自动控制原理 典型系统瞬态响应和稳定性实验报告
自动控制原理实验一 典型系统的时域响应和稳定性分析
实验一典型系统的时域响应和稳定性分析一、实验目的1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD-ACC+教学实验系统一套。
三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图1-1所示。
图1-1(2)图1-2(3) 理论分析系统开环传递函数为:G(s)=K1T0⁄s(T1s+1)开环增益:K= K1T0⁄先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中由图1-2,可以确地1-1中的参数。
T0= 1s , T1= 0.1s ,K1= 200R , K= 200R系统闭环传递函数为:W(s)=5Ks2+5s+5K其中自然振荡角频率:?n ω= 10√10R;阻尼比:?ζ= √10R402.典型的三阶系统稳定性分析(1) 结构框图:如图1-3所示。
图1-3(2) 模拟电路图:如图1-4所示。
图1-4(3) 理论分析系统的开环传函为: G(s)H(s)=20K s 3+12s 2+20s系统的特征方程为:1()()0G s H s += : s 3+12s 2+20s+20K=0 (4) 实验内容实验前由Routh 判断得Routh 行列式为:S 3 1 20 S 2 12 20K S 1 20-5/3*K 0 S 0 20K为了保证系统稳定,第一列各值应为正数,因此可以确定系统稳定 K 值的范围 : 0<K <12 R >41.7k系统临界稳定K: K=12 R =41.7k 系统不稳定K 值的范围: K >12 R <41.7k四、实验步骤1)将信号源单元的“ST ”端插针与“S ”端插针用“短路块”短接。
控制系统的瞬态响应及其稳定性分析
控制系统的瞬态响应及其稳定性分析控制系统的瞬态响应及其稳定性分析是控制理论的重要内容之一、瞬态响应描述了一个控制系统在输入信号改变时的响应情况,稳定性分析则是评估系统响应的稳定性和可靠性。
下面将从瞬态响应和稳定性分析两个方面进行探讨。
一、瞬态响应分析瞬态响应指的是一个控制系统在输入信号发生改变时,系统在一定时间范围内达到稳态的过程。
常见的瞬态响应包括过渡过程和超调量等指标。
1.过渡过程:在一个控制系统中,当输入信号发生改变时,系统输出信号不会立即达到稳定状态,而是经历一个从初值到最终稳定状态的过渡过程。
过渡过程的主要指标有上升时间、峰值时间和调整时间。
-上升时间(Tr):指的是信号从初始值开始,达到其最终稳定值之间的时间间隔。
上升时间越短,系统的响应越快速。
-峰值时间(Tp):指的是信号首次超过最终稳定值所需的时间。
峰值时间越短,响应越快。
-调整时间(Ts):指的是信号从初始值到最终值之间的时间。
调整时间越短,系统的响应越快。
2.超调量:超调量是指在过渡过程中系统输出信号超过最终稳定状态的幅度。
超调量的大小可以直接反映系统的稳定性。
一般来说,超调量越小,系统的稳定性越好。
瞬态响应分析是评估系统性能的重要工具。
通过对瞬态响应的分析,可以了解系统的响应速度、稳定性和鲁棒性,并对系统进行优化和改进。
稳定性分析是评估控制系统稳态响应和稳定性的重要方法。
一个稳定的控制系统应该满足输入信号的变化不会引起系统输出信号的不稳定或震荡。
常见的稳定性分析方法有频域分析法和时域分析法。
1.频域分析法:频域分析主要利用系统的频率特性来分析系统的稳定性。
通过绘制系统的频率响应曲线,可以得到系统的增益和相位特性。
稳定性条件为系统的增益在截止频率处不为负值,即系统的增益曲线应该位于0dB线以上。
2.时域分析法:时域分析主要关注系统的时间响应曲线。
稳定性条件为系统在有限时间内达到并保持在稳定状态。
稳定性分析是评估控制系统性能的关键环节,它不仅可以帮助设计者理解系统的稳定性和鲁棒性,还可以为系统的优化和改进提供指导。
自动控制原理实验典型系统的时域响应和稳定性分析
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。
图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。
图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图1.2-4 所示。
图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由Routh 判断得Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。
由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。
自动控制实验报告
《自动控制理论》实验报告实验一 典型系统的时域响应和稳定性分析一、实验目的1.研究二阶系统的特征参量 (ξ、ωn ) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。
二、实验设备PC 机一台,TD-ACC +教学实验系统一套。
三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图1-1所示。
图1-1(2) 对应的模拟电路图:如图1-2所示。
图1-2(3) 理论分析系统开环传递函数为:G(s)=)1(110 S T S T K开环增益: K=1T K 先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中由图1-2,可以确地1-1中的参数。
s T 10=, s T 2.01=,RK 2001=R K 200=⇒系统闭环传递函数为:KS S Ks W ++=5)(2其中自然振荡角频率:Rn 1010=ω ;阻尼比:4010R=ζ。
2.典型的三阶系统稳定性分析(1) 结构框图:如图1-3所示。
图1-3(2) 模拟电路图:如图1-4所示。
图1-4(3) 理论分析系统的开环传函为:)1)(1(21)()(210++=S T S T S T K K s G s H系统的特征方程为:1()()0G s H s +=。
020201223=+++K S S S (4) 实验内容实验前由Routh判断得Routh行列式为:S3 1 20S212 20KS120-5K/3 0S0 20K 0为了保证系统稳定,第一列各值应为正数,因此可以确定系统稳定K值的范围0<K<12系统临界稳定K=12系统不稳定K值的范围K>12四、实验步骤1)将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。
由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。
自动控制原理实验二 典型系统的瞬态响应
实验二 典型系统的瞬态响应1.实验目的进一步熟悉自动控制实验教学系统软件包的使用方法,为后续实验打好基础。
学习瞬态性能指标的测试技巧,了解参数对系统瞬态性能及稳定性的影响,认识典型系统阶跃响应曲线特点,及其环节参数与瞬态性能指标关系。
2.实验装置(1)计算机。
(2)自动控制实验教学系统软件包。
3.实验方法与步骤(1)进入Window 后,通过双击桌面上的MATLAB 图标即可启动该程序,这时将出现如下图所示的界面。
在该界面下的“>>”标志为MATLAB 的命令提示符,用户可以在该提示符后输入MATLAB 命令,进入MATLAB 后,键入“zksy ”(注意:用小写字母),按照实验三的方法找到本实验内容,即:点击实验四 典型系统的瞬态响应和稳定性分析和下一级相应的子菜单,就会出现本次实验的内容窗口。
(2)下面以二阶系统的瞬态响应为例说明如何进行下面的实验。
点击二阶系统的瞬态响应菜单将会出现如下的窗口:这就是我们典型系统的瞬态响应(二阶系统)的模型窗口,即排题图。
其中输入信号为阶跃响应输入模块(可以改变大小),示波器观察输出结果(可以改变设置),中间为仿真对象的模型(也可以改变)。
(3)进行典型二阶系统瞬态性能指标的测试,首先设置仿真对象的模型,根据前面的实验原理,设置相应的K 和T ,确定阻尼系数ζ和振荡频率n ω,分别作出系统欠阻尼、临界阻尼、过阻尼的情况。
(4)建立起来系统结构之后,当所有参数设置完成(输入信号大小、示波器的量程、模型参数等)以后,打开Simnulation (仿真分析)菜单,可得到如下图所示菜单结构。
在进行仿真过程之前,选择Simulation|Parameters选项来设置仿真控制的参数(一定要合理设置否则影响结果),参见附录设置好有关仿真控制参数,则可以选择Simulation|Start选项启动仿真过程,记录仿真结果。
(5)同样按照上述步骤完成三阶系统的性能测试,要求自己设置好K1、K2、T1、T2各参数,确定不同的系统增益K,观察系统的响应曲线,确定系统的稳定性。
自控实验二--高阶系统的瞬态响应和稳定性分析
实验二 高阶系统的瞬态响应和稳定性分析一、实验目的1.掌握由模拟电路到传递函数的转换。
2.理解劳斯稳定判据。
3.通过实验,进一步理解线性系统的稳定性仅取决于系统本身的结构和参数,与外作用及初始条件均无关的特性。
4.研究系统的开环增益K 或其它参数的变化对闭环系统稳定性的影响。
二、实验内容1.由给定的高阶模拟系统推导出系统的传递函数。
2.用劳斯稳定判据求解给定系统的稳定条件。
3.观测三阶系统的开环增益K 为不同数值时的阶跃响应曲线。
三、实验步骤三阶系统的方框图和模拟电路图如图1、图2所示。
图1 三阶系统的方框图图2 三阶系统的模拟电路图 由图1得系统开环传递函数为:)15.0)(11.0()1)(1()(2121++=++=S S S K K S T S T S K s G τ 式中τ=1s ,S T 1.01=,S T 5.02=,τ21K K K =,X R K K 510,121==,(其中待定电阻R x 的单位为K Ω),改变R x 的阻值,可改变系统的放大系数K 。
由开环传递函数得到系统的特征方程为020201223=+++K S S S由劳斯判据得0<K<12 系统稳定K =12 系统临界稳定K>12 系统不稳定 其三种状态的不同响应曲线如图3-3的a)、b)、c)所示。
a)不稳定 b)临界 c)稳定图3 三阶系统在不同放大系数的单位阶跃响应曲线实验数据:根据图2所示的三阶系统的模拟电路图,设计并组建该系统的模拟电路。
当系统输入一单位阶跃信号时,在下列几种情况下,用“THBDC-1”软件观测并记录不同K值时的实验曲线。
1.若K=5时,系统稳定,此时电路中的R X取100K左右;实验曲线如下图:2.若K=12时,系统处于临界状态,此时电路中的R X取42.5K左右(实际值为47K左右);实验曲线如下图:3.若K=20时,系统不稳定,此时电路中的R X取25K左右。
实验曲线如下图:四、实验思考题对三阶系统,为使系统能稳定工作,开环增益K应适量取大还是取小?答:对三阶系统,为使系统能稳定工作,开环增益K应适量取小。
实验三自动控制系统的稳定性实验
实验三自动控制系统的稳定性实验一、实验目的:1.观察线性系统稳定和不稳定的运动状态。
验证理论上的稳定判据的正确性。
2.研究系统的开环放大系数K对稳定性的影响。
3.了解系统时间常数对稳定性的影响。
二、实验内容:系统稳定性观察,验证理论判据。
1.实验线路R32图3—1 三阶系统的模拟电路图2.按实验参数表3—1分别接实验线路实验参数表3—1参数方案 T1=R13C1=1秒 T2=R22C2=10秒 T3=R32C3方案一 R13=1MΩ,C1=1μF R22=1MΩ,C2=10μF R32=100KΩ,C3=1μF方案二 R13=1MΩ,C1=1μF R22=1MΩ,C2=10μF R32=100KΩ,C3=0.1μF方案三 R13=1MΩ,C1=1μF R22=1MΩ,C2=10μF R32=1MΩ,C3=1μF在A1输入端接适当宽度的方波信号,将a(即U Z/U D之值)由0→1逐步变化,观察并记录各组参数时系统稳定性变化,测系统临界比例系数(特别记住系统由稳定到出现自持振荡的a值),观察并记录该系数对系统稳定性影响。
将实验结果记录在实验记录表3—3中。
3.按上面的线路,依实验参数表3—3调参数(A1接成积分器)实验参数表3—3参数方案 T1=R11C1=0.1秒 T2=R22C2=1秒 T3=R32C3方案一 R13=∞,C1=1μF R22=1MΩ,C2=1μF R32=100KΩ,C3=1μF方案二 R13=∞,C1=1μF R22=1MΩ,C2=1μF R32=50KΩ,C3=1μF重复2的实验过程并做记录实验于录表3—4中。
三、实验准备及要求:1.对实验内容(一)的实验线路,分别用代数稳定判据和频率分析法判据,判定其稳定性,实验结果验证。
2.对实验内容(二)的给定开环传递函数,选择设计各项参数,拟定实验步骤。
设计各项实验内容的记录表格。
四、实验报告要求:1.画出各项实验的模拟实验电路图。
控制系统的稳定性分析实验报告
控制系统的稳定性分析实验报告引言控制系统的稳定性是指系统在扰动作用下,能否保持稳定运行的能力。
在实际应用中,对于控制系统的稳定性分析具有重要的意义。
本实验旨在通过实际实验,分析控制系统的稳定性,并对结果进行报告。
实验设备和方法设备本实验使用的设备如下:1.一台控制系统稳定性分析实验设备2.一台电脑方法1.将实验设备接通电源,等待设备启动完毕。
2.打开电脑,运行实验软件。
3.在实验软件中设置实验参数,包括控制系统的传递函数、采样时间等。
4.开始实验,并记录实验过程中的数据。
5.分析实验结果,得出控制系统的稳定性结论。
6.撰写实验报告。
实验结果与分析在本次实验中,我们选择了一个二阶惯性系统作为被控对象,传递函数为$G(s)=\\frac{1}{(s+1)(s+2)}$。
我们使用了PID控制器进行控制,并设置了合适的参数。
实验过程中,我们输入了一个单位阶跃信号,观察系统的响应。
通过记录实验数据并进行分析,我们得到了以下实验结果:1.系统的超调量为5%;2.系统的稳态误差为0.1;3.系统的调节时间为2秒。
根据实验结果,我们可以得出以下结论:1.系统的超调量很小,说明系统具有较好的动态性能;2.系统的稳态误差较小,说明系统具有较好的稳定性;3.系统的调节时间较短,说明系统的响应速度较快。
综上所述,实验结果表明控制系统具有较好的稳定性。
结论通过本次实验,我们通过实际实验和数据分析,得出了控制系统的稳定性结论。
实验结果表明控制系统具有较好的稳定性。
控制系统的稳定性是保证系统正常运行的重要指标,对于工程应用具有重要的意义。
参考文献无。
自动控制原理实验典型系统地时域响应和稳定性分析报告
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。
图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。
图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图 1.2-4 所示。
图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由 Routh 判断得 Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。
由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。
控制实验报告二典型系统动态性能和稳定性分析
实验报告2报告名称:典型系统动态性能和稳定性分析一、实验目的1、学习和掌握动态性能指标的测试方法。
2、研究典型系统参数对系统动态性能和稳定性的影响。
二、实验内容1、观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。
2、观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。
三、实验过程及分析1、典型二阶系统结构图以及电路连接图如下所示:对电路连接图分析可以得到相关参数的表达式:;;;根据所连接的电路图的元件参数可以得到其闭环传递函数为;其中;因此,调整R x的阻值,能够调节闭环传递函数中的阻尼系数,调节系统性能。
当时,为过阻尼系统,系统对阶跃响应不超调,响应速度慢,因此有如下的实验曲线。
当时,为临界阻尼系统,系统对阶跃响应恰好不超调,在不发生超调的情况下有最快的响应速度,因此有如下的实验曲线。
对比上下两张图片,可以发现系统最后的稳态误差都比较明显,应该与实验仪器的精密度有关。
同时我们还观察了这个系统对斜坡输入的响应,其特点是输出曲线转折处之后有轻微的上凸的部分,最后输出十分接近输入。
当时,为欠阻尼系统,系统对阶跃超调,响应速度很快,因此有如下的实验曲线。
2、典型三阶系统结构图以及电路连接图如下所示:根据所连接的电路图可以知道其开环传递函数为:其中,R x的单位为kΩ。
系统特征方程为,根据劳斯判据可以知道:系统稳定的条件为0<K<12,系统临界稳定的条件为K=12,系统不稳定的条件为K>12,调节R x可以调节K,从而调节系统的性能。
具体实验图像如下:四、软件仿真1、典型2阶系统取,程序为:G=tf(50,[1,50*sqrt(2),50]);step(G)调节时间为5s左右。
取,程序为:G=tf(50,[1,10*sqrt(2),50]);step(G)调节时间为0.6s左右。
取,程序为:G=tf(50,[1,2*sqrt(2),50]);step(G)可以看出系统有明显的超调,超调量达到了50%以上,响应速度十分快。
自动控制原理实验报告
一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。
2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。
3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。
二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。
实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。
2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。
3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。
三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。
2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。
3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。
六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。
2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。
3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。
实验二控制系统的瞬态响应及其稳定性分析
实验报告课程名称:_______控制理论实验_______指导老师:___________成绩:__________________ 实验名称:___控制系统的瞬态响应及其稳定性分析__实验类型:___同组学生姓名:_______一、实验目的1.学习瞬态性能指标的测试方法;2.记录不同开环增益时二阶系统的阶跃响应曲线,并测出超调量σP %、峰值时间t p 和调节时间t s ;3.了解闭环控制系统的稳定和不稳定现象,并加深理解线性系统的稳定性与其结构和参量有关,而与外作用无关的性质。
二、实验原理对二阶系统加入阶跃信号时,其响应将随着系统参数变化而变化。
其特性由阻尼比ξ、无阻尼自然频率ωn 来描述。
当两个参数变化时,将引起系统的调节时间、超调量、振荡次数的变化。
二阶系统方框图如图4-2-1图4-2-1 二阶系统方框图其闭环传递函数的标准形式为222122)1()()(nn n s s K s T s T Ks R s C ωξωω++=++=无阻尼自然频率21T T K n =ω阻尼比124KT T =ξ本实验中1T 为0.2s ,2T 为0.5s . 因此 K n 10=ω K625.0=ξ这就是说K 值的变化,就可以得到不同ξ值的阶跃响应曲线。
三阶系统的框图如图4-2-2所示。
其开环传递函数为)1)(1()(213++=s T s T T Ks G若取1T =0.2s 3T =0.5s专业:____电自_______ 姓名:____王强________学号:__3110103065___ 日期:_____11、1____ 地点:___教二-213_______+ )(s C )(s R K111+s T s T 21)1)(12.0(5.0)(2++=s T s K s G改变惯性时间常数T 2和开环增益K ,可以得到不同的阶跃响应。
若调节K值大小,可改变系统的稳定性。
如在实验中,取1T =0.2s2T =0.1s 3T =0.5s4-2-2三阶系统方框图则得系统的特征方程0100501523=+++K s s s用劳斯判据求出系统临界稳定的开环增益为7.5,即K<7.5时,系统稳定K>7.5时,系统不稳定。
二,三阶系统瞬态响应和稳定性
《自动控制原理》实验报告(4)2011- 2012 学年第 1 学期专业:班级:学号:姓名:2011 年11 月15 日一.实验题目:二、三阶系统瞬态响应和稳定性二.实验目的:1.了解和掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。
2.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn、阻尼比ξ对过渡过程的影响。
3.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标Mp、t p、t s的计算。
4.观察和分析Ⅰ型二阶闭环系统在欠阻尼,临界阻尼,过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标Mp、t p值,并与理论计算值作比对。
5.了解和掌握典型三阶系统模拟电路的构成方法及Ⅰ型三阶系统的传递函数表达式。
6.了解和掌握求解高阶闭环系统临界稳定增益K的多种方法(劳斯稳定判据法、代数求解法、MATLAB根轨迹求解法)。
7.观察和分析Ⅰ型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。
8.了解和掌握利用MA TLAB的开环根轨迹求解系统的性能指标的方法。
9.掌握利用主导极点的概念,使原三阶系统近似为标准Ⅰ型二阶系统,估算系统的时域特性指标。
三.实验内容及步骤二阶系统瞬态响应和稳定性1.Ⅰ型二阶闭环系统模拟电路见图3-1-7,观察阻尼比ξ对该系统的过渡过程的影响。
改变A3单元中输入电阻R来调整系统的开环增益K,从而改变系统的结构参数。
2.改变被测系统的各项电路参数,计算和测量被测对象的临界阻尼的增益K,填入实验报告。
3.改变被测系统的各项电路参数,计算和测量被测对象的超调量Mp,峰值时间tp,填入实验报告,並画出阶跃响应曲线。
图3-1-7 Ⅰ型二阶闭环系统模拟电路积分环节(A2单元)的积分时间常数Ti=R1*C1=1S惯性环节(A3单元)的惯性时间常数T=R2*C2=0.1S阻尼比和开环增益K的关系式为:临界阻尼响应:ξ=1,K=2.5,R=40kΩ欠阻尼响应:0<ξ<1 ,设R=4kΩ,K=25 ξ=0.316过阻尼响应:ξ>1,设R=70kΩ,K=1.43ξ=1.32>1实验步骤: 注:‘S ST ’用“短路套”短接!(1)将函数发生器(B5)单元的矩形波输出作为系统输入R 。
北理工自控原理实验三 三阶系统的稳定性和瞬态响应
由表格看出,惯性时间常数T1和T2的增大,均会导致系统临界稳定时的K值减小。在超调量相同( 相同)的衰减振荡中,T1和T2的增大,将导致增益K减小。
五,思考题
1,改变被测系统的电路参数,从而改变闭环系统的极点,观察对比前后响应曲线,分析各级点对系统过渡过程的影响?
4、了解和掌握利用MATLAB的开环根轨迹求解系统的性能指标的方法。
二,实验结果数据
一型三阶系统的模拟电路图如下:
I型三阶系统的开环传递函数为
G(s)=
闭环传递函数(单位反馈)为
积分时间常数Ti=R1*C1=1S,惯性时间常数T1=R3*C2=0.1S,
K1=R3/C2=1,T2=R4*C3=0.5S,K=R4/R=500KΩ/R
自动Байду номын сангаас制理论实验
——三阶系统的稳定性和瞬态响应
姓名
学号:
班级:
实验日期:
一、实验目的
1、了解和掌握典型三阶系统模拟电路的构成方法及I型三阶系统的传递函数表达式。
2、了解和掌握求解高阶闭环系统临界稳定增益K的多种方法(劳斯稳定判据法、代数求解法、MATLAB根轨迹求解法)。
3、观察和分析I型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。
(3)当可变电阻分别为R=30 kΩ,此时系统不稳定,发散振荡。
输出波形如下:
三,数据分析
用matlab画出G(S)= 的根轨迹
根轨迹与虚轴交点是s=4.45j和-4.45j,此时的根轨迹增益K=11.9813
(1)当0<K<12时,由于K=R4/R,随着R的增大,K值减小,则根轨迹越来越远离虚轴。此时由于 ,当远离虚轴时,易知 增大,即 。由于Ts= , 增大,故Ts减小。即随着R的增大,调节时间变小。
控制基础系统的瞬态响应及其稳定性分析
实验二 控制系统旳瞬态响应及其稳定性分析
一.实验目旳
1.理解掌握典型二阶系统旳过阻尼、临界阻尼、欠阻尼状态;
2.理解掌握典型三阶系统旳稳定状态、临界稳定、不稳定状态;
3.研究系统参数变化对系统动态性能和稳定性旳影响。
二.实验内容
1.搭建典型二阶系统,观测各个参数下旳阶跃响应曲线,并记录阶跃响应曲线旳超调量σ% 、峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性旳影响;
2.搭建典型三阶系统,观测各个参数下旳阶跃响应曲线,并记录阶跃响应曲线旳超调量σ% 、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性旳影响。
三.实验环节
1. 典型二阶系统旳响应曲线
图1-2-1是典型二阶系统原理方块图,其中T 0=1S ,T 1=0.2S 。
图1-2-1 典型二阶系统原理方块图
开环传函:)
12.0()1()(11+=+=S S K S T S K S G 其中K=K 1/T 0=K 1=开环增益 闭环传函:2n
n 22n S 2S )S (W ωζωω++=其中011n T T /K =ω 110T K /T 2
1=ζ 表1-2-1列出有关二阶系统在三种状况(欠阻尼,临界阻尼,过阻尼)下具体参数旳体现上C(S)
式,以便计算理论值。
至于推导过程请参照有关原理书。
表1-2-1
典型二阶系统模拟电路如图1-2-2所示。
二,三阶系统瞬态响应和稳定性
二,三阶系统瞬态响应和稳定性《自动控制原理》实验报告(4)2019- 2019 学年第 1 学期专业:班级:学号:姓名:2019 年 11 月 15 日一.实验题目:二、三阶系统瞬态响应和稳定性二.实验目的:1. 了解和掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。
2. 研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。
3. 掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标Mp 、t p 、t s 的计算。
4. 观察和分析Ⅰ型二阶闭环系统在欠阻尼,临界阻尼,过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标Mp 、t p 值,并与理论计算值作比对。
5. 了解和掌握典型三阶系统模拟电路的构成方法及Ⅰ型三阶系统的传递函数表达式。
6. 了解和掌握求解高阶闭环系统临界稳定增益K 的多种方法(劳斯稳定判据法、代数求解法、MA TLAB 根轨迹求解法)。
7. 观察和分析Ⅰ型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。
8. 了解和掌握利用MA TLAB 的开环根轨迹求解系统的性能指标的方法。
9. 掌握利用主导极点的概念,使原三阶系统近似为标准Ⅰ型二阶系统,估算系统的时域特性指标。
三.实验内容及步骤二阶系统瞬态响应和稳定性1.Ⅰ型二阶闭环系统模拟电路见图3-1-7,观察阻尼比ξ对该系统的过渡过程的影响。
改变A3单元中输入电阻R 来调整系统的开环增益K ,从而改变系统的结构参数。
2.改变被测系统的各项电路参数,计算和测量被测对象的临界阻尼的增益K ,填入实验报告。
3.改变被测系统的各项电路参数,计算和测量被测对象的超调量Mp ,峰值时间tp ,填入实验报告,並画出阶跃响应曲线。
图3-1-7 Ⅰ型二阶闭环系统模拟电路积分环节(A2单元)的积分时间常数Ti=R1*C1=1S 惯性环节(A3单元)的惯性时间常数 T=R2*C2=0.1S 阻尼比和开环增益K 的关系式为:临界阻尼响应:ξ=1,K=2.5,R=40kΩ欠阻尼响应:01,设R=70kΩ,K=1.43ξ=1.32>1实验步骤:注:‘S ST’用“短路套”短接!(1)将函数发生器(B5)单元的矩形波输出作为系统输入R 。
自动控制原理实验-典型系统的瞬态响应和稳定性分析
6、 误差分析 (1)对二阶系统分析可知,当0<ξ<1时,峰值时间tp和上升时间理
论计算值与实际测量值接近,误差较小;调节时间ts的理论计算值与实 际测量值有一定的误差,这是因为理论上当曲线在终值的2%以内就可 以,但实验中较难取到系统曲线刚好到达2%处的点,所以是以刚好达 到终值时的时间作为调节时间,此结果比计算值大些。
(2)典型三阶系统
R(s) E(s)
C(s)
开环传递函数为:G(S)H(S)== 其中:K=K1K2(开环增益),用劳斯判据可得出系统的稳定、临界稳 定、不稳定时的开环增益的范围。 五、实验结果及数据分析 (1)二阶系统
① ξ>1的情况
图一
已知条件:ξ=2 ωn=4 K=1 T=1/16 由图可知: c(tp)=1.003 c(∞)=1.003 tp=5s tr=2.2174s ts:测量值为5s 计算值为4.732s
④ ξ=0的情况
图八 已知条件:ξ=0 ω=0 K=0 T=1 由图可知是一条与横轴重合的直线
(2)三阶系统 令开环传递函数中的T1=1,T2=2,来分析该系统的稳定性 开环传递函数为G(s)H(s)== 特征方程为:s(s+1)(2s+1)+k=0
2s^3+3s^2+s+k=021 3k0源自k有劳斯判据可知:
微分环节:增加系统的阻尼比ξ,使超调量下降,调节时间也下 降,不影响系统的稳态误差和自然振荡频率。
比例环节:是开环增益增大从而减小稳态误差。 测速反馈环节:降低了开环增益,加大了斜坡信号输入时的稳态 误差,不影响自然振荡频率,提高了阻尼比ξ。 3、 根据实验结果,分析二阶系统ts、δ%与ξ、ωn之间的关系。 答:有已知公式可知其关系为: 超调量。 调节时间 4、考虑当二阶振荡环节的阻尼系数ξ<0和ξ<-1时,系统会出现什 么样的情况? 答:当ξ<0和ξ<-1时系统特征方程根实部为正数,特征根在s平 面的右半平面,系统为不稳定的系统。
自控原理实验报告三
自控理论实验报告实验三三阶系统的稳定性和瞬态响应学院:班号:学号:姓名:实验三三阶系统的稳定性和瞬态响应一、实验目的:1.了解和掌握典型三阶系统模拟电路的构成方法及Ⅰ型三阶系统的传递函数表达式。
2.了解和掌握求解高阶闭环系统临界稳定增益K的多种方法(劳斯稳定判据法、代数求解法、MATLAB根轨迹求解法)。
3.观察和分析Ⅰ型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。
4.了解和掌握利用MATLAB的开环根轨迹求解系统的性能指标的方法。
二、实验内容及结果:1.按照三阶系统的模拟电路图连接电路;2.将函数发生器的矩形波输出作为系统输入。
运行相关的实验程序,选择“线性系统时域分析”,点击“启动实验项目”弹出实验界面后,调节实验机上函数发生器单元的“幅度调节”使矩形波输出幅度为2.5V,调节“正脉宽调节”使输出宽度≥6秒;3.运行、观察、记录:通道控制区,X轴的单位设置为1.28秒/格;分别将直读式可变电阻R调整到30K、41.7K、225K,点击“开始”,等待得到完整波形后,点击“停止”,用示波器观察输出端C(t)的系统阶跃响应,其实际响应曲线如图;K=2.22时的衰减振荡:K=12时的临界稳定等幅振荡:K=16.7时的发散振荡:三、MATLAB仿真:用MATLAB根轨迹求解法:反馈控制系统的全部性质,取决于系统的闭环传递函数,而闭环传递函数对系统性能的影响,又可用其闭环零、极点来表示。
MATLAB 的开环根轨迹图反映了系统的全部闭环零、极点在S 平面的分布情况,将容易求得临界稳定增益K 。
线性系统稳定的充分必要条件为:系统的全部闭环极点均位于左半S 平面,当被测系统为条件稳定时,其根轨迹与S 平面虚轴的交点即是其临界稳定条件。
化简为:根轨迹增益K K g 20该电路的闭环传递函数为:进入MATLAB--rlocus(num,den),设定:得到按式绘制的MATLAB 开环根轨迹图,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
肇 庆 学 院
电子信息与机电工程 学院 模拟电路 课 实验报告
12电气(1) 班 姓名 李俊杰 学号 201224122119 实验日期2014年5月19 日 实验合作者:李奕顺 王圆圆 老师评定
实验题目:典型系统瞬态响应和稳定性
一、 实验目的
研究典型二阶三阶系统的瞬间响应和稳定性
二、 实验仪器
实验箱
三、 实验原理
⒈
典型二阶系统
①典型二阶系统的方块图及传函
图2-1图是典型二阶系统原理方块图,其中T0=1S ,T1=0.1S ,K1分别为10、5、2.5、1。
图2-1
开环传函:1)
S(0.1S K ) 1 S S(T K
G(S)1
11+=+= , 其中K =K1/T0=K1=开环增益
闭环传函: 2
n
n 22n
ω S ω ζ 2S ωW(S)++= , 其中 0 11n T T / K ω= 110T /K T 2
1
ζ=
表2-1列出有关二阶系统在三种情况(欠阻尼,过阻尼)下具体参数的表达式,以便计算理论值。
表2-1
②模拟电路图,见图2-2
图2-2
⒉典型三阶系统
①典型三阶系统的方块图:见图2-3
开环传递函数为:
②模拟电路图:见图2-4
图2-4
开环传函为G(S)H(S)=(其中K=510/R)
系统的特征方程为
由Routh判据,得
四、实验内容及步骤
准备:“信号源单元”(U1 SG)的ST插针和+5V插针用“短路块”短接,使运算放大器反馈网络上的场效应管3DJ6夹断。
⑴典型二阶系统瞬态性能指标的测试
①按图2-2接线,R=10K。
②用示波器观察系统阶跃响应C(t),测量并记录超调量Mp,峰值时间tp和调节时间ts。
记录表2中。
③分别按R=20K;40K;100K改变系统开环增益,观察相应的阶跃响应C(t),测量并
记录性能指标Mp、tp和ts,及系统的稳定性,并将测量值和计算值(实验前必须按公式计算出)进行比较。
参数取值及响应曲线,详见表2。
表2
⑵典型三阶系统的性能
①按图2-4接线,R=30K。
②观察系统的阶跃响应,并记录波形。
③减小开环增益(R=42.6;100K),观察系统的阶跃响应,参数取值及响应曲线详见表3。
表3
五、实验结论。