有限元复习题答案

合集下载

有限单元法考试题及答案

有限单元法考试题及答案

有限单元法考试题及答案一、单项选择题(每题2分,共10分)1. 有限元法中,单元刚度矩阵的计算是基于()。

A. 位移法B. 势能原理C. 能量守恒定律D. 牛顿第二定律答案:B2. 在有限元分析中,以下哪项不是网格划分时需要考虑的因素?()A. 网格数量B. 网格形状C. 材料属性D. 边界条件答案:C3. 有限元分析中,以下哪项不是结构分析的基本步骤?()A. 离散化B. 求解C. 后处理D. 优化设计答案:D4. 在有限元分析中,以下哪种类型的单元不适用于平面应力问题?()A. 三角形单元B. 四边形单元C. 六面体单元D. 楔形单元答案:C5. 有限元分析中,以下哪种边界条件不属于几何边界条件?()A. 固定支座B. 压力C. 温度D. 位移答案:C二、多项选择题(每题3分,共15分)6. 有限元法中,以下哪些因素会影响单元的精度?()A. 单元形状B. 单元数量C. 材料属性D. 网格划分答案:ABD7. 在有限元分析中,以下哪些是常见的数值积分方法?()A. 一阶积分B. 二阶积分C. 高斯积分D. 牛顿-莱布尼茨积分答案:ABC8. 有限元分析中,以下哪些是常见的单元类型?()A. 线性单元B. 二次单元C. 三次单元D. 非线性单元答案:ABCD9. 在有限元分析中,以下哪些是常见的后处理技术?()A. 应力云图B. 位移云图C. 模态分析D. 热分析答案:ABC10. 有限元分析中,以下哪些是常见的非线性问题?()A. 几何非线性B. 材料非线性C. 接触非线性D. 热应力问题答案:ABCD三、填空题(每题2分,共20分)11. 有限元法中,单元刚度矩阵的计算通常基于___________原理。

答案:势能12. 在有限元分析中,网格划分的目的是将连续的___________离散化为有限数量的单元。

答案:域13. 有限元分析中,___________是将实际问题转化为数学问题的关键步骤。

有限元复习题及答案

有限元复习题及答案

1.弹性力学和材料力学在研究对象上的区别?材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件;弹性力学除了研究杆状构件外,还研究板、壳、块,甚至是三维物体等,研究对象要广泛得多。

2.理想弹性体的五点假设?连续性假设,完全弹性假设,均匀性假设,各向同性假定,小位移和小变形的假定。

3.什么叫轴对称问题,采用什么坐标系分析?为什么?工程实际中,对于一些几何形状、载荷以及约束条件都对称于某一轴线的轴对称体,其体内所有的位移、应变和应力也都对称于此轴线,这类问题称为轴对称问题。

通常采用圆柱坐标系r、θ、z分析。

这是因为,当弹性体的对称轴为z轴时,所有的应力分量、应变分量和位移分量都将只是r和z的函数,而与无θ关。

4.梁单元和杆单元的区别?杆单元只能承受拉压荷载,梁单元那么可以承受拉压弯扭荷载。

具体的说,杆单元其实就是理论力学常说的二力杆,它只能在结点受载荷,且只有结点上的荷载合力通过其轴线时,杆件才有可能平衡,像均布荷载、中部集中荷载等是无法承当的,通常用于网架、桁架的分析;而梁单元那么根本上适用于各种情况〔除了楼板之类〕,且经过适当的处理〔如释放自由度、耦合等〕,梁单元也可以当作杆单元使用。

5.薄板弯曲问题与平面应力问题的区别?平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是垂直于板面的力的作用,板将变成有弯有扭的曲面。

平面应力问题有三个独立的应力分量和三个独立的应变分量,薄板弯曲问题每个结点有三个自由度,但是只有一个是独立的其余两个可以被它表示。

6.有限单元法结构刚度矩阵的特点?对称性,奇异性,主对角元恒正,稀疏性,非零元素呈带状分布。

7.有限单元法的收敛性准那么?完备性要求,协调性要求。

完备性要求:如果出现在泛函中场函数的最高阶导数是m阶,那么有限元解收敛的条件之一是单元内场函数的试探函数至少是m次完全多项式,或者说试探函数中必须包括本身和直至m阶导数为常数的项,单元的插值函数满足上述要求时,我们称单元是完备的。

有限元考试精彩试题及问题详解——第一组

有限元考试精彩试题及问题详解——第一组

有限元考试试题及答案一、简答题(5道,共计25分)。

1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)答:(1)选择适当的单元类型将弹性体离散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入边界条件和求解。

2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。

3.轴对称单元与平面单元有哪些区别?(5分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个。

4.有限元空间问题有哪些特征?(5分)答:(1)单元为块体形状。

常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。

(2)结点位移3个分量。

(3)基本方程比平面问题多。

3个平衡方程,6个几何方程,6个物理方程。

5.简述四节点四边形等参数单元的平面问题分析过程。

(5)分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

二、论述题(3道,共计30分)。

1. 简述四节点四边形等参数单元的平面问题分析过程。

(10分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2) 通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变 分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

有限元复习题及答案

有限元复习题及答案

1.两种平面问题的根本概念和根本方程;答:弹性体在满足一定条件时,其变形和应力的分布规律可以用在某一平面内的变形和应力的分布规律来代替,这类问题称为平面问题。

平面问题分为平面应力问题和平面应变问题。

平面应力问题设有张很薄的等厚薄板,只在板边上受到平行于板面并且不沿厚度变化的面力,体力也平行于板面且不沿厚度变化。

由于平板很薄,外力不沿厚度变化,因此在整块板上有:,,剩下平行于XY面的三个应力分量未知。

平面应变问题设有很长的柱体,支承情况不沿长度变化,在柱面上受到平行于横截面而且不沿长度变化的面力,体力也如此分布。

平面问题的根本方程为:平衡方程几何方程物理方程〔弹性力学平面问题的物理方程由广义虎克定律得到〕•平面应力问题的物理方程平面应力问题有•平面应变问题的物理方程平面应变问题有在平面应力问题的物理方程中,将E替换为、替换为,可以得到平面应变问题的物理方程;在平面应变问题的物理方程中,将E替换为、替换为,可以得到平面应力问题的物理方程。

2弹性力学中的根本物理量和根本方程;答:根本物理量有:空间弹性力学问题共有15个方程,3个平衡方程,6个几何方程,6个物理方程。

其中包括6个应力分量,6个应变分量,3个位移分量。

平面问题共8个方程,2个平衡方程,3个几何方程,3个物理方程,相应3个应力分量,3个应变分量,2个位移分量。

根本方程有:1.平衡方程及应力边界条件:平衡方程:边界条件:2.几何方程及位移边界条件:几何方程:边界条件:3.物理方程:3.有限元中使用的虚功方程。

对于刚体,作用在其上的平衡力系在任意虚位移上的总虚功为0,这就是刚体的平衡条件,或者称为刚体的虚功方程。

对于弹性变形体,其虚位移原理为:在外力作用下处于平衡的弹性体,当给予物体微小的虚位移时,外力的总虚功等于物体的总虚应变能。

设想一处于平衡状态的弹性体发生了任意的虚位移,相应的虚应变为,作用在微元体上的平衡力系有〔X,Y,Z〕和面力。

外力的总虚功为实际的体力和面力在虚位移上所做的功,即:在物体产生微小虚变形过程中,整个弹性体内应力在虚应变上所做的功为总虚应变能,即:其中为弹性体单位体积内的应力在相应的虚应变上做的虚功,由此得到虚功方程:4.节点位移,单元位移及它们的关系。

(完整版)有限元考试试题及答案

(完整版)有限元考试试题及答案

e an dAl l t h i ng si nt he i rb ei n ga re go o2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷F=20KN/m ,设泊松比µ=0,材料的弹性模量为E ,试求它的应力分布。

(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q ,单元厚度为t ,求单元的等效结点荷载。

图3图1一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。

b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。

当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。

c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。

3. 答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。

意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。

4. 答:有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。

有nl⎥⎦⎤⎢⎣⎡5.0025.025.011212---==E k k ⎥⎦⎤⎢⎣⎡5.0025.0011313-==E k k ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.125.025.05.125.0005.05.00025.075.025.025.075.032222212222E E E E k k k k +=++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---5.025.025.0125.025.005.025.0025.05.032312323E E E k k k =+=⎥⎦⎤⎢⎣⎡---5.0025.025.022424E k k ==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡025.025.00025.0000025.0032522525E E E k k k =+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.15.00025.075.025.025.075.025.0005.043333313333E E E E k k k k =++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---125.025.05.05.0025.025.05.025.0025.043533535E E E k k k =+=⎥⎦⎤⎢⎣⎡0025.0043636E k k ==⎥⎦⎤⎢⎣⎡75.025.025.075.024444E k k ==⎥⎦⎤⎢⎣⎡---25.0025.05.024545E k k == ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.175.025.025.075.05.00025.025.0005.045535525555E E E E k k k k =++=⎥⎦⎤⎢⎣⎡---25.0025.05.045656E k k ==⎥⎦⎤⎢⎣⎡25.0005.046666E k k ==把上面计算出的,…,对号入座放到总刚矩阵中去,于是得到11k 66k []K的具体表达式。

有限元复习题答案

有限元复习题答案

1、何为有限元法?其基本思想是什么?有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法,该方法以计算机为手段,采用分片近似,进而逼近整体的研究思想求解物理问题。

基本思想是化整为零集零为整。

2、为什么说有限元法是近似的方法,体现在哪里?有两点:用离散单元的组合体来逼近原始结构,体现了几何上的近似;而用近似函数逼近未知变量在单元内的真实解,体现了数学上的近似。

3、单元、节点的概念?节点:表达实际结构几何对象之间相互连接方式的概念单元:网格划分中的每一个小部分称为单元,网格间相互联结点称为节点4、有限元法分析过程可归纳为几个步骤?结构离散化、单元分析、整体分析5、有限元方法分几种?本课程讲授的是哪一种?位移法、力法、混合法本课程讲授位移法6、弹性力学的基本变量是什么?何为几何方程、物理方程及虚功方程?弹性矩阵的特点?弹性力学变量:外力、应力、应变和位移。

描述弹性体应变分量与位移分量之间的方程称为几何方程;物理方程描述应力分量与应变分量之间的关系;弹性体上外力在虚位移发生过程中所做的虚功与储存在弹性体内的需应变能相等。

弹性矩阵由材料的弹性模量和泊松比确定,与坐标位置无关。

7、何为平面应力问题和平面应变问题?平面应力问题:在结构上满足a几何条件:研究对象是等厚度薄板。

b载荷条件:作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面无外力作用。

平面应变问题:满足a几何条件:长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变。

b载荷条件:作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力两条件的弹性力学问题。

1、何为结构的离散化?离散化的目的?何为有限元模型?①离散化:把连续的结构看成由有限个单元组成的集合体。

②目的:建立有限元计算模型③通常把由节点,单元及相应的节点载荷和节点约束构成的模型称为有限元模型2、结构离散化时,划分单元数目的多少以及疏密分布,将直接影响到什么?确定单元数量的原则?通常如何设置节点?①单元的数量要根据计算精度的要求和计算机的容量来确定,因此在保证精度的前提,力求采用较少的单元。

有限元考试复习资料(华东交通大学)

有限元考试复习资料(华东交通大学)

有限元考试复习资料(含习题答案)1试说明用有限元法解题的主要步骤。

(1)离散化:将一个受外力作用的连续弹性体离散成一定数量的有限小的单元集合体,单元之间只在结点上互相联系,即只有结点才能传递力。

(2)单元分析:根据弹性力学的基本方程和变分原理建立单元结点力和结点位移之间的关系。

(3)整体分析:根据结点力的平衡条件建立有限元方程,引入边界条件,解线性方程组以及计算单元应力。

(4)求解方程,得出结点位移(5)结果分析,计算单元的应变和应力。

2.单元分析中,假设的位移模式应满足哪些条件,为什么?要使有限元解收敛于真解,关键在于位移模式的选择,选择位移模式需满足准则:(1)完备性准则:(2)连续性要求。

P210面简单地说,当选取的单元既完备又协调时,有限元解是收敛的,即当单元尺寸趋于0时,有限元解趋于真正解,称此单元为协调单元;当单元选取的位移模式满足完备性准则但不完全满足单元之间的位移及其导数连续条件时,称为非协调单元。

3.什么样的问题可以用轴对称单元求解?在工程问题中经常会遇到一些实际结构,它们的几何形状、约束条件和外载荷均对称某一固定轴,我们把该固定轴称为对称轴。

则在载荷作用下产生的应力、应变和位移也都对称此轴。

这种问题就称为轴对称问题。

可以用轴对称单元求解。

4.什么是比例阻尼?它有什么特点?其本质反映了阻尼与什么有关?答:比例阻尼:由于多自由度体系主振型关于质量矩阵与刚度矩阵具有正交性关系,若主振型关于阻尼矩阵亦具有正交性,这样可对多自由度地震响应方程进行解耦分析。

比例阻尼的特点为具有正交性。

其本质上反应了阻尼与结构物理特性的关系。

5.何谓等参单元?等参单元具有哪些优越性?①等参数单元(简称等参元)就是对坐标变换和单元内的参变量函数(通常是位移函数)采用相同数目的节点参数和相同的插值函数进行变换而设计出的一种单元。

①优点:可以很方便地用来离散具有复杂形体的结构。

由于等参变换的采用使等参单元特性矩阵的计算仍在单元的规则域内进行,因此不管各个积分形式的矩阵表示的被积函数如何复杂,仍然可以方便地采用标准化的数值积分方法计算。

有限元试题及答案[1]

有限元试题及答案[1]
同理可得 所以由与作用下,在微体上产生能量为: 证明2:若证明等式成立,必须首先证明 又因分解后见下表。
∴ 又因
证明3、如图所示纯弯梁
梁的厚度很薄,外载沿厚度方向无变化,其中性层为y层,梁长为, 弹性模量为E,基本变量为:
位移(对中性层) 应力(为主应力,其方向很小,不考虑) 应变(为主要应变,中性层取微段莱推导三大方程)
解:根据力得平衡方程(体积力为零时) 知 上两个等式成立,即平衡方程成立,即此情况满足平衡条件。 其边界应力,
, ,
作图如下: 故边界下应力如图2.2所示:
其边界得剪应力如图2.3所示:
四、如图所示 已知,,(平面应力问题)
求:(1)斜面上应力,的表达式 (2)最大主应力,最小主应力及此时斜面的方向余弦。
衡。 (2) 当时,、并不一定为零,此情况下平衡方程并不一定成立,
故此情况下不满足平衡,只有在时,才满足平衡。 (3) 当时,平衡方程成立,故此情况下满足平衡。 (4) 所有均为非零时,只有当,时,平衡方程才成立,才能够满
足平衡,否则不平衡。 三、下列应力分布是否满足平衡条件(体积力为零),(2D平面应力问 题),描述就如图所示平面结构,该应力函数所表示时得边界应力。
解之知 所以: 所以,其形态函数矩阵 又因 所以几何矩阵 又 所以其应力矩阵 单元的势能为: 其刚度矩阵为: 十五、如图所示,为一由两根杆组成的结构(二杆分别沿X,Y)方向, 结构参数 试写成下列FEM分析
(1) 写出各单元的刚度矩阵 (2) 写出总刚度矩阵 (3) 求出节点2的位移 (4) 求各单元应力
如图所示8.4所示力的平衡:
几何方程:由变形后的几何关系可知 其中y为距中性层坐标,为挠度曲率。 即 由虎克定律知物理方程为: 整理上述方程得知下基本方程组 故纯弯梁的应变能: 九、如图所示为1个1D拉压问题 (1)写出描写该问题的所有基本变量 (2)写出所有基本方程,包括BC (3)写出应变能,外力功 (4)写出最小势能原理的一般表达式(1D问题) (5)证明(4)(即该原理与原基本方程的关系) 解(1)基本变量 位移 应力 应变 (2)基本方程 平衡方程 几何方程 物理方程 BC(): BC(p): 由平衡方程得知 (待定) 由几何方程得知 (待定) 由BC()知 由BC(p)知 ∴ (3)应变能 外力功 (4)最小势能一般表达式(1D问题)

有限元考试试题及答案——第一组 (2)

有限元考试试题及答案——第一组 (2)

有限元考试一试题及答案——第一组有限元考试一试题及答案一、简答题( 5 道,共计 25 分)。

1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5 分)答:(1)选择合适的单元种类将弹性体失散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入界线条件和求解。

2.在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5 分)答:在对于曲线界线的界线单元,其界线为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合收效比四边形矩形单元的直边好。

3. 轴对称单元与平面单元有哪些差异?(5分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变重量,平面单元内任意一点非零独立应变重量有三个。

4.有限元空间问题有哪些特色?(5 分)答:(1)单元为块体形状。

常用单元:周围体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。

(2)结点位移 3 个重量。

(3)基本方程比平面问题多。

3 个平衡方程, 6 个几何方程, 6 个物理方程。

5.简述四节点四边形等参数单元的平面问题解析过程。

(5)分)答:(1)经过整体坐标系和局部坐标系的照射关系获取四节点四边形等参单元的母单元,并采用单元的唯一模式;(2)经过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,获取单元应变重量的计算式,再将单元应变代入平面问题的物理方程,获取平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

二、论述题( 3 道, 共计 30 分)。

1.简述四节点四边形等参数单元的平面问题解析过程。

( 10 分)答:(1)经过整体坐标系和局部坐标系的照射关系获取四节点四边形等参单元的母单元,并采用单元的唯一模式;(2)经过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,获取单元应变重量的计算式,再将单元应变代入平面问题的物理方程,获取平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

有限元试题和答案

有限元试题和答案

一。

简答题:1.轴对称体上作用正对称形式的载荷时,沿坐标,,r z θ的三个分量(,,)r P r z θ,z (,,)P r z θ和(,,)P r z θθ有何特点?(P85)(,,)r P r z θ和z (,,)P r z θ是偶函数,傅里叶级数展开式中不含sin k θ,(,,)P r z θθ是奇函数,傅里叶级数展开式中不含cos k θ。

2.某单元的节点上,既有位移自由度又有转动自由度,试述此单元的协调性要求?(P27) 在交界面上满足变形协调条件,变形后既不分裂,也不重叠,从而保证了整个结构的位移连续。

3.用泛函变分求解弹性力学的场问题时,为什么只需要考虑几何边界条件?(P179) 泛函求极值与求满足位移及力边界条件的平衡方程的解是完全等价的。

利用变分求解只需要满足位移边界条件,而力边界条件是在求解泛函的极值中自动满足的。

4.写出用位移梯度表示的格林应变张量和阿尔曼西应变张量,并证明他们的参考变形?(P201)格林应变张量1=+2j i k k ij j i i j u u u u E x x x x ∂∂∂∂∂∂∂∂(+) 阿尔曼西应变张量1=+2j i k k ij j i i ju u u u e x x x x ∂∂∂∂∂∂∂∂(-) 5.写出接触问题中的运动学条件和动力学条件?(P225)运动学条件:满足不可贯穿条件,对于两个接触物体,可表示为0ABV V ⋂=动力学条件:要求连个物体接触面的合力为零0ABq q += 二、三角形单元的位移为:012012(cos 1)(sin )(sin )(cos 1)u u x x v v x x θθθθ=+-+-=++-式中0u 和0v 分别为1x 和2x 方向的刚体位移,θ为逆时针绕原点的刚体转角。

计算单元的柯西应变和格林应变。

证明此位移为刚体运动。

(P201) 解:柯西应变:11=cos 1u x εθ∂=-∂,22=cos 1v x εθ∂=-∂,12212=+sin sin 0u v x x εθθ∂∂=-+=∂∂ 格林应变:1111111111=+(cos 1cos 1(cos 1)(cos 1)sin sin )022u u u u v v E x x x x x x θθθθθθ∂∂∂∂∂∂+-+-+--+=∂∂∂∂∂∂(+)=122121121211==+(sin sin (cos 1)(sin )sin (cos 1))022u v u u v v E E x x x x x x θθθθθθ∂∂∂∂∂∂+-++--+-=∂∂∂∂∂∂(+)=2222222211=+(cos 1cos 1(cos 1)(cos 1)sin sin )022v v u u v v E x x x x x x θθθθθθ∂∂∂∂∂∂+-+-+--+=∂∂∂∂∂∂(+)=三 周向有集中载荷作用的悬臂梁,弯曲刚度为EI ,(1)建立梁的总势能表达式,(2)假定瑞利-里茨能为2323w C x C x =+,计算梁的挠度表达式。

有限元复习题及答案(2013)

有限元复习题及答案(2013)

1.结点的位置依赖于形态,而并不依赖于载荷的位置(×)2.对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元。

√3.平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×)4.用有限元法不可以对运动的物体的结构进行静力分析(×)5.一般应力变化大的地方单元尺寸要划的小才好 (√)6.四结点四边形等参单元的位移插值函数是坐标x 、y 的一次函数√7.在三角形单元中其面积坐标的值与三结点三角形单元结点形函数值相等。

√ 8.等参单元中Jacobi 行列式的值不能等于零。

√ 9.四边形单元的Jacobi 行列式是常数。

×10.等参元是指单元坐标变换和函数插值采用相同的结点和相同的插值函数。

√ 11.有限元位移模式中,广义坐标的个数应与单元结点自由度数相等 √12.为了保证有限单元法解答的收敛性,位移函数应具备的条件是位移函数必须能反映单元的刚体位移和常量应变以及尽可能反映单元间的位移连续性。

√13.在平面三结点三角形单元中,位移、应变和应力具有位移呈线形变化,应力和应变为常量特征。

√1.梁单元和杆单元的区别?(自己分析:自由度不同)杆单元只能承受拉压荷载,梁单元则可以承受拉压弯扭荷载。

具体的说,杆单元其实就是理论力学常说的二力杆,它只能在结点受载荷,且只有结点上的荷载合力通过其轴线时,杆件才有可能平衡,像均布荷载、中部集中荷载等是无法承担的,通常用于网架、桁架的分析;而梁单元则基本上适用于各种情况(除了楼板之类),且经过适当的处理(如释放自由度、耦合等),梁单元也可以当作杆单元使用。

2.有限单元法结构刚度矩阵的特点?对称性,奇异性,主对角元恒正,稀疏性,非零元素呈带状分布。

1、 对于图示划分为三角形单元平面结构,写出整体刚度矩阵的表达式。

(即只组集总体刚度矩阵,不计算单元刚度矩阵)解:对各单元节点编号,各单元刚度矩阵为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1111121131211221231311321331k kk k kkk k k k []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2442432422342332322242232222k kk k k kk k k k []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3333343353433443453533543553k kk k k kk k k k []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=4664654644564554544464454444k kk k k kk kk k 组集各单元刚度矩阵,得到总体刚度矩阵:1 2[][][][][][][][][][][][][][][][][][][][][][][][][]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+++++++++=466465464454354454354353444344244343243242333233133232132131222122121111k k k k k k k k k k k k k k k k k k k k k k k k k 对称2、试利用形函数的性质求出图示四节点矩形单元的形函数分量),(1ηξN 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、何为有限元法?其基本思想是什么?有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法,该方法以计算机为手段,采用分片近似,进而逼近整体的研究思想求解物理问题。

基本思想是化整为零集零为整。

2、为什么说有限元法是近似的方法,体现在哪里?有两点:用离散单元的组合体来逼近原始结构,体现了几何上的近似;而用近似函数逼近未知变量在单元内的真实解,体现了数学上的近似。

3、单元、节点的概念?节点:表达实际结构几何对象之间相互连接方式的概念单元:网格划分中的每一个小部分称为单元,网格间相互联结点称为节点4、有限元法分析过程可归纳为几个步骤?结构离散化、单元分析、整体分析5、有限元方法分几种?本课程讲授的是哪一种?位移法、力法、混合法本课程讲授位移法6、弹性力学的基本变量是什么?何为几何方程、物理方程及虚功方程?弹性矩阵的特点?弹性力学变量:外力、应力、应变和位移。

描述弹性体应变分量与位移分量之间的方程称为几何方程;物理方程描述应力分量与应变分量之间的关系;弹性体上外力在虚位移发生过程中所做的虚功与储存在弹性体内的需应变能相等。

弹性矩阵由材料的弹性模量和泊松比确定,与坐标位置无关。

7、何为平面应力问题和平面应变问题?平面应力问题:在结构上满足a几何条件:研究对象是等厚度薄板。

b载荷条件:作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面无外力作用。

平面应变问题:满足a几何条件:长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变。

b载荷条件:作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力两条件的弹性力学问题。

1、何为结构的离散化?离散化的目的?何为有限元模型?①离散化:把连续的结构看成由有限个单元组成的集合体。

②目的:建立有限元计算模型③通常把由节点,单元及相应的节点载荷和节点约束构成的模型称为有限元模型2、结构离散化时,划分单元数目的多少以及疏密分布,将直接影响到什么?确定单元数量的原则?通常如何设置节点?①单元的数量要根据计算精度的要求和计算机的容量来确定,因此在保证精度的前提,力求采用较少的单元。

②节点的布置:a集中载荷的作用点b分布载荷强度的突变点 c分布载荷与自由边界的分界点d支承点e厚度不同或材料不同的区域等都应取为节点。

3、节点总码的编号原则?何为半带宽?半带宽与节点总码的编号有何关系?①节点编号时,应注意尽量使同一单元的相邻节点的号码差值尽可能地小些,以便缩小刚度矩阵的带宽,节约计算机存储。

节点应顺短边编号为好②包括对角线在内的半个带状区域中每行具有的元素的个数,③半带宽B=(相关节点编号最大差值+1)*24、何为单元分析?单元分析的目的?⑴单元分析的主要任务是推导单元节点力与单元节点位移之间的关系,建立单元平衡方程,形成单元刚度矩阵(2)实质上就是求出单元刚度矩阵。

⑶化整为零,化繁为简的分析方法。

5、何为位移函数?位移函数的收敛准则?(1)选择一个简单函数,近似地表示单元位移分量随坐标变化的分布规律,这种函数称为位移函数。

(2)位移函数必须能反映单元的刚体位移的常数;位移函数必须能反映单元常量应变的一次项;位移函数在单元内要连续,在单元之间的边界要协调。

6、试述选择单元位移函数的一般原则?以6节点三角形单元、8节点四边形单元、10节点四面体单元为例,建立其位移函数多项式?a要考虑到解的收敛性,即要考虑到完备性和协调性的要求。

b在选取位移函数多项式时,还应是所选取的多项式具有坐标的对称性,模式应该与局部坐标系的方位无关,这一性质称为几何各向同性。

c多项式中的项数必须等于或稍大于单元边界上的外节点的自由度数。

通常是取项数与单元的外节点的自由度数相等。

7、形函数的特点?形函数它是坐标x,y的一次函数,与节点坐标有关,与节点位移无关。

8、单元刚度矩阵的性质?①每一个元素物理意义:是单位节点位移分量所引起的节点力分量。

②是对称矩阵。

③每一行(或列)元素之和为零。

是奇异矩阵,④的元素决定于单元的形状、大小、方位和弹性常数,而与单元的位置无关,即不随单元(或坐标轴)的平行移动或作(n为整数)角度的转动而改变。

9、结构整体刚度矩阵的集成方法?1)先对每个单元求出其单元刚度矩阵,以分块形式按节点编号顺序排列。

2)将单元刚度矩阵扩大阶数为2n×2n,并将单元刚度矩阵中的分块矩阵按局部码与总码的对应关系,搬到扩大后的矩阵中,形成单元贡献矩阵 3)将所有单元贡献矩阵同一位置上的分块矩阵简单叠加成总体刚度矩阵中的一个子矩阵,各行各列都按以上步骤即形成总体刚度矩阵。

10、整体刚度矩阵的性质?何为稀疏性?为什么整体刚度矩阵具有稀疏性?1)整体刚度矩阵是对称矩阵。

2)整体刚度矩阵的主对角线上的元素总是正的。

3)整体刚度矩阵是一个稀疏阵。

4)整体刚度矩阵是一个奇异阵稀疏性:整体刚度矩阵中非零元素少,零元素多。

大型结构离散后节点很多,而某一节点仅与周围少数单元节点相关,因此整体刚度矩阵中存在大量零元素,节点越多整体刚度矩阵越稀疏。

11、针对有限元网格模型,形成整个结构的节点载荷列阵和节点位移列阵?12、何为绕节点平均法或两单元平均法?1)把环绕该节点的各单元应力加以平均,视为该节点的应力。

2)把相邻两单元应力的平均值作为公共边中点的应力。

13、矩形单元与三角形单元比较有哪些特点?①矩形单元为双线性位移模式,所以单元的应力、应变分量都不是常量。

②在弹性体中,若用相同数目的节点时,矩形单元比三角形单元能更好地反映应力急剧变化的情况,所以计算精度高。

但矩形单元也存在明显的缺点:从单元的几何形状看,矩形单元比三角形单元的适应性要差1、四面体单元是否是常应变和常应力单元?单元刚度矩阵有多少个元素?1)是2)1442、何为轴对称问题?为什么该问题可以转化为二维问题?1)结构的几何形状、承受的载荷以及约束条件都对称于某一固定轴。

此时在载荷作用下,结构所产生的位移、应变和应力也对称于该轴,这类问题称为轴对称问题。

2)由对称性可知,所有的位移、应力、应变都将与无关,只是r和z的函数。

任一点的位移只有r、z两个方向的分量即w、u、。

因此该问题转化为二维问题。

1、等参数单元的定义?形状不规则的实际单元,称为等参数单元2、采用等参数单元有何优点?①单元能很好地适应曲线边界和曲面边界,准确地模拟结构形状;②这种单元具有较高次的位移模式,能更好地反映结构的复杂应力分布情况,即使单元网格划分比较稀疏,也可以得到比较好的计算精度1、ANSYS软件的功能?Ansys软件是有限元分析软件。

2、ANSYS交互界面环境包括几个窗口?两个窗口:一个是交互界面主窗口,另一个是信息输出窗口3、ANSYS程序退出前,有提示退出前的选取操作,每一个选项的意义。

Save Geom+Loads:存储几何与载荷数据。

Save Geo+Ld+Solu:存储几何、载荷与求解数据。

Save Everything:存储所有数据。

Quit-No Save:不存储任何数据。

4、ANSYS主菜单中有几种主要处理器?各自的功能是什么?(1)前处理器(Preprocessor):建立有限元模型。

(2)求解器(Solution):施加载荷并获得求解。

(3)通用后处理器(General Postprocessor):获得某时刻整个模型的结果。

(4)时间历程后处理器(Time Hist Postpro):处理模型上某位置点的结果随时间变化情况。

5、在工具菜单中包含哪些子菜单项?包含文件管理、选择、列表、绘图、图形控制、工作平面、参数控制、宏、菜单控制及帮助系统等子菜单项。

6、在大多数ANSYS对话框中,一般都有两个执行按钮,即OK与Apply,它们的用法?单击OK按钮,执行操作并关闭该对话框。

单击Apply按钮,执行操作并重新弹出该对话框,以便重复执行当前操作。

7、图形变换对话框的作用?在ANSYS中默认的视图方位?(1)以便快速观察各种方位、比例和大小的图形信息,对各实体对象进行选择、拾取、查询等操作。

图形变换涉及图形窗口选择,各方向视图,图形放大、缩小、平移、旋转、单次旋转角度等。

(2)默认的视图方位是主视图方向,即从Z轴正向观察模型。

8、ANSYS常用的坐标系有几种?启动ANSYS,最初的默认激活坐标系是何种坐标系?总体坐标系和局部坐标系分几种?(1)7种总体坐标系,局部坐标系,工作平面,显示坐标系,节点坐标系,单元坐标系,结果坐标系(2)最初的默认激活坐标系总是总体直角坐标系(0号CS)(3)总体坐标系分四种总体直角坐标系(0)、总体柱坐标系(1)、总体球坐标系(2)、总体柱坐标系(5);局部坐标系也分四种有直角坐标、柱坐标、球坐标和环坐标系9、何为ANSYS的总体坐标系?局部坐标系?局部坐标系如何编号?总体坐标系:用于确定几何结构的空间位置,是绝对参考系局部坐标系是在总体坐标系中创建的固定坐标系,可以指定为某单元或节点的坐标系,很多情况下用户必须创建自己的坐标系。

局部坐标系的编号必须是大于或等于11的整数10、何为ANSYS的工作平面?如何显示工作平面?(1)在总体坐标系中可以任意移动和旋转的流动坐标系(2)菜单路径:Utility Menu>Work Plane>Display Working Plane 此时该菜单为显示状态,在总体坐标系上重合显示工作平面坐标架WX-O-WY11、标准的ANSYS有限元分析过程一般包括几个步骤?1.ANSYS分析的开始准备工作2.建立模型3.施加载荷并求解4.查看分析结果12、默认的文件名是什么?默认的文件名是File13、何为ANSYS的工作路径?工作路径是ansys进行有限元分析时用于储存各种数据的系统路径。

14. 试述采用ANSYS软件,对带孔薄板进行静力分析的过程及具体步骤?1,清空数据库并开始新分析; 2,指定新的工作文件名; 3,指定新的工作路径;4,指定新标题;5,选择定义单元类型;6,定义实常数;7,定义材料属性;8,创建几何模型;9,划分单元获得网格模型;10,模型检查;11,选择分析类型并设置分析选项;12,设置载荷步选项;13,施加载荷;14,执行求解;15,查看分析结果;16,分析处理并评估结果1、ANSYS几何实体建模的思路(方法)有几种?两种①自底向上的几何实体建模②自顶向下的几何实体建模2、何为布尔运算?拖拉?①布尔运算是对生成的实体模型进行求交,相加,相减等逻辑运算处理。

②拖拉是利用低维数的几何对象按照一定方式(法向延伸、增量延伸、路径拖拉与绕轴旋转)获得高维数的几何对象。

1、ANSYS创建有限元模型方法?有两种创建有限元模型方法①直接法②几何模型网格划分法2、何为单元属性?单元属性是指在划分网格以前必须指定所分析对象的特征3、ANSYS中常用的结构单元类型有哪些?杆,梁,杆,2-D实体,3-D实体,壳1.求解器的功能?用于选择分析类型、设置求解选项、施加载荷并设置载荷步选项,最后执行求解,得到求解结果文件。

相关文档
最新文档