辽宁省阜新市2020年中考数学试题 解析版
辽宁省阜新市2020年中考数学试卷
辽宁省阜新市2020年中考数学试卷一、选择题(共10题;共20分)1.在实数,-1,0,1中,最小的是()A. B. -1 C. 0 D. 12.下列立体图形中,左视图与主视图不同的是()A. B. C. D.3.如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A. 众数是9B. 中位数是8.5C. 平均数是9D. 方差是74.如图,为⊙的直径,C,D是圆周上的两点,若,则锐角的度数为()A. 57°B. 52°C. 38°D. 26°5.掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A. 1B.C.D.6.不等式组的解集,在数轴上表示正确的是()A. B.C. D.7.若与都是反比例函数图象上的点,则a的值是()A. 4B. -4C. 2D. -28.在“建设美丽阜新”的行动中,需要铺设一段全长为的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺管道,根据题意,所列方程正确的是()A. B.C. D.9.已知二次函数,则下列关于这个函数图象和性质的说法,正确的是()A. 图象的开口向上B. 图象的顶点坐标是C. 当时,y随x的增大而增大D. 图象与x轴有唯一交点10.如图,在平面直角坐标系中,将边长为1的正六边形绕点O顺时针旋转i个45°,得到正六边形,则正六边形的顶点的坐标是()A. B. C. D.二、填空题(共6题;共6分)11.计算:________.12.如图,直线a,b过等边三角形顶点A和C,且,,则的度数为________.13.如图,把沿边平移到的位置,图中所示的三角形的面积与四边形的面积之比为4∶5,若,则此三角形移动的距离是________.14.如图,在中,,.将绕点B逆时针旋转60°,得到,则边的中点D与其对应点的距离是________.15.如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角,两树间的坡面距离,则这两棵树的水平距离约为________m(结果精确到,参考数据:).16.甲、乙两人沿笔直公路匀速由A地到B地,甲先出发30分钟,到达B地后原路原速返回与乙在C地相遇.甲的速度比乙的速度快,甲、乙两人与A地的距离和乙行驶的时间之间的函数关系如图所示,则B,C两地的距离为________ (结果精确到).三、解答题(共6题;共57分)17.先化简,再求值:,其中.18.如图,在平面直角坐标系中,顶点的坐标分别为,,.(1)画出与关于y轴对称的;(2)将绕点顺时针旋转90°得到,弧是点A所经过的路径,则旋转中心的坐标为________.(3)求图中阴影部分的面积(结果保留).19.在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:4151812m5(1)本次测试随机抽取的人数是________人,________;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.20.在抗击新冠肺炎疫情期间,玉龙社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.(1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?21.如图,正方形和正方形(其中),的延长线与直线交于点H.(1)如图1,当点G在上时,求证:,;(2)将正方形绕点C旋转一周.①如图2,当点E在直线右侧时,求证:;②当时,若,,请直接写出线段的长22.如图,二次函数的图象交x轴于点,,交y轴于点C.点是x 轴上的一动点,轴,交直线于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段上运动,如图1.求线段的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.答案解析部分一、选择题1.【解析】【解答】解:∵<−1<0<1,∴实数,-1,0,1中,最小的实数是,故答案为:A.【分析】根据实数大小比较的法则比较即可.2.【解析】【解答】解:A.左视图与主视图都是正方形,故答案为:A不合题意;B.左视图是圆,主视图都是矩形,故答案为:B符合题意;C.左视图与主视图都是三角形;故答案为:C不合题意;D.左视图与主视图都是圆,故答案为:D不合题意;故答案为:B.【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,进而分别判断得出答案.3.【解析】【解答】解:有题目中折线统计图可知,圈数数据为7、10、9、9、10、8、10.A、该组数据中10出现的次数最多,为3次,所以众数为10,故A错误;B、将数据按照从小到大排列,依次为7、8、9、9、10、10、10,中位数应为9,故B错误;C、平均数应为,故C正确;D、由C可知平均数为9,方差应为,故D错误. 故答案为:C.【分析】根据给出的折线统计图确定本数据分别为多少,再根据各选项要求的数进行求解即可. 4.【解析】【解答】解:连接,为的直径,故答案为:B.【分析】连接,由直径所对的圆周角是直角,求解,利用同圆中同弧所对的圆周角相等可得答案.5.【解析】【解答】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝上的概率是:故答案为:D.【分析】由题意可知掷一枚质地均匀的硬币一共有两组情况:正面向上和正面向下,由此可得再次掷出这枚硬币,正面朝下的概率。
辽宁省阜新市中考数学试卷及答案
辽宁省阜新市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内.每小题2 分,共20 分)1.在下列各组根式中,是同类二次根式的是()2.在平面直角坐标系中,点P(-1,1)关于x 轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知⊙O 1和⊙O 2的半径分别为1 和5,圆心距为3,则两圆的位置关系是()A.相交B.内含C.内切D.外切4.在下面四种正多边形中,用同一种图形不能平面镶嵌的是()5.已知2 是关于x 的方程的一个根,则2a- 1的值是()A.3 B.4 C.5 D.66.关于x 的方程有两个不相等的实数根,则k 的取值范围是()A.k>-1 B.k≥-1 C.k>1 D.k≥07.如图,在同心圆中,两圆半径分别为2、1,∠AOB=120°,则阴影部分的面积为()A.4π B.2π C.D.π8.已知一次函数y=kx+b 的图象经过第一、二、四象限,则反比例函数的图象在A.第一、二象限B.第三、四象限()C.第一、三象限D.第二、四象限9.已知圆锥的侧面展开图的面积是15π cm 2,母线长是5cm,则圆锥的底面半径为()A.3/2cm B.3cm C.4cm D.6cm10.如图,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是()A.甲比乙快B.乙比甲快C.甲、乙同速D.不一定二、填空题(每小题2 分,共20 分)11.在函数中,自变量x 的取值范围是_______________ .12.若方程的两根分别为13.一组数据9,5,7,8,6,8 的众数和中位数依次是_______________ .14.如图,AB 是⊙O 的直径,弦CD⊥AB,E 为垂足,若AB=9,BE=1,则CD=________.15.如果一个正多边形的内角和是900°,则这个多边形是正______边形.16.已知圆的直径为13cm,圆心到直线l 的距离为6cm,那么直线l 和这个圆的公共点的个数是____________.17.用换元法解方程,若设,则原方程可化成关于y 的整式方程为__________.18.如图,在△ABC 中,∠C=90°,AB=10,AC=8,以AC 为直径作圆与斜边交于点P,则BP 的长为__________ .19.如图,施工工地的水平地面上,有三根外径都是1 米的水泥管,两两相切地堆放在一起,则其最高点到地面的距离是__________.20.在半径为1 的⊙O 中,弦AB、AC 分别是3和2 ,则∠BAC的度数为__________.三、(第21 题6 分,第22 题6 分,第23 题10 分,共22 分)21.当x=2,y=3 时,求代数式的值.22.如图,已知:AB.求作:(1)确定AB 的圆心O.(2)过点A 且与⊙O 相切的直线.(注:作图要求利用直尺和圆规,不写作法,但要求保留作图痕迹)23.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900 名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100 分)进行统计.请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中的样本容量是多少?答:_____________________________________________ .(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由)答:_____________________________________________ .(5)若成绩在90 分以上(不含90 分)为优秀,则该校成绩优秀的约为多少人?答:_____________________________________________ .四、(10 分)24.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD 和高度DC 都可直接测得,从A、D、C 三点可看到塔顶端H.可供使用的测量工具有皮尺、测倾器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D 间距离,用m 表示;如果测D、C 间距离,用n 表示;如果测角,用α、β、γ 表示).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测倾器高度忽略不计).五、(10 分)25.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30 万元;(3)求第8 个月公司所获利润是多少万元?六、(12 分)26.某博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数.在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系.在这样的情况下,如果确保每周 4 万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少元?七、(12 分)27.(1)如图(a),已知直线AB 过圆心O,交⊙O 于A、B,直线AF 交⊙O 于F (不与B 重合),直线l 交⊙O 于C、D,交AB 于E,且与AF 垂直,垂足为G,连结AC、AD.求证:①∠BAD=∠CAG;②AC·AD=AE·AF.(2)在问题(1)中,当直线l 向上平行移动,与⊙O 相切时,其他条件不变.①请你在图(b)中画出变化后的图形,并对照图(a),标记字母;②问题(1)中的两个结论是否成立?如果成立,请给出证明八、(14 分)28.已知:如图,⊙D 交y 轴于A、B,交x 轴于C,过点C 的直线:与y 轴交于P.(1)求证:PC 是⊙D 的切线;(2)判断在直线PC 上是否存在点E,使得S △ EOP=4S △ CDO,若存在,求出点E 的坐标;若不存在,请说明理由;(3)当直线PC 绕点P 转动时,与劣弧交于点F(不与A、C 重合),连结OF,设PF=m,OF=n,求m、n 之间满足的函数关系式,并写出自变量n 的取值范围.。
2020年辽宁省阜新市中考数学试卷(含答案解析)
2020年辽宁省阜新市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.在下列−√2,−1,0,1四个数中,最小的是()A. −√2B. −1C. 0D. 12.下列立体图形中,左视图与主视图不同的是()A. 正方体B. 圆柱C. 圆锥D. 球3.如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A. 众数是9B. 中位数是8.5C. 平均数是9D. 方差是74.如图,AB为⊙O的直径,C,D是圆周上的两点,若∠ABC=38°,则锐角∠BDC的度数为()A. 57°B. 52°C. 38°D. 26°5.掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A. 1B. 25C. 35D. 126.不等式组{1−x≥02x−1>−5的解集,在数轴上表示正确的是()A. B.C. D.7.若A(2,4)与B(−2,a)都是反比例函数y=kx(k≠0)图象上的点,则a的值是()A. 4B. −4C. 2D. −28.在“建设美丽阜新”的行动中,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺xm管道,根据题意,所列方程正确的是()A. 3000x −3000(1+25%)x=30 B. 3000(1+25%)x−3000x=30C. 3000(1−25%)x −3000x=30 D. 3000x−3000(1+25%)x=309.已知二次函数y=−x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是()A. 图象的开口向上B. 图象的顶点坐标是(1,3)C. 当x<1时,y随x的增大而增大D. 图象与x轴有唯一交点10.如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OA i B i C i D i E i,则正六边形OA i B i C i D i E i(i=2020)的顶点C i的坐标是()A. (1,−√3)B. (1,√3)C. (1,−2)D. (2,1)二、填空题(本大题共6小题,共18.0分)11.计算:(13)−1+(π−√3)0=______.12.如图,直线a,b过等边三角形ABC顶点A和C,且a//b,∠1=42°,则∠2的度数为______.13.如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是______.14. 如图,在△ABC 中,∠ABC =90°,AB =BC =2.将△ABC 绕点B 逆时针旋转60°,得到△A 1BC 1,则AC 边的中点D 与其对应点D 1的距离是______.15. 如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角α=20°,两树间的坡面距离AB =5m ,则这两棵树的水平距离约为______m(结果精确到0.1m ,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364).16. 甲、乙两人沿笔直公路匀速由A 地到B 地,甲先出发30分钟,到达B 地后原路原速返回与乙在C 地相遇.甲的速度比乙的速度快35km/ℎ,甲、乙两人与A 地的距离y(km)和乙行驶的时间x(ℎ)之间的函数关系如图所示,则B ,C 两地的距离为______km(结果精确到1km). 三、解答题(本大题共6小题,共52.0分) 17. 先化简,再求值:(1−1x+1)÷x 2−xx 2−2x+1,其中x =√2−1.18. 如图,△ABC 在平面直角坐标系中,顶点的坐标分别为A (4,4),B (1,1),C (4,1).(1)画出与△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 绕点O 1顺时针旋转90°得到△A 2B 2C 2,AA 2弧是点A 所经过的路径,则旋转中心O 1的坐标为______;(3)求图中阴影部分的面积(结果保留π).19.在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<904B90≤x<11015C110≤x<13018D130≤x<15012E150≤x<170mF170≤x<1905(1)本次测试随机抽取的人数是______人,m=______;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.20.在抗击新冠肺炎疫情期间,玉龙社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.(1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?21.如图,正方形ABCD和正方形CEFG(其中BD>2CE),BG的延长线与直线DE交于点H.(1)如图1,当点G在CD上时,求证:BG=DE,BG⊥DE;(2)将正方形CEFG绕点C旋转一周.①如图2,当点E在直线CD右侧时,求证:BH−DH=√2CH;②当∠DEC=45°时,若AB=3,CE=1,请直接写出线段DH的长.22.如图,二次函数y=x2+bx+c的图象交x轴于点A(−3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:∵−√2<−1<0<1,∴最小的数是−√2,故选:A.根据实数的大小比较方法,找出最小的数即可.此题考查了实数的大小比较,用到的知识点是负数<0<正数,两个负数,绝对值大的反而小,是一道基础题.2.【答案】B【解析】解:A.左视图与主视图都是正方形,故选项A不合题意;B.左视图是圆,主视图都是矩形,故选项B符合题意;C.左视图与主视图都是三角形;故选项C不合题意;D.左视图与主视图都是圆,故选项D不合题意;故选:B.从正面看所得到的图形是主视图,从左面看到的图形是左视图,进而分别判断得出答案.此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.【答案】C【解析】解:A.数据10出现的次数最多,即众数是10,故本选项错误;B.排序后的数据中,最中间的数据为9,即中位数为9,故本选项错误;(7+8+9+9+10+10+10)=9,故本选项正确;C.平均数为:17[(7−9)2+(8−9)2+(9−9)2+(9−9)2+(10−9)2+(10−9)2+(10−D.方差为179)2]=8,故本选项错误;7故选:C.由折线图得到一周内每天跑步圈数的数据,计算这组数据的平均数、中位数、众数、方差,然后判断得结论.本题考查了折线图、平均数、中位数、众数及方差等知识,读折线图得到数据是解决本题的关键.【解析】解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=38°,∴∠BAC=90°−∠ABC=52°,∴∠BDC=∠BAC=52°.故选:B.由AB是⊙O的直径,根据直径所对的圆周角是直角,即可得∠ACB=90°,又由∠ABC= 38°,即可求得∠A的度数,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BDC的度数.此题考查了圆周角定理.此题难度不大,注意掌握直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用是解此题的关键.5.【答案】D【解析】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝下的概率是1.2故选:D.直接利用概率的意义分析得出答案.此题主要考查了概率的意义,正确把握概率的意义是解题关键.6.【答案】D【解析】解:解不等式1−x≥0,得:x≤1,解不等式2x−1>−5,得:x>−2,则不等式组的解集为−2<x≤1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【解析】解:∵A(2,4)与B(−2,a)都是反比例函数y=kx(k≠0)图象上的点,∴k=2×4=−2a,∴a=−4,故选:B.反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k,据此可得a的值.本题考查了反比例函数图象上点的坐标特征,熟知反比例函数y=kx(k≠0)图象上的点的横纵坐标的积等于定值k是解答此题的关键.8.【答案】C【解析】解:设实际每天铺xm管道,根据题意,得3000(1−25%)x −3000x=30,故选:C.根据题意可以列出相应的分式方程,从而可以解答本题.本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的方程.9.【答案】C【解析】解:∵y=−x2+2x+4=−(x−1)2+5,∴抛物线的开口向下,顶点坐标为(1,5),抛物线的对称轴为直线x=1,当x<1时,y 随x的增大而增大,解方程−x2+2x+4=0,解得x1=1+√5,x2=1−√5,∴抛物线与x轴有两个交点.故选:C.先利用配方法得到y=−(x−1)2+5,可根据二次函数的性质可对A、B、C进行判断;通过解方程−x2+2x+4=0可对D进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.10.【答案】A【解析】解:由题意旋转8次应该循环,∵2020÷8=252…4,∴C i的坐标与C4的坐标相同,∵C(−1,√3),点C与C4关于原点对称,∴C4(1,−√3),∴顶点C i的坐标是(1,−√3),故选:A.由题意旋转8次应该循环,因为2020÷8=252…4,所以C i的坐标与C4的坐标相同.本题考查正多边形与圆,坐标与图形变化−性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.11.【答案】4)−1+(π−√3)0【解析】解:(13=3+1=4.故答案为:4.首先计算乘方,然后计算加法,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题关键.12.【答案】102°【解析】解:如图,∵△ABC是等边三角形,∴∠BAC=60°,∵∠1=42°,∴∠CAD=180°−60°−42°=78°,∵a//b,∴∠2+∠CAD=180°,∴∠2=180°−∠CAD=102°;故答案为:102°.由等边三角形的性质得∠BAC=60°,由平角定义求出∠CAD=78°,再由平行线的性质得出∠2+∠CAD=180°,即可得出答案.本题考查了等边三角形的性质,平行线的性质等知识,正确的识别图形是解题的关键.13.【答案】43【解析】解:∵把△ABC沿AB边平移到△A1B1C1的位置,∴AC//A1C1,∴△ABC∽△A1BD,∵S△A1BD :S四边形ACDA1=4:5,∴S△A1BD:S△ABC=4:9,∴A1B:AB=2:3,∵AB=4,∴A1B=83,∴AA1=4−83=43.故答案为:43.根据题意可以推出△ABC∽△A1BD,结合它们的面积比,即可推出对应边的比,即可推出AA′的长度.本题主要考查平移的性质、相似三角形的判定和性质,关键在于求证△ABC∽△A1BD,推出A1B的长度.14.【答案】√2【解析】解:连接BD、BD1,如图,∵∠ABC=90°,AB=BC=2,∴AC=√22+22=2√2,∵D点为AC的中点,∴BD=12AC=√2,∵△ABC绕点B逆时针旋转60°,得到△A1BC1,∴BD1=BD,∠DBD1=60°,∴△BDD1为等边三角形,∴DD1=BD=√2.故答案为√2.连接BD、BD1,如图,李煜等腰三角形斜边上的中线性质得到BD=12AC=√2,再利用旋转的性质得BD1=BD,∠DBD1=60°,则可判断△BDD1为等边三角形,从而得到DD1=BD=√2.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质.15.【答案】4.7【解析】解:过点A作水平面的平行线AH,作BH⊥AH于H,由题意得,∠BAH=α=20°,在Rt△BAH中,cos∠BAH=AHAB,∴AH=AB⋅cos∠BAH≈5×≈4.7(m),故答案为:4.7.根据余弦的定义求出AH,得到答案.本题考查的是解直角三角形的应用,掌握坡度坡角的概念、锐角三角函数的定义是解题的关键.16.【答案】73【解析】解:由题意可知,甲行驶的速度为:25÷12=50(km/ℎ),A、B两地之间的距离为:25+50×2=125(km),乙的速度为:50−35=15(km/ℎ),2+(125−15×2)÷(50+15)=3613,即乙出发3613小时后与甲相遇,所以B,C两地的距离为:125−15×3613≈73(km).故答案为:73.根据题意结合图象可得甲行驶的速度以及A、B两地之间的距离,进而得出乙行驶的速度,然后求出两人相遇的时间,即可求出B,C两地的距离.本题考查了一次函数的应用,解决本题的关键是根据图象获取相关信息,求出A、B两地之间的距离.17.【答案】解:原式=x+1−1x+1⋅(x−1)2 x(x−1)=x−1x+1,当x=√2−1时,原式=√2−1−1√2−1+1=√2−2√2=1−√2.【解析】先把括号内通分和除法运算化为乘法运算,再约分得到原式=x−1x+1,然后把x 的值代入计算即可.本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.18.【答案】(2,0)【解析】解:(1)如图,△A1B1C1为所作;(2)旋转中心O1的坐标为(2,0),故答案为(2,0);(3)设旋转半径为r,则r2=22+42=20,∴阴影部分的图形面积为:S阴影=14⋅πr2−12×2×4−12×2×2+12×1×1=5π−112.(1)根据关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)作对应点A、A2,B、B2的连线的垂直平分线,交点即为旋转中心;(3)线段AB在旋转过程中扫过的图形为扇形,然后根据扇形面积公式计算即可.本题考查了作图−轴对称变换以及作图−旋转变换,旋转的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.也考查了三角形的面积和扇形面积公式.19.【答案】60 6【解析】解:(1)15÷25%=60(人),m =60−4−15−18−12−5=6(人);答:本次测试随机抽取的人数是60人;(2)C 等级所在扇形的圆心角的度数=360°×1860=108°,(3)该校七年级学生能够达到优秀的人数为300×12+6+560=115(人).(1)根据B 等级的人数以及百分比,即可解决问题;(2)根据圆心角=360°×百分比计算即可,根据D 等级人数画出直方图即可;(3)利用样本估计总体的思想解决问题即可.本题考查了扇形统计图、频数分布表,解决本题的关键是通过扇形统计图表示出各部分数量同总数之间的关系.20.【答案】(1)解:设购买酒精x 瓶,消毒液y 瓶,根据题意列方程组,得{10x +5y = 35010(1−30%)x +5(1−20%)y =260. 解得,{x =20y =30. 答:每次购买的酒精和消毒液分别是20瓶,30瓶;(2)解:设能购买消毒液m 瓶,则能购买酒精2m 瓶,根据题意,得 10×(1−30%)⋅2m +5(1−20%)⋅m ≤200,解得:m ≤1009=1119. ∵m 为正整数,∴m =11.所以,最多能购买消毒液11瓶.【解析】(1)根据题意,可以列出相应的二元一次方程组,从而可以求得每次购买的酒精和消毒液分别是多少瓶;(2)设能购买消毒液m 瓶,则能购买酒精2m 瓶,根据“购买的酒精数量是消毒液数量的2倍,现有购买资金200元”列出不等式.本题考查二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找到等量关系或不等关系,列出方程或不等式.21.【答案】(1)证明:如图1中,证明:∵在正方形ABCD和正方形CEFG中,BC=CD,CG=CE,∠BCG=∠DCE=90°,∴△BCG≌△DCE(SAS),∴BG=DE,∠CBG=∠CDE,∵∠CDE+∠DEC=90°,∴∠HBE+∠BEH=90°,∴∠BHE=90°,∴BG⊥DE.(2)①如图2中,在线段BG上截取BK=DH,连接CK.由(1)可知,∠CBK=∠CDH,∵BK=DH,BC=DC,∴△BCK≌△DCH(SAS),∴CK=CH,∠BCK=∠DCH,∴∠KCH=∠BCD=90°,∴△KCH是等腰直角三角形,∴HK=√2CH,∴BH−DH=BH−BK=KH=√2CH.②如图3−1中,当D ,H ,E 三点共线时∠DEC =45°,连接BD .由(1)可知,BH =DE ,且CE =CH =1,EH √2CH √2,∵BC =3,∴BD =√2BC =3√2,设DH =x ,则BH =DE =x +√2, 在Rt △BDH 中,∵BH 2+DH 2=BD 2,∴(x +√2)2+x 2=(3√2)2, 解得x =−√2+√342或−√2−√342(舍弃).如图3−2中,当D ,H ,E 三点共线时∠DEC =45°,连接BD .设DH =x ,∵BG =DH ,∴BH =DH −HG =x −√2,在Rt △BDH 中,∵BH 2+DH 2=BD 2,∴(x −√2)2+x 2=(3√2)2,解得x =√2+√342或√2−√342(舍弃),综上所述,满足条件的DH 的值为√34+√22或√34−√22.【解析】(1)证明△BCG≌△DCE(SAS)可得结论.(2)①如图2中,在线段BG 上截取BK =DH ,连接CK.证明△BCK≌△DCH(SAS),推出CK =CH ,∠BCK =∠DCH ,推出△KCH 是等腰直角三角形,即可解决问题. ②分两种情形:如图3−1中,当D ,H ,E 三点共线时∠DEC =45°,连接BD.如图3−2中,当D ,H ,E 三点共线时∠DEC =45°,连接BD ,分别求解即可解决问题.本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.22.【答案】解:(1)把A(−3,0),B(1,0)代入y =x 2+bx +c 中,得{9−3b +c =01+b +c =0, 解得{b =2c =−3, ∴y =x 2+2x −3.(2)①设直线AC 的表达式为y =kx +b ,把A(−3,0),C(0,−3)代入y =kx +b.得{b =−3−3k +b =0, 解得{k =−1b =−3, ∴y =−x −3,∵点P(m,0)是x 轴上的一动点,且PM ⊥x 轴.∴M(m,−m −3),N(m,m 2+2m −3),∴MN =(−m −3)−(m 2+2m −3)=−m 2−3m =−(m +32)2+94, ∵a =−1<0,∴此函数有最大值.又∵点P 在线段OA 上运动,且−3<−32<0,∴当m =−32时,MN 有最大值94.②如图2−1中,当点M 在线段AC 上,MN =MC ,四边形MNQC 是菱形时.∵MN=−m2−3m,MC=−√2m,∴−m2−3m=−√2m,解得m=−3+√2或0(舍弃)∴MN=3√2−2,∴CQ=MN=3√2−2,∴OQ=3√2+1,∴Q(0,−3√2−1).如图2−2中,当NC是菱形的对角线时,四边形MNCQ是正方形,此时CN=MN=CQ= 2,可得Q(0,−1).如图2−3中,当点M在CA延长线上时,MN=CM,四边形MNQC是菱形时,则有;m2+3m=−√2m,解得m=−3−√2或0(舍弃),∴MN=CQ=3√2+2,∴OQ=CQ−OC=3√2−1,∴Q(0,3√2−1).综上所述,满足条件的点Q的坐标为(0,−3√2−1)或(0,−1)或(0,3√2−1).【解析】(1)把A(−3,0),B(1,0)代入y=x2+bx+c中,构建方程组解决问题即可.(2)①构建二次函数,利用二次函数的性质解决问题即可.②分三种情形:如图2−1中,当点M在线段AC上,MN=MC,四边形MNQC是菱形时.如图2−2中,当NC是菱形的对角线时,四边形MNCQ是正方形,如图2−3中,当点M在CA延长线上时,MN=CM,四边形MNQC是菱形时,分别求解即可.本题属于二次函数综合题,考查了二次函数的性质,待定系数法,一次函数的性质,菱形的判定和性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
辽宁省阜新市2020年中考数学试卷(I)卷
辽宁省阜新市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八上·揭阳月考) 一个数的立方根是 4,这个数的平方根是()A . 8B . -8C . 8 或 -8D . 4 或 -42. (2分)如图的七边形ABCDEFG中,AB,ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?()A . 40°B . 45°C . 50°D . 60°3. (2分)在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A . 随着抛掷次数的增加,正面向上的频率越来越小B . 当抛掷的次数n很大时,正面向上的次数一定为C . 不同次数的试验,正面向上的频率可能会不相同D . 连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于4. (2分)函数的自变量x的取值范围是()A . x≠0B . x>3C . x≠-3D . x≠35. (2分) (2019九上·平川期中) 如图,正方形ABCD中,点E是AD边的中点,BD,CE交于点H,BE、AH 交于点G,则下列结论:①∠ABE=∠DCE;②AG⊥BE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正确的是()A . ①③B . ①②③④C . ①②③D . ①③④6. (2分) (2016七上·宜昌期中) 枝江市2015年公共财政收入约为31.68亿元,对这个近似数而言,下列说法正确的是()A . 精确到亿位B . 精确到百分位C . 精确到百万位D . 精确到千万位7. (2分)时钟钟面上的分针的长为1,经过30分,分针在钟面上扫过的面积是()A .B . πC . πD . π8. (2分)如图是某月的月历,竖着取连续的三个数字,它们的和可能是()A . 21B . 34C . 72D . 789. (2分) (2017九下·萧山开学考) 如图,顶角为36°的等腰三角形,其底边与腰之比等,这样的三角形称为黄金三角形,已知腰AB=1,△ABC为第一个黄金三角形,△BCD为第二个黄金三角形,△CDE为第三个黄金三角形,以此类推,第2014个黄金三角形的周长()A .B .C .D .10. (2分)如果一条抛物线的形状与y=﹣2x2+2的形状相同,且顶点坐标是(4,﹣2),则它的解析式是()A . y=2(x﹣4)2﹣2B . y=﹣2(x﹣4)2﹣2C . y=﹣2(x﹣4)2+2D . y=﹣2(x+4)2﹣2二、填空题 (共6题;共10分)11. (2分)计算:﹣3x•(2x2﹣x+4)=________;82015×(﹣)2015=________.12. (1分)(2016·张家界模拟) 甲,乙两支球队的人数相等,平均身高都是1.72米,方差分别是S甲2=0.35,S乙2=0.27,则甲、乙两队中身高较整齐的是________队.13. (3分)如图,在矩形ABCD中,对角线AC,BD相交于点O,E是边AD的中点.若AC=10,DC=,则BO=________ ,∠EBD的大小约为________ 度________ 分.(参考数据:tan26°34′≈)14. (2分) (2016八下·夏津期中) 已知函数是一次函数,则m=________,此函数图象经过第________象限.15. (1分) (2019七下·江阴月考) 如图a,ABCD是长方形纸带,∠DEF=23°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是________°.16. (1分)(2016·郓城模拟) 一列数x1 , x2 , x3 ,…,其中x1= ,xn= (n为不小于2的整数),则x2016=________.三、解答题 (共8题;共89分)17. (5分)解分式方程:+=.18. (15分)保障房建设是民心工程,某市从2008年开始加快保障房建设进程,现统计了该市2008年到2012年这5年新建保障房情况,绘制成如图所示的折线统计图和不完整的条形统计图.(1)小丽看了统计图后说:“该市2011年新建保障房的套数比2010年少了.”你认为小丽说法正确吗?请说明理由;(2)求补全条形统计图;(3)求这5年平均每年新建保障房的套数.19. (4分)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,与y轴相交于点C,请完成下面的填空:(1)该抛物线的解析式为________.(2)在该抛物线的对称轴上存在点Q,使得△QAC的周长最小,则Q点的坐标为________.(3)在抛物线上的第二象限上存在一点P,使△PBC的面积最大,则点P的坐标为________,△PBC的最大面积为________.20. (10分)(2019·道外模拟) 已知,将矩形ABCD折叠,使点C与点A重合,点D落在点G处,折痕为EF.(1)如图1,求证:BE=GF;(2)如图2,连接CF、DG,若CE=2BE,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形,使写出的每个三角形都为等腰三角形21. (15分)(2017·西固模拟) 近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h 的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?22. (10分)(2017·泰兴模拟) 如图,一艘轮船在A处时观测得小岛C在船的北偏东60°方向,轮船以40海里/时的速度向正东方向航行1.5小时到达B处,这时小岛C在船的北偏东30°方向.已知小岛C周围50海里范围内是暗礁区.(1)求B处到小岛C的距离(2)若轮船从B处继续向东方向航行,有无触礁危险?请说明理由.(参考数据:≈1.73)23. (10分)(2018·滨州) 如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.24. (20分)(2017·邢台模拟) 如图,在直角坐标系中,点P的坐标是(n,0)(n>0),抛物线y=﹣x2+bx+c 经过原点O和点P,已知正方形ABCD的三个顶点为A(2,2),B(3,2),D(2,3).(参考公式:y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).(1)若当n=4时求c,b并写出抛物线对称轴及y的最大值;(2)求证:抛物线的顶点在函数y=x2的图像上;(3)若抛物线与直线AD交于点N,求n为何值时,△NPO的面积为1;(4)若抛物线经过正方形区域ABCD(含边界),请直接写出n的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共89分)17-1、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、24-4、。
辽宁省阜新市2019-2020学年中考数学教学质量调研试卷含解析
辽宁省阜新市2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣52.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩()m 1.50 1.60 1.65 1.70 1.75 1.80人数124332这些运动员跳高成绩的中位数是()A.1.65m B.1.675m C.1.70m D.1.75m3.若分式11x-有意义,则x的取值范围是A.x>1 B.x<1 C.x≠1D.x≠04.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m-n)2D.m2-n25.化简的结果是()A.﹣B.﹣C.﹣D.﹣6.下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A.﹣2 B.﹣1 C.0 D.17.如图是一个几何体的三视图,则这个几何体是()A .B .C .D .8.如图,△ABC 中,AB=4,BC=6,∠B=60°,将△ABC 沿射线BC 的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C 重合,则平移的距离和旋转角的度数分别为( )A .4,30°B .2,60°C .1,30°D .3,60°9.定义运算:a ⋆b=2ab .若a ,b 是方程x 2+x-m=0(m >0)的两个根,则(a+1)⋆a -(b+1)⋆b 的值为( ) A .0 B .2 C .4m D .-4m10.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >411.已知抛物线y =x 2+bx+c 的部分图象如图所示,若y <0,则x 的取值范围是( )A .﹣1<x <4B .﹣1<x <3C .x <﹣1或x >4D .x <﹣1或x >312.下列各数中,相反数等于本身的数是( )A .–1B .0C .1D .2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,AB =AC ,D 、E 、F 分别为AB 、BC 、AC 的中点,则下列结论:①△ADF ≌△FEC ;②四边形ADEF 为菱形;③:1:4ADF ABC S S ∆∆=.其中正确的结论是____________.(填写所有正确结论的序号)14.分式方程231x x =+的解为x=_____. 15.如图,在网格中,小正方形的边长均为1,点A 、B 、O 都在格点上,则∠OAB 的正弦值是_____.16.PA 、PB 分别切⊙O 于点A 、B ,∠PAB=60°,点C 在⊙O 上,则∠ACB 的度数为_____. 17.若使代数式212x x -+有意义,则x 的取值范围是_____. 18.若关于x 的方程230x x m --=有两个相等的实数根,则m 的值是_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知在梯形ABCD 中,355AD BC AB DC AD sinB ∥,===,=,P 是线段BC 上一点,以P 为圆心,PA 为半径的P e 与射线AD 的另一个交点为Q ,射线PQ 与射线CD 相交于点E ,设BP x =.(1)求证:ABP ECP V V ∽;(2)如果点Q 在线段AD 上(与点A 、D 不重合),设APQ V 的面积为y ,求y 关于x 的函数关系式,并写出定义域;(3)如果QED V与QAP V 相似,求BP 的长. 20.(6分)阅读材料,解答问题.材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P 1(﹣3,9)开始,按点的横坐标依次增加1的规律,在抛物线y =x 2上向右跳动,得到点P 2、P 3、P 4、P 5…(如图1所示).过P 1、P 2、P 3分别作P 1H 1、P 2H 2、P 3H 3垂直于x 轴,垂足为H 1、H 2、H 3,则S △P1P2P3=S 梯形P1H1H3P3﹣S 梯形P1H1H2P2﹣S 梯形P2H2H3P3=12(9+1)×2﹣12(9+4)×1﹣12(4+1)×1,即△P 1P 2P 3的面积为1.” 问题:(1)求四边形P 1P 2P 3P 4和P 2P 3P 4P 5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);(2)猜想四边形P n ﹣1P n P n+1P n+2的面积,并说明理由(利用图2);(3)若将抛物线y =x 2改为抛物线y =x 2+bx+c ,其它条件不变,猜想四边形P n ﹣1P n P n+1P n+2的面积(直接写出答案).21.(6分)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为BC 边上的点,AB=BD ,反比例函数()0k y k x =≠在第一象限内的图象经过点D (m ,2)和AB 边上的点E (n ,23). (1)求m 、n 的值和反比例函数的表达式.(2)将矩形OABC 的一角折叠,使点O 与点D 重合,折痕分别与x 轴,y 轴正半轴交于点F ,G ,求线段FG 的长.22.(8分)如图,在Rt △ABC 中,∠C =90°,AB 的垂直平分线交AC 于点D ,交AB 于点E . (1)求证:△ADE ~△ABC ;(2)当AC =8,BC =6时,求DE 的长.23.(8分)阅读下面材料:已知:如图,在正方形ABCD中,边AB=a1.按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.请解决以下问题:(1)完成表格中的填空:①;②;③;④;(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图).24.(10分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.25.(10分)解方程311(1)(2)xx x x-=--+.26.(12分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.27.(12分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线.求证:AB=DC.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【分析】根据关于x 的方程x 2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x 的方程x 2+3x+a=0有一个根为-2,设另一个根为m ,∴-2+m=−31, 解得,m=-1,故选B .2.C【解析】【分析】根据中位数的定义解答即可.【详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.所以这些运动员跳高成绩的中位数是1.1.故选:C .【点睛】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.3.C【解析】【分析】【详解】分式分母不为0,所以10x -≠,解得1x ≠.故选:C.4.C【解析】【详解】解:由题意可得,正方形的边长为(m+n ),故正方形的面积为(m+n )1.又∵原矩形的面积为4mn ,∴中间空的部分的面积=(m+n )1-4mn=(m-n )1.故选C .5.C试题解析:原式=.故选C.考点:二次根式的乘除法.6.A【解析】【分析】由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解.【详解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四个数表示在数轴上,它们对应的点中,离原点最远的是-1.故选A.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想.7.B【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.考点:由三视图判断几何体.8.B【解析】试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°故选B.考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定9.A【解析】【分析】由根与系数的关系可得a+b=-1然后根据所给的新定义运算a⋆b=2ab对式子(a+1)⋆a-(b+1)⋆b用新定义运算展开整理后代入进行求解即可.【详解】∵a,b是方程x2+x-m=0(m>0)的两个根,∴a+b=-1,∵定义运算:a⋆b=2ab,∴(a+1)⋆a -(b+1)⋆b=2a(a+1)-2b(b+1)=2a2+2a-2b2-2b=2(a+b)(a-b)+2(a-b)=-2(a-b)+2(a-b)=0,故选A.【点睛】本题考查了一元二次方程根与系数的关系,新定义运算等,理解并能运用新定义运算是解题的关键.10.C【解析】【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,故选C.【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.11.B【解析】试题分析:观察图象可知,抛物线y=x2+bx+c与x轴的交点的横坐标分别为(﹣1,0)、(1,0),所以当y<0时,x的取值范围正好在两交点之间,即﹣1<x<1.故选B.考点:二次函数的图象.10614412.B【解析】【分析】根据相反数的意义,只有符号不同的数为相反数.【详解】解:相反数等于本身的数是1.故选B .【点睛】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,1的相反数是1.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.①②③【解析】【分析】①根据三角形的中位线定理可得出AD=FE 、AF=FC 、DF=EC ,进而可证出△ADF ≌△FEC (SSS ),结论①正确;②根据三角形中位线定理可得出EF ∥AB 、EF=AD ,进而可证出四边形ADEF 为平行四边形,由AB=AC 结合D 、F 分别为AB 、AC 的中点可得出AD=AF ,进而可得出四边形ADEF 为菱形,结论②正确; ③根据三角形中位线定理可得出DF ∥BC 、DF=12BC ,进而可得出△ADF ∽△ABC ,再利用相似三角形的性质可得出14ADF ABC S S =V V ,结论③正确.此题得解. 【详解】解:①∵D 、E 、F 分别为AB 、BC 、AC 的中点,∴DE 、DF 、EF 为△ABC 的中位线,∴AD=12AB=FE ,AF=12AC=FC ,DF=12BC=EC . 在△ADF 和△FEC 中,AD FE AF FC DF EC ⎧⎪⎨⎪⎩===,∴△ADF ≌△FEC (SSS ),结论①正确;②∵E 、F 分别为BC 、AC 的中点,∴EF 为△ABC 的中位线,∴EF ∥AB ,EF=12AB=AD , ∴四边形ADEF 为平行四边形.∵AB=AC ,D 、F 分别为AB 、AC 的中点,∴AD=AF ,∴四边形ADEF 为菱形,结论②正确;③∵D、F分别为AB、AC的中点,∴DF为△ABC的中位线,∴DF∥BC,DF=12 BC,∴△ADF∽△ABC,∴214ADFABCS DFS BC==VV(),结论③正确.故答案为①②③.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质以及三角形中位线定理,逐一分析三条结论的正误是解题的关键.14.2【解析】根据分式方程的解法,先去分母化为整式方程为2(x+1)=3x,解得x=2,检验可知x=2是原分式方程的解.故答案为2.15.5【解析】【详解】如图,过点O作OC⊥AB的延长线于点C,则AC=4,OC=2,在Rt△ACO中,22224225AC OC++=,∴sin∠OAB=525OCOA==.5.16.60°或120°.【解析】【分析】连接OA、OB,根据切线的性质得出∠OAP的度数,∠OBP的度数;再根据四边形的内角和是360°,求出∠AOB的度数,有圆周角定理或圆内接四边形的性质,求出∠ACB的度数即可.【详解】解:连接OA、OB.∵PA,PB分别切⊙O于点A,B,∴OA⊥PA,OB⊥PB;∴∠PAO=∠PBO=90°;又∵∠APB=60°,∴在四边形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,∴111206022ADB AOB∠=⨯∠=⨯︒=︒,即当C在D处时,∠ACB=60°.在四边形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.于是∠ACB的度数为60°或120°,故答案为60°或120°.【点睛】本题考查的是切线的性质定理,圆内接四边形的性质,是一道基础题.17.x≠﹣2【解析】【分析】直接利用分式有意义则其分母不为零,进而得出答案.【详解】∵分式212xx-+有意义,∴x的取值范围是:x+2≠0,解得:x≠−2.故答案是:x≠−2.【点睛】本题考查了分式有意义的条件,解题的关键是熟练的掌握分式有意义的条件.18.m=-3 4【解析】【分析】根据题意可以得到△=0,从而可以求得m 的值.【详解】∵关于x 的方程20x m -=有两个相等的实数根,∴△=2(41()0m -⨯⨯-=, 解得:34m =-. 故答案为34-. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)312(4 6.5)y x x =-<<;(3)当5PB =或8时,QED V与QAP V 相似. 【解析】【分析】(1)想办法证明B C APB EPC ∠∠∠∠=,=即可解决问题;(2)作A AM BC ⊥于M ,PN AD ^于N.则四边形AMPN 是矩形.想办法求出AQ 、PN 的长即可解决问题;(3)因为DQ PC P ,所以EDQ ECP V V ∽,又ABP ECP V V ∽,推出EDQ ABP V V ∽,推出ABP △相似AQP V 时,QED V与QAP V 相似,分两种情形讨论即可解决问题; 【详解】(1)证明:Q 四边形ABCD 是等腰梯形,B C ∴∠∠=,PA PQ Q =,PAQ PQA ∴∠∠=,AD BC ∵∥,PAQ APB PQA EPC ∴∠∠∠∠=,=,APB EPC ∴∠∠=,ABP ECP ∴V V ∽.(2)解:作AM BC ⊥于M ,PN AD ^于N.则四边形AMPN 是矩形.在Rt ABM V 中,3sin ,55AM B AB AB ===Q , 34AM BM ∴=,=,43PM AN x AM PN ∴==﹣,==,PA PQ PN AQ ⊥Q =,,224AQ AN x ∴==(﹣),1312(4 6.5)2y AQ PN x x ∴=⋅⋅=-<<. (3)解:DQ PC Q P ,EDQ ECP ABP ECP ∴V V QV V ∽,∽,EDQ ABP ∴V V ∽,ABP ∴V 相似AQP V 时,QED V与QAP V 相似, PQ PA APB PAQ ∠∠Q =,=,∴当BA BP =时,BAP PAQ V V ∽,此时5BP AB ==,当AB AP =时,APB PAQ V V ∽,此时28PB BM ==,综上所述,当PB=5或8时,QED V与△QAP V 相似. 【点睛】本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.20. (1)2,2;(2)2,理由见解析;(3)2.【解析】【分析】(1)作P 5H 5垂直于x 轴,垂足为H 5,把四边形P 1P 2P 3P 2和四边形P 2P 3P 2P 5的转化为S P1P2P3P2=S △OP1H1﹣S △OP3H3﹣S 梯形P2H2H3P3﹣S 梯形P1H1H2P2和S P2P3P2P5=S 梯形P5H5H2P2﹣S △P5H5O ﹣S △OH3P3﹣S 梯形P2H2H3P3来求解;(2)(3)由图可知,P n ﹣1、P n 、P n+1、P n+2的横坐标为n ﹣5,n ﹣2,n ﹣3,n ﹣2,代入二次函数解析式,可得P n ﹣1、P n 、P n+1、P n+2的纵坐标为(n ﹣5)2,(n ﹣2)2,(n ﹣3)2,(n ﹣2)2,将四边形面积转化为S 四边形Pn ﹣1PnPn+1Pn+2=S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣2Hn ﹣2Hn ﹣3Pn ﹣3﹣S 梯形Pn ﹣3Hn ﹣3Hn ﹣2Pn ﹣2来解答.【详解】(1)作P 5H 5垂直于x 轴,垂足为H 5,由图可知S P1P2P3P2=S △OP1H1﹣S △OP3H3﹣S 梯形P2H2H3P3﹣S 梯形P1H1H2P2=931114492222⨯⨯++---=2, S P2P3P2P5=S 梯形P5H5H2P2﹣S △P5H5O ﹣S △OH3P3﹣S 梯形P2H2H3P3=3(14)1111142222+⨯⨯+---=2; (2)作P n ﹣1H n ﹣1、P n H n 、P n+1H n+1、P n+2H n+2垂直于x 轴,垂足为H n ﹣1、H n 、H n+1、H n+2,由图可知P n ﹣1、P n 、P n+1、P n+2的横坐标为n ﹣5,n ﹣2,n ﹣3,n ﹣2,代入二次函数解析式,可得P n ﹣1、P n 、P n+1、P n+2的纵坐标为(n ﹣5)2,(n ﹣2)2,(n ﹣3)2,(n ﹣2)2, 四边形P n ﹣1P n P n+1P n+2的面积为S 四边形Pn ﹣1PnPn+1Pn+2=S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣2Hn ﹣2Hn ﹣3Pn ﹣3﹣S 梯形Pn ﹣3Hn ﹣3Hn ﹣2Pn ﹣2 =222222223(5)(2)(5)(4)(4)(3)(3)(2)2222n n n n n n n n ⎡⎤-+--+--+--+-⎣⎦---=2; (3)S 四边形Pn ﹣1PnPn+1Pn+2=S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣2Hn ﹣2Hn ﹣3Pn ﹣3﹣S 梯形Pn ﹣3Hn ﹣3Hn ﹣2Pn ﹣2 =22223(5)(5)(2)(2)(5)(5)(4)(4)-22n b n c n b n c n b n c n b n c ⎡⎤-+-++-+-+-+-++-+-+⎣⎦-2222(4)(4)(3)(3)(3)(3)(2)(2)22n b n c n b n c n b n c n b n c -+-++-+-+-+-++-+-+-=2. 【点睛】本题是一道二次函数的综合题,考查了根据函数坐标特点求图形面积的知识,解答时要注意,前一小题为后面的题提供思路,由于计算量极大,要仔细计算,以免出错,21.(1)y=2x;(2【解析】【分析】 (1)根据题意得出2232m n m n ⎧=⎪⎨⎪=-⎩,解方程即可求得m 、n 的值,然后根据待定系数法即可求得反比例函数的解析式;(2)设OG=x ,则GD=OG=x ,CG=2﹣x ,根据勾股定理得出关于x 的方程,解方程即可求得DG 的长,过F 点作FH ⊥CB 于H ,易证得△GCD ∽△DHF ,根据相似三角形的性质求得FG ,最后根据勾股定理即可求得.【详解】(1)∵D(m,2),E(n,23),∴AB=BD=2,∴m=n﹣2,∴2232m nm n⎧=⎪⎨⎪=-⎩,解得13mn=⎧⎨=⎩,∴D(1,2),∴k=2,∴反比例函数的表达式为y=2x;(2)设OG=x,则GD=OG=x,CG=2﹣x,在Rt△CDG中,x2=(2﹣x)2+12,解得x=54,过F点作FH⊥CB于H,∵∠GDF=90°,∴∠CDG+∠FDH=90°,∵∠CDG+∠CGD=90°,∴∠CGD=∠FDH,∵∠GCD=∠FHD=90°,∴△GCD∽△DHF,∴DG CDFD FH=,即5142FD=,∴FD=52,∴FG=22225555244 FD GD⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭.【点睛】本题考查了反比例函数与几何综合题,涉及了待定系数法、勾股定理、相似三角形的判定与性质等,熟练掌握待定系数法、相似三角形的判定与性质是解题的关键.22.(1)见解析;(2)154 DE=.【解析】【分析】(1)根据两角对应相等,两三角形相似即可判定;(2)利用相似三角形的性质即可解决问题.【详解】(1)∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB.(2)在Rt△ABC中,∵AC=8,BC=6,∴AB=1.∵DE垂直平分AB,∴AE=EB=2.∵△AED∽△ACB,∴DE AEBC AC=,∴568DE=,∴DE154=.【点睛】本题考查了相似三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.23.(11)a1;③-1)2a1;④-1)n-1a1;(2)见解析.【解析】【分析】(1)①由题意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;②由题意得AB=AE=a1,a1,则CE=a2a1﹣a1=﹣1)a1;③同上可知1)a1,FH=EF=a2,则CH=a3=CF﹣1)2a1;④同理可得a n1)n-1a1;(2)根据题意画图即可.【详解】解:(1)①斜边和一条直角边分别相等的两个直角三角形全等;理由是:如图1,在Rt△EAF和Rt△BAF中,∵AE AB AF AF=⎧⎨=⎩,∴Rt△EAF≌Rt△BAF(HL);②∵四边形ABCD是正方形,∴AB=BC=a1,∠ABC=90°,∴AC=2a1,∵AE=AB=a1,∴CE=a2=2a1﹣a1=(2﹣1)a1;③∵四边形CEFG是正方形,∴△CEF是等腰直角三角形,∴CF=2CE=2(2-1)a1,∵FH=EF=a2,∴CH=a3=CF﹣FH=2(2-1)a1﹣(2-1)a1=(2-1)2a1;④同理可得:a n=(2-1)n-1a1;故答案为①斜边和一条直角边分别相等的两个直角三角形全等②(2﹣1)a1;③(2-1)2a1;④(2-1)n-1a1;(2)所画正方形CHIJ见右图.24.∠DAC=20°.【解析】【分析】根据角平分线的定义可得∠ABC=2∠ABE,再根据直角三角形两锐角互余求出∠BAD,然后根据∠DAC=∠BAC﹣∠BAD计算即可得解.【详解】∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.25.原分式方程无解.【解析】【分析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.【详解】方程两边乘(x ﹣1)(x+2),得x(x+2)﹣(x ﹣1)(x+2)=3即:x 2+2x ﹣x 2﹣x+2=3整理,得x =1检验:当x =1时,(x ﹣1)(x+2)=0,∴原方程无解.【点睛】本题考查解分式方程,解题的关键是明确解放式方程的计算方法.26.(1)32;(2)1. 【解析】【分析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH =KD =x ,得出AK =12﹣x ,EF =32(12﹣x ),再根据S =32x (12﹣x )=﹣32(x ﹣6)2+1,可得当x =6时,S 有最大值为1.【详解】解:(1)∵△AEF ∽△ABC , ∴EF AK BC AD=, ∵边BC 长为18,高AD 长为12, ∴EF BC AK AD ==32; (2)∵EH =KD =x ,∴AK =12﹣x ,EF =32(12﹣x ), ∴S =32x (12﹣x )=﹣32(x ﹣6)2+1. 当x =6时,S 有最大值为1.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.27.∵AC 平分BCD BC ∠,平分ABC ∠,∴ACB DBC ∠=∠在ABC V 与DCB V 中,{ABC DCBACB DBC BC BC∠=∠∠=∠=ABC ∴V DCB V ≌AB DC ∴=.【解析】分析:根据角平分线性质和已知求出∠ACB=∠DBC ,根据ASA 推出△ABC ≌△DCB ,根据全等三角形的性质推出即可.解答:证明:∵AC 平分∠BCD ,BC 平分∠ABC ,∴∠DBC=12∠ABC ,∠ACB=12∠DCB , ∵∠ABC=∠DCB ,∴∠ACB=∠DBC ,∵在△ABC 与△DCB 中,ABC DCB{BC BC ACB DBC∠=∠=∠=∠,∴△ABC ≌△DCB ,∴AB=DC .。
辽宁省2020年中考数学试卷(含答案)
辽宁省2020年中考数学试卷一、选择题(共10小题,每题3分,共30分)1.下列各数中,比-2小的数是()A.-1B.0C.-3D.12.下列图形中,既是轴对称图形又是中心对称图形的是()A B C D3.下列运算正确的是()A.2m2+m2=3m4B.(mn2)2=mn4C.2m·4m2=8m2D.m5÷m3=m24.如图是由6个大小相同的小立方体搭成的几何体,这个几何体的左视图是()A B C D5.小明同学5次数学小测验成绩分别是90分、95分、85分、95分、100分,则小明这5次成绩的众数和中位数分别是()A.95分、95分 B.85分、95分 C.95分、85分 D.95分、90分6.下列事件属于必然事件的是()A.经过有交通信号的路口,遇到红灯B.任意买一张电影票,座位号是双号C.向空中抛一枚硬币,不向地面掉落D.三角形中,任意两边之和大于第三边7.若一次函数y=kx+b(k≠0)的图象经过第一、三、四象限,则k,b满足()A.k>0,b<0B. k>0,b>0C. k<0,b>0D. k<0, b<08.为了美化校园,学校计划购买甲、乙两种花木共200棵进行绿化,其中甲种花木每棵80元,乙种花木每棵100元,若购买甲、乙两种花木共花费17600元,求学校购买甲、乙两种花木各多少棵?设购买甲种花木x棵、乙种花木y棵,根据题意列出的方程组正确的是()A.⎩⎨⎧=+=+1760010080200yxyxB.⎩⎨⎧=+=+1760080100200yxyxC.⎪⎩⎪⎨⎧=+=+2001008017600yxyxD.⎪⎩⎪⎨⎧=+=+2008010017600yxyx9.如图,△ABC的顶点A在反比例函数xky=(x>0)的图象上,顶点C在x轴上,AB∥x轴,若点B的坐标为(1,3),S△ABC=2,则k的值为()A.4B.-4C.7D.-710.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是()10题图xyOCDA BEP37xyOB AC9题图A.2B.59 C.56D.1 二、填空题(共8小题,每题3分,共24分)11.五年以来,我国城镇新增就业人数为66000000人,数据66000000用科学计数法表示为 . 12.分解因式:2a 2-8ab+8b 2= .13.如图,AB ∥CD ,若∠E=34°,∠D=20°,则∠B 的度数为 .14.五张看上去无差别的卡片,正面分别写着数字1,2,2,3,5,现把它们的正面向下,随机地摆放在桌面上,从中任意抽出一张,则抽到数字“2”的卡片的概率是 . 15.关于x 的一元二次方程2x 2-x-k=0的一个根为1,则k 的值是 . 16.不等式组⎩⎨⎧〉+≤-03042x x 的解集是 .17.如图,矩形OABC 的顶点A ,C 分别在坐标轴上,B (8,7),D (5,0),点P 是边AB 或边BC 上的一点,连接OP ,DP ,当△ODP 为等腰三角形时,点P 的坐标为 .18.如图,A 1,A 2,A 3…,A n ,A n+1是直线x y l 3:1=上的点,且OA 1=A 1A 2=A 2A 3=…A n A n+1=2,分别过点A 1,A 2,A 3…,A n ,A n+1作1l 的垂线与直线x y l 33:2=相交于点B 1,B2,B 3…,B n ,B n+1,连接A 1B 2,B 1A 2,A 2B 3,B 2A 3…,A n B n+1,B n A n+1,交点依次为P 1,P 2,P 3…,P n ,设△P 1A 1A 2,△P 2A 2A 3,△P 3A 3A 4,…,△P n A n A n+1的面积分别为S 1,S 2,S 3…,S n ,则S n = .(用含有正整数n 的式子表示) 三、解答题(19题10分,20题12分,共22分)19.先化简,再求值:01-2)2018(2a ,4244)241(-+=-+-÷+-π其中a a a a20.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题: (1)本次调查的学生共有 人;13题图 17题图(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.四、解答题(21题12分,22题12分,共24分)21.如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.22.如图为某景区五个景点A,B,C,D,E的平面示意图,B,A在C的正东方向,D在C的正北方向,D,1000m,E在BD的中点处.E在B的北偏西30°方向上,E在A的西北方向上,C,D相距3(1)求景点B,E之间的距离;(2)求景点B,A之间的距离.(结果保留根号)五、解答题(12分)23.服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y(元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y与x之间所满足的函数关系式,并写出x的取值范围;(2)设服装厂所获利润为w(元),若10≤x≤50(x为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?六、解答题(12分)24.如图,在Rt△ABC中,∠C=90°,点O,D分别为AB,BC的中点,连接OD ,作⊙O与AC相切于点E,在AC边上取一点F,使DF=DO,连接DF.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)当∠A=30°,CF=2时,求⊙O的半径.DACB MFE DABCNOFD ABC (O )E MNOB CAE D F七、解答题(12分)25.在菱形ABCD 中,∠BAD=120°,点O 为射线CA 上的动点,作射线OM 与直线BC 相交于点E ,将射线OM 绕点O 逆时针旋转60°,得到射线ON ,射线ON 与直线CD 相交于点F.(1)如图1,点O 与点A 重合时,点E ,F 分别在线段BC ,CD 上,请直接写出CE ,CF ,CA 三条线段之间的数量关系;(2)如图2,点O 在CA 的延长线上,且OA=31AC ,E ,F 分别在线段BC 的延长线和线段CD 的延长线上,请写出CE ,CF ,CA 三条线段之间的数量关系,并说明理由;(3)点O 在线段AC 上,若AB=6,BO=72,当CF=1时,请直接写出BE 的长.图1 图2 备用图八、解答题(14分)26、如图,抛物线y=ax 2+2x+c (a <0)与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,OB=OC=3. (1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD. OD 交BC 于点F ,当S △COF ︰S △CDF =3︰2时,求点D 的坐标. (3)如图2,点E 的坐标为(0,23),点P 是抛物线上的点,连接EB ,PB ,PE 形成的△PBE 中,是否存在点P ,使∠PBE 或∠PEB 等于2∠OBE ?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.图2 备用图图1参考答案1-10、CBDBA DAACB11、6.6×10712、2(a-2b)213、54°14、15、116、-3<x≤217、18、19、20、21、22、23、24、25、26、1、只要朝着一个方向奋斗,一切都会变得得心应手。
阜新市2020版中考数学试卷(I)卷
阜新市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)如果两个有理数的积是负数,和是正数,那么这两个有理数()A . 同号,且均为负数B . 异号,且正数的绝对值比负数的绝对值大C . 同号,且均为正数D . 异号,且负数的绝对值比正数的绝对值大2. (2分)若锐角α满足sinα>,且cosα>,则α的范围是()A . 0°<α<30°B . 30°<α<60°C . 60°<α<90°D . 45°<α<90°3. (2分)下列运算正确的是()A . a2+a2=2a2B . a6•a4=a24C . a4+b4=(a+b)4D . (x2)3=x64. (2分)下列汽车标志图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .5. (2分)(2017·邵阳模拟) 如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A . 3:4B . 9:16C . 9:1D . 3:16. (2分)已知抛物线y=mx2+4x+m+3开口向下,且与坐标轴的公共点有且只有2个,则m的值为()A . m=﹣4B . m=﹣3或﹣4C . m﹣3、﹣4、0或1D . ﹣4<m<07. (2分)(2017·杭州模拟) 如图,在一个长方体上放着一个小正方体,若这个组合体的俯视图如图所示,则这个组合体的左视图是()A .B .C .D .8. (2分) (2020九上·常州期末) 某同学对数据26,36,36,46,5■,52进行统计分析.发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A . 平均数B . 中位数C . 方差D . 众数9. (2分)已知二次函数y=a(x﹣1)2+b(a≠0)有最大值2,则a、b的大小比较为()A . a>bB . a<bC . a=bD . 不能确定10. (2分)(2018·福建模拟) 如图,AB是⊙O的直径,CD是弦,如果弧AC=弧AD,∠C比∠D大36°,则∠A等于()A . 24°B . 27°C . 34°D . 37°11. (2分)如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A . 逐渐增大B . 不变C . 逐渐减小D . 先增大后减小12. (2分)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1 ,第二个三角数记为a2 ,…,第n个三角数记为an ,则an﹣1+an=()()A . (n﹣1)2B . n2C . (n+1)2D . (n+2)2二、填空题 (共6题;共6分)13. (1分)(2018·湘西模拟) 当两数________时,它们的和为0.14. (1分) (2019七上·增城期中) 小薇的体重是,用四舍五入法将精确到的近似值为________.15. (1分)(2017·邵阳) 将多项式mn2+2mn+m因式分解的结果是________.16. (1分)扇形统计图中,其中一个扇形的圆心角为72°,则这个扇形所表示的占总体的比值为________17. (1分)如图,直角梯形ABCD中,BA∥CD, AB BC,AB=2,将腰DA以A为旋转中心逆时针旋转90°至AE,连接BE,DE,ABE的面积为3,则CD的长为________。
辽宁省阜新市2020年中考数学试卷
辽宁省阜新市2020年中考数学试卷一、选择题(共10题;共20分)1. ( 2分) 在实数,-1,0,1中,最小的是()A. B. -1 C. 0 D. 12. ( 2分) 下列立体图形中,左视图与主视图不同的是()A. B. C. D.3. ( 2分) 如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A. 众数是9B. 中位数是8.5C. 平均数是9D. 方差是74. ( 2分) 如图,为⊙的直径,C,D是圆周上的两点,若,则锐角的度数为()A. 57°B. 52°C. 38°D. 26°5. ( 2分) 掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A. 1B.C.D.6. ( 2分) 不等式组的解集,在数轴上表示正确的是()A. B.C. D.7. ( 2分) 若与都是反比例函数图象上的点,则a的值是()A. 4B. -4C. 2D. -28. ( 2分) 在“建设美丽阜新”的行动中,需要铺设一段全长为的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺管道,根据题意,所列方程正确的是()A. B.C. D.9. ( 2分) 已知二次函数,则下列关于这个函数图象和性质的说法,正确的是()A. 图象的开口向上B. 图象的顶点坐标是C. 当时,y随x的增大而增大D. 图象与x轴有唯一交点10. ( 2分) 如图,在平面直角坐标系中,将边长为1的正六边形绕点O顺时针旋转i个45°,得到正六边形,则正六边形的顶点的坐标是()A. B. C. D.二、填空题(共6题;共6分)11. ( 1分) 计算:________.12. ( 1分) 如图,直线a,b过等边三角形顶点A和C,且,,则的度数为________.13. ( 1分) 如图,把沿边平移到的位置,图中所示的三角形的面积与四边形的面积之比为4∶5,若,则此三角形移动的距离是________.14. ( 1分) 如图,在中,,.将绕点B逆时针旋转60°,得到,则边的中点D与其对应点的距离是________.15. ( 1分) 如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角,两树间的坡面距离,则这两棵树的水平距离约为________m(结果精确到,参考数据:).16. ( 1分) 甲、乙两人沿笔直公路匀速由A地到B地,甲先出发30分钟,到达B地后原路原速返回与乙在C地相遇.甲的速度比乙的速度快,甲、乙两人与A地的距离和乙行驶的时间之间的函数关系如图所示,则B,C两地的距离为________ (结果精确到).三、解答题(共6题;共57分)17. ( 5分) 先化简,再求值:,其中.18. ( 11分) 如图,在平面直角坐标系中,顶点的坐标分别为,,.(1)画出与关于y轴对称的;(2)将绕点顺时针旋转90°得到,弧是点A所经过的路径,则旋转中心的坐标为________.(3)求图中阴影部分的面积(结果保留).19. ( 11分) 在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:(1)本次测试随机抽取的人数是________人,________;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.20. ( 10分) 在抗击新冠肺炎疫情期间,玉龙社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.(1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?21. ( 10分) 如图,正方形和正方形(其中),的延长线与直线交于点H.(1)如图1,当点G在上时,求证:,;(2)将正方形绕点C旋转一周.①如图2,当点E在直线右侧时,求证:;②当时,若,,请直接写出线段的长22. ( 10分) 如图,二次函数的图象交x轴于点,,交y轴于点C.点是x轴上的一动点,轴,交直线于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段上运动,如图1.求线段的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.答案解析部分一、选择题1.【答案】A【考点】实数大小的比较【解析】【解答】解:∵<−1<0<1,∴实数,-1,0,1中,最小的实数是,故答案为:A.【分析】根据实数大小比较的法则比较即可.2.【答案】B【考点】简单几何体的三视图【解析】【解答】解:A.左视图与主视图都是正方形,故答案为:A不合题意;B.左视图是圆,主视图都是矩形,故答案为:B符合题意;C.左视图与主视图都是三角形;故答案为:C不合题意;D.左视图与主视图都是圆,故答案为:D不合题意;故答案为:B.【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,进而分别判断得出答案.3.【答案】C【考点】折线统计图,分析数据的集中趋势【解析】【解答】解:有题目中折线统计图可知,圈数数据为7、10、9、9、10、8、10.A、该组数据中10出现的次数最多,为3次,所以众数为10,故A错误;B、将数据按照从小到大排列,依次为7、8、9、9、10、10、10,中位数应为9,故B错误;C、平均数应为,故C正确;D、由C可知平均数为9,方差应为,故D错误. 故答案为:C.【分析】根据给出的折线统计图确定本数据分别为多少,再根据各选项要求的数进行求解即可. 4.【答案】B【考点】圆周角定理【解析】【解答】解:连接,为的直径,故答案为:B.【分析】连接,由直径所对的圆周角是直角,求解,利用同圆中同弧所对的圆周角相等可得答案.5.【答案】D【考点】概率的简单应用【解析】【解答】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝上的概率是:故答案为:D.【分析】由题意可知掷一枚质地均匀的硬币一共有两组情况:正面向上和正面向下,由此可得再次掷出这枚硬币,正面朝下的概率。
2020年辽宁省中考数学试卷及答案解析
2020年辽宁省中考数学试卷一、选择题(本大题共10小题,共30.0分)1.−13的绝对值是()A. 13B. −13C. 3D. −32.如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.3.下列运算正确的是()A. a2⋅a3=a6B. a8÷a4=a2C. 5a−3a=2aD. (−ab2)2=−a2b44.一组数据1,4,3,1,7,5的众数是()A. 1B. 2C. 2.5D. 3.55.一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是()A. 16B. 13C. 12D. 236.不等式组{3+x>12x−3≤1的整数解的个数是()A. 2B. 3C. 4D. 57. 我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米.根据题意,所列方程组正确的是( )A. {x =y −22x +3y =400 B. {x =y −22x +3(x +y)=400−50 C. {x =y +22x +3y =400−50D. {x =y +22x +3(x +y)=400−508. 一个零件的形状如图所示,AB//DE ,AD//BC ,∠CBD =60°,∠BDE =40°,则∠A 的度数是( )A. 70°B. 80°C. 90°D. 100°9. 如图,矩形ABCD 的顶点D 在反比例函数y =kx (x >0)的图象上,点E(1,0)和点F(0,1)在AB 边上,AE =EF ,连接DF ,DF//x 轴,则k 的值为( )A. 2√2B. 3C. 4D. 4√210. 如图,二次函数y =ax 2+bx +c(a ≠0)的图象的对称轴是直线x =1,则以下四个结论中:①abc >0,②2a +b =0,③4a +b 2<4ac ,④3a +c <0.正确的个数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共24.0分)11.伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000,将数据450000000用科学记数法表示为______.12.分解因式:ab2−9a=______.13.甲、乙两人参加“环保知识”竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为s甲2=6.67,s乙2=2.50,则这6次比赛成绩比较稳定的是______.(填“甲”或“乙”)14.关于x的一元二次方程x2−2x−k=0有两个不相等的实数根,则k的取值范围是______.15.如图,在△ABC中,AB=5,AC=8,BC=9,以A为圆心,以适当的长为半径MN的长为半径作弧,交AB于点M,交AC于点N.分别以M,N为圆心,以大于12作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,点F在AC边上,AF=AB,连接DF,则△CDF的周长为______.16.如图,以AB为边,在AB的同侧分别作正五边形ABCDE和等边△ABF,连接FE,FC,则∠EFA的度数是______.17. 一张菱形纸片ABCD 的边长为6cm ,高AE 等于边长的一半,将菱形纸片沿直线MN 折叠,使点A 与点B 重合,直线MN 交直线CD 于点F ,则DF 的长为______cm . 18. 如图,∠MON =45°,正方形ABB 1C ,正方形A 1B 1B 2C 1,正方形A 2B 2B 3C 2,正方形A 3B 3B 4C 3,…,的顶点A ,A 1,A 2,A 3,…,在射线OM 上,顶点B ,B 1,B 2,B 3,B 4,…,在射线ON 上,连接AB 2交A 1B 1于点D ,连接A 1B 3交A 2B 2于点D 1,连接A 2B 4交A 3B 3于点D 2,…,连接B 1D 1交AB 2于点E ,连接B 2D 2交A 1B 3于点E 1,…,按照这个规律进行下去,设△ACD 与△B 1DE 的面积之和为S 1,△A 1C 1D 1与△B 2D 1E 1的面积之和为S 2,△A 2C 2D 2与△B 3D 2E 2的面积之和为S 3,…,若AB =2,则S n 等于______.(用含有正整数n 的式子表示)三、解答题(本大题共8小题,共96.0分)19. 先化简,再求值:(x −1−x 2x+1)÷xx 2+2x+1,其中x =3.20. 某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有______人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.21.某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A种书架?22.如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大桥主架的水平距离CM为60米,且AB垂直于桥面.(点A,B,C,M 在同一平面内)(1)求大桥主架在桥面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)(参考数据sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,√3≈1.73)23.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)121416每周的销售量y(本)500400300(1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?24.如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.25.在等腰△ADC和等腰△BEC中,∠ADC=∠BEC=90°,BC<CD,将△BEC绕点C逆时针旋转,连接AB,点O为线段AB的中点,连接DO,EO.(1)如图1,当点B旋转到CD边上时,请直接写出线段DO与EO的位置关系和数量关系;(2)如图2,当点B旋转到AC边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;(3)若BC=4,CD=2√6,在△BEC绕点C逆时针旋转的过程中,当∠ACB=60°时,请直接写出线段OD的长.x+c(a≠0)与x轴相交于点A(−1,0)和点B,与y轴相交26.如图,抛物线y=ax2+94于点C(0,3),作直线BC.(1)求抛物线的解析式;(2)在直线BC上方的抛物线上存在点D,使∠DCB=2∠ABC,求点D的坐标;),点M在抛物线上,点N在直线BC上.当(3)在(2)的条件下,点F的坐标为(0,72以D,F,M,N为顶点的四边形是平行四边形时,请直接写出点N的坐标.答案和解析1.【答案】A【解析】解:|−13|=13.故选:A.依据绝对值的性质求解即可.本题主要考查的是绝对值的性质,熟练掌握绝对值的性质是解题的关键.2.【答案】B【解析】解:从上面看,底层左边是一个小正方形,上层是两个小正方形.故选:B.根据从上面看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,解题时注意从上面看得到的图形是俯视图.3.【答案】C【解析】解:(A)原式=a5,故A错误.(B)原式=a4,故B错误.(D)原式=a4b2,故D错误.故选:C.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.【答案】A【解析】解:本题中数据1出现了2次,出现的次数最多,所以本组数据的众数是1.故选:A.众数是指一组数据中出现次数最多的数据;据此即可求得正确答案.主要考查了众数的概念.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.5.【答案】D【解析】解:根据题意可得:袋中有4个红球、2个白球,共6个, 从袋子中随机摸出1个球,则摸到红球的概率是46=23. 故选:D .根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.6.【答案】C【解析】解:解不等式3+x >1,得:x >−2, 解不等式2x −3≤1,得:x ≤2, 则不等式组的解集为−2<x ≤2,所以不等式组的整数解有−1、0、1、2这4个, 故选:C .分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.【答案】D【解析】解:由题意可得, {x =y +22x +3(x +y)=400−50, 故选:D .根据甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程和甲工程队每天比乙工程队多施工2米,可以列出相应的二元一次方程组,本题得以解决.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8.【答案】B【解析】解:∵AB//DE ,AD//BC , ∴∠ABD =∠BDE ,∠ADB =∠CBD ,∵∠CBD=60°,∠BDE=40°,∴∠ADB=60°,∠ABD=40°,∴∠A=180°−∠ADB−∠ABD=80°,故选:B.根据平行线的性质,可以得到∠ADB=60°和∠ABD的度数,再根据三角形内角和,即可得到∠A的度数.本题考查平行线的性质、三角形内角和,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】C【解析】解:如图,过点D作DH⊥x轴于点H,设AD交x轴于点G,∵DF//x轴,∴得矩形OFDH,∴DF=OH,DH=OF,∵E(1,0)和点F(0,1),∴OE=OF=1,∠OEF=45,∴AE=EF=√2,∵四边形ABCD是矩形,∴∠A=90°,∵∠AEG=∠OEF=45°,∴AG=AE=√2,∴EG=2,∵DH=OF=1,∠DHG=90°,∠DGH=∠AGE=45°,∴GH=DH=1,∴DF=OH=OE+EG+GH=1+2+1=4,∴D(4,1),(x>0)的图象上,∵矩形ABCD的顶点D在反比例函数y=kx∵k=4.则k的值为4.故选:C.过点D作DH⊥x轴于点H,设AD交x轴于点G,得矩形OFDH,根据点E(1,0)和点F(0,1)在AB边上,AE=EF,可以求出EG和DH的长,进而可得OH的长,所以得点D的坐标,即可得k的值.本题考查了反比例函数图象上点的坐标特征、矩形的性质,解决本题的关键是掌握反比例函数图象和性质.10.【答案】B【解析】解:①根据抛物线开口向下可知:a<0,因为对称轴在y轴右侧,所以b>0,因为抛物线与y轴正半轴相交,所以c>0,所以abc<0,所以①错误;②因为抛物线对称轴是直线x=1,=1,即−b2a所以b=−2a,所以b+2a=0,所以②正确;③因为抛物线与x轴有2个交点,所以Δ>0,即b2−4ac>0,所以b2−4ac+4a>4a,所以4a+b2>4ac+4a,所以③错误;④当x=−1时,y<0,即a−b+c<0,因为b=−2a,所以3a+c<0,所以④正确.所以正确的个数是②④2个.故选:B.①根据抛物线开口向下可得a<0,对称轴在y轴右侧,得b>0,抛物线与y轴正半轴相交,得c>0,进而即可判断;=1,可得b=−2a,进而可以判断;②根据抛物线对称轴是直线x=1,即−b2a③根据抛物线与x轴有2个交点,可得Δ>0,即b2−4ac>0,进而可以判断;④当x=−1时,y<0,即a−b+c<0,根据b=−2a,可得3a+c<0,即可判断.本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数图象和性质.11.【答案】4.5×108【解析】解:将数据450000000用科学记数法表示为4.5×108.故答案为:4.5×108.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.12.【答案】a(b+3)(b−3)【解析】解:原式=a(b2−9)=a(b+3)(b−3),故答案为:a(b+3)(b−3).根据提公因式,平方差公式,可得答案.本题考查了因式分解,一提,二套,三检查,分解要彻底.13.【答案】乙【解析】解:∵s 甲2=6.67,s 乙2=2.50, ∴s 甲2=>s 乙2,∴这6次比赛成绩比较稳定的是乙, 故答案为:乙.根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义.14.【答案】k >−1【解析】解:∵关于x 的一元二次方程x 2−2x −k =0有两个不相等的实数根, ∴△=(−2)2+4k >0, 解得k >−1. 故答案为:k >−1.根据判别式的意义得到△=(−2)2+4k >0,然后解不等式即可.此题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2−4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.【答案】12【解析】解:∵AB =5,AC =8,AF =AB , ∴FC =AC −AF =8−5=3, 由作图方法可得:AD 平分∠BAC , ∴∠BAD =∠CAD , 在△ABD 和△AFD 中 {AB =AF∠BAD =∠FAD AD =AD, ∴△ABD≌△AFD(SAS), ∴BD =DF ,∴△DFC 的周长为:DF +FC +DC =BD +DC +FC =BC +FC =9+3=12. 故答案为:12.直接利用基本作图方法结合全等三角形的判定与性质进而得出BD =DF ,即可得出答案. 此题主要考查了基本作图以及全等三角形的判定与性质,正确理解基本作图方法是解题关键.16.【答案】66°【解析】解:∵正五边形ABCDE,∴∠EAB=(5−2)×180°5=108°,∵△ABF是等边三角形,∴∠FAB=60°,∴∠EAF=108°−60°=48°,∵AE=AF,∴∠AE=∠AFE=12×(180°−48°)=66°,故答案为:66°.根据正五边形和电视背景下的性质得到∠EAF=108°−60°=48°,根据等腰三角形的性质即可得到结论.本题考查了正多边形与圆,正五边形和等边三角形的性质,等腰三角形的性质,正确的识别图形是解题的关键.17.【答案】(3√3+3)或(3√3−3)【解析】解:①根据题意画出如图1:∵菱形纸片ABCD的边长为6cm,∴AB=BC=CD=AD=6,∵高AE等于边长的一半,∴AE=3,∵sin∠B=AEAB =12,∴∠B=30°,将菱形纸片沿直线MN折叠,使点A与点B重合,∴BH=AH=3,∴BG=BHcos30∘=2√3,∴CG=BC−BG=6−2√3,∵AB//CD,∴∠GCF=∠B=30°,∴CF=CG⋅cos30°=(6−2√3)×√32=3√3−3,∴DF=DC+CF=6+3√3−3=(3√3+3)cm;②如图2,BE=AE=3,同理可得DF=3√3−3.综上所述:则DF的长为(3√3+3)或(3√3−3)cm.故答案为:(3√3+3)或(3√3−3).根据题意分两种情况:①如图1:根据菱形纸片ABCD的边长为6cm,高AE等于边长的一半,可得菱形的一个内角为30°,根据折叠可得BH=AH=3,再根据特殊角三角函数即可求出CF的长,进而可得DF的长;如图2,将如图1中的点A和点B交换一下位置,同理即可求出DF的长就是如图1中的CF的长.本题考查了翻折变换、菱形的性质,解决本题的关键是分两种情况分类讨论,进行计算.18.【答案】149×4n−1【解析】解:设△ADC的面积为S,由题意,AC//B1B2,AC=AB=2,B1B2=4,∴△ACD∽△B2B1D,∴S△ADCS△B1B2D =(ACB1B2)2=14,∴S△B1B2D=4S,∵CDDB1=ACB1B2=12,CB1=2,∴DB1=43,同法D 1B 2=83, ∵DB 1//D 1B 2, ∴DEEB 2=DB 1D1B 2=12,∴S △DB 1E =4S3, ∴S 1=S +4S 3=7S 3,∵△A 1C 1D 1∽△ACD , ∴S △A 1C 1D 1S △ACD=(A 1C 1AC)2=14, ∴S △A 1C 1D 1=4S , 同法可得,S △D 1B 1E 1=16S 3, ∴S 2=4S +16S 3=28S 3=7S 3×4,…S n =7S 3×4n−1,∵S =12×2×23=23, ∴S n =149×4n−1.故答案为:149×4n−1.设△ADC 的面积为S ,利用相似三角形的性质求出S 1,S 2,…S n 与S 的关系即可解决问题.本题考查正方形的性质,三角形的面积,相似三角形的判定和性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.19.【答案】解:(x −1−x 2x+1)÷xx 2+2x+1=[(x −1)(x +1)x +1−x 2x +1]⋅(x +1)2x =x 2−1−x 2x +1⋅(x +1)2x=−x+1x,当x =3时,原式=−3+13=−43.【解析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.【答案】60【解析】解:(1)本次被调查的学生有:9÷15%=60(人);故答案为:60;(2)航模的人数有:60−9−15−12=24(人),补全条形统计图如图:“航模”所对应的圆心角的度数是:360°×2460=144°;(3)设两名男生分别为男1,男2,两名女生分别为女1,女2,列表如下:男1男2女1女2男1(男2,男1)(女1,男1)(女2,男1)男2(男1,男2)(女1,男2)(女2,男2)女1(男1,女1)(男2,女1)(女2,女1)女2(男1,女2)(男2,女2)(女1,女2)由表格可以看出,所有可能出现的结果有12种,并且它们出现的可能性相等,其中恰好是1名男生和1名女生的情况有8种.则所选的2人恰好是1名男生和1名女生的概率是812=23.(1)根据摄影的人数和所占的百分比求出抽取的总人数;(2)用总人数减去其他兴趣小组的人数求出航模的人数,从而补全统计图;用360°乘以“航模”所占的百分比即可得出扇形统计图中“航模”所对应的圆心角的度数;(3)根据题意画出图表得出所有等可能的情况数和所选的2人恰好是1名男生和1名女生的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)设B种书架的单价为x元,根据题意,得600x+20=480x.解得x=80.经检验:x=80是原分式方程的解.∴x+20=100.答:购买A种书架需要100元,B种书架需要80元.(2)设准备购买m个A种书架,根据题意,得100m+80(15−m)≤1400.解得m≤10.答:最多可购买10个A种书架.【解析】(1)设B种书架的单价为x元,则A种书架的单价为(x+20)元,根据数量=总价÷单价结合用600元购买A种书架的个数与用480元购买B种书架的个数相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设准备购买m个A种书架,则购买B种书架(15−m)个,根据题意列出不等式并解答.本题主要考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.22.【答案】解:(1)∵AB垂直于桥面,∴∠AMC=∠BMC=90°,在Rt△AMC中,CM=60,∠ACM=30°,tan∠ACM=AMCM,∴AM=CM⋅tan∠ACM=60×√33=20√3(米),答:大桥主架在桥面以上的高度AM为20√3米;(2)在Rt△BMC中,CM=60,∠BCM=14°,tan∠BCM=BMCM,∴MB=CM⋅tan∠BCM≈60×0.25=15,∴AB=AM+MB=15+20√3≈50(米)答:大桥主架在水面以上的高度AB约为50米.【解析】(1)根据正切的定义求出AM ;(2)根据正切的定义求出BM ,结合图形计算即可.本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.【答案】解:(1)设y 与x 之间的函数关系式是y =kx +b(k ≠0),{12k +b =50014k +b =400,得{k =−50b =1100, 即y 与x 之间的函数关系式为y =−50x +1100; (2)由题意可得,w =(x −10)y =(x −10)(−50x +1100)=−50(x −16)2+1800,∵a =−50<0∴w 有最大值∴当x <16时,w 随x 的增大而增大, ∵12≤x ≤15,x 为整数, ∴当x =15时,w 有最大值,∴w =−50(15−16)2+1800=1750,答:销售单价为15元时,每周获利最大,最大利润是1750元.【解析】(1)根据题意和表格中的数据,可以求得y 与x 之间的函数关系式; (2)根据题意,可以得到w 与x 的函数关系式,然后根据二次函数的性质,可以解答本题.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.24.【答案】(1)证明:连接OD ,∵OC =OD , ∴∠OCD =∠ODC , ∵AC 是直径, ∴∠ADC =90°, ∵∠EDA =∠ACD ,∴∠ADO +∠ODC =∠EDA +∠ADO , ∴∠EDO =∠EDA +∠ADO =90°, ∴OD ⊥DE , ∵OD 是半径,∴直线DE 是⊙O 的切线.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,∵AC是直径,∴∠ABC=∠ADC=90°,∵在Rt△ACD中,AD=6,CD=8,∴AC2=AD2+CD2=62+82=100,∴AC=10,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∵sin∠ACB=AB,AC∴AB=sin45°⋅AC=5√2,∵∠ADB=∠ACB=45°,∵在Rt△ADF中,AD=6,∵sin∠ADF=AF,AD∴AF=sin45°⋅AD=3√2,∴DF=AF=3√2,∵在Rt△ABF中,∴BF2=AB2−AF2=(5√2)2−(3√2)2=32,∴BF=4√2,∴BD=BF+DF=7√2.解法二:过点B作BH⊥BD交DC延长线于点H.∴∠DBH=90°,∵AC是直径,∴∠ABC=90°,∵∠ABD=90°−∠DBC∠CBH=90°−∠DBC,∴∠ABD=∠CBH,∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠BCH=180°,∴∠BAD=∠BCH,∵AB=CB,∴△ABD≌△CBH(ASA),∴AD=CH,BD=BH,∵AD=6,CD=8,∴DH=CD+CH=14,在Rt△BDH中,∵BD2=DH2−BH2=98,∴BD=7√2.【解析】(1)连接OD.想办法证明OD⊥DE即可.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,想办法求出BF,DF 即可.解法二:过点B作BH⊥BD交DC延长线于点H.证明△BDH是等腰直角三角形,求出DH即可.本题考查切线的判定和性质,圆周角定理,圆内接四边形的性质,解直角三角形,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.25.【答案】解:(1)DO⊥EO,DO=EO;理由:当点B旋转到CD边上时,点E必在边AC上,∴∠AEB=∠CEB=90°,在Rt△ABE中,点O是AB的中点,AB,∴OE=OA=12∴∠BOE=2∠BAE,在Rt△ABD中,点O是AB的中点,AB,∴OD=OA=12∴∠DOE=2∠BAD,∴OD=OE,∵等腰△ADC,且∠ADC=90°,∴∠DAC=45°,∴∠DOE=∠BOE+DOE=2∠BAE+2∠BAD=2(∠BAE+∠DAE)=2∠DAC=90°,∴OD⊥OE;(2)仍然成立,理由:如图1,延长ED到点M,使得OM=OE,连接AM,DM,DE,∵O是AB的中点,∴OA=OB,∵∠AOM=∠BOE,∴△AOM≌△BOE(SAS),∴∠MAO=∠EBO,MA=EB,∵△ACD和△CBE是等腰三角形,∠ADC=∠CEB=90°,∴∠CAD=∠ACD=∠EBC=∠BCE=45°,∵∠OBE=180°−∠EBC=135°,∴∠MAO=135°,∴∠MAD=∠MAO−∠DAC=90°,∵∠DCE=∠DCA+∠BCE=90°,∴∠MAD=∠DCE,∵MA=EB,EB=EC,∴MA=EC,∵AD=DC,∴△MAD≌△ECD,∴MD=ED,∠ADM=∠CDE,∵∠CDE+∠ADE=90°,∴∠ADM+∠ADE=90°,∴∠MDE=90°,∵MO=EO,MD=DE,ME,OD⊥ME,∴OD=12∵OE=1ME,2∴OD=OE,OD⊥OE;(3)①当点B在AC左侧时,如图3,延长ED到点M,使得OM=OE,连接AM,DM,DE,同(2)的方法得,△OBE≌△OAM(SAS),∴∠OBE=∠OAM,OM=OE,BE=AM,∵BE=CE,∴AM=CE,在四边形ABECD中,∠ADC+∠DCE+∠BEC+∠OBE+∠BAD=540°,∵∠ADC=∠BEC=90°,∴∠DCE=540°−90°−90°−∠OBE−∠BAD=360°−∠OBE=360°−∠OAM−∠BAD,∵∠DAM+∠OAM+∠BAD=360°,∴∠DAM=360°−∠OAM−∠BAD,∴∠DAM=∠DCE,∵AD=CD,∴△DAM≌△DCE(SAS),∴DM=DE,∠ADM=∠CDE,∴∠EDM=∠ADM+∠ADE=∠CDE+∠ADE=∠ADC=90°,∵OM=OE,∴OD=OE=1ME,∠DOE=90°,2BC=2√2,在Rt△BCE中,CE=√22过点E作EH⊥DC交DC的延长线于H,在Rt△CHE中,∠ECH=180°−∠ACD−∠ACB−∠BCE=180°−45°−60°−45°= 30°,CE=√2,∴EH=12根据勾股定理得,CH=√3EH=√6,∴DH=CD+CH=3√6,在Rt△DHE中,根据勾股定理得,DE=√EH2+DH2=2√14,DE=2√7,∴OD=√22②当点B在AC右侧时,如图4,同①的方法得,OD=OE,∠DOE=90°,连接DE,过点E作EH⊥CD于H,在Rt△EHC中,∠ECH=30°,CE=√2,∴EH=12根据勾股定理得,CH=√6,∴DH=CD−CH=√6,在Rt△DHE中,根据勾股定理得,DE=2√2,∴OD=√22DE=2,即:线段OD的长为2或2√7.【解析】(1)利用直角三角形斜边的中线等于斜边的一半,得出OE=OA=12AB,进而得出∠BOE=2∠BAE,同理得出OD=OA=12AB,∠DOE=2∠BAD,即可得出结论;(2)先判断出△AOM≌△BOE(SAS),得出∠MAO=∠EBO,MA=EB,再判断出∠MAD=∠DCE,进而判断出△MAD≌△ECD,即可得出结论;(3)分点B在AC左侧和右侧两种情况,类似(2)的方法判断出OD=OE,即可得出结论.此题是几何变换综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,五边形的内角和,判断出∠DAM=∠DCE是解本题的关键.26.【答案】解:(1)∵抛物线y=ax2+94x+c经过点A(−1,0),C(0,3),∴{a−94+c=0c=3,解得:{a=−34c=3,∴抛物线的解析式为:y=−34x2+94x+3;(2)如图1,过点C作CE//x轴交抛物线于点E,则∠ECB=∠ABC,过点D作DH⊥CE于点H,则∠DHC=90°,∵∠DCB=∠DCH+∠ECB=2∠ABC,∴∠DCH=∠ABC,∵∠DHC=∠COB=90°,∴△DCH∽△CBO,∴DHCO =CHBO,设点D的横坐标为t,则D(t,−34t2+94t+3),∵C(0,3),∴DH =−34t 2+94t , ∵点B 是y =−34x 2+94x +3与x 轴的交点,∴−34x 2+94x +3=0,解得x 1=4,x 2=−1,∴B 的坐标为(4,0),∴OB =4,∴−34t 2+94t3=t 4, 解得t 1=0(舍去),t 2=2,∴点D 的纵坐标为:−34t 2+94t +3=92,则点D 坐标为(2,92);(3)设直线BC 的解析式为:y =kx +b ,则{4k +b =0b =3,解得:{k =−34b =3, ∴直线BC 的解析式为:y =−34x +3,设N(m,−34m +3),分两种情况:①如图2,以DF 为边,N 在x 轴的上方时,四边形DFNM 是平行四边形,∵D(2,92),F(0,72),∴M(m +2,−34m +4),代入抛物线的解析式得:−34(m +2)2+94(m +2)+3=−34m +4,解得:m =±√63,∴N(√63,3−√64)或(−√63,3+√64);②如图3,以DF为边,N在x轴的下方时,四边形DFMN是平行四边形,同理得:M(m−2,−34m+2),代入抛物线的解析式得:−34(m−2)2+94(m−2)+3=−34m+2,解得:m=4±√663,∴N(4+√663,−√664)或(4−√663,√664);综上,点N的坐标分别为:(√63,3−√64)或(−√63,3+√64)或(4+√663,−√664)或(4−√663,√664).【解析】(1)把点A(−1,0),C(0,3)代入抛物线的解析式中,列方程组解出即可;(2)如图1,作辅助线,构建相似三角形,证明△DCH∽△CBO,则DHCO =CHBO,设点D的横坐标为t,则D(t,−34t2+94t+3),列关于t的方程解出可得结论;(3)利用待定系数法求直线BC的解析式为:y=−34x+3,设N(m,−34m+3),当以D,F,M,N为顶点的四边形是平行四边形时,存在两种情况:如图2和图3,分别画图,根据平移的性质可表示M的坐标,代入抛物线的解析式列方程可解答.本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、平行四边形的性质以及解一元二次方程,解题的关键是:(1)根据点A、C的坐标,利用待定系数法求出二次函数解析式;(2)利用相似三角形可解决问题;(3)分N在x轴的上方和下方两种情况,表示M和N两点的坐标,确定关于m的一元二次方程.。
辽宁省阜新市2019-2020学年中考第四次质量检测数学试题含解析
辽宁省阜新市2019-2020学年中考第四次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°2.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.①B.②C.③D.④3.计算--|-3|的结果是()A.-1 B.-5 C.1 D.54.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )A.B.C.D.5.青藏高原是世界上海拔最高的高原,它的面积是2500000 平方千米.将2500000 用科学记数法表示应为()A.70.2510⨯B.72.510⨯C.62.510⨯D.52510⨯6.分式2231x xx+--的值为0,则x的取值为( )A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-1 7.下列方程中,两根之和为2的是()A.x2+2x﹣3=0 B.x2﹣2x﹣3=0 C.x2﹣2x+3=0 D.4x2﹣2x﹣3=0 8.如图,在下列条件中,不能判定直线a与b平行的是()A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180°9.如图,在ABC ∆中,90,4,3C AC BC ︒∠===,将ABC ∆绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则,B D 两点间的距离为( )A .10B .22C .3D .510.如图,四边形ABCD 是边长为1的正方形,动点E 、F 分别从点C ,D 出发,以相同速度分别沿CB ,DC 运动(点E 到达C 时,两点同时停止运动).连接AE ,BF 交于点P ,过点P 分别作PM ∥CD ,PN ∥BC ,则线段MN 的长度的最小值为( )A 5B .512C .12D .1 11.已知⊙O 的半径为13,弦AB ∥CD ,AB=24,CD=10,则四边形ACDB 的面积是( ) A .119 B .289 C .77或119 D .119或289 12.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程.其中正确的是( )A .1101002x x =+B .1101002x x =+C .1101002x x =-D .1101002x x =- 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为1003米,点A、D、B在同一水平直线上,则A、B两点间的距离是_____米.(结果保留根号)14.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C=45,那么GE=_______.15.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,则x的值为_____.16.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.17.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为_____立方米.18.如图,菱形ABCD和菱形CEFG中,∠ABC=60°,点B,C,E在同一条直线上,点D在CG上,BC=1,CE=3,H是AF的中点,则CH的长为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.(1)求证:AC平分∠DAB;(2)若BE=3,CE=33,求图中阴影部分的面积.20.(6分)已知关于x ,y 的二元一次方程组2213ax by a x b y ab +=⎧⎨-=+⎩的解为11x y =⎧⎨=-⎩,求a 、b 的值. 21.(6分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下: 20 21 19 16 27 18 31 29 21 2225 20 19 22 35 33 19 17 18 29 18 35 22 15 18 18 31 31 19 22整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数 众数 中位数 数值 23 m 21根据以上信息,解答下列问题:上表中众数m 的值为 ;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据 来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.22.(8分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A ),豆沙粽子(记为B ),肉粽子(记为C ),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.23.(8分)如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A 31)在反比例函数y=kx的图象上.(1)求反比例函数y=kx的表达式;(2)在x轴上是否存在一点P,使得S△AOP=12S△AOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由.24.(10分)(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=12,OB=4,OE=1.(1)求直线AB和反比例函数的解析式;(1)求△OCD的面积.25.(10分)已知如图,直线y=33与x轴相交于点A,与直线y= 3相交于点P.(1)求点P的坐标;(2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.直接写出:S与a之间的函数关系式(3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为3若存在直接写出Q点坐标。
2020年辽宁省阜新市中考数学试卷及答案解析
第 1 页 共 22 页 2020年辽宁省阜新市中考数学试卷
一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分)
1.(3分)在实数−√2,﹣1,0,1中,最小的是( )
A .−√2
B .﹣1
C .0
D .1
2.(3分)下列立体图形中,左视图与主视图不同的是( )
A .正方体
B .圆柱
C .圆锥
D .球
3.(3分)如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是
( )
A .众数是9
B .中位数是8.5
C .平均数是9
D .方差是7 4.(3分)如图,AB 为⊙O 的直径,C ,D 是圆周上的两点,若∠ABC =38°,则锐角∠BDC
的度数为( )
A .57°
B .52°
C .38°
D .26°
5.(3分)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这
枚硬币,正面朝下的概率是( )
A .1
B .25
C .35
D .12。
辽宁省阜新市2019-2020学年中考第五次质量检测数学试题含解析
辽宁省阜新市2019-2020学年中考第五次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.从2 ,0,π,13 ,6这5个数中随机抽取一个数,抽到有理数的概率是( ) A .15 B .25 C .35 D .452.实数21-的相反数是( )A .21-B .21+C .21--D .12-3.在3-,1-,0,1这四个数中,最小的数是( )A .3-B .1-C .0D .14.如图,在△ABC 中,∠AED=∠B ,DE=6,AB=10,AE=8,则BC 的长度为( )A .152B .154C .3D .835.如图,将Rt ABC △绕直角顶点C 顺时针旋转90o ,得到A B C ''V ,连接'A A ,若120︒∠=,则B Ð的度数是( )A .70︒B .65︒C .60︒D .55︒6.下列各式:①33;②177;2682;2432;其中错误的有( ). A .3个 B .2个 C .1个 D .0个7.下列运算正确的是( )A .2a 2+3a 2=5a 4B .(﹣12)﹣2=4C .(a+b )(﹣a ﹣b )=a 2﹣b 2D .8ab÷4ab=2ab8.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y (件)与销售单价x (元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为9.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)10.如图,在△ABC 中,AC=BC ,∠ACB=90°,点D 在BC 上,BD=3,DC=1,点P 是AB 上的动点,则PC+PD 的最小值为( )A .4B .5C .6D .711.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A .30x ﹣361.5x =10B .36x ﹣301.5x =10 C .361.5x ﹣30x =10 D .30x +361.5x =10 12.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )已知:如图,在ABC V 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE //BC ,DF//AC , 求证:ADE V ∽DBF V .证明:①又DF//AC Q ,DE //BC Q ②,A BDF ∠∠∴=③,ADE B ∠∠∴=④,ADE ∴V ∽DBF V .A .③②④①B .②④①③C .③①④②D .②③④①二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这块扇形铁皮的半径是_____cm .14.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.15.如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______.+-的结果是_____16.计算(32)317.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA =OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是_________.(填序号)18.若一次函数y=﹣2(x+1)+4的值是正数,则x的取值范围是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在平面直角坐标系xOy中,点C是二次函数y=mx2+4mx+4m+1的图象的顶点,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.(1)请你求出点A、B、C的坐标;(2)若二次函数y=mx2+4mx+4m+1与线段AB恰有一个公共点,求m的取值范围.20.(6分)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)生产量最多的一天比生产量最少的一天多生产多少21.(6分)某商场计划购进A、B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?22.(8分)先化简,再求值:2569122x xx x-+⎛⎫-÷⎪++⎝⎭,其中x=-523.(8分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.24.(10分)关于x的一元二次方程ax2+bx+1=1.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.25.(10分)计算:﹣2212+|1﹣4sin60°|26.(12分)如图,AB是⊙O的直径,点C在⊙O上,CE^ AB于E,CD平分ÐECB,交过点B的射线于D,交AB于F,且BC=BD.(1)求证:BD是⊙O的切线;(2)若AE=9,CE=12,求BF的长.27.(12分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC,AB于点E,F.(1)若∠B=30°,求证:以A,O,D,E为顶点的四边形是菱形;(2)填空:若AC=6,AB=10,连接AD,则⊙O的半径为,AD的长为.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】20,π,13,6这5个数中只有0、13、6为有理数,再根据概率公式即可求出抽到有理数的概率.【详解】2,0,π,13,6这5个数中有理数只有0、13、6这3个数,∴抽到有理数的概率是35,【点睛】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键.2.D【解析】【分析】根据相反数的定义求解即可.【详解】1的相反数是1,故选D.【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.3.A【解析】【分析】根据正数大于零,零大于负数,正数大于一切负数,即可得答案.【详解】由正数大于零,零大于负数,得3101-<-<<,最小的数是3-,故选A.【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”是解题关键.4.A【解析】∵∠AED=∠B,∠A=∠A∴△ADE∽△ACB∴AE DE AB BC=,∵DE=6,AB=10,AE=8,∴8610BC=,解得BC=15 2.故选A. 5.B 【解析】根据旋转的性质可得AC =A′C ,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C ,最后根据旋转的性质可得∠B =∠A′B′C .【详解】解:∵Rt △ABC 绕直角顶点C 顺时针旋转90°得到△A′B′C ,∴AC =A′C ,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C =∠1+∠CAA′=20°+45°=65°,∴∠B =∠A′B′C =65°.故选B .【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.6.A【解析】17 =1不能计算;,正确. 故选A.7.B【解析】【分析】根据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答.【详解】A. 2a 2+3a 2=5a 2,故本选项错误;B. (−12)-2=4,正确; C. (a+b)(−a−b)=−a 2−2ab−b 2,故本选项错误;D. 8ab÷4ab=2,故本选项错误.故答案选B.【点睛】本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合设销售该商品每月所获总利润为w,则w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴当x=80时,w取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选C.9.C【解析】试题分析:=,∴点M(m,﹣m2﹣1),∴点M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故选C.考点:二次函数的性质.10.B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根据勾股定理可得22'BC BD+2234+.故选B.11.A【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可. 【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A. 【点睛】【分析】根据平行线的性质可得到两组对应角相等,易得解题步骤;【详解】证明:DE //BC Q ②,ADE B ∠∠∴=④,①又DF//AC Q ,A BDF ∠∠∴=③,ADE ∴V ∽DBF V .故选B .【点睛】本题考查了相似三角形的判定与性质;关键是证明三角形相似.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.40cm【解析】【分析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.【详解】∵圆锥的底面直径为60cm ,∴圆锥的底面周长为60πcm ,∴扇形的弧长为60πcm ,设扇形的半径为r , 则270180r π=60π, 解得:r=40cm ,故答案为:40cm .【点睛】本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.14.28设这种电子产品的标价为x 元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.15.105105r -<<+ 【解析】 【分析】因为以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,则圆D 与圆O 相交,圆心距满足关系式:|R-r|<d<R+r ,求得圆D 与圆O 的半径代入计算即可.【详解】连接OA 、OD ,过O 点作ON ⊥AE ,OM ⊥AF. AN=12AE=1,AM=12AF=2,MD=AD-AM=3 ∵四边形ABCD 是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四边形OMAN 是矩形∴OM=AN=1∴OA=22215+=,OD=221310+=∵以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,则圆D 与圆O 相交∴105105r -<<+【点睛】本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.162【解析】【分析】根据二次根式的运算法则进行计算即可求出答案.【详解】( 323-,.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.17.②③④【解析】试题解析:根据已知条件不能推出OA=OD ,∴①错误;∵AD 是△ABC 的角平分线,DE ,DF 分别是△ABD 和△ACD 的高,∴DE=DF ,∠AED=∠AFD=90°,在Rt △AED 和Rt △AFD 中,AD AD DE DF ==⎧⎨⎩, ∴Rt △AED ≌Rt △AFD (HL ),∴AE=AF ,∵AD 平分∠BAC ,∴AD ⊥EF ,∴②正确;∵∠BAC=90°,∠AED=∠AFD=90°,∴四边形AEDF 是矩形,∵AE=AF ,∴四边形AEDF 是正方形,∴③正确;∵AE=AF ,DE=DF ,∴AE 2+DF 2=AF 2+DE 2,∴④正确;∴②③④正确,18.x <1【解析】【分析】根据一次函数的性质得出不等式解答即可.【详解】因为一次函数y=﹣2(x+1)+4的值是正数,可得:﹣2(x+1)+4>0,解得:x <1,故答案为x <1.【点睛】本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)A(-4,0)和B(0,4);(2)34m<<或14m-≤<【解析】【分析】(1)抛物线解析式配方后,确定出顶点C坐标,对于一次函数解析式,分别令x与y为0求出对应y与x的值,确定出A与B坐标;(2)分m>0与m<0两种情况求出m的范围即可.【详解】解:(1)y=mx2+4mx+4m+1=m(x+2)2+1,∴抛物线顶点坐标为C(-2,1),对于y=x+4,令x=0,得到y=4;y=0,得到x=-4,直线y=x+4与x轴、y轴交点坐标分别为A(-4,0)和B(0,4);(2)把x=-4代入抛物线解析式得:y=4m+1,①当m>0时,y=4m+1>0,说明抛物线的对称轴左侧总与线段AB有交点,∴只需要抛物线右侧与线段AB无交点即可,如图1所示,只需要当x=0时,抛物线的函数值y=4m+1<4,即34 m<,则当34m<<时,抛物线与线段AB只有一个交点;②当m<0时,如图2所示,只需y=4m+1≥0即可,解得:10 4m-≤<,综上,当34m<<或14m-≤<时,抛物线与线段AB只有一个交点.【点睛】此题考查了抛物线与x轴的交点,二次函数的性质,以及二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解本题的关键.20.(1)生产量最多的一天比生产量最少的一天多生产9辆;(2)半年内总生产量是121辆.比计划多了1辆.【解析】【分析】(1)由表格可知,四月生产最多为:20+4=24;六月最少为:20-5=15,两者相减即可求解;(2)把每月的生产量加起来即可,然后与计划相比较.【详解】(1)+4-(-5)=9(辆)答:生产量最多的一天比生产量最少的一天多生产9辆.(2)20×6+[+3+(-2)+(-1)+(+4)+(+2)+(-5)]=120+(+1)=121(辆),因为121>120 121-120=1(辆)答:半年内总生产量是121辆.比计划多了1辆.【点睛】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,此题主要考查有理数的加减运算法则.21.(1)购进A型台灯75盏,B型台灯25盏;(2)当商场购进A型台灯25盏时,商场获利最大,此时获利为1875元.【解析】试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y 元,然后求出y 与x 的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案.试题解析:解:(1)设商场应购进A 型台灯x 盏,则B 型台灯为(100﹣x )盏,根据题意得,30x+50(100﹣x )=3500,解得x=75,所以,100﹣75=25,答:应购进A 型台灯75盏,B 型台灯25盏;(2)设商场销售完这批台灯可获利y 元,则y=(45﹣30)x+(70﹣50)(100﹣x ),=15x+2000﹣20x ,=﹣5x+2000,∵B 型台灯的进货数量不超过A 型台灯数量的3倍,∴100﹣x≤3x ,∴x≥25,∵k=﹣5<0,∴x=25时,y 取得最大值,为﹣5×25+2000=1875(元)答:商场购进A 型台灯25盏,B 型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元. 考点:1.一元一次方程的应用;2.一次函数的应用.22.13x -,-18【解析】分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.详解:2569122x x x x -+⎛⎫-÷ ⎪++⎝⎭()23223x x x x -+=⨯+- 13x =-. 当5x =-时,原式18=-. 点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.23. (1)120;(2)42人;(3) 90°;(4)【解析】【分析】(1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数;(2)利用条形统计图以及样本数量得出喜欢广场舞的人数;(3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数;(4)利用树状图法列举出所有的可能进而得出概率.【详解】(1)这次参与调查的村民人数为:24÷20%=120(人);故答案为:120;(2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),如图所示:;(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:×360°=90°;(4)如图所示: ,一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:.【点睛】此题主要考查了扇形统计图以及条形统计图的应用和树状图法求概率,正确列举出所有可能是解题关键.24.(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x 2=x 2=﹣2.【解析】【详解】分析:(2)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(2)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>,∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.25.-1【解析】【分析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【详解】 解:原式=342341--+⨯- =423231--+-=﹣1.【点睛】此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键.26.(1)证明见解析;(2)1.【解析】试题分析:(1)根据垂直的定义可得∠CEB=90°,然后根据角平分线的性质和等腰三角形的性质,判断出∠1=∠D ,从而根据平行线的判定得到CE ∥BD ,根据平行线的性质得∠DBA=∠CEB ,由此可根据切线的判定得证结果;(2)连接AC ,由射影定理可得,进而求得EB 的长,再由勾股定理求得BD=BC 的长,然后由“两角对应相等的两三角形相似”的性质证得△EFC ∽△BFD ,再由相似三角形的性质得出结果. 试题解析:(1)证明:∵,∴. ∵CD 平分,BC=BD ,∴,.∴.∴∥.∴.∵AB是⊙O的直径,∴BD是⊙O的切线.(2)连接AC,∵AB是⊙O直径,∴.∵,可得.∴在Rt△CEB中,∠CEB=90°,由勾股定理得∴.∵,∠EFC =∠BFD,∴△EFC∽△BFD.∴.∴.∴BF=1.考点:切线的判定,相似三角形,勾股定理27.(1) 见解析;(2)15,35 4【解析】【分析】(1) 先通过证明△AOE为等边三角形, 得出AE=OD, 再根据“同位角相等, 两直线平行” 证明AE//OD, 从而证得四边形AODE是平行四边形, 再根据“一组邻边相等的平行四边形为菱形” 即可得证.(2) 利用在Rt△OBD中,sin∠B==可得出半径长度,在Rt△ODB中BD=,可求得BD的长,由CD=CB﹣BD可得CD的长,在RT△ACD中,AD=,即可求出AD长度.【详解】解:(1)证明:连接OE、ED、OD,在Rt△ABC中,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AEO是等边三角形,∴AE=OE=AO∵OD=OA,∴AE=OD∵BC是圆O的切线,OD是半径,∴∠ODB=90°,又∵∠C=90°∴AC∥OD,又∵AE=OD∴四边形AODE是平行四边形,∵OD=OA∴四边形AODE是菱形.(2)在Rt△ABC中,∵AC=6,AB=10,∴sin∠B==,BC=8∵BC是圆O的切线,OD是半径,∴∠ODB=90°,在Rt△OBD中,sin∠B==,∴OB=OD∵AO+OB=AB=10,∴OD+OD=10∴OD=∴OB=OD=∴BD==5∴CD=CB﹣BD=3∴AD===3.【点睛】本题主要考查圆中的计算问题、菱形以及相似三角形的判定与性质。
辽宁省阜新市2019-2020学年中考数学第二次调研试卷含解析
辽宁省阜新市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( )A .45︒B .50︒C .60︒D .75︒2.下列分式中,最简分式是( )A .2211x x -+B .211x x +-C .2222x xy y x xy-+-D .236212x x -+3.4的平方根是( ) A .2B .2C .±2D .±24.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是( )A .8B .10C .21D .225.实数4的倒数是( ) A .4B .14C .﹣4D .﹣146.如图,在数轴上有点O ,A ,B ,C 对应的数分别是0,a ,b ,c ,AO =2,OB =1,BC =2,则下列结论正确的是( )A .a c =B .0ab >C .1a c +=D .1b a -=7.关于x 的方程3x+2a=x ﹣5的解是负数,则a 的取值范围是( ) A .a <52B .a >52C .a <﹣52D .a >﹣528.如图,在三角形ABC 中,∠ACB=90°,∠B=50°,将此三角形绕点C 沿顺时针方向旋转后得到三角形A′B′C ,若点B′恰好落在线段AB 上,AC 、A′B′交于点O ,则∠COA′的度数是( )A.50°B.60°C.70°D.80°9.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1 2 3 5方案2 3 2 5方案3 2.5 2.5 5则最省钱的方案为()A.方案1 B.方案2C.方案3 D.三个方案费用相同10.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c11.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O 的一条切线MK,切点为K,则MK=()A.2B.5C.5 D3412.下图是某几何体的三视图,则这个几何体是()A .棱柱B .圆柱C .棱锥D .圆锥二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,边长为6cm 的正三角形内接于⊙O ,则阴影部分的面积为(结果保留π)_____.14.关于x 的一元二次方程260x x b -+=有两个不相等的实数根,则实数b 的取值范围是________. 15.甲、乙两车分别从A 、B 两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B 地后马上以另一速度原路返回A 地(掉头的时间忽略不计),乙车到达A 地以后即停在地等待甲车.如图所示为甲乙两车间的距离y (千米)与甲车的行驶时间t (小时)之间的函数图象,则当乙车到达A 地的时候,甲车与A 地的距离为_____千米.16.如果a 是不为1的有理数,我们把11a-称为a 的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2019a =___________ .17.计算:2111x x x+=--___________.18.如图,在正六边形ABCDEF 的上方作正方形AFGH ,联结GC ,那么GCD ∠的正切值为___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)综合与探究 如图,抛物线y=﹣2323333x x -+与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,直线l 经过B ,C 两点,点M 从点A 出发以每秒1个单位长度的速度向终点B 运动,连接CM ,将线段MC 绕点M 顺时针旋转90°得到线段MD ,连接CD ,BD .设点M 运动的时间为t (t >0),请解答下列问题:(1)求点A 的坐标与直线l 的表达式;(2)①直接写出点D 的坐标(用含t 的式子表示),并求点D 落在直线l 上时的t 的值; ②求点M 运动的过程中线段CD 长度的最小值;(3)在点M 运动的过程中,在直线l 上是否存在点P ,使得△BDP 是等边三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.20.(6分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m 的值为 ;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为2.0kg 的约有多少只? 21.(6分)计算:﹣(﹣2)0+|1﹣|+2cos30°.22.(8分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC 为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)23.(8分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x (元)的关系为y=﹣2x+1.(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?24.(10分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.25.(10分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:“祖冲之奖”的学生成绩统计表:分数/分80 85 90 95人数/人 4 2 10 4根据图表中的信息,解答下列问题:(1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;(2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.26.(12分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC 位似,且位似比为2:1,点C2的坐标是;△A2B2C2的面积是平方单位.27.(12分)如图,已知∠AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM=PN (保留作图痕迹,不写作法)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据平行四边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知∠B=∠AOC,根据圆内接四边形的对角互补可知∠B+∠D=180°,根据圆周角定理可知∠D=12∠AOC,因此∠B+∠D=∠AOC+12∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故选C【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.2.A【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.3.D【解析】【分析】4,然后再根据平方根的定义求解即可.【详解】4,2的平方根是±2,4±2故选D.【点睛】4正确化简是解题的关键,本题比较容易出错.4.D【解析】分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.故选D.点睛:考查中位数的定义,看懂条形统计图是解题的关键.5.B【解析】【分析】根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可. 【详解】解:实数4的倒数是: 1÷4=14. 故选:B . 【点睛】此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1. 6.C 【解析】 【分析】根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答. 【详解】解:∵AO =2,OB =1,BC =2, ∴a =-2,b =1,c =3,∴|a|≠|c|,ab <0,1a c +=,()123b a -=--=, 故选:C . 【点睛】此题考查有理数的大小比较以及绝对值,解题的关键结合数轴求解. 7.D 【解析】 【分析】先解方程求出x ,再根据解是负数得到关于a 的不等式,解不等式即可得. 【详解】解方程3x+2a=x ﹣5得 x=522a--, 因为方程的解为负数,所以522a--<0, 解得:a >﹣52.【点睛】本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变.8.B【解析】试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.考点:旋转的性质.9.A【解析】【分析】求出三种方案混合糖果的单价,比较后即可得出结论.【详解】方案1混合糖果的单价为235a b+,方案2混合糖果的单价为225a b+,方案3混合糖果的单价为2.5 2.552a b a b++=.∵a>b,∴2232525a b a b a b+++<<,∴方案1最省钱.故选:A.【点睛】本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.10.A【解析】【分析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【详解】解:依题意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,选项D不符合题意.故选:A.【点睛】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.11.B【解析】【分析】以OM为直径作圆交⊙O于K,利用圆周角定理得到∠MKO=90°.从而得到KM⊥OK,进而利用勾股定理求解.【详解】如图所示:MK22+=2425故选:B.【点睛】考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.12.D【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.故选D.【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(4π﹣3cm1连接OB 、OC ,作OH ⊥BC 于H ,根据圆周角定理可知∠BOC 的度数,根据等边三角形的性质可求出OB 、OH 的长度,利用阴影面积=S 扇形OBC -S △OBC 即可得答案【详解】:连接OB 、OC ,作OH ⊥BC 于H ,则BH=HC= BC= 3,∵△ABC 为等边三角形,∴∠A=60°,由圆周角定理得,∠BOC=1∠A=110°,∵OB=OC ,∴∠OBC=30°,∴OB=cos OBC BH ∠=13 ,OH=3, ∴阴影部分的面积= 2120(23)360π⨯﹣12×6×3=4π﹣33 ,故答案为:(4π﹣3)cm 1.【点睛】本题主要考查圆周角定理及等边三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;熟练掌握圆周角定理是解题关键.14.b <9【解析】【分析】由方程有两个不相等的实数根结合根的判别式,可得出3640b >∆=-,解之即可得出实数b 的取值范围.【详解】解:Q 方程260x x b +=﹣有两个不相等的实数根,2643640b b ∴∆=--=-()>,解得:b 9<.【点睛】本题考查的知识点是根的判别式,解题关键是牢记“当0∆>时,方程有两个不相等的实数根”.分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B 地,由此则可求得两车的速度.再根据甲车返回到A 地总用时16.5小时,求出甲车返回时的速度即可求解.详解:设甲车,乙车的速度分别为x 千米/时,y 千米/时,甲车与乙车相向而行5小时相遇,则5(x +y)=900,解得x +y =180,相遇后当甲车到达B 地时两车相距720千米,所需时间为720÷180=4小时, 则甲车从A 地到B 需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,乙车行驶900-720=180千米所需时间为180÷80=2.25小时, 甲车从B 地到A 地的速度为900÷(16.5-5-4)=120千米/时. 所以甲车从B 地向A 地行驶了120×2.25=270千米, 当乙车到达A 地时,甲车离A 地的距离为900-270=630千米.点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.16.34. 【解析】【分析】利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【详解】∵a 1=4a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环, ∵2019÷3=673,∴a 2019=a 3=34, 故答案为:34. 【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.17.x+1【解析】【分析】先通分,进行分式的加减法,再将分子进行因式分解,然后约分即可求出结果.【详解】 解:2111x x x+-- =2111x x x --- 211x x -=- ()()111x x x +-=- 1x =+.故答案是:x+1.【点睛】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.181【解析】【分析】延长GF 与CD 交于点D ,过点E 作EM DF ⊥交DF 于点M,设正方形的边长为a ,则,CD GF DE a ===解直角三角形可得DF ,根据正切的定义即可求得GCD ∠的正切值【详解】延长GF 与CD 交于点D ,过点E 作EM DF ⊥交DF 于点M,设正方形的边长为a ,则,CD GF DE a ===AF //CD ,90,CDG AFG ∴∠=∠=o1209030,EDM ∠=-=o o o3cos30,2DM DE =⋅=o 23,DF DM a ∴==)331,DG GF FD a a a ∴=+== ()3131tan .a GD GCD CDa ∠=== 3 1.【点睛】 考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)A (﹣3,0),y=33(2)①D (t ﹣3t ﹣3),②CD 6;(3)P (2,3,理由见解析.【解析】【分析】(1)当y=0时,23233x x +,解方程求得A (-3,0),B (1,0),由解析式得C (03),待定系数法可求直线l 的表达式;(2)分当点M 在AO 上运动时,当点M 在OB 上运动时,进行讨论可求D 点坐标,将D 点坐标代入直线解析式求得t 的值;线段CD 是等腰直角三角形CMD 斜边,若CD 最小,则CM 最小,根据勾股定理可求点M 运动的过程中线段CD 长度的最小值;(3)分当点M 在AO 上运动时,即0<t <3时,当点M 在OB 上运动时,即3≤t≤4时,进行讨论可求P 点坐标.【详解】(1)当y=0时,﹣2323333x x-+=0,解得x1=1,x2=﹣3,∵点A在点B的左侧,∴A(﹣3,0),B(1,0),由解析式得C(0,3),设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=3mk﹣3,故直线l的表达式为y=﹣3x+3;(2)当点M在AO上运动时,如图:由题意可知AM=t,OM=3﹣t,MC⊥MD,过点D作x轴的垂线垂足为N,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN,在△MCO与△DMN中,{MD MCDCM DMNCOM MND=∠=∠∠=∠,∴△MCO≌△DMN,∴MN=OC=3,DN=OM=3﹣t,∴D(t﹣3+3,t﹣3);同理,当点M在OB上运动时,如图,OM=t﹣3,△MCO≌△DMN,MN=OC=3,ON=t﹣3+3,DN=OM=t﹣3,∴D(t﹣3+3,t﹣3).综上得,D(t﹣3+3,t﹣3).将D点坐标代入直线解析式得t=6﹣23,线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,∵M在AB上运动,∴当CM⊥AB时,CM最短,CD最短,即CM=CO=3,根据勾股定理得CD最小6;(3)当点M在AO上运动时,如图,即0<t<3时,∵tan∠CBO=OCOB3∴∠CBO=60°,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,3,NB=4﹣t3tan∠NBO=DN NB,43t--3t=33经检验t=33是此方程的解,过点P作x轴的垂线交于点Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t3=1,3OQ=2,P(23;同理,当点M在OB上运动时,即3≤t≤4时,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣31=t﹣3tan∠NBD=DN NB,43t-+=3,解得t=3﹣3,经检验t=3﹣3是此方程的解,t=3﹣3(不符合题意,舍).故P(2,﹣3).【点睛】考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度.20.(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵1.05 1.211 1.514 1.8162.041.5251114164x⨯+⨯+⨯+⨯+⨯==++++,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.51.52+=,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg的数量约占8%.有25008%200⨯=.∴这2500只鸡中,质量为2.0kg的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.21..【解析】【分析】(1)原式利用二次根式的性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值进行化简即可得到结果.【详解】原式,,.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.客车不能通过限高杆,理由见解析【解析】【分析】根据DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根据cos∠EDF=DFDE,求出DF的值,即可判断.【详解】∵DE⊥BC,DF⊥AB,∴∠EDF=∠ABC=14°.在Rt△EDF中,∠DFE=90°,∵cos∠EDF=DF DE,∴DF=DE•cos∠EDF=2.55×cos14°≈2.55×0.97≈2.1.∵限高杆顶端到桥面的距离DF为2.1米,小于客车高2.5米,∴客车不能通过限高杆.【点睛】考查解直角三角形,选择合适的锐角三角函数是解题的关键.23.(1)w=(x﹣200)y=(x﹣200)(﹣2x+1)=﹣2x2+1400x﹣200000;(2)令w=﹣2x2+1400x﹣200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=﹣2x2+1400x ﹣200000=﹣2(x﹣350)2+45000,当x=250时y=﹣2×2502+1400×250﹣200000=25000;故最高利润为45000元,最低利润为25000元.【解析】试题分析:(1)根据销售利润=每天的销售量×(销售单价-成本价),即可列出函数关系式;(2)令y=40000代入解析式,求出满足条件的x的值即可;(3)根据(1)得到销售利润的关系式,利用配方法可求最大值.试题解析:(1)由题意得:w=(x-200)y=(x-200)(-2x+1)=-2x2+1400x-200000;(2)令w=-2x2+1400x-200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=-2x2+1400x-200000=-2(x-350)2+45000,当x=250时y=-2×2502+1400×250-200000=25000;故最高利润为45000元,最低利润为25000元.24.(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标.【解析】试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案.试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,根据题意得:700(1+x)2=1183,解得:x1=0.3=30%,x2=﹣2.3(舍去),答:这两年该市推行绿色建筑面积的年平均增长率为30%;(2)根据题意得:1183×(1+30%)=1537.9(万平方米),∵1537.9>1500,∴2017年该市能完成计划目标.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.25.(1)刘徽奖的人数为40人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)P(点在第二象限)29 .【解析】【分析】(1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;(2)根据中位数和众数的定义求解可得;(3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.【详解】(1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下:故答案为40;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.故答案为90、90;(3)列表法:∵第二象限的点有(﹣2,2)和(﹣1,2),∴P(点在第二象限)29 .【点睛】本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.26.(1)(2,﹣2);(2)(1,0);(3)1.【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.试题解析:(1)如图所示:C1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C2(1,0);故答案为(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××=1平方单位.故答案为1.考点:1、平移变换;2、位似变换;3、勾股定理的逆定理27.见解析【解析】【分析】作∠AOB的角平分线和线段MN的垂直平分线,它们的交点即是要求作的点P.【详解】解:①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P.点P即为所求.【点睛】本题考查了角平分线和线段垂直平分线的尺规作法,熟练掌握角平分线和线段垂直平分线的的作图步骤是解答本题的关键.。
辽宁省阜新市2019-2020学年中考第二次质量检测数学试题含解析
辽宁省阜新市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.一个多边形内角和是外角和的2倍,它是( ) A .五边形B .六边形C .七边形D .八边形2.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒3.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条边DF =50cm ,EF =30cm ,测得边DF 离地面的高度AC =1.5m ,CD =20m ,则树高AB 为( )A .12mB .13.5mC .15mD .16.5m4.在平面直角坐标系中,点A 的坐标是(﹣1,0),点B 的坐标是(3,0),在y 轴的正半轴上取一点C ,使A 、B 、C 三点确定一个圆,且使AB 为圆的直径,则点C 的坐标是( ) A .(0,3)B .(3,0)C .(0,2)D .(2,0)5.点A (a ,3)与点B (4,b )关于y 轴对称,则(a+b )2017的值为( ) A .0B .﹣1C .1D .720176.下列运算正确的是( ) A .a 2•a 3=a 6B .(12)﹣1=﹣2 C .16 =±4D .|﹣6|=67.如图,已知∠1=∠2,要使△ABD ≌△ACD ,需从下列条件中增加一个,错误的选法是( )A .∠ADB =∠ADC B .∠B =∠C C .AB =ACD .DB =DC8.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .84B .336C .510D .13269.若a 与5互为倒数,则a=( ) A .15B .5C .-5D .15-10.如图所示,点E 是正方形ABCD 内一点,把△BEC 绕点C 旋转至△DFC 位置,则∠EFC 的度数是( )A .90°B .30°C .45°D .60°11.已知正比例函数(0)y kx k =≠的图象经过点(1,3)-,则此正比例函数的关系式为( ). A .3y x =-B .3y x =C .13y x =D .13y x =-12.2017年“智慧天津”建设成效显著,互联网出口带宽达到17200吉比特每秒.将17200用科学记数法表示应为( ) A .172×102B .17.2×103C .1.72×104D .0.172×105二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.因式分解:3x 3﹣12x=_____.14.如图,已知抛物线和x 轴交于两点A 、B ,和y 轴交于点C ,已知A 、B 两点的横坐标分别为﹣1,4,△ABC 是直角三角形,∠ACB=90°,则此抛物线顶点的坐标为_____.15.关于x 的分式方程211x ax +=+的解为负数,则a 的取值范围是_________. 16.计算:a 3÷(﹣a )2=_____.17.如图,直线a ∥b ,∠BAC 的顶点A 在直线a 上,且∠BAC =100°.若∠1=34°,则∠2=_____°.18.某校广播台要招聘一批小主持人,对A 、B 两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如表所示: 应聘者 专业素质 创新能力 外语水平 应变能力 A 73 85 78 85 B81828075如果只招一名主持人,该选用______;依据是_____.(答案不唯一,理由支撑选项即可) 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图①,在正方形ABCD 中,△AEF 的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求∠EAF 的度数.如图②,在Rt △ABD 中,∠BAD=90°,AB=AD ,点M ,N 是BD 边上的任意两点,且∠MAN=45°,将△ABM 绕点A 逆时针旋转90°至△ADH 位置,连接NH ,试判断MN 2,ND 2,DH 2之间的数量关系,并说明理由.在图①中,若EG=4,GF=6,求正方形ABCD 的边长.20.(6分)如图,在ABC V 中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F.12∠∠=,试判断DG 与BC 的位置关系,并说明理由.21.(6分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A )、白鹿原(记为B )、兴庆公园(记为C )、秦岭国家植物园(记为D )中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.求小明选择去白鹿原游玩的概率;用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.22.(8分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m 、200m 、1000m (分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 .23.(8分)如图1,在长方形ABCD 中,12AB cm =,BC 10cm =,点P 从A 出发,沿A B C D →→→的路线运动,到D 停止;点Q 从D 点出发,沿D C B A →→→路线运动,到A 点停止.若P 、Q 两点同时出发,速度分别为每秒lcm 、2cm ,a 秒时P 、Q 两点同时改变速度,分别变为每秒2cm 、54cm (P 、Q 两点速度改变后一直保持此速度,直到停止),如图2是APD ∆的面积2()s cm 和运动时间x (秒)的图象.(1)求出a 值;(2)设点P 已行的路程为1()y cm ,点Q 还剩的路程为2()y cm ,请分别求出改变速度后,12,y y 和运动时间x (秒)的关系式;(3)求P 、Q 两点都在BC 边上,x 为何值时P ,Q 两点相距3cm ?24.(10分)如图,PB 与⊙O 相切于点B ,过点B 作OP 的垂线BA ,垂足为C ,交⊙O 于点A ,连结PA ,AO ,AO 的延长线交⊙O 于点E ,与PB 的延长线交于点D . (1)求证:PA 是⊙O 的切线; (2)若tan ∠BAD=23,且OC=4,求BD 的长.25.(10分)先化简,再求值:(221121a a a a a a +----+)÷1a a -,其中3.26.(12分)如图, 二次函数23y ax bx =++的图象与 x 轴交于()30A -,和()10B ,两点,与 y 轴交于点 C ,一次函数的图象过点 A 、C .(1)求二次函数的表达式(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量x 的取值范围.27.(12分)如图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【详解】设这个多边形是n边形,根据题意得:(n﹣2)×180°=2×310°解得:n=1.故选B.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.2.B【解析】分析:根据∠AOC和∠BOC的度数得出∠AOB的度数,从而得出答案.详解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故选B.点睛:本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.3.D【解析】【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BC DC EF DE=,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴20 0.30.4 BC=,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.4.A【解析】【分析】直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.【详解】如图,连结AC,CB.依△AOC∽△COB的结论可得:OC2=OA OB,即OC2=1×3=3,解得:3或3(负数舍去),故C点的坐标为(0, 3).故答案选:A.【点睛】本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.5.B【解析】【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【详解】解:由题意,得a=-4,b=1.(a+b)2017=(-1)2017=-1,故选B.【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键.6.D【解析】【分析】运用正确的运算法则即可得出答案.【详解】A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.【点睛】本题考查了四则运算法则,熟悉掌握是解决本题的关键.7.D由全等三角形的判定方法ASA证出△ABD≌△ACD,得出A正确;由全等三角形的判定方法AAS证出△ABD≌△ACD,得出B正确;由全等三角形的判定方法SAS证出△ABD≌△ACD,得出C正确.由全等三角形的判定方法得出D不正确;【详解】A正确;理由:在△ABD和△ACD中,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA);B正确;理由:在△ABD和△ACD中,∵∠1=∠2,∠B=∠C,AD=AD∴△ABD≌△ACD(AAS);C正确;理由:在△ABD和△ACD中,∵AB=AC,∠1=∠2,AD=AD,∴△ABD≌△ACD(SAS);D不正确,由这些条件不能判定三角形全等;故选:D.【点睛】本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键.8.C【解析】由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510,故选:C.点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.9.A【解析】分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案.详解:根据题意可得:5a=1,解得:a=15,故选A.点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键.【分析】根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.【详解】∵四边形ABCD是正方形,∴∠BCD=90°,∵△BEC绕点C旋转至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故选:C.【点睛】本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边 为等腰直角三角形.相等,故CEF11.A【解析】【分析】根据待定系数法即可求得.【详解】解:∵正比例函数y=kx的图象经过点(1,﹣3),∴﹣3=k,即k=﹣3,∴该正比例函数的解析式为:y=﹣3x.故选A.【点睛】此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.12.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将17200用科学记数法表示为1.72×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3x(x+2)(x﹣2)【解析】【分析】先提公因式3x,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.(32,258)【解析】【分析】连接AC,根据题意易证△AOC∽△COB,则AO OCOC OB,求得OC=2,即点C的坐标为(0,2),可设抛物线解析式为y=a(x+1)(x﹣4),然后将C点坐标代入求解,最后将解析式化为顶点式即可. 【详解】解:连接AC,∵A、B两点的横坐标分别为﹣1,4,∴OA=1,OB=4,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵CO⊥AB,∴∠ABC+∠BCO=90°,∴∠CAB=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC ∽△COB , ∴AO OC OC OB =, 即1OC =4OC , 解得OC=2,∴点C 的坐标为(0,2),∵A 、B 两点的横坐标分别为﹣1,4,∴设抛物线解析式为y=a (x+1)(x ﹣4),把点C 的坐标代入得,a (0+1)(0﹣4)=2,解得a=﹣12, ∴y=﹣12(x+1)(x ﹣4)=﹣12(x 2﹣3x ﹣4)=﹣12(x ﹣32)2+258, ∴此抛物线顶点的坐标为(32 ,258). 故答案为:(32 ,258).【点睛】本题主要考查相似三角形的判定与性质,抛物线的顶点式,解此题的关键在于熟练掌握其知识点,利用相似三角形的性质求得关键点的坐标.15.12a a >≠且【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a 的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a >1且a≠2,故答案为: a >1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析16.a【解析】【分析】利用整式的除法运算即可得出答案.【详解】原式,.【点睛】本题考查的知识点是整式的除法,解题关键是先将变成,再进行运算.17.46【解析】试卷分析:根据平行线的性质和平角的定义即可得到结论.解:∵直线a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°−34°−100°=46°,故答案为46°.18.A A的平均成绩高于B平均成绩【解析】【分析】根据表格求出A,B的平均成绩,比较大小即可解题.【详解】解:A的平均数是80.25,B的平均数是79.5,∴A比B更优秀,∴如果只招一名主持人,该选用A;依据是A的平均成绩高于B平均成绩.【点睛】本题考查了平均数的实际应用,属于简单题,从表格中找到有用信息是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1) 45°.(1) MN 1=ND 1+DH 1.理由见解析;(3)11.【解析】【分析】(1)先根据AG ⊥EF 得出△ABE 和△AGE 是直角三角形,再根据HL 定理得出△ABE ≌△AGE ,故可得出∠BAE=∠GAE ,同理可得出∠GAF=∠DAF ,由此可得出结论;(1)由旋转的性质得出∠BAM=∠DAH ,再根据SAS 定理得出△AMN ≌△AHN ,故可得出MN=HN .再由∠BAD=90°,AB=AD 可知∠ABD=∠ADB=45°,根据勾股定理即可得出结论;(3)设正方形ABCD 的边长为x ,则CE=x-4,CF=x-2,再根据勾股定理即可得出x 的值.【详解】解:(1)在正方形ABCD 中,∠B=∠D=90°,∵AG ⊥EF ,∴△ABE 和△AGE 是直角三角形.在Rt △ABE 和Rt △AGE 中,AB AG AE AE=⎧⎨=⎩, ∴△ABE ≌△AGE (HL ),∴∠BAE=∠GAE .同理,∠GAF=∠DAF .∴∠EAF=∠EAG+∠FAG=12∠BAD=45°. (1)MN 1=ND 1+DH 1.由旋转可知:∠BAM=∠DAH ,∵∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN .在△AMN 与△AHN 中, AM AH HAN MAN AN AN =⎧⎪∠=∠⎨⎪=⎩,∴△AMN ≌△AHN (SAS ),∴MN=HN .∵∠BAD=90°,AB=AD ,∴∠ABD=∠ADB=45°.∴∠HDN=∠HDA+∠ADB=90°.∴NH1=ND1+DH1.∴MN1=ND1+DH1.(3)由(1)知,BE=EG=4,DF=FG=2.设正方形ABCD的边长为x,则CE=x-4,CF=x-2.∵CE1+CF1=EF1,∴(x-4)1+(x-2)1=101.解这个方程,得x1=11,x1=-1(不合题意,舍去).∴正方形ABCD的边长为11.【点睛】本题考查的是几何变换综合题,涉及到三角形全等的判定与性质、勾股定理、正方形的性质等知识,难度适中.20.DG∥BC,理由见解析【解析】【分析】由垂线的性质得出CD∥EF,由平行线的性质得出∠2=∠DCE,再由已知条件得出∠1=∠DCE,即可得出结论.【详解】解:DG∥BC,理由如下:∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠DCE,∵∠1=∠2,∴∠1=∠DCE,∴DG∥BC.【点睛】本题考查平行线的判定与性质;熟练掌握平行线的判定与性质,证明∠1=∠DCE是解题关键.21.(1)14;(2)116【解析】【分析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【详解】(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=14;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=1 16.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.22.(1)25;(1)35;(3)310;【解析】【分析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1.【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P1==;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P1==.故答案为.考点:列表法与树状图法.23.(1)6;(2)126y x =-;259524y x =-;(3)10或15413; 【解析】【分析】 (1)根据图象变化确定a 秒时,P 点位置,利用面积求a ;(2)P 、Q 两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒; (3)以(2)为基础可知,两个点相距3cm 分为相遇前相距或相遇后相距,因此由(2)可列方程.【详解】(1)由图象可知,当点P 在BC 上运动时,△APD 的面积保持不变,则a 秒时,点P 在AB 上. 110302AP ⨯=, ∴AP=6,则a=6;(2)由(1)6秒后点P 变速,则点P 已行的路程为y 1=6+2(x ﹣6)=2x ﹣6,∵Q 点路程总长为34cm ,第6秒时已经走12cm ,故点Q 还剩的路程为y 2=34﹣12﹣5595(6)424x x -=-; (3)当P 、Q 两点相遇前相距3cm 时,59524x -﹣(2x ﹣6)=3,解得x=10, 当P 、Q 两点相遇后相距3cm 时,(2x ﹣6)﹣(59524x -)=3,解得x=15413, ∴当x=10或15413时,P 、Q 两点相距3cm 【点睛】本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系.列函数关系式时,要考虑到时间x 的连续性才能直接列出函数关系式.24.(1)证明见解析;(2 【解析】试题分析:(1)连接OB ,由SSS 证明△PAO ≌△PBO ,得出∠PAO=∠PBO=90°即可;(2)连接BE ,证明△PAC ∽△AOC ,证出OC 是△ABE 的中位线,由三角形中位线定理得出BE=2OC ,由△DBE ∽△DPO 可求出.试题解析:(1)连结OB ,则OA=OB .如图1,∵OP ⊥AB ,∴AC=BC ,∴OP 是AB 的垂直平分线,∴PA=PB .在△PAO 和△PBO 中,∵PA PB PO PO OA OB =⎧⎪=⎨⎪=⎩,∴△PAO ≌△PBO (SSS ),∴∠PBO=∠PAO .∵PB 为⊙O 的切线,B 为切点,∴∠PBO=90°,∴∠PAO=90°,即PA ⊥OA ,∴PA 是⊙O 的切线;(2)连结BE .如图2,∵在Rt △AOC 中,tan ∠BAD=tan ∠CAO=23OC AC =,且OC=4, ∴AC=1,则BC=1.在Rt △APO 中,∵AC ⊥OP ,∴△PAC ∽△AOC ,∴AC 2=OC•PC ,解得PC=9,∴OP=PC+OC=2.在Rt △PBC 中,由勾股定理,得22313PC BC +=,∵AC=BC ,OA=OE ,即OC 为△ABE 的中位线.∴OC=12BE ,OC ∥BE ,∴BE=2OC=3. ∵BE ∥OP ,∴△DBE ∽△DPO , ∴BD BE PD OP =813313BD =+,解得2413. 25.()211a -,13. 【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.【详解】解: (221121a a a a a a +----+)÷1a a- =21(1)(1)(1)1a a a a a a a a +---⋅--() =2221(11a a a a a a a --+⋅--) =21(11a a a a a -⋅--) =21(1a )-,当时,原式=13. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.26.(1)223y x x =--+;(2)30x -<<.【解析】【分析】(1)将()30A -,和()10B ,两点代入函数解析式即可; (2)结合二次函数图象即可.【详解】解:(1)∵二次函数23y ax bx =++与x 轴交于(3,0)A -和(1,0)B 两点, 933030a b a b -+=⎧∴⎨++=⎩解得12a b =-⎧⎨=-⎩∴二次函数的表达式为223y x x =--+.(2)由函数图象可知,二次函数值大于一次函数值的自变量x 的取值范围是30x -<<.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数与不等式,解题的关键是熟悉二次函数的性质. 27.(1)作图见解析;(2)作图见解析;5π(平方单位).【解析】【分析】(1)连接AO 、BO 、CO 并延长到2AO 、2BO 、2CO 长度找到各点的对应点,顺次连接即可.(2)△A′B′C′的A′、C′绕点B′顺时针旋转90°得到对应点,顺次连接即可.A′B′在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可.【详解】解:(1)见图中△A′B′C′(2)见图中△A″B′C″ 扇形的面积()22901242053604S πππ=+=⋅=(平方单位). 【点睛】本题主要考查了位似图形及旋转变换作图的方法及扇形的面积公式.。
辽宁省阜新市中考数学试卷(附答案解析)
2020年辽宁省阜新市中考数学试卷一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分) 1.在实数−√2,﹣1,0,1中,最小的是( ) A .−√2B .﹣1C .0D .12.下列立体图形中,左视图与主视图不同的是( )A .正方体B .圆柱C .圆锥D .球3.如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是( )A .众数是9B .中位数是8.5C .平均数是9D .方差是74.如图,AB 为⊙O 的直径,C ,D 是圆周上的两点,若∠ABC =38°,则锐角∠BDC 的度数为( )A .57°B .52°C .38°D .26°5.掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是( ) A .1B .25C .35D .126.不等式组{1−x ≥02x −1>−5的解集,在数轴上表示正确的是( )A .B .C .D .7.若A (2,4)与B (﹣2,a )都是反比例函数y =kx (k ≠0)图象上的点,则a 的值是( ) A .4B .﹣4C .2D .﹣28.在“建设美丽阜新”的行动中,需要铺设一段全长为3000m 的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺xm 管道,根据题意,所列方程正确的是( ) A .3000x−3000(1+25%)x=30B .3000(1+25%)x−3000x=30C .3000(1−25%)x−3000x =30D .3000x−3000(1+25%)x=309.已知二次函数y =﹣x 2+2x +4,则下列关于这个函数图象和性质的说法,正确的是( ) A .图象的开口向上B .图象的顶点坐标是(1,3)C .当x <1时,y 随x 的增大而增大D .图象与x 轴有唯一交点10.如图,在平面直角坐标系中,将边长为1的正六边形OABCDE 绕点O 顺时针旋转i 个45°,得到正六边形OA i B i ∁i D i E i ,则正六边形OA i B i ∁i D i E i (i =2020)的顶点∁i 的坐标是( )A .(1,−√3)B .(1,√3)C .(1,﹣2)D .(2,1)二、填空题(每小题3分,共18分) 11.计算:(13)﹣1+(π−√3)0= .12.如图,直线a ,b 过等边三角形ABC 顶点A 和C ,且a ∥b ,∠1=42°,则∠2的度数为 .13.如图,把△ABC 沿AB 边平移到△A 1B 1C 1的位置,图中所示的三角形的面积S 1与四边形的面积S 2之比为4:5,若AB =4,则此三角形移动的距离AA 1是 .14.如图,在△ABC 中,∠ABC =90°,AB =BC =2.将△ABC 绕点B 逆时针旋转60°,得到△A 1BC 1,则AC 边的中点D 与其对应点D 1的距离是 .15.如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角α=20°,两树间的坡面距离AB =5m ,则这两棵树的水平距离约为 m (结果精确到0.1m ,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364).16.甲、乙两人沿笔直公路匀速由A 地到B 地,甲先出发30分钟,到达B 地后原路原速返回与乙在C 地相遇.甲的速度比乙的速度快35km /h ,甲、乙两人与A 地的距离y (km )和乙行驶的时间x (h )之间的函数关系如图所示,则B ,C 两地的距离为 km (结果精确到1km ).三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分)17.(8分)先化简,再求值:(1−1x+1)÷x2−xx2−2x+1,其中x=√2−1.18.(8分)如图,△ABC在平面直角坐标系中,顶点的坐标分别为A(4,4),B(1,1),C(4,1).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕点O1顺时针旋转90°得到△A2B2C2,AA2弧是点A所经过的路径,则旋转中心O1的坐标为;(3)求图中阴影部分的面积(结果保留π).19.(8分)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<904B90≤x<11015C110≤x<13018D130≤x<15012E150≤x<170mF170≤x<1905(1)本次测试随机抽取的人数是人,m=;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.20.(8分)在抗击新冠肺炎疫情期间,玉龙社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.(1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?21.(10分)如图,正方形ABCD和正方形CEFG(其中BD>2CE),BG的延长线与直线DE交于点H.(1)如图1,当点G在CD上时,求证:BG=DE,BG⊥DE;(2)将正方形CEFG绕点C旋转一周.①如图2,当点E在直线CD右侧时,求证:BH﹣DH=√2CH;②当∠DEC=45°时,若AB=3,CE=1,请直接写出线段DH的长.22.(10分)如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y 轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.2020年辽宁省阜新市中考数学试卷参考答案与试题解析一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分)1.在实数−√2,﹣1,0,1中,最小的是()A.−√2B.﹣1C.0D.1解:∵−√2<−1<0<1,∴最小的数是−√2,故选:A.2.下列立体图形中,左视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球解:A.左视图与主视图都是正方形,故选项A不合题意;B.左视图是圆,主视图都是矩形,故选项B符合题意;C.左视图与主视图都是三角形;故选项C不合题意;D.左视图与主视图都是圆,故选项D不合题意;故选:B.3.如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A.众数是9B.中位数是8.5C.平均数是9D.方差是7解:A.数据10出现的次数最多,即众数是10,故本选项错误;B.排序后的数据中,最中间的数据为9,即中位数为9,故本选项错误;C .平均数为:17(7+8+9+9+10+10+10)=9,故本选项正确;D .方差为17[(7﹣9)2+(8﹣9)2+(9﹣9)2+(9﹣9)2+(10﹣9)2+(10﹣9)2+(10﹣9)2]=87,故本选项错误; 故选:C .4.如图,AB 为⊙O 的直径,C ,D 是圆周上的两点,若∠ABC =38°,则锐角∠BDC 的度数为( )A .57°B .52°C .38°D .26°解:连接AC , ∵AB 是⊙O 的直径, ∴∠ACB =90°, ∵∠ABC =38°,∴∠BAC =90°﹣∠ABC =52°, ∴∠BDC =∠BAC =52°. 故选:B .5.掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是( ) A .1B .25C .35D .12解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同, ∴再次掷出这枚硬币,正面朝下的概率是12.故选:D .6.不等式组{1−x ≥02x −1>−5的解集,在数轴上表示正确的是( )A .B .C .D .解:解不等式1﹣x ≥0,得:x ≤1, 解不等式2x ﹣1>﹣5,得:x >﹣2, 则不等式组的解集为﹣2<x ≤1, 故选:D .7.若A (2,4)与B (﹣2,a )都是反比例函数y =kx(k ≠0)图象上的点,则a 的值是( ) A .4B .﹣4C .2D .﹣2解:∵A (2,4)与B (﹣2,a )都是反比例函数y =kx (k ≠0)图象上的点, ∴k =2×4=﹣2a , ∴a =﹣4, 故选:B .8.在“建设美丽阜新”的行动中,需要铺设一段全长为3000m 的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺xm 管道,根据题意,所列方程正确的是( ) A .3000x−3000(1+25%)x=30B .3000(1+25%)x−3000x=30C .3000(1−25%)x−3000x =30D .3000x−3000(1+25%)x=30解:设实际每天铺xm 管道,则原计划每天铺x (1+25%)m 管道,根据题意,得3000(1+25%)x−3000x=30,故选:B .9.已知二次函数y =﹣x 2+2x +4,则下列关于这个函数图象和性质的说法,正确的是( ) A .图象的开口向上B .图象的顶点坐标是(1,3)C .当x <1时,y 随x 的增大而增大D .图象与x 轴有唯一交点解:∵y =﹣x 2+2x +4=﹣(x ﹣1)2+5,∴抛物线的开口向下,顶点坐标为(1,5),抛物线的对称轴为直线x =1,当x <1时,y 随x 的增大而增大,令y =0,则﹣x 2+2x +4=0,解方程解得x 1=1+√5,x 2=1−√5, ∴△=4﹣4×(﹣1)×4=20>0, ∴抛物线与x 轴有两个交点. 故选:C .10.如图,在平面直角坐标系中,将边长为1的正六边形OABCDE 绕点O 顺时针旋转i 个45°,得到正六边形OA i B i ∁i D i E i ,则正六边形OA i B i ∁i D i E i (i =2020)的顶点∁i 的坐标是( )A .(1,−√3)B .(1,√3)C .(1,﹣2)D .(2,1)解:由题意旋转8次应该循环, ∵2020÷8=252…4, ∴∁i 的坐标与C 4的坐标相同,∵C (﹣1,√3),点C 与C 4关于原点对称, ∴C 4(1,−√3),∴顶点∁i 的坐标是(1,−√3), 故选:A .二、填空题(每小题3分,共18分) 11.计算:(13)﹣1+(π−√3)0= 4 .解:(13)﹣1+(π−√3)0。
2020年辽宁省阜新市中考数学试卷
2020年辽宁省阜新市中考数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.在下列-,-1,0,1四个数中,最小的是()A. -B. -1C. 0D. 12.下列立体图形中,左视图与主视图不同的是()A. 正方体B. 圆柱C. 圆锥D. 球3.如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A. 众数是9B. 中位数是8.5C. 平均数是9D. 方差是74.如图,AB为⊙O的直径,C,D是圆周上的两点,若∠ABC=38°,则锐角∠BDC的度数为()A. 57°B. 52°C. 38°D. 26°5.掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A. 1B.C.D.6.不等式组的解集,在数轴上表示正确的是()A. B.C. D.7.若A(2,4)与B(-2,a)都是反比例函数y=(k≠0)图象上的点,则a的值是()A. 4B. -4C. 2D. -28.在“建设美丽阜新”的行动中,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺xm管道,根据题意,所列方程正确的是()A. -=30B. -=30C. -=30D. -=309.已知二次函数y=-x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是()A. 图象的开口向上B. 图象的顶点坐标是(1,3)C. 当x<1时,y随x的增大而增大D. 图象与x轴有唯一交点10.如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OA i B i C i D i E i,则正六边形OA i B i C i D i E i(i=2020)的顶点C i的坐标是()A. (1,-)B. (1,)C. (1,-2)D. (2,1)二、填空题(本大题共6小题,共18.0分)11.计算:()-1+(π-)0=______.12.如图,直线a,b过等边三角形ABC顶点A和C,且a∥b,∠1=42°,则∠2的度数为______.13.如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是______.14.如图,在△ABC中,∠ABC=90°,AB=BC=2.将△ABC绕点B逆时针旋转60°,得到△A1BC1,则AC边的中点D与其对应点D1的距离是______.15.如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角α=20°,两树间的坡面距离AB=5m,则这两棵树的水平距离约为______m(结果精确到0.1m,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364).16.甲、乙两人沿笔直公路匀速由A地到B地,甲先出发30分钟,到达B地后原路原速返回与乙在C地相遇.甲的速度比乙的速度快35km/h,甲、乙两人与A地的距离y(km)和乙行驶的时间x(h)之间的函数关系如图所示,则B,C两地的距离为______km(结果精确到1km).三、解答题(本大题共6小题,共52.0分)17.先化简,再求值:(1-)÷,其中x=-1.18.如图,△ABC在平面直角坐标系中,顶点的坐标分别为A(4,4),B(1,1),C(4,1).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕点O1顺时针旋转90°得到△A2B2C2,AA2弧是点A所经过的路径,则旋转中心O1的坐标为______;(3)求图中阴影部分的面积(结果保留π).19.在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<904B90≤x<11015C110≤x<13018D130≤x<15012E150≤x<170mF170≤x<1905(1)本次测试随机抽取的人数是______人,m=______;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.20.在抗击新冠肺炎疫情期间,玉龙社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.(1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?21.如图,正方形ABCD和正方形CEFG(其中BD>2CE),BG的延长线与直线DE交于点H.(1)如图1,当点G在CD上时,求证:BG=DE,BG⊥DE;(2)将正方形CEFG绕点C旋转一周.①如图2,当点E在直线CD右侧时,求证:BH-DH=CH;②当∠DEC=45°时,若AB=3,CE=1,请直接写出线段DH的长.22.如图,二次函数y=x2+bx+c的图象交x轴于点A(-3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:∵-<-1<0<1,∴最小的数是-,故选:A.根据实数的大小比较方法,找出最小的数即可.此题考查了实数的大小比较,用到的知识点是负数<0<正数,两个负数,绝对值大的反而小,是一道基础题.2.【答案】B【解析】解:A.左视图与主视图都是正方形,故选项A不合题意;B.左视图是圆,主视图都是矩形,故选项B符合题意;C.左视图与主视图都是三角形;故选项C不合题意;D.左视图与主视图都是圆,故选项D不合题意;故选:B.从正面看所得到的图形是主视图,从左面看到的图形是左视图,进而分别判断得出答案.此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.【答案】C【解析】解:A.数据10出现的次数最多,即众数是10,故本选项错误;B.排序后的数据中,最中间的数据为9,即中位数为9,故本选项错误;C.平均数为:(7+8+9+9+10+10+10)=9,故本选项正确;D.方差为[(7-9)2+(8-9)2+(9-9)2+(9-9)2+(10-9)2+(10-9)2+(10-9)2]=,故本选项错误;故选:C.由折线图得到一周内每天跑步圈数的数据,计算这组数据的平均数、中位数、众数、方差,然后判断得结论.本题考查了折线图、平均数、中位数、众数及方差等知识,读折线图得到数据是解决本题的关键.【解析】解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=38°,∴∠BAC=90°-∠ABC=52°,∴∠BDC=∠BAC=52°.故选:B.由AB是⊙O的直径,根据直径所对的圆周角是直角,即可得∠ACB=90°,又由∠ABC=38°,即可求得∠A的度数,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BDC的度数.此题考查了圆周角定理.此题难度不大,注意掌握直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用是解此题的关键.5.【答案】D【解析】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝下的概率是.故选:D.直接利用概率的意义分析得出答案.此题主要考查了概率的意义,正确把握概率的意义是解题关键.6.【答案】D【解析】解:解不等式1-x≥0,得:x≤1,解不等式2x-1>-5,得:x>-2,则不等式组的解集为-2<x≤1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【解析】解:∵A(2,4)与B(-2,a)都是反比例函数y=(k≠0)图象上的点,∴k=2×4=-2a,∴a=-4,故选:B.反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k,据此可得a的值.本题考查了反比例函数图象上点的坐标特征,熟知反比例函数y=(k≠0)图象上的点的横纵坐标的积等于定值k是解答此题的关键.8.【答案】C【解析】解:设实际每天铺xm管道,根据题意,得-=30,故选:C.根据题意可以列出相应的分式方程,从而可以解答本题.本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的方程.9.【答案】C【解析】解:∵y=-x2+2x+4=-(x-1)2+5,∴抛物线的开口向下,顶点坐标为(1,5),抛物线的对称轴为直线x=1,当x<1时,y随x的增大而增大,解方程-x2+2x+4=0,解得x1=1+,x2=1-,∴抛物线与x轴有两个交点.故选:C.先利用配方法得到y=-(x-1)2+5,可根据二次函数的性质可对A、B、C进行判断;通过解方程-x2+2x+4=0可对D进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.10.【答案】A【解析】解:由题意旋转8次应该循环,∵2020÷8=252…4,∴C i的坐标与C4的坐标相同,∵C(-1,),点C与C4关于原点对称,∴C4(1,-),∴顶点C i的坐标是(1,-),故选:A.由题意旋转8次应该循环,因为2020÷8=252…4,所以C i的坐标与C4的坐标相同.本题考查正多边形与圆,坐标与图形变化-性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.11.【答案】4【解析】解:()-1+(π-)0=3+1=4.故答案为:4.首先计算乘方,然后计算加法,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题关键.12.【答案】102°【解析】解:如图,∵△ABC是等边三角形,∴∠BAC=60°,∵∠1=42°,∴∠CAD=180°-60°-42°=78°,∵a∥b,∴∠2+∠CAD=180°,∴∠2=180°-∠CAD=102°;故答案为:102°.由等边三角形的性质得∠BAC=60°,由平角定义求出∠CAD=78°,再由平行线的性质得出∠2+∠CAD=180°,即可得出答案.本题考查了等边三角形的性质,平行线的性质等知识,正确的识别图形是解题的关键.13.【答案】【解析】解:∵把△ABC沿AB边平移到△A1B1C1的位置,∴AC∥A1C1,∴△ABC∽△A1BD,∵S△A1BD:S四边形ACDA1=4:5,∴S:S△ABC=4:9,∴A1B:AB=2:3,∵AB=4,∴A1B=,∴AA1=4-=.故答案为:.根据题意可以推出△ABC∽△A1BD,结合它们的面积比,即可推出对应边的比,即可推出AA′的长度.本题主要考查平移的性质、相似三角形的判定和性质,关键在于求证△ABC∽△A1BD,推出A1B的长度.14.【答案】【解析】解:连接BD、BD1,如图,∵∠ABC=90°,AB=BC=2,∴AC==2,∵D点为AC的中点,∴BD=AC=,∵△ABC绕点B逆时针旋转60°,得到△A1BC1,∴BD1=BD,∠DBD1=60°,∴△BDD1为等边三角形,∴DD1=BD=.故答案为.连接BD、BD1,如图,李煜等腰三角形斜边上的中线性质得到BD=AC=,再利用旋转的性质得BD1=BD,∠DBD1=60°,则可判断△BDD1为等边三角形,从而得到DD1=BD=.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质.15.【答案】4.7【解析】解:过点A作水平面的平行线AH,作BH⊥AH于H,由题意得,∠BAH=α=20°,在Rt△BAH中,cos∠BAH=,∴AH=AB•cos∠BAH≈5×≈4.7(m),故答案为:4.7.根据余弦的定义求出AH,得到答案.本题考查的是解直角三角形的应用,掌握坡度坡角的概念、锐角三角函数的定义是解题的关键.16.【答案】73【解析】解:由题意可知,甲行驶的速度为:(km/h),A、B两地之间的距离为:25+50×2=125(km),乙的速度为:50-35=15(km/h),2+(125-15×2)÷(50+15)=,即乙出发小时后与甲相遇,所以B,C两地的距离为:(km).故答案为:73.根据题意结合图象可得甲行驶的速度以及A、B两地之间的距离,进而得出乙行驶的速度,然后求出两人相遇的时间,即可求出B,C两地的距离.本题考查了一次函数的应用,解决本题的关键是根据图象获取相关信息,求出A、B两地之间的距离.17.【答案】解:原式=•=,当x=-1时,原式===1-.【解析】先把括号内通分和除法运算化为乘法运算,再约分得到原式=,然后把x 的值代入计算即可.本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.18.【答案】(2,0)【解析】解:(1)如图,△A1B1C1为所作;(2)旋转中心O1的坐标为(2,0),故答案为(2,0);(3)设旋转半径为r,则r2=22+42=20,∴阴影部分的图形面积为:=5π-.(1)根据关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)作对应点A、A2,B、B2的连线的垂直平分线,交点即为旋转中心;(3)线段AB在旋转过程中扫过的图形为扇形,然后根据扇形面积公式计算即可.本题考查了作图-轴对称变换以及作图-旋转变换,旋转的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.也考查了三角形的面积和扇形面积公式.19.【答案】60 6【解析】解:(1)15÷25%=60(人),m=60-4-15-18-12-5=6(人);答:本次测试随机抽取的人数是60人;(2)C等级所在扇形的圆心角的度数=360°×=108°,(3)该校七年级学生能够达到优秀的人数为300×=115(人).(1)根据B等级的人数以及百分比,即可解决问题;(2)根据圆心角=360°×百分比计算即可,根据D等级人数画出直方图即可;(3)利用样本估计总体的思想解决问题即可.本题考查了扇形统计图、频数分布表,解决本题的关键是通过扇形统计图表示出各部分数量同总数之间的关系.20.【答案】(1)解:设购买酒精x瓶,消毒液y瓶,根据题意列方程组,得.解得,.答:每次购买的酒精和消毒液分别是20瓶,30瓶;(2)解:设能购买消毒液m瓶,则能购买酒精2m瓶,根据题意,得 10×(1-30%)•2m+5(1-20%)•m≤200,解得:m≤=11.∵m为正整数,∴m=11.所以,最多能购买消毒液11瓶.【解析】(1)根据题意,可以列出相应的二元一次方程组,从而可以求得每次购买的酒精和消毒液分别是多少瓶;(2)设能购买消毒液m瓶,则能购买酒精2m瓶,根据“购买的酒精数量是消毒液数量的2倍,现有购买资金200元”列出不等式.本题考查二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找到等量关系或不等关系,列出方程或不等式.21.【答案】(1)证明:如图1中,证明:∵在正方形ABCD和正方形CEFG中,BC=CD,CG=CE,∠BCG=∠DCE=90°,∴△BCG≌△DCE(SAS),∴BG=DE,∠CBG=∠CDE,∵∠CDE+∠DEC=90°,∴∠HBE+∠BEH=90°,∴∠BHE=90°,∴BG⊥DE.(2)①如图2中,在线段BG上截取BK=DH,连接CK.由(1)可知,∠CBK=∠CDH,∵BK=DH,BC=DC,∴△BCK≌△DCH(SAS),∴CK=CH,∠BCK=∠DCH,∴∠KCH=∠BCD=90°,∴△KCH是等腰直角三角形,∴HK=CH,∴BH-DH=BH-BK=KH=CH.②如图3-1中,当D,H,E三点共线时∠DEC=45°,连接BD.由(1)可知,BH=DE,且CE=CH=1,EH CH,∵BC=3,∴BD=BC=3,设DH=x,则BH=DE=x+,在Rt△BDH中,∵BH2+DH2=BD2,∴(x+)2+x2=(3)2,解得x=或(舍弃).如图3-2中,当D,H,E三点共线时∠DEC=45°,连接BD.设DH=x,∵BG=DH,∴BH=DH-HG=x-,在Rt△BDH中,∵BH2+DH2=BD2,∴(x-)2+x2=(3)2,解得x=或(舍弃),综上所述,满足条件的DH的值为或.【解析】(1)证明△BCG≌△DCE(SAS)可得结论.(2)①如图2中,在线段BG上截取BK=DH,连接CK.证明△BCK≌△DCH(SAS),推出CK=CH,∠BCK=∠DCH,推出△KCH是等腰直角三角形,即可解决问题.②分两种情形:如图3-1中,当D,H,E三点共线时∠DEC=45°,连接BD.如图3-2中,当D,H,E三点共线时∠DEC=45°,连接BD,分别求解即可解决问题.本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.22.【答案】解:(1)把A(-3,0),B(1,0)代入y=x2+bx+c中,得,解得,∴y=x2+2x-3.(2)①设直线AC的表达式为y=kx+b,把A(-3,0),C(0,-3)代入y=kx+b.得,解得,∴y=-x-3,∵点P(m,0)是x轴上的一动点,且PM⊥x轴.∴M(m,-m-3),N(m,m2+2m-3),∴MN=(-m-3)-(m2+2m-3)=-m2-3m=-(m+)2+,∵a=-1<0,∴此函数有最大值.又∵点P在线段OA上运动,且-3<-<0,∴当m=-时,MN有最大值.②如图2-1中,当点M在线段AC上,MN=MC,四边形MNQC是菱形时.∵MN=-m2-3m,MC=-m,∴-m2-3m=-m,解得m=-3+或0(舍弃)∴MN=3-2,∴CQ=MN=3-2,∴OQ=3+1,∴Q(0,-3-1).如图2-2中,当NC是菱形的对角线时,四边形MNCQ是正方形,此时CN=MN=CQ=2,可得Q(0,-1).如图2-3中,当点M在CA延长线上时,MN=CM,四边形MNQC是菱形时,则有;m2+3m=-m,解得m=-3-或0(舍弃),∴MN=CQ=3+2,∴OQ=CQ-OC=3-1,∴Q(0,3-1).综上所述,满足条件的点Q的坐标为(0,-3-1)或(0,-1)或(0,3-1).【解析】(1)把A(-3,0),B(1,0)代入y=x2+bx+c中,构建方程组解决问题即可.(2)①构建二次函数,利用二次函数的性质解决问题即可.②分三种情形:如图2-1中,当点M在线段AC上,MN=MC,四边形MNQC是菱形时.如图2-2中,当NC是菱形的对角线时,四边形MNCQ是正方形,如图2-3中,当点M在CA延长线上时,MN=CM,四边形MNQC是菱形时,分别求解即可.本题属于二次函数综合题,考查了二次函数的性质,待定系数法,一次函数的性质,菱形的判定和性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年辽宁省阜新市中考数学试卷一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分)1.(3分)在实数﹣,﹣1,0,1中,最小的是()A.﹣B.﹣1C.0D.12.(3分)下列立体图形中,左视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球3.(3分)如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A.众数是9B.中位数是8.5C.平均数是9D.方差是74.(3分)如图,AB为⊙O的直径,C,D是圆周上的两点,若∠ABC=38°,则锐角∠BDC 的度数为()A.57°B.52°C.38°D.26°5.(3分)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A.1B.C.D.6.(3分)不等式组的解集,在数轴上表示正确的是()A.B.C.D.7.(3分)若A(2,4)与B(﹣2,a)都是反比例函数y=(k≠0)图象上的点,则a 的值是()A.4B.﹣4C.2D.﹣28.(3分)在“建设美丽阜新”的行动中,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺xm管道,根据题意,所列方程正确的是()A.﹣=30B.﹣=30C.﹣=30D.﹣=309.(3分)已知二次函数y=﹣x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是()A.图象的开口向上B.图象的顶点坐标是(1,3)C.当x<1时,y随x的增大而增大D.图象与x轴有唯一交点10.(3分)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OA i B i∁i D i E i,则正六边形OA i B i∁i D i E i(i=2020)的顶点∁i的坐标是()A.(1,﹣)B.(1,)C.(1,﹣2)D.(2,1)二、填空题(每小题3分,共18分)11.(3分)计算:()﹣1+(π﹣)0=.12.(3分)如图,直线a,b过等边三角形ABC顶点A和C,且a∥b,∠1=42°,则∠2的度数为.13.(3分)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是.14.(3分)如图,在△ABC中,∠ABC=90°,AB=BC=2.将△ABC绕点B逆时针旋转60°,得到△A1BC1,则AC边的中点D与其对应点D1的距离是.15.(3分)如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角α=20°,两树间的坡面距离AB=5m,则这两棵树的水平距离约为m (结果精确到0.1m,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364).16.(3分)甲、乙两人沿笔直公路匀速由A地到B地,甲先出发30分钟,到达B地后原路原速返回与乙在C地相遇.甲的速度比乙的速度快35km/h,甲、乙两人与A地的距离y(km)和乙行驶的时间x(h)之间的函数关系如图所示,则B,C两地的距离为km (结果精确到1km).三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分)17.(8分)先化简,再求值:(1﹣)÷,其中x=﹣1.18.(8分)如图,△ABC在平面直角坐标系中,顶点的坐标分别为A(4,4),B(1,1),C(4,1).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕点O1顺时针旋转90°得到△A2B2C2,AA2弧是点A所经过的路径,则旋转中心O1的坐标为;(3)求图中阴影部分的面积(结果保留π).19.(8分)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<904B90≤x<11015C110≤x<13018D130≤x<15012E150≤x<170mF170≤x<1905(1)本次测试随机抽取的人数是人,m=;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.20.(8分)在抗击新冠肺炎疫情期间,玉龙社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.(1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?21.(10分)如图,正方形ABCD和正方形CEFG(其中BD>2CE),BG的延长线与直线DE交于点H.(1)如图1,当点G在CD上时,求证:BG=DE,BG⊥DE;(2)将正方形CEFG绕点C旋转一周.①如图2,当点E在直线CD右侧时,求证:BH﹣DH=CH;②当∠DEC=45°时,若AB=3,CE=1,请直接写出线段DH的长.22.(10分)如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y 轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.2020年辽宁省阜新市中考数学试卷参考答案与试题解析一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分)1.(3分)在实数﹣,﹣1,0,1中,最小的是()A.﹣B.﹣1C.0D.1【分析】根据实数的大小比较方法,找出最小的数即可.【解答】解:∵﹣<﹣1<0<1,∴最小的数是﹣,故选:A.2.(3分)下列立体图形中,左视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,进而分别判断得出答案.【解答】解:A.左视图与主视图都是正方形,故选项A不合题意;B.左视图是圆,主视图都是矩形,故选项B符合题意;C.左视图与主视图都是三角形;故选项C不合题意;D.左视图与主视图都是圆,故选项D不合题意;故选:B.3.(3分)如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A.众数是9B.中位数是8.5C.平均数是9D.方差是7【分析】由折线图得到一周内每天跑步圈数的数据,计算这组数据的平均数、中位数、众数、方差,然后判断得结论.【解答】解:A.数据10出现的次数最多,即众数是10,故本选项错误;B.排序后的数据中,最中间的数据为9,即中位数为9,故本选项错误;C.平均数为:(7+8+9+9+10+10+10)=9,故本选项正确;D.方差为[(7﹣9)2+(8﹣9)2+(9﹣9)2+(9﹣9)2+(10﹣9)2+(10﹣9)2+(10﹣9)2]=,故本选项错误;故选:C.4.(3分)如图,AB为⊙O的直径,C,D是圆周上的两点,若∠ABC=38°,则锐角∠BDC 的度数为()A.57°B.52°C.38°D.26°【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,即可得∠ACB=90°,又由∠ABC=38°,即可求得∠A的度数,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BDC的度数.【解答】解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=38°,∴∠BAC=90°﹣∠ABC=52°,∴∠BDC=∠BAC=52°.故选:B.5.(3分)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A.1B.C.D.【分析】直接利用概率的意义分析得出答案.【解答】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝下的概率是.故选:D.6.(3分)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式1﹣x≥0,得:x≤1,解不等式2x﹣1>﹣5,得:x>﹣2,则不等式组的解集为﹣2<x≤1,故选:D.7.(3分)若A(2,4)与B(﹣2,a)都是反比例函数y=(k≠0)图象上的点,则a 的值是()A.4B.﹣4C.2D.﹣2【分析】反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k,据此可得a的值.【解答】解:∵A(2,4)与B(﹣2,a)都是反比例函数y=(k≠0)图象上的点,∴k=2×4=﹣2a,∴a=﹣4,故选:B.8.(3分)在“建设美丽阜新”的行动中,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺xm管道,根据题意,所列方程正确的是()A.﹣=30B.﹣=30C.﹣=30D.﹣=30【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设实际每天铺xm管道,根据题意,得﹣=30,故选:C.9.(3分)已知二次函数y=﹣x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是()A.图象的开口向上B.图象的顶点坐标是(1,3)C.当x<1时,y随x的增大而增大D.图象与x轴有唯一交点【分析】先利用配方法得到y=﹣(x﹣1)2+5,可根据二次函数的性质可对A、B、C进行判断;通过解方程﹣x2+2x+4=0可对D进行判断.【解答】解:∵y=﹣x2+2x+4=﹣(x﹣1)2+5,∴抛物线的开口向下,顶点坐标为(1,5),抛物线的对称轴为直线x=1,当x<1时,y 随x的增大而增大,解方程﹣x2+2x+4=0,解得x1=1+,x2=1﹣,∴抛物线与x轴有两个交点.故选:C.10.(3分)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OA i B i∁i D i E i,则正六边形OA i B i∁i D i E i(i=2020)的顶点∁i的坐标是()A.(1,﹣)B.(1,)C.(1,﹣2)D.(2,1)【分析】由题意旋转8次应该循环,因为2020÷8=252…4,所以∁i的坐标与C4的坐标相同.【解答】解:由题意旋转8次应该循环,∵2020÷8=252…4,∴∁i的坐标与C4的坐标相同,∵C(﹣1,),点C与C4关于原点对称,∴C4(1,﹣),∴顶点∁i的坐标是(1,﹣),故选:A.二、填空题(每小题3分,共18分)11.(3分)计算:()﹣1+(π﹣)0=4.【分析】首先计算乘方,然后计算加法,求出算式的值是多少即可.【解答】解:()﹣1+(π﹣)0=3+1=4.故答案为:4.12.(3分)如图,直线a,b过等边三角形ABC顶点A和C,且a∥b,∠1=42°,则∠2的度数为102°.【分析】由等边三角形的性质得∠BAC=60°,由平角定义求出∠CAD=78°,再由平行线的性质得出∠2+∠CAD=180°,即可得出答案.【解答】解:如图,∵△ABC是等边三角形,∴∠BAC=60°,∵∠1=42°,∴∠CAD=180°﹣60°﹣42°=78°,∵a∥b,∴∠2+∠CAD=180°,∴∠2=180°﹣∠CAD=102°;故答案为:102°.13.(3分)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是.【分析】根据题意可以推出△ABC∽△A1BD,结合它们的面积比,即可推出对应边的比,即可推出AA′的长度.【解答】解:∵把△ABC沿AB边平移到△A1B1C1的位置,∴AC∥A1C1,∴△ABC∽△A1BD,∵S△A1BD:S四边形ACDA1=4:5,∴S:S△ABC=4:9,∴A1B:AB=2:3,∵AB=4,∴A1B=,∴AA1=4﹣=.故答案为:.14.(3分)如图,在△ABC中,∠ABC=90°,AB=BC=2.将△ABC绕点B逆时针旋转60°,得到△A1BC1,则AC边的中点D与其对应点D1的距离是.【分析】连接BD、BD1,如图,李煜等腰三角形斜边上的中线性质得到BD=AC=,再利用旋转的性质得BD1=BD,∠DBD1=60°,则可判断△BDD1为等边三角形,从而得到DD1=BD=.【解答】解:连接BD、BD1,如图,∵∠ABC=90°,AB=BC=2,∴AC==2,∵D点为AC的中点,∴BD=AC=,∵△ABC绕点B逆时针旋转60°,得到△A1BC1,∴BD1=BD,∠DBD1=60°,∴△BDD1为等边三角形,∴DD1=BD=.故答案为.15.(3分)如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角α=20°,两树间的坡面距离AB=5m,则这两棵树的水平距离约为 4.7m (结果精确到0.1m,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364).【分析】根据余弦的定义求出AH,得到答案.【解答】解:过点A作水平面的平行线AH,作BH⊥AH于H,由题意得,∠BAH=α=20°,在Rt△BAH中,cos∠BAH=,∴AH=AB•cos∠BAH≈5×≈4.7(m),故答案为:4.7.16.(3分)甲、乙两人沿笔直公路匀速由A地到B地,甲先出发30分钟,到达B地后原路原速返回与乙在C地相遇.甲的速度比乙的速度快35km/h,甲、乙两人与A地的距离y(km)和乙行驶的时间x(h)之间的函数关系如图所示,则B,C两地的距离为73 km(结果精确到1km).【分析】根据题意结合图象可得甲行驶的速度以及A、B两地之间的距离,进而得出乙行驶的速度,然后求出两人相遇的时间,即可求出B,C两地的距离.【解答】解:由题意可知,甲行驶的速度为:(km/h),A、B两地之间的距离为:25+50×2=125(km),乙的速度为:50﹣35=15(km/h),2+(125﹣15×2)÷(50+15)=,即乙出发小时后与甲相遇,所以B,C两地的距离为:(km).故答案为:73.三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分)17.(8分)先化简,再求值:(1﹣)÷,其中x=﹣1.【分析】先把括号内通分和除法运算化为乘法运算,再约分得到原式=,然后把x 的值代入计算即可.【解答】解:原式=•=,当x=﹣1时,原式===1﹣.18.(8分)如图,△ABC在平面直角坐标系中,顶点的坐标分别为A(4,4),B(1,1),C(4,1).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕点O1顺时针旋转90°得到△A2B2C2,AA2弧是点A所经过的路径,则旋转中心O1的坐标为(2,0);(3)求图中阴影部分的面积(结果保留π).【分析】(1)根据关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)作对应点A、A2,B、B2的连线的垂直平分线,交点即为旋转中心;(3)线段AB在旋转过程中扫过的图形为扇形,然后根据扇形面积公式计算即可.【解答】解:(1)如图,△A1B1C1为所作;(2)旋转中心O1的坐标为(2,0),故答案为(2,0);(3)设旋转半径为r,则r2=22+42=20,∴阴影部分的图形面积为:=5π﹣.19.(8分)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<904B90≤x<11015C110≤x<13018D130≤x<15012E150≤x<170mF170≤x<1905(1)本次测试随机抽取的人数是60人,m=6;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.【分析】(1)根据B等级的人数以及百分比,即可解决问题;(2)根据圆心角=360°×百分比计算即可,根据D等级人数画出直方图即可;(3)利用样本估计总体的思想解决问题即可.【解答】解:(1)15÷25%=60(人),m=60﹣4﹣15﹣18﹣12﹣5=6(人);答:本次测试随机抽取的人数是60人;(2)C等级所在扇形的圆心角的度数=360°×=108°,(3)该校七年级学生能够达到优秀的人数为300×=115(人).20.(8分)在抗击新冠肺炎疫情期间,玉龙社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.(1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?【分析】(1)根据题意,可以列出相应的二元一次方程组,从而可以求得每次购买的酒精和消毒液分别是多少瓶;(2)设能购买消毒液m瓶,则能购买酒精2m瓶,根据“购买的酒精数量是消毒液数量的2倍,现有购买资金200元”列出不等式.【解答】(1)解:设购买酒精x瓶,消毒液y瓶,根据题意列方程组,得.解得,.答:每次购买的酒精和消毒液分别是20瓶,30瓶;(2)解:设能购买消毒液m瓶,则能购买酒精2m瓶,根据题意,得10×(1﹣30%)•2m+5(1﹣20%)•m≤200,解得:m≤=11.∵m为正整数,∴m=11.所以,最多能购买消毒液11瓶.21.(10分)如图,正方形ABCD和正方形CEFG(其中BD>2CE),BG的延长线与直线DE交于点H.(1)如图1,当点G在CD上时,求证:BG=DE,BG⊥DE;(2)将正方形CEFG绕点C旋转一周.①如图2,当点E在直线CD右侧时,求证:BH﹣DH=CH;②当∠DEC=45°时,若AB=3,CE=1,请直接写出线段DH的长.【分析】(1)证明△BCG≌△DCE(SAS)可得结论.(2)①如图2中,在线段BG上截取BK=DH,连接CK.证明△BCK≌△DCH(SAS),推出CK=CH,∠BCK=∠DCH,推出△KCH是等腰直角三角形,即可解决问题.②分两种情形:如图3﹣1中,当D,H,E三点共线时∠DEC=45°,连接BD.如图3﹣2中,当D,H,E三点共线时∠DEC=45°,连接BD,分别求解即可解决问题.【解答】(1)证明:如图1中,证明:∵在正方形ABCD和正方形CEFG中,BC=CD,CG=CE,∠BCG=∠DCE=90°,∴△BCG≌△DCE(SAS),∴BG=DE,∠CBG=∠CDE,∵∠CDE+∠DEC=90°,∴∠HBE+∠BEH=90°,∴∠BHE=90°,∴BG⊥DE.(2)①如图2中,在线段BG上截取BK=DH,连接CK.由(1)可知,∠CBK=∠CDH,∵BK=DH,BC=DC,∴△BCK≌△DCH(SAS),∴CK=CH,∠BCK=∠DCH,∴∠KCH=∠BCD=90°,∴△KCH是等腰直角三角形,∴HK=CH,∴BH﹣DH=BH﹣BK=KH=CH.②如图3﹣1中,当D,H,E三点共线时∠DEC=45°,连接BD.由(1)可知,BH=DE,且CE=CH=1,EH CH,∵BC=3,∴BD=BC=3,设DH=x,则BH=DE=x+,在Rt△BDH中,∵BH2+DH2=BD2,∴(x+)2+x2=(3)2,解得x=或(舍弃).如图3﹣2中,当D,H,E三点共线时∠DEC=45°,连接BD.设DH=x,∵BG=DH,∴BH=DH﹣HG=x﹣,在Rt△BDH中,∵BH2+DH2=BD2,∴(x﹣)2+x2=(3)2,解得x=或(舍弃),综上所述,满足条件的DH的值为或.22.(10分)如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y 轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.【分析】(1)把A(﹣3,0),B(1,0)代入y=x2+bx+c中,构建方程组解决问题即可.(2)①构建二次函数,利用二次函数的性质解决问题即可.②分三种情形:如图2﹣1中,当点M在线段AC上,MN=MC,四边形MNQC是菱形时.如图2﹣2中,当NC是菱形的对角线时,四边形MNCQ是正方形,如图2﹣3中,当点M在CA延长线上时,MN=CM,四边形MNQC是菱形时,分别求解即可.【解答】解:(1)把A(﹣3,0),B(1,0)代入y=x2+bx+c中,得,解得,∴y=x2+2x﹣3.(2)①设直线AC的表达式为y=kx+b,把A(﹣3,0),C(0,﹣3)代入y=kx+b.得,解得,∴y=﹣x﹣3,∵点P(m,0)是x轴上的一动点,且PM⊥x轴.∴M(m,﹣m﹣3),N(m,m2+2m﹣3),∴MN=(﹣m﹣3)﹣(m2+2m﹣3)=﹣m2﹣3m=﹣(m+)2+,∵a=﹣1<0,∴此函数有最大值.又∵点P在线段OA上运动,且﹣3<﹣<0,∴当m=﹣时,MN有最大值.②如图2﹣1中,当点M在线段AC上,MN=MC,四边形MNQC是菱形时.∵MN=﹣m2﹣3m,MC=﹣m,∴﹣m2﹣3m=﹣m,解得m=﹣3+或0(舍弃)∴MN=3﹣2,∴CQ=MN=3﹣2,∴OQ=3+1,∴Q(0,﹣3﹣1).如图2﹣2中,当NC是菱形的对角线时,四边形MNCQ是正方形,此时CN=MN=CQ =2,可得Q(0,﹣1).如图2﹣3中,当点M在CA延长线上时,MN=CM,四边形MNQC是菱形时,则有;m2+3m=﹣m,解得m=﹣3﹣或0(舍弃),∴MN=CQ=3+2,∴OQ=CQ﹣OC=3﹣1,∴Q(0,3﹣1).综上所述,满足条件的点Q的坐标为(0,﹣3﹣1)或(0,﹣1)或(0,3﹣1).。