变化的电场周围产生恒定的磁场,在均匀变化的磁场周围产生恒定的电场,选项A错误;发射电磁波时必须采用高能量且要有尽可能大的空间传播电磁波,所以选项B正确;干涉和衍射是波的特性,机械波、电磁波都是波,这些特性都具有,选项C正确;机械波是机械振动在介质中传播形成的,所以机械波的传播需要介质,而电磁波是交替变化的电场和磁场由近及远地传播形成的,所以电磁波传播不需要介质,选项D正确;电磁波既可以在真空中传播,也可以在介质中传播,选项E错误.8.(多选)关于电磁波谱,下列说法不正确的是(BDE)A.电磁波中最容易表现出干涉、衍射现象的是无线电波B.紫外线的频率比可见光的低,长时间照射可以促进钙的吸收,改善身体健康C.X射线和γ射线的波长比较短,穿透力比较强D.红外线的显著作用是热作用,温度较低的物体不能辐射红外线E.频率越高的电磁波在真空中传播的速度越快解析:无线电波的波长长,易发生衍射现象,A正确.紫外线的频率比可见光的高,B错误.X射线和γ射线的波长比较短,其穿透力强,常用于人体拍片和检查金属零件缺陷,故C正确.任何物体都能辐射红外线,D错误.不同频率的电磁波在真空中传播速度相同,E错误.9.(2016·全国卷Ⅱ)(多选)关于电磁波,下列说法正确的是(ABC)A.电磁波在真空中的传播速度与电磁波的频率无关B.周期性变化的电场和磁场可以相互激发,形成电磁波C.电磁波在真空中自由传播时,其传播方向与电场强度、磁感应强度均垂直D.利用电磁波传递信号可以实现无线通信,但电磁波不能通过电缆、光缆传输E.电磁波可以由电磁振荡产生,若波源的电磁振荡停止,空间的电磁波随即消失解析:电磁波在真空中传播速度不变,与频率无关,选项A正确;电磁波由周期性变化的电场和变化的磁场互相激发得到,选项B正确;电磁波传播方向与电场方向、磁场方向均垂直,选项C正确;光是一种电磁波,光可在光导纤维中传播,选项D错误;电磁波具有能量,电磁振荡停止后,已形成的电磁波仍会在介质或真空中继续传播,选项E错误.知识点四狭义相对论的简单应用1.惯性系:如果牛顿运动定律在某个参考系中成立,这个参考系叫做惯性系.相对一个惯性系做匀速直线运动的另一个参考系也是惯性系.2.光速的大小与选取的参考系无关,因为光速是从麦克斯韦方程组中推导出来的,无任何前提条件.3.狭义相对论认为物体的质量m与物体的速度v有关,其关系式为m=m01-(v c)2.4.对“长度的相对性”的理解:狭义相对论中的长度公式:l=l01-(vc)2中,l是相对于杆静止的观察者测出的杆的长度,而l可认为杆沿杆的长度方向以速度v运动时,静止的观察者测出的杆的长度,还可以认为是杆不动,而观察者沿杆的长度方向以速度v 运动时测出的杆的长度.5.对“时间间隔的相对性”的理解:时间间隔的相对性公式Δt=Δτ1-(vc)2中,Δτ是相对事件发生地静止的观察者测量同一地点的两个事件发生的时间间隔,而Δt则是相对于事件发生地以速度v运动的观察者测量同一地点的同样两个事件发生的时间间隔.也就是说:在相对运动的参考系中观测,事件变化过程的时间间隔变大了,这就是狭义相对论中的时间膨胀.(动钟变慢)10.(2019·成都模拟)(多选)对于公式m=m01-(vc)2,下列说法中正确的是(CD)A.公式中的m0是物体以速度v运动时的质量B.当物体运动速度为v0时,物体的质量m>m0,即物体的质量改变了,故经典力学不适用C.当物体以较小的速度运动时,质量变化十分微弱,经典力。
大学物理中的波动光学光的干涉和衍射现象
大学物理中的波动光学光的干涉和衍射现象大学物理中的波动光学:光的干涉和衍射现象波动光学是物理学中的一个重要分支,主要研究光的传播与相互作用的波动性质。
在这个领域中,光的干涉和衍射现象是两个关键概念。
本文将以大学物理的角度,对波动光学中的干涉和衍射进行探讨。
1. 干涉现象干涉是指两个或多个光波相遇时所产生的明暗相间的干涉条纹现象。
它的基本原理是光波的叠加效应。
当两束光波相遇时,会发生干涉现象。
根据相位差的不同,干涉可分为相干干涉和非相干干涉两种。
1.1 相干干涉相干干涉指的是两束或多束光波的相位和振幅有固定的关系,使得它们在相遇的区域内能够产生稳定而有规律的干涉图样。
在相干干涉中,常见的一种情况是等厚干涉。
比如,当光线通过一个厚度均匀的平行光学板时,会因光速在介质中的改变而引起相位差,从而产生干涉现象。
1.2 非相干干涉非相干干涉指的是两束或多束光波的相位关系不稳定,在相遇的位置不会产生规律可辨的干涉图样。
光源的宽度、时间相干性以及光的偏振状态等因素都会影响非相干干涉。
2. 衍射现象衍射是指当光通过具有一定尺寸障碍物的缝孔或物体边缘时,光的传播方向发生偏离并产生干涉条纹的现象。
衍射实验是研究光的波动性质的重要手段之一。
著名的夫琅禾费衍射实验就是其中之一。
夫琅禾费衍射实验中,光通过狭缝后发生衍射,产生干涉条纹。
2.1 夫琅禾费衍射夫琅禾费衍射是狭缝衍射的一种特殊情况,在物理学中具有重要的研究价值。
当一束平行光波通过一个非常窄的缝隙时,光会弯曲和发散,产生强弱交替的干涉条纹。
这里的交替现象是因为光的波动性质叠加所致。
夫琅禾费衍射给我们提供了研究光的波动特性的重要线索,对于理解光的传播和干涉现象有着重要的意义。
2.2 衍射光栅衍射不仅限于狭缝,还可以通过光栅来实现。
光栅是一种由有规则的孔或条带构成的光学元件,可以用于衍射实验。
由于光栅具有多个凹槽(或条带),光通过光栅后会发生衍射,产生出多个明暗相间的衍射条纹。
大学物理光学--光的干涉 ppt课件
光波是电磁波, 包含 E和 H , 对人眼或感光物质 起作用的是 E, 称 E矢量为光矢量。 相对光强 I E 2 E是电场强度振幅
2、光源 光 是原子或分子的运动
状态变化时辐射出来 的 大量处于激发态的原子自发地 - 1.5 e V - 3.4 e V
跃迁到低激发态或基态时就辐 射电磁波(光波)。
即:光具有波粒二象性
ppt课件 3
§10.1 光的相干性
1、光的电磁理论要点
光速
光波是电磁波, 电磁波在真空中的传播速度
c
1
0 0
, 介质中 v
c
r r
而
c n r r v
1 nm =10-9 m
4
可见光的波长范围 400 nm — 760 nm
ppt课件
光强 I ——电磁波的能流密度
波 动 光 学
第10章
光的干涉
ppt课件 1
光是人类以及各种生物生活中不可或缺的要素
光的本性是什么?
两种不同的学说 ① 牛顿的“微粒说” 光是由“光微粒”组成 的。 特征:光的直线传播 、反射、折射等 ② 惠更斯的“波动说” 光是机械振动在一种所谓“以太”的 介质中传播的机械波。
特征:光的干涉、衍射和偏振等
r2
D
P x
o
x r2 r1 d sin d tan d D
k x d 当 D ( 2k 1)
干涉加强, x 处为明纹 k=0,1,2,…
2
干涉相消, x 处为暗纹 k=1,2,3,…
11
式中 k 为条纹级次 ppt课件
明纹中心的位置
nr
2
r
波动光学课件
第九章 波动光学内容:1.光波及其相干条件 2.杨氏双缝干涉 3.薄膜干涉 4.迈克尔孙干涉仪 5.单缝衍射 6.光栅衍射 7.X 光衍射 8.自然光与偏振光 9.起偏与检偏 10.反射光与折射光的偏振 重点与难点:1.杨氏双缝干涉2.等倾干涉; 3.等厚干涉; 4.迈克尔孙干涉仪的应用 5.单缝衍射 6.光栅衍射 7.马吕斯定律; 8.布儒斯特定律; 要求:1.掌握等倾干涉、等厚干涉的本质; 2.掌握薄膜干涉、劈尖干涉、牛顿环干涉; 3.了解迈克尔孙干涉仪。
4.掌握夫琅和费单缝衍射5.了解圆孔衍射艾理斑公式及光学仪器的分辨率; 6.掌握光栅衍射的基本规律;7.理解X 光衍射 8.了解光的偏振性;9.了解起偏与检偏,掌握马吕斯定律;10.了解反射光与折射光的偏振,掌握布儒斯特定律。
§9-1 光的相干性 光程一、光波1.光波的概念:光波是电磁波的一部分,仅占电磁波谱很小的一部分,它与无线电波、X 射线等其它电磁波的区别只是频率不同,能够引起人眼视觉的那部分电磁波称为可见光。
● 1.1666年,牛顿研究光的色散,用棱镜将太阳光分解为由红到紫的可见光谱(V isible Light )。
●2.1800年,J.F .W. Hershel 发现在可见光谱的红端以外,还有能够产生热效应的部分,称为红外线(Infrared Ray )。
● 3.1802年,J.W . Ritter 与W .H. Wollaston 发现,在可见光的紫端以外,还有能够产生化学效应的部分,称为紫外线(Ultraviolet Ray )红外光:波长λ>0.76μm可见光:波长λ在0.40μm 与0.76μm 之间 紫外光:波长λ<0.40μm广义而言,光包含红外线与紫外线。
2.光的颜色光的颜色由光的频率决定,而频率一般仅由光源决定,与介质无关。
单色光(Monochromatic light )——只含单一波长的光,如激光 复色光——不同波长单色光的混合,如白光 3.光的速度与折射率: 光在介质中传输时的速度为 εμ1=v真空中,1800100.31-⋅⨯==s m c με介质中,r r r r c v μεμμεεεμ//1/100===其中r r n με/1=为介质的折射率(Refractive index ),由介质本身的性质决定,如 真空 1=n 空气 1≈n 水 33.1=n玻璃0.2~50.1=n折射率大的物质,称为光密介质;折射率小的物质,称为光疏介质。
波动光学与干涉现象
波动光学与干涉现象波动光学是一门研究光波传播和光与物质相互作用的学科,其中干涉现象是波动光学的重要组成部分。
干涉现象是指两个或多个波相遇产生的相互作用,形成明暗相间的干涉条纹。
本文将对波动光学与干涉现象进行探讨,以加深对光学现象的理解。
一、光的波动特性光的波动特性是描述光行为的重要依据。
光波是一种电磁波,具有波长、频率和速度等特性。
光的波动特性可以解释光的传播、反射、折射等现象。
波动光学理论的基础是互补波动,它描述了波传播的两个重要方面:相位和振幅。
相位反映了波的位置,振幅则表示波的能量强度。
这两个参数决定了光波的特性,包括颜色、强度和方向等。
二、波动光学的基本原理1. 艾利奥特原理艾利奥特原理是波动光学的基本原理之一。
它表明,一个波在到达某个地点时,会沿着所有可能路径传播,而不仅仅是沿着直线传播。
这种现象被称为波的超波传播。
艾利奥特原理解释了光波的传播形式和路径选择。
2. 海森伯不确定性原理海森伯不确定性原理是波动光学的另一个基本原理。
它指出,无法同时准确测量粒子的位置和动量。
这是因为光波的传播需要同时具备粒子和波动的特性,而这两种特性不能同时完全确定。
三、干涉现象的基本原理干涉是波动光学中重要的现象之一。
通过两个或多个波的相互叠加,产生干涉现象。
干涉现象可分为两类:构造干涉和破坏干涉。
1. 构造干涉构造干涉是指两个波共享相同相位的情况。
当两个波的相位相同并且干涉相长,其中一个波的波峰与另一个波的波峰相遇,形成增强干涉。
而当两个波的相位相差半个波长时,一个波的波峰与另一个波的波谷相碰,形成减弱干涉。
2. 破坏干涉破坏干涉是指两个波相长波相消的现象。
当两个波的相位相差半个波长时,它们的波峰和波谷相重叠,导致波能互相抵消,形成破坏干涉。
这种干涉现象在波动光学中被广泛应用,例如激光干涉仪的原理。
四、干涉现象的应用干涉现象在科学和工程领域有着广泛的应用。
以下是其中一些重要的应用领域:1. 各向同性薄膜干涉各向同性薄膜干涉是一种通过沉积一层或多层材料来控制光波的干涉行为的方法。
高考物理一轮复习专题53光的干涉、衍射和偏振现象含解析
专题53 光的干预、衍射与偏振现象〔讲〕本章考察的热点有简谐运动的特点及图象、波的图象以及波长、波速、频率的关系,光的折射与全反射,题型以选择题与填空题为主,难度中等偏下,波动及振动的综合及光的折射及全反射的综合,有的考区也以计算题的形式考察.复习时应注意理解振动过程中回复力、位移、速度、加速度等各物理量的变化规律、振动及波动的关系及两个图象的物理意义,注意图象在空间与时间上的周期性,分析几何光学中的折射、全反射与临界角问题时,应注意及实际应用的联系,作出正确的光路图;光与相对论局部,以考察根本概念及对规律的简单理解为主,不可无视任何一个知识点.1.理解光的干预现象,掌握双缝干预中出现明暗条纹的条件.2.理解光的衍射现象,知道发生明显衍射的条件.3.知道光的偏振现象,了解偏振在日常生活中的应用.1.光的干预〔1〕定义两列频率一样、振动情况一样的光波相叠加,某些区域出现振动加强,某些区域出现振动减弱,并且加强区域与减弱区域总是相互间隔的现象叫光的干预现象.〔2〕相干条件只有相干光源发出的光叠加,才会发生干预现象.相干光源是指频率一样、相位一样〔振动情况一样〕的两列光波.2.双缝干预:由同一光源发出的光经双缝后,在屏上出现明暗相间的条纹.白光的双缝干预的条纹是中央为白色条纹,两边为彩色条纹,单色光的双缝干预中相邻亮条纹间距离为.3.薄膜干预:利用薄膜〔如肥皂液薄膜〕前后两面反射的光相遇而形成的.图样中同一条亮〔或暗〕条纹上所对应的薄膜厚度一样.4.光的衍射〔1〕定义光离开直线路径绕到障碍物阴影区的现象叫光的衍射,衍射产生的明暗条纹或光环叫衍射图样.〔2〕发生明显衍射的条件只有当障碍物的尺寸跟光的波长相差不多,甚至比光的波长还小的时候,衍射现象才会明显.〔3〕衍射图样①单缝衍射a.单色光:明暗相间的不等距条纹,中央亮纹最宽最亮,两侧条纹具有对称性.b.白光:中间为宽且亮的白色条纹,两侧是窄且暗的彩色条纹,最靠近中央的是紫光,远离中央的是红光.②圆孔衍射:明暗相间的不等距圆环,圆环面积远远超过孔的直线照明的面积.③圆盘衍射:明暗相间的不等距圆环,中心有一亮斑称为泊松亮斑.5.光的偏振〔1〕偏振:光波只沿某一特定的方向振动,称为光的偏振.〔2〕自然光:太阳、电灯等普通光源发出的光,包含着在垂直于传播方向上沿一切方向振动的光,而且沿各个方向振动的光波的强度都一样,这种光叫做自然光.〔3〕偏振光:在垂直于传播方向的平面上,只沿某个特定方向振动的光,叫做偏振光.光的偏振证明光是横波.自然光通过偏振片后,就得到了偏振光.考点一光的干预现象的理解1、光的双缝干预现象的理解〔1〕光能够发生干预的条件:两光的频率一样,振动步调一样.〔2〕双缝干预形成的条纹是等间距的,两相邻亮条纹或相邻暗条纹间距离及波长成正比,即.〔3〕用白光照射双缝时,形成的干预条纹的特点:中央为白条纹,两侧为彩色条纹.2、薄膜干预现象的理解〔1〕如下图,竖直的肥皂薄膜,由于重力的作用,形成上薄下厚的楔形.〔2〕光照射到薄膜上时,在膜的前外表AA′与后外表BB′分别反射出来,形成两列频率一样的光波,并且叠加.〔3〕原理分析①单色光在P1、P2处,两个外表反射回来的两列光波的路程差Δr等于波长的整数倍.Δr=nλ〔n=1,2,3…〕,薄膜上出现明条纹.在Q处,两列反射回来的光波的路程差Δr等于半波长的奇数倍.Δr=〔2n+1〕λ2〔n=0,1,2,3…〕,薄膜上出现暗条纹.②白光:薄膜上出现水平彩色条纹.〔4〕薄膜干预的应用干预法检查平面如下图,两板之间形成一楔形空气膜,用单色光从上向下照射,如果被检平面是平整光滑的,我们会观察到平行且等间距的明暗相间的条纹;假设被检平面不平整,那么干预条纹发生弯曲.★重点归纳★1、两束振动情况一样的光源产生的光相互叠加时:〔1〕出现明条纹的条件是屏上某点P到两个相干光源S1与S2的路程差等于波长的整数倍或半波长的偶数倍,即|PS1-PS2|=kλ=2k·2λ〔k=0,1,2,3…〕当k=0时,即PS1=PS2,此时P点处的明条纹叫做中央亮条纹.〔2〕出现暗条纹的条件是屏上某点P到两个相干光源S1与S2的路程差等于半波长的奇数倍,即|PS1-PS2|=〔2k+1〕2λ〔k=0,1,2,3…〕★典型案例★如下图,两束不同的单色光P与Q射向半圆形玻璃砖,其出射光线都是从圆心O点沿O F方向,由此可知:〔〕A.Q光穿过玻璃砖所需的时间比P光短B.P光的波长比Q光的波长小C.P、Q两束光以一样的入射角从水中射向空气,假设Q光能发生全反射,那么P光也一定能能发生全反射D.如果让P、Q两束单色光分别通过同一双缝干预装置,P光形成的干预条纹间距比Q光的大【答案】D【名师点睛】解决此题的关键是通过光路图比拟出折射率的大小,要掌握折射率及光速、波长的关系,知道折射率越大,相应的光的频率越大。
光的偏振与干涉:光的波动特性与干涉现象
光的偏振与干涉:光的波动特性与干涉现象光的波动特性是物理学中一个非常重要的概念,光既可以看作是一种粒子(光子),也可以看作是一种波动。
正是光的波动特性赋予了光学研究以深入和广泛的空间。
一、光的偏振光的偏振指的是光波在传播方向上的振动方向。
普通光是无偏振光,它的振动方向在任何方向上都是随机的。
而偏振光则指的是其振动方向在某一平面上振动的光。
光的偏振可以利用偏振片实现。
偏振片的制备是通过让一束传播方向一致的普通光通过一种特殊的偏振材料而得到。
偏振光的应用十分广泛。
在摄影中,偏振滤镜可用于减少或消除反射,提高画面质量。
在3D电影和电视中,偏振光技术可以实现立体效果。
偏振光还可以用于检测透明材料的应力状态,提高材料的质量。
二、干涉现象干涉是光的波动性质的一种重要表现形式。
当两束或多束相干光波同时作用在同一点上时,它们会相互干涉而产生明暗相间的干涉条纹。
光的干涉现象通过光的波动学来解释。
其中的著名实验是托马斯·杨实验,他通过让光通过一个狭缝后再经过两个狭缝,形成了一组干涉条纹。
该实验证明了光是波动的,并提供了关于光的波动性质的重要线索。
基于这一实验的原理,人们能够更好地理解光的干涉及衍射现象,并将其应用于光学仪器的设计和原理。
另一个经典的干涉实验是迈克尔逊干涉仪。
它是利用光的干涉现象来测量非常小的长度的一种仪器。
通过对光的干涉条纹进行观察和测量,我们可以得出非常精确的长度值,这在科学研究和工程设计中具有重要意义。
三、光的波动特性与干涉现象的意义光的波动特性和干涉现象的研究对我们理解光的性质和应用提供了深入的认识。
首先,通过研究光的偏振现象,我们可以更好地理解光与物质之间的相互作用。
例如,在材料科学中,光的偏振可以用于检测材料的晶格结构和应力状态,为新材料的研发提供了宝贵的信息。
其次,光的干涉现象对我们理解光的传播和衍射提供了新的途径。
通过观察和研究干涉条纹,我们可以探索光的波动性质,并推导出光的传播速度、干涉现象的规律等重要参数。
《波动光学》PPT课件 (2)
焦面
是等厚膜,光
程差只决定于
入射角,相同
入射角的光线
光程差相同, 面
形成同一干涉
光 源
条纹——等倾
干涉条纹。
精选ppt
干涉图样
透镜
垂直入射 半透明玻璃片 等厚薄膜
35
平行平面薄膜干涉的应用
▪ 增透膜 为减弱反射光,在光学元件表面镀的一 层厚度适当的透明介质膜
反射光互相减弱时(约为入射光的1.3%),光
解 (1)cosε≈1,sinε≈ε=10-3
x (L 2 r r s cio ) ns (2 2 0 .5 0 ).5 0 .1 5 3 1 0 6 0 1 .2m 5 m
(2)当ε=10-2rad时,有
x(2 20 .5 0 ).5 0.1 5 0 2 10 60.12 m5m
程差为 2 n 2 d2 k 1 2 0
n2d 称为光学厚度
空气
1
n1=1
MgF2 2 d n2=1.38
玻璃
n3=1.50
k0 ,1 ,2 ,
照 相 机 镜 头
精选ppt
36
例如对波长 0 = 550 nm 的绿光,当光学厚度 为 n2d = 30 /4 = 412 nm时,反射率最小,但此时
该薄膜对其它波长的光,反射率一般不是最小。
▪ 两相干光波在同一介质中传播时,相位差仅决
定于波程差
δ= r2 - r1
▪ 两相干光波在不同介质中传播时,相位差应决
定于光程差
δ= n2 r2 - n1 r1
干涉条件为
(22kk21)
k0,1,2,3 相互加强 k0,1,2, 3 相互减弱
2
精选ppt
29
大学物理 物理学 课件 波动光学
为定域干涉。
应用:
•测定薄膜的厚度; •测定光的波长;
例8-3.如图所示,在折射率为1.50的 平板玻璃表面有一层厚度为300nm,折 射率为1.22的均匀透明油膜,用白光垂 直射向油膜,问:
1)哪些波长的可见光在反射光中产生 相长干涉? 2)若要使反射光中λ=550nm的光产生相 消干涉,油膜的最小厚度为多少?
黑体辐射、光电效应、康普顿效应
四、光学的分类
• 几何光学
以光的直线传播和反射、折射定律为基础,研究光学仪 器成象规律。
• 物理光学
以光的波动性和粒子性为基础,研究光现象基本规律。
• 波动光学——光的波动性:研究光的传输规律及其应用的 学科
• 量子光学——光的粒子性:研究光与物质相互作用规律及 其应用的学科
*②若把整个实验装置置于折射率为n的介质中,
明条纹: =条纹: =n(r2-r1)=±(2k+1)λ/2 k=0,1,2,3,…
或 明条纹:r2-r1=2ax/D=±kλ/n=±kλ’ k=0,1,2,…
暗条纹:r2-r1=2ax/D=±(2k+1)λ/2n
本章学习内容:
波动光学:光的干涉、衍射、偏振
光的干涉和衍射现象表明了光的波动性, 而光的偏振现象则显示了光是横波。光波作为 一种电磁波也包含两种矢量的振动,即电矢量 E和磁矢量H,引起感光作用和生理作用的是其 中的电矢量E,所以通常把E矢量称为光矢量, 把E振动称为光振动。
§8-1 光波及其相干条件
6、讨论
Δx=Dλ/2a
*(1)波长及装置结构变化时干涉条纹的移动和变化
①光源S位置改变: •S下移时,零级明纹上移,干涉条纹整体向上平移; •S上移时,干涉条纹整体向下平移,条纹间距不变。
物理学中的波动光学原理
物理学中的波动光学原理波动光学原理是指光在传播过程中表现出的波动性质。
在物理学中,光的波动性质是研究光学中最重要的一部分,它是从牛顿光学和戈斯桥实验中逐渐形成的。
波动光学原理由波动理论和光学理论组成,它涉及到波动现象、干涉、衍射、折射、反射等多个领域,是物理学中非常重要的一部分。
一、波动理论波动理论是指对于一些自然现象中体现出波动性质的物理问题进行研究的一种方法。
在波动理论中,一般会用到波长、频率、振幅等概念来描述波的特征。
在光学中,我们可以用波长来描述光的颜色,用频率来描述光的亮度,用振幅来描述光的强度。
除此之外,波动理论还可以用来解释一些光学现象,如雾虹、色散等等。
二、波动光学的基本原理1.光的干涉现象干涉现象是指多个光波在同一时刻、同一地方相遇并发生变化的现象。
在干涉现象中,颜色、强度、方向等多种因素会发生变化,这也是波动光学理论的基础之一。
干涉现象很容易发生,如在咖啡中加入一些奶泡,可以看到不同颜色的光相互干涉形成彩虹色的泡沫。
2.光的衍射现象衍射现象是指光线经过物体缝隙或过程中遇到障碍物时,光波向周围散发、弯曲的现象。
这种现象是由于光的振动和扰动产生的。
光的衍射现象广泛存在于物理和生活中,它是波动光学理论的重要分支之一。
3.光的折射现象折射现象是指光通过一个介质时,由于介质的折射率受到光的波长、方向等多种因素影响,导致光线变化方向的现象。
折射现象常常发生在气体和液体交界处,如阳光在水面上形成的倒影,就是折射现象的典型例子。
4.光的反射现象反射现象是指光线在表面反射后发生变化的现象。
在反射现象中,光线发生反射会改变其方向,但不会发生任何变色等变化。
反射现象广泛存在于现实生活中,如我们在镜子前看到自己的影像,就是由于反射而产生的。
三、结语波动光学原理是物理学中非常重要的一部分,它与人们的日常生活密切相关。
波动光学原理是复杂而广泛的,它包含了许多不同领域的知识。
但正是由于波动光学原理的存在,我们才能够对光学的应用进行深入的研究和应用。
光学与波动学 第三章 光的干涉概述
•
E1
完全一样(传播方向,频率, 相位,振动方向)
2. 光的单色性
例:普通单色光
: 10-2 10 0 Å 激光 :10-8 10-5 Å 可见光 103Å
3. 光的相干性
相干光:满足相干条件的几束光
相干条件:振动方向相同,频率相同,有恒定的相位差
相干光相遇时合成光的振动:
E1
E10
cos(t
4
光学通常分为以下三部分:
▲几何光学:以光的直线传播规律为基础, 主要研究各种成象光学仪器的理论。
▲波动光学:以光的电磁性质为基础, 研究光的传播规律,主要是干涉、衍射、偏振。
▲量子光学:以光的量子理论为基础, 研究光与物质相互作用的规律。
波动光学对光的描述
光是电磁波
400nm 760nm 可见光波长 4000A 7600A
解:
性质:弹性机械波,在机械以太中传播。
2
三.光的电磁说(19世纪的后半期---) 19世纪后半期Maxwell建立电磁理论,提出了
光的电磁性,1887年赫兹用实验证实。 性质:电磁波在电磁以太中传播。
四.光的量子说(20世纪初---) 电磁波动说在解释“热幅射实验”及“光电效
应”等实验遇到困难。 1900年普朗克提出了“热幅射量子理论”,爱因
注意:此处k等于几,代表第几级明纹,这
种情况也表示第几条明纹。
② n1 n n2 , n1 n n2
2e n2 n12 sin2 i k k 0,1,2,3
注意:k=0是零级明纹,也是第一条明纹, k代表该明纹是第k级明纹,这种情
况 也表示第k+1条明纹。
暗纹: (2k 1) k 0,1, 2
(2k 1) (2k 1) , k 0,1,2…
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.引入:
光在同一种介质中传播时,只要计算出两相干光到达某一点的波程差,就可以计算出相位差 。对于光在不同介质中的传播,则不能用上式进行计算。为此引入光程的概念。
2.光程的概念:
一波长为λ的单色光,在折射率为n的介质中传播时,波速为v=c/n,波长为λn=λ/n。由于n>1,因此同一光波在介质中的波长比在真空中的波长要短。光波在传播过程中的相位变化,与介质的性质以及传播距离有关。无论是在真空中还是在介质中,光波每传播一个波长的距离,相位都要改变2π,如果光波要通过几种不同的介质,由于折射率(波长)的不同,相位的变化也就不同,因而给相位变化的计算增加了麻烦。不过引入光程概念以后,这种麻烦就可以克服。
在现代光学仪器中,为减少入射光能量在透镜等光学元件的玻璃表面上反射引起的损失,常在镜面上镀一层厚度均匀透明薄膜(如MgF2),其折射率介于空气玻璃之间,当膜的厚度适当时,可使某波长的反射光因干涉而减弱,从而使光能透过元件,这种使透射光增强的薄膜的薄膜称为增透膜。
光程差与相位差的关系为
问题:如图所示,求AB之间的光程。
解:
4.薄透镜的等光程性:
中央厚度比球面半径小得多的透镜称为薄透镜,是常用的光学元件,它可以改变光的传播方向,对光进行会聚、发散或产生平行光。理论和实验都证明,薄透镜具有等光程性,即当光路中放入薄透镜后,通过透镜的近轴光线不会因为放入透镜而产生附加的光程差。如图所示,从同相位面上的A、B、C、D、E等各点经过透镜到达P点的各光线,虽然几何路程长度不等,但是几何路程长的在透镜内的路程短,而几何路程短的在透镜内的路程长,其总的效果:从同相位面上各点到达P点 的光程差是相等的。
结论:薄透镜具有等光程性。当用透镜或透镜组成的光学仪器观测干涉时,观测仪器不会带来附加的光程差。
5.干涉条件:
用相位差表示:
用光程差表示:
二、薄膜干涉
1.引言:
薄膜干涉属于分振幅法(Amplitude-splitting Interference),日常在太阳光下见到的肥皂膜和水面上的油膜所呈现的彩色都是薄膜干涉的实例。
解:(1)因反射光的反射条件相同(n1<n2<n3),故不计半波损失,由垂直入射i=0,得反射光相长干涉的条件为
由上式可得:
k=1时:λ1=2×1.22×300/1=732nm红光
k=2时:λ2=2×1.22×300/2=366nm紫外
故反射中红光产生相长干涉。
(2)对于透射光,相干条件为:
故
k=1时:λ1=4n2d=4×1.22×300/1=1464nm红外
测定薄膜的厚度;
测定光的波长;
提高或降低光学器件的透射率——增透膜(增反膜)。
例1.如图所示,在折射率为1.50的平板玻璃表面有一层厚度为300nm,折射率为1.22的均匀透明油膜,用白光垂直射向油膜,问:
1)哪些波长的可见光在反射光中产生相长干涉?
2)哪些波长的可见光在透射光中产生相长干涉?
3)若要使反射光中λ=550nm的光产生相干涉,油膜的最小厚度为多少?
k=2时:λ2=4n2d=4×1.22×300/3=488nm青色光
k=3时:λ3=4n2d=4×1.22×300/5=293nm紫外
故透射光中青光产生相长干涉
(3)由反射相消干涉条件为:
故
显然k=0所产生对应的厚度最小,即
二、增透膜与增反膜
1.增透膜(Reflection Reducting Coating)
第53讲:波动光学——光的干涉(2)
内容:§17-3,§17-4,§17-5
1.薄膜的等倾干涉(30分钟)
2.劈尖的等厚干涉(30分钟)
3.牛顿环(20分钟)
4.迈克尔孙干涉仪(20分钟)
要求:
1.掌握等倾干涉、等厚干涉的本质;
2.掌握薄膜干涉、劈尖干涉、牛顿环干涉;
3.了解迈克尔孙干涉仪。
重点与难点:
1.等倾干涉;
2.等厚干涉;
3.牛顿环;
4.迈克尔孙干涉仪的应用。
作业:
问题:P171:1,2,3,4
习题:P174:1,2,3,4
预习:§17-3,§17-4,§17-5
复习:
光的干涉理论
杨氏干涉
实验装置
干涉条件
条纹特点
菲涅耳双面镜、洛埃镜、菲涅耳双棱镜
Thin Film Interference
例如,真空中波长为λ的单色光,在折射率为n介质中传播时,波长变为λn=λ/n,,通过长为l的路程后,相位改变量为 ,所用的时间为 ,与光在真空中通过nl的路程的相位改变和所用的时间相等。
定义光程为
其中:n为介质的折射率,l为光在介质中传播的距离,
则相位变化可以写成
3.关于光程的说明:
引入光程,相对于把光在不同介质中的传播都折算到真空中计算;定义光程后,两束光的干涉情况,取决于它们的光程差,而不是路程差;
由薄膜两表面反射(或透射)光产生的干涉一折射率为n2的薄膜(n2>n1),薄膜厚度为d,由单色面光源上点S发出的光线1,以入射角i投射到分界面AB上的点A,一部分由点A反射,另一部分射进薄膜并在分界面CD上反射,再经界面AB折射而去,显然这两光线2、3是平行的,经透镜L会聚于P点,2、3是相干光,可在P上产生干涉条纹。
2)半波损失,取+λ/2或-λ/2均可以,其结果只会影响条纹级数k的取值,而对于干涉结果无任何影响,一般可以自由规定。
3)透射光边有干涉现象,只不过亮度较低,且与反射光明暗情况正好相反。
即同一膜厚度,若反射光干涉为暗纹,则透射光干涉为明纹;反之也然。
4)如果用复色光——白光,将出现彩色条纹。
6.应用
3.干涉条纹的计算——光3、光2之间的光程差为:
设CD⊥AD,则CP与DP之间的光程相等,由图可知,光3、光2之间的光程差为
由于
故
由折射定律
考虑附加的光程差,总的光程差为:
4.干涉条纹
当垂直入射(i=0)时,有
5.讨论
1)当厚度d,薄膜折射率n2及周围介质确定后,某一波长来就,两相干光的光程差仅取决于入射i,因此,以同一倾角入射的所有光线,其反射光将有相同的光程差,产生同一干涉条纹,或者说,同一干涉条纹都是由来自同一倾角 的入射光形成的,这样的条纹称为等倾干涉条纹(Equal Inclination Interference Fringes),等倾干涉条纹是一系列同心圆环组成的。