耐火材料的六大使用性能图文稿

合集下载

耐火材料的性能

耐火材料的性能

04 耐火材料的化学性能
高温下的化学稳定性
01
在高温环境下,耐火材料应能保持其化学稳定性,不易 与周围的介质发生化学反应,从而避免材料性能的损失 。
02
耐火材料应能抵抗环境气氛的影响,如氧化、还原、硫 化、氮化等,以维持其结构和性能的稳定性。
03
耐火材料应具有较低的高温化学反应速率,以延长其使 用寿命。
02
耐火材料应具有较低的与其它材料的反应速率,以避免相互间
的腐蚀和破坏。
耐火材料应具有良好的热震稳定性,以应对温度急剧变化的环
03
境条件。
耐火材料的应用与发展
05
在冶金工业中的应用
01
熔炼炉衬材料
耐火材料用于熔炼炉内衬,以承受高温和熔融金属的侵 蚀。
02
连铸结晶器
耐火材料制成的结晶器是控制钢水凝固成型的关键部件 。
耐火材料的性能
目录
• 耐火材料概述 • 耐火材料的物理性能 • 耐火材料的力学性能 • 耐火材料的化学性能 • 耐火材料的应用与发展
01
耐火材料概述
耐火材料的定义
01
耐火材料是指能够在高温环境下 长期保持其物理、化学性质的建 筑材料。
02
它主要用于钢铁、有色金属、玻 璃、陶瓷、化工等高温工业的炉 衬、容器和管道等。
VS
塑性
塑性是指耐火材料在外力作用下发生形变 后,在形变过程中保持一定的形状和尺寸 的能力。塑性好的材料能够更好地适应生 产中的加工要求。
蠕变性与耐压蠕变性
蠕变性
耐压蠕变性
是指在一定温度和恒定压力下,耐火材料随 时间延长而发生形变的现象。蠕变性反映了 耐火材料在高温下长期承受负荷时的稳定性。
是指在恒定温度和持续增加的压力下,耐火 材料的形变率随时间的变化情况。耐压蠕变 性是评估耐火材料在高温高压下稳定性的重 要指标。

2-2耐火材料的性能

2-2耐火材料的性能

(利用在相邻原子之间存在 非简谐力时,原子间的 作用力的曲线和势能曲线解释。)
(1) 用作用力的曲线解释
ro A1 A2
质点在平衡位置两侧受力 不对称,即合力曲线的斜 率不等。 当rro时,曲线的斜率较 大,斥力随位移增大的很 快,即位移距离X,所受 合力大。
斥力 合力 距离r
引力
当r ro时,曲线的斜率较 小,吸引力随位移增大的 较慢,即位移X距离,所 受合力小。
(4) 热膨胀与结构的关系
结构紧密的固体,膨胀系数大,反之,膨胀系数小 对于氧离子紧密堆积结构的氧化物,相互热振动导致 膨胀系数较大,约在6~8×10-6/ 0C,升高到德拜特征 温度时,增加到 10~15×10-6/ 0C。
如:MgO、 BeO、 Al2O3、 MgAl2O4、BeAl2O4都具有 相当大的膨胀系数。
• 温度是影响热导率的一个基本因素。一般晶体具有负的热
导率温度系数,即dλ/dT<0;玻璃质和非晶质有正的热
导率温度系数,即dλ/dT>0. • 大部分耐火材料的热导率随温度的提高而增大。如粘土砖、 硅砖等。但是,有些如镁砖、碳化硅砖等则相反,随温度 的提高而下降。
• 1-碳化硅砖; • 2- 镁砖; • 3-碳化硅砖(含SiC70%); • 4- 刚玉砖;
• 2.2.2热膨胀性 • 热膨胀性是指材料的尺寸随温度的升高(或降低) 而增加(或减小)的性能。耐火材料的热膨胀性 是耐火材料使用时的重要性能之一。炉窑在常温 下砌筑,而在高温下使用时炉体要膨胀。为抵消 因热膨胀所产生的应力,需预留膨胀缝,而且必
须根据耐火材料的热膨胀性和砌筑体的构造情况
制定正确的烘烤制度。
其化学矿物组成,与制品的生产工艺无关。一般 而言,由晶体构成的材料的热膨胀性与晶体中化 学键的性质和键强有关。具有较大键强的晶体和 非同向性晶体中键强大的方向上,线胀系数较低。 如碳化硅具有较高的键强,故线胀系数较低。

《耐火材料基础知识》课件

《耐火材料基础知识》课件
有色金属工业
在铜、铝等有色金属的冶炼和加工过程中,耐火 材料也扮演着重要的角色,对于保护炉衬和提高 产品质量具有重要作用。
核能领域
核能领域对于耐火材料的要求极高,需要具备优 良的高温性能、化学稳定性和抗辐照性能,为核 能技术的发展提供支撑。
耐火材料的发展趋势
高性能化
提高耐火材料的性能指标,以满足高温、高速、 高负荷等苛刻工况的需求。
复合耐火材料
通过将不同材质的耐火材 料进行复合,形成具有多 重性能的复合耐火材料, 以满足复杂工况的需求。
绿色耐火材料
研发低污染、低能耗的绿 色耐火材料,减少对环境 的负面影响,推动耐火材 料行业的可持续发展。
耐火材料的应用前景
1 2 3
钢铁工业
随着钢铁工业的发展,对耐火材料的需求量不断 增加,尤其在高炉、连铸和轧钢等关键部位,需 要高性能的耐火材料。
维护保养
为了延长耐火材料的使用寿命,需要 定期进行维护保养,如检查、修复、 更换等。
环境友好
耐火材料在使用过程中应尽量减少对 环境的污染,符合可持续发展的要求 。
05
耐火材料的发展趋势与展望
新型耐火材料的研发
纳米级耐火材料
利用纳米技术,开发出具 有高性能的纳米级耐火材 料,具有更佳的抗热震性 能和高温强度。
环保化
加强环保意识,研发低污染、低能耗的耐火材料 ,推动行业的可持续发展。
智能化
利用传感器、物联网等先进技术,实现耐火材料 的智能化监控和管理,提高生产效率和安全性。
晶体结构
指耐火材料中的晶体颗粒的大小 、形状、取向及分布情况,对耐 火材料的力学性能和高温性能有
重要影响。
玻璃质结构
指耐火材料中的玻璃质成分的粘度 、流动性及稳定性等,对耐火材料 的抗热震性能和高温性能有一定影 响。

耐火材料的主要性能指标

耐火材料的主要性能指标

耐火材料的主要性能指标耐火材料的主要性能指标有:1.耐火度:耐火度是耐火材料在高温下抵抗熔化的性能。

耐火度主要取决于耐火材料的化学成份和材料中的易熔杂质(如FeO、NaO等)的含量。

耐火度并不代表耐火材料的实际使用温度,因为在高温载负作用下耐火材料的软化变形温度会降低,所以耐火材料的实际允许最高使用温度比耐火度低。

耐火度一般通过试验测定。

耐火度大于1580℃的材料方可称为耐火材料。

2.高温结构强度:高温结构强度是指耐火制品在高温下承受压力而不发生变形的抗力。

常以负重软化温度来评定。

所谓负重软化温度是指耐火制品在0.2压力下,以一定的升温速度加热,测出样品开始变形的温度和压缩变形达4%或40%的温度。

前者的温度叫负重软化开始湿度,后者叫负重软化4%或40%的软化点。

3.热稳定性:热稳定性是指抵抗温度急剧变化而不破裂或剥落的能力,有时也称之为耐急冷急热性。

它的测定是将耐火制品加热到一定温度(850℃)然后用流动的冷水冷却,直至进行到因制品破裂而部分剥落的重量为原重量的20%时,所经爱冷热交替次数即为评定热稳定性的指标。

4.体积稳定性:体积稳定性是指耐火制品在一定温度下反复加的热、冷却的体积变化百分率。

一般在多次高温作用下,耐火制品内组成相会发生再结晶和进一歩烧结,会产生残余的膨胀或收缩现象。

一般允许的残余膨胀或收缩不应超过0.5-1.0%。

5. 高温化学稳定性:高温化学稳定性系指耐火制品在高温下,抗金属氧化物、熔盐和炉气侵蚀的能力。

常用抗渣性来评定,这种性质主要取决于耐火制品本身相组成物的化学特点和物理结构,如气孔率、体积密度等。

6.体积密度、气孔率、透气性:体积密度是指包括全部气孔在内的单位耐火制品的重量,其单位为g/cm3.气孔率(%)分显气孔率和真气孔率。

显气孔率是耐火制品上与大气相通的孔洞体积与总体积之比。

真气孔率是指不与大气相通的孔洞体积与总体积之比。

透气性常以透气系数评定,透气系数是在9.8Pa的压差下,1h内通过厚1m,面雊1m2耐火制品的空气量。

耐火材料各性质

耐火材料各性质

耐⽕材料各性质耐⽕材料的⼒学性质耐⽕材料的⼒学性质是指材料在不同温度下的强度、弹性、和塑性性质。

耐⽕材料在常温或⾼温的使⽤条件下,都要受到各种应⼒的作⽤⽽变形或损坏,各应⼒有压应⼒、拉应⼒、弯曲应⼒、剪应⼒、摩擦⼒、和撞击⼒等。

此外,耐⽕材料的⼒学性质,可间接反映其它的性质情况。

检验耐⽕材料的⼒学性质,研究其损毁机理和提⾼⼒学性能的途径,是耐⽕材料⽣产和使⽤中的⼀项重要⼯作内容。

4.1 常温⼒学性质4.1.1 常温耐压强度σ压定义;是指常温下耐⽕材料在单位⾯积上所能承受的最⼤压⼒,也即材料在压应⼒作⽤下被破坏的压⼒。

常温耐压强度σ压=P/A ,(pa)式中;P—试验受压破坏时的极限压⼒,(N);A—试样的受压⾯积,(m2)。

⼀般情况下,国家标准对耐⽕材料制品性能指标的要求,视品种⽽定。

其中,对常温耐压强度σ压的数值要求为50Mpa左右(相当于500kg/cm2);⽽耐⽕材料的体积密度⼀般为2.5g/cm3左右。

据此计算,因受上⽅砌筑体的重⼒作⽤,导致耐⽕材料砌筑体底部受重压破坏的砌筑⾼度,应⾼达2000m以上。

可见,对耐⽕材料常温耐压强度的要求,并不是针对其使⽤中的受压损坏。

⽽是通过该性质指标的⼤⼩,在⼀定程度上反映材料中的粒度级配、成型致密度、制品烧结程度、矿物组成和显微结构,以及其它性能指标的优劣。

体现材料性能质量优劣的性能指标的⼤⼩,不仅反映出来源于各种⽣产⼯艺因素与过程控制,⽽且反映过程产物⽓、固两相的组成和相结构状态以及相关性质指标间的⼀致性。

⼀般⽽⾔,这是⼀条普遍规律。

4.1.2 抗拉、抗折、和扭转强度与耐压强度类似,抗拉、抗折、和扭转强度是材料在拉应⼒、弯曲应⼒、剪应⼒的作⽤下,材料被破坏时单位⾯积所承受的最⼤外⼒。

与耐压强度不同,抗拉、抗折、和扭转强度,既反映了材料的制备⼯艺情况和相关性质指标间的⼀致性,也体现了材料在使⽤条件下的必须具备的强度性能。

抗折强度σ折按下式计算。

抗折强度σ折=3PL/2bh2,(pa)式中:P—试样断裂时的作⽤⼒,(N);L—试样两⽀点的距离,(m);b、h—分别为试样的宽度、厚度,(m)。

炼铁用耐火材料PPT课件

炼铁用耐火材料PPT课件
70年代后期以来,随着Al2O3-SiC-C质浇注料的研制成功和投 入使用,出铁沟用耐火材料得到广泛研究,开发出了品质各 异、适应性不同的多种不定形耐火材料。
29
炼铁用耐火材料
高炉出铁沟用耐火材料的性能 和高施炉工出铁要沟求用耐火材料的性能和施工要求
出铁主沟由于要经受周期性熔渣的化学侵蚀,炉前沟衬耐 火材料必须满足如下性能要求:
1.4 高炉炉衬各部位用耐火材料
高炉在运行其间,炉体内部发生着复杂的物理化学变化, 这种复杂的物理化学变化,要求高炉炉内不同的部位使用不同 种类、不同材质的耐火材料。
7
炼铁用耐火材料
部位
炉喉 炉身上部 炉身下部 炉腰 炉腹 炉缸
炉底
材质
高铝砖 粘土砖 刚玉砖+粘土砖 刚玉砖+粘土砖 刚玉砖+粘土砖 碳砖及其保护层(高铝砖)
按照结合方式,碳化硅砖分别为β-SiC结合、 Si3N4结合、Sialon 结合和Sialon- Si3N4结合的碳化硅砖。70年代末期和80年代初期,主 要使用β-SiC结合的碳化硅砖,在80年代末期,除日本之外, Si3N4 结合、Sialon结合和Sialon- Si3N4结合的碳化硅砖用量已占67.5%。 自1986年以来,世界各国已有数十座高炉使用了Sialon- Si3N4结合的 碳化硅砖。
小型高炉现在多使用炭素料捣固或炭块砖砌筑。这部分砖 衬同炉缸的砖衬砌成整体,为防止风口周围氧化的侵蚀,需 要用高铝砖、粘土砖或耐火混凝土的砌筑保护层以便防止烘 炉和开炉过程中炭素材料的氧化。
14
炼铁用耐火材料
1.4.5 铁口部位用耐火材料
铁口部位用耐火材料要承受铁水和炉渣的侵蚀和冲刷,以及在 开、堵铁口时受开口机和泥炮的外力影响。因此铁口部位用耐火 材料要求抗炉渣、铁水侵蚀性好、抗机械应力的能力好.同时砌筑 结构上要稳定.采用大块异型组合砖,砌筑时砖缝上下错开,每个 单体相互咬合,使来自炉内外的压力向四周传递,从而使整个砌 体受力保持平衡,达到砌体密封性和稳定性的目的。

1.5耐火材料的使用性能

1.5耐火材料的使用性能

莫来石和作为莫来 硅酸盐玻璃相800~900℃下 石基质的大量的硅 开始转变为粘度大的液相。 酸盐玻璃相组成
耐火制品在与其使用情况相近的条件下的结构强度与变形 情况,因而是耐火制品的重要性能指标。
陶瓷工业用耐火材料--------耐火材料的使用性能
耐火制品的荷重软化温度 制品的化学-矿物组成 制品的组织结构 制品的显微结构 制品的液相的性质、 制品的结晶相与液相的比例及相互作用。
陶瓷工业用耐火材料--------耐火材料的使用性能
陶瓷工业用耐火材料--------耐火材料的使用性能
粘土砖: 荷重变形曲线比较平坦,开始变形温度较低,与40%
变形温度间相差达200~250℃。
硅砖 镁砖
开始变形温度与40%变形 温度差很小
达到变形的温度立刻破坏 达到40%变形前即溃裂
开始变形温度 其耐火度之间的差数不同
硅砖只差几十度 镁砖却差近千度
陶瓷工业用耐火材料--------耐火材料的使用性能
荷重变形曲线 不同的原因:
晶体形成网络骨架,
变形温度高
①存在的结晶相、 晶体构造和性状
晶体以孤岛状分散于液 相中,变形温度由液相的
含量及粘度所决定
②晶相和液相的数量及 液相在一定温度下的粘度
③晶相与液相的相互作用, 会改变液相的数量和性质。
陶瓷工业用耐火材料--------耐火材料的使用性能
各种耐火材料的荷重变形曲线 1-高铝砖(Al2O370%);2-硅砖,3-镁砖,4,6-粘土砖;5-半硅砖
陶瓷工业用耐火材料--------耐火材料的使用性能
几种耐火制品的0.2Mh荷重变形温度(℃)
砖种
0.6%变
形温度 TH
硅砖(耐火度1730℃)

耐火材料基础知识PPT课件

耐火材料基础知识PPT课件

2021
3
耐火度
★ 耐火度是指耐材在无荷重时抵抗高温 作用而不融化的性能。 影响耐火度的因素
★ 主要是耐火制品的化学成分,矿物组成及其分 布状态;各种杂质成分特别是具有强溶剂作用 的成分会严重降低制品的耐火度;成分分布不 均同样也会降低制品的耐火度:
★ 值得一提的是,耐火度虽然是判定耐火材料质量 尤其是化学纯度的一个指标,但在该温度范围材 料已不再具有结构强度和机械强度,故认为耐材 的耐火度越高,使用温度越高和越耐用的看法是 不正确的。
2021
7
热震稳定性
★ 耐火材料抵抗温度急剧变化而不被破 坏的性能称为热震稳定性,通常用加 热试样后可经受水冷或风冷的次数或 热震后残余强度的保持率来表示;
★ 影响耐火制品抗热震的主要因素为制品 的物理性能和显微结构,特别是热膨胀 性、热导率等;一般来讲,耐火制品的 热膨胀率越大,抗热震性越差;制品的 热导率越高,抗热震性越好。
3.对于氧离子紧密堆积结构的氧化物,由于氧离 子紧密接触以及相互热振动,一般热膨胀系数较 大,如氧化镁、氧化非同向性晶体中,其热膨胀的各向异性十分 明显,各晶轴方向的热膨胀系数不等; 5.结构上高度各向异性的材料,其体积膨胀系数 都很小,可作为一种优良的抗热震材料,如瑾青 石;
2021
4
荷重软化温度
★ 荷重软化温度是指耐材制品在承受恒定荷载和 持续升温条件下,产生一定变形量对应的温度, 是耐材制品在荷重、升温及时间的综合作用下 性能的特征值。
★ 荷重软化温度的测定一般是加压0.2MPA(隔热 定形耐材制品0.05MPA),从试样膨胀的最高点 压缩至它原始高度的0.6%为软化开始温度(国际 标准为0.5%),4%为软化变形温度,40%为变 形温度。

耐火材料的主要性能指标

耐火材料的主要性能指标

耐火材料的主要性能指标耐火材料是一种具有抗高温、抗化学侵蚀、抗热震、机械强度高等特点的特种材料,广泛应用于高温工业领域。

耐火材料的主要性能指标包括抗高温性能、抗化学侵蚀性能、抗热震性能、机械强度等。

首先,抗高温性能是耐火材料最重要的性能指标之一。

耐火材料在高温下保持稳定的物理和化学性质,不发生热膨胀、热腐蚀等现象。

耐火材料的抗高温性能主要由其材料成分和微观结构决定。

常见的耐火材料包括氧化铝、硅质材料、碳化硅、氮化硅等,这些材料具有高熔点、低导热系数和热膨胀系数小等特点,能够在高温下保持稳定的性能。

其次,抗化学侵蚀性能是耐火材料另一个重要的性能指标。

耐火材料主要用于高温环境中,往往会与各种酸碱溶液、金属液体等有机物质发生接触,因此需要具有较好的抗化学侵蚀性能。

耐火材料的抗化学侵蚀性能主要与其化学成分和微观结构有关。

例如,氧化铝具有优异的抗酸碱侵蚀性能,碳化硅和氮化硅则具有较好的抗金属液体侵蚀性能。

此外,耐火材料还需要具有较好的抗氧化性能,以保证在高温下不发生氧化反应。

抗热震性能是指耐火材料在高温条件下快速冷却或受到热冲击时不发生开裂和破坏的能力。

耐火材料在高温下受到热膨胀和热应力的作用,容易产生热震开裂。

因此,耐火材料需要具有较好的热震稳定性和热震韧性。

热震稳定性是指耐火材料在高温下不发生热震开裂的能力,而热震韧性是指耐火材料在受到热冲击时能够承受较大的应力而不发生破坏。

提高耐火材料的热震性能可以通过优化材料的微观结构和添加适量的添加剂来实现。

最后,机械强度是耐火材料的另一个重要性能指标。

耐火材料在使用过程中会受到机械力的作用,如振动、压力等。

因此,耐火材料需要具有较高的机械强度,以保证其在高温和机械载荷共同作用下不发生破坏。

提高耐火材料的机械强度可以通过优化材料的成分和微观结构来实现。

此外,还可以采用增强材料的方法,如添加纤维增强材料、金属网等,来提高耐火材料的机械强度。

综上所述,耐火材料的主要性能指标包括抗高温性能、抗化学侵蚀性能、抗热震性能和机械强度。

耐火材料性能

耐火材料性能

耐火材料性能
耐火材料是一类能在高温环境下保持结构完整性和稳定性的材料,其性能直接
影响着工业生产和建筑安全。

耐火材料性能的好坏取决于其耐热性、抗震性、耐磨性等多个方面的指标。

下面我们将就耐火材料的性能进行详细介绍。

首先,耐火材料的耐热性是其最重要的性能之一。

耐火材料需要能够在高温环
境下长时间保持结构的完整性,不发生软化、脆化或烧蚀。

这就要求耐火材料具有较高的熔点和热稳定性,能够在高温下保持结构的稳定性。

常见的耐火材料有石墨、氧化铝、碳化硅等,它们具有较高的熔点和热稳定性,能够满足高温环境下的使用要求。

其次,耐火材料的抗震性也是其重要性能之一。

在工业生产和建筑领域,设备
和结构常常会受到震动的影响,因此耐火材料需要具有一定的抗震性能,能够在震动环境下保持结构的完整性。

为了提高耐火材料的抗震性能,可以采用纤维增强材料或者添加适量的抗震添加剂来改善其性能。

另外,耐火材料的耐磨性也是需要重点关注的性能指标。

在一些高温高速摩擦
环境下,耐火材料需要具有良好的耐磨性能,能够长时间保持表面的光滑度和完整性。

为了提高耐火材料的耐磨性能,可以采用表面涂层、添加耐磨颗粒等方式来改善其性能。

总的来说,耐火材料的性能对于工业生产和建筑安全具有重要意义。

通过对耐
热性、抗震性、耐磨性等多个方面性能的综合考量和改进,可以有效提高耐火材料的使用性能和寿命,从而保障生产和建筑的安全可靠性。

希望本文对耐火材料性能的介绍能够为相关领域的工作者和研究人员提供一定的参考和帮助。

耐火材料基础知识ppt课件

耐火材料基础知识ppt课件

.
耐火材料是一个很大的概念范畴。不仅仅是我们生产实习中看到的砖 头,而是各种形状,各种结构,多种材料的有机复合等。
17
透气砖(porous plug):由弥散型向定向型发展,材质(刚 玉、铬刚玉)质浇注料浇注而成,但与包衬寿命难以同步 快速更换透气砖系统:底板焊在钢包底部,安装时夹持装置 夹住透气砖并使其就位在中心位置上,更换时松脱楔形砖。
.
.
镁铁砖
.
.
.
.
1、硅质原料:
硅微粉主要包括:硅灰、硅石微粉体、熔融石英微粉 硅灰:球状,d<1μm。 SiO2 >90%,是生产硅铁合金时产 生的工业副产品。主要用于不定形耐火材料、碳化硅窑具。
.
2.半硅质耐火原料 包括:叶蜡石、硅藻土等,其中SiO2大于65%。 叶蜡石(Al2O3 • 4SiO2 • H2O)砖主要应用于普通钢包,也可 用于铁水包,效果优于粘土砖。 硅藻土:主成分为SiO2,呈疏松土状,空隙率达80%~90 %,能吸收本身重量1.5~4倍的水。主要用于生产保温材料 ,填料和滤剂等。 工业电瓷:主要成分Al2O3 、SiO2 以及K2O等
耐火材料在各行业用量:
2010年耐火制品产量约为 2000-3000万吨
有色、化工
13% 建材
17% 钢铁冶金
70%
3
钢铁冶炼过程
采矿
选矿
烧结 炼焦
炼铁
三脱 炉外精炼
LF精炼炉 ANS-OB
喂丝 VD真空脱气 RH真空处理
转炉炼钢 连铸
轧钢
耐火材料的应用
炼铜的闪速炉
3万吨/年硫化碱 生产线
无机化学 有机化学 分析化学 物理化学 硅酸盐物理化学 材料科学基础
.

耐火材料讲义PPT课件

耐火材料讲义PPT课件
对不合格的耐火砖进行返 工或报废处理,防止不合 格品流入市场。
04 耐火材料的应用领域
钢铁工业
熔炼与连铸
耐火材料用于制造钢包、中间包 、滑动水口等,保护钢水不被氧 化,提高产品质量。
轧钢与锻造
耐火材料用于制造加热炉炉衬, 减少能源损失,提高加热效率。
有色金属工业
铝冶炼
耐火材料用于制造铝熔炼炉炉衬,保护铝液不被氧化,提高铝产品质量。
06 案例分析:某耐火材料公 司的成功经验
公司概况与市场定位
公司成立时间
01
成立于XXXX年,是国内较早进入耐火材料行业的公司之一。
公司规模
02
拥有员工XXX余人,其中研发人员占比XX%。
市场定位
03
专注于高端耐火材料的研发、生产和销售,服务于国内外钢铁、
有色金属、玻璃等高温工业领域。
技术创新与产品开发
公司建立了专业的客户服务团队,为客户提供全方位的技术支持和售后服务,及时解决客户问题,提 高客户满意度。
环境友好与可持续发展
环境友好
公司注重环境保护,采用环保材料和工 艺,减少生产过程中的环境污染。
VS
可持续发展
公司积极履行社会责任,推动产业升级和 绿色发展,实现可持续发展。
THANKS FOR WATCHING
铜冶炼
耐火材料用于制造铜熔炼炉炉衬,保护铜液不被氧化,提高铜产品质量。
陶瓷与玻璃工业
陶瓷烧成
耐火材料用于制造陶瓷烧成窑炉的炉 衬,保护陶瓷制品不被氧化或污染。
玻璃熔炼与连铸
耐火材料用于制造玻璃熔窑的炉衬和 玻璃液输送管道,确保玻璃液的纯度 和质量。
能源与环保领域
煤化工
耐火材料用于制造煤气化炉炉衬,保护炉体免受高温和化学侵蚀。

耐火材料的主要性能指标

耐火材料的主要性能指标

耐火材料的主要性能指标第一篇:耐火材料的主要性能指标耐火材料的主要性能指標耐火材料的主要性能指標有:1、耐火度耐火度是耐火材料在高溫下抵抗熔化的性能。

耐火度主要取決於耐火材料的化學成份和材料中的易熔雜質(如FeO、NaO等)的含量。

耐火度並不代表耐火材料的實際使用溫度,因為在高溫負載作用下耐火材料的軟化變形溫度會降低,所以耐火材料的實際允許最高使用溫度比耐火度低。

耐火度一般通過試驗測定。

耐火度大於1580℃的材料方可稱為耐火材料。

2、熱穩定性熱穩定性是指抵抗溫度急劇變化而不破裂或剝落的能力,有時也稱之為耐急冷急熱性。

它的測定是將耐火製品加熱到一定溫度(850℃)然後用流動的冷水冷卻,直至進行到因製品破裂而部分剝落的重量為原重量的20%時,所經受冷熱交替次數即為評定熱穩定性的指標。

3、體積穩定性體積穩定性是指耐火製品在一定溫度下反復加的熱、冷卻的體積變化百分率。

一般在多次高溫作用下,耐火製品內組成相會發生再結晶和進一歩燒結,會產生殘餘的膨脹或收縮現象。

一般允許的殘餘膨脹或收縮不應超過0.5~1.0%。

4、高溫化學穩定性高溫化學穩定性系指耐火製品在高溫下,抗金屬氧化物、熔鹽和爐氣侵蝕的能力。

常用抗渣性來評定,這種性質主要取決於耐火製品本身相組成物的化學特點和物理結構,如氣孔率、體積密度等。

5、高溫結構強度高溫結構強度是指耐火製品在高溫下承受壓力而不發生變形的抗力。

常以負重軟化溫度來評定。

所謂負重軟化溫度是指耐火製品在0.2壓力下,以一定的升溫速度加熱,測出樣品開始變形的溫度和壓縮變形達4%或40%的溫度。

前者的溫度叫負重軟化開始溫度,後者叫負重軟化4%或40%的軟化點。

6、體積密度、氣孔率、透氣性體積密度:是指包括全部氣孔在內的單位耐火製品的重量,其單位為g/cm3。

氣孔率(%):氣孔率分顯氣孔率和真氣孔率。

顯氣孔率是耐火製品上與大氣相通的孔洞體積與總體積之比。

真氣孔率是指不與大氣相通的孔洞體積與總體積之比。

耐火材料3

耐火材料3
15
高温蠕变持久试验机
16
9)导热率 当前,大量使用碳质和碳化硅材料, 使高炉长寿。在高炉炉缸周围装有冷却壁,使用 高导热性材料,能把铁水凝固的等温线移到远离 炉壳的地方,即加厚铁水的凝固防线。因此,炉 缸采用导热系数只有1.162W/(m.K)以下的陶瓷材 料,发展到用导热系数2~3 W/(m.K)以上的碳砖, 是一个很大的飞跃。现今已提出高度石墨化的要 求,拟把导热系数提高到15或更高,今日碳化硅 砖之所以取得进展,还在于它有远比陶瓷材料高 的导热系数。
20
2 化学结合 是指耐火材料制品中由化学结合剂形成的 结合,即加入少量结合物质,在低于烧结温度的条件 下,发生一系列的化学反应使制品硬化而形成的结合。 此种结合在不烧耐火制品中普遍存在。它的形成和性 质注意取决于所用化学结合剂的性质。以化学结合的 耐火制品,经高温使用,有的可形成陶瓷结合。
3 直接结合 由耐火主晶相直接接触产生的一种结合方 式,它既不同于化学结合,也不同于陶瓷结合。
21
第三章 氧化硅质耐火材料
22
焦炉用硅砖
23
玻璃窑用硅砖
24
热风炉用硅砖
9
普通粘土砖就其耐火度而言是很差的,但它又 是使用广泛的耐火材料,这是因为它试验的急冷急 热频率高达20次,而一些高密度制品、结晶形式良 好的制品,如高密度粘土砖、镁砖、硅砖、高铝砖 等,只能频繁加热几次甚至一二次。一般的耐热混 凝土型的材料有好的抗热震性能。
10
5)抗渣性
抗渣性是指耐火材料在高温下抵抗熔渣及其他熔 融液侵蚀而不易损毁的性能。耐火材料在实际使 用中约有50%是由于渣蚀而损毁的。耐火材料受 熔渣侵蚀分为两个阶段:即熔渣与耐火材料的接 触与渗透;熔渣与耐火材料的反应与危害。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

耐火材料的六大使用性

文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]
耐火材料的六大使用性能
耐火材料的使用性能是指耐火材料在高温下使用时所具有的性能。

包括耐火度、荷重软化温度、重烧线变化、抗热震性、抗酸性、抗碱性、抗氧化性、抗水化性和抗CO侵蚀性等。

(一般)耐火度
耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。

耐火度与熔点不同,熔点是结晶体的液相与固相处于平衡时的温度。

绝大多数耐火材料都是多相非均质材料,无一定熔点,其开始出现液相到完全熔化是一个渐变过程。

在相当宽的高温范围内,固液相并存,固如欲表征某种材料在高温下的软化和熔融的特征,只能以耐火度来度量。

因此,耐火度是多相体达到某一特定软化程度的温度。

耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。

耐火度是判定材料能否作为耐火材料使用的依据。

国际标准化组织规定耐火度达到1500℃以上的无机非金属材料即为耐火材料。

耐火度的意义与熔点不同,不能把耐火度作为耐火材料的使用温度。

(二)荷重软化温度
荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。

荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。

耐火材料高温荷重变形温度是其重要的质量指标,因为它在一定程度上表明制品在与其使用情况相仿条件下的结构强度。

决定荷重软化温度的主要因素是制品的化学矿物组成,同时也与制品的生产工艺直接相关
(三)重烧线变化(高温体积稳定性)
首先应当了解耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。

对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。

重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。

耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。

耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。

对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。

重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。

耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。

(四)抗热震性
抗热震形也称耐急冷急热性,它表征耐火制品抵抗温度急剧变化而不破坏的能力。

在实际工作中,耐火材料经常会遭受到温度急剧变化的情况,在很短的时间内工作温度变化很大,这种温度的急剧变化即称为热震作用。

热震作用会导致耐火材料的开裂、剥落和崩塌。

因此,当耐火材料在使用中工作温度有急剧变化时,必须考查其抗热震性。

耐火材料因热震而破坏的过程大致可分为裂纹的形成和裂纹的扩展两个阶段。

在裂纹形成过程中,导致材料产生裂纹的根本原因是材料内的热应力达到了气强度极限,于是便产生裂纹。

在加热时,常在耐火材料内部产生裂纹,而在冷却时,常在耐火材料表面产生裂纹。

要提高材料的抗热震性,避免材料产生裂纹,必须提高材料的强度,特别是抗拉强度、剪切强度,以提高抵抗裂纹形成的能力,同时应降低材料的弹性模量及泊松比,从而降低可能产生的热应力。

抗热震形也称耐急冷急热性,它表征耐火制品抵抗温度急剧变化而不破坏的能力。

在实际工作中,耐火材料经常会遭受到温度急剧变化的情况,在很短的时间内工作温度变化很大,这种温度的急剧变化即称为热震作用。

热震作用会导致耐火材料的开裂、剥落和崩塌。

因此,当耐火材料在使用中工作温度有急剧变化时,必须考查其抗热震性。

要提高材料的抗热震性,避免材料产生裂纹,必须提高材料的强度,特别是抗拉强度、剪切强度,以提高抵抗裂纹形成的能力,同时应降低材料的弹性模量及泊松比,从而降低可能产生的热应力。

(五)抗渣性
抗渣性是指耐火材料在高温下抵抗炉渣的侵蚀和冲刷作用的能力。

这里炉渣的概念从广义上来说是指高温下与耐火材料相接处的治金炉渣、燃料灰分、飞尘、各种材料和气态物质等。

抗渣性是指耐火材料在高温下抵抗炉渣的侵蚀和冲刷作用的能力。

这里炉渣的概念从广义上来说是指高温下与耐火材料相接处的治金炉渣、燃料灰分、飞尘、各种材料和气态物质等
(六)耐真空性
通常耐火材料在常温下的蒸汽压都很低,可以认为是极为稳定不挥发的。

但在高温减压下工作时,其挥发性将成为不可忽视的问题,会因其挥发减量而造成损耗,加速其损坏。

在这种条件下与在高温常温大气压下使用不同,买真空性成为耐火材料必须具备的重要特征之一。

通常耐火材料在常温下的蒸汽压都很低,可以认为是极为稳定不挥发的。

但在高温减压下工作时,其挥发性将成为不可忽视的问题,会因其挥发减量而造成损耗,加速其损坏。

在这种条件下与在高温常温大气压下使用不同,耐真空性成为耐火材料必须具备的重要特征之一。

相关文档
最新文档