高考数学知识点:幂函数知识点_知识点总结
2020年高考数学(理)高频考点 函数与导数 专题06 幂函数(解析版)
函数与导数06 函数 幂函数一、具体目标: 1.了解幂函数的概念.2.结合函数12312,,,,y x y x y x y x y x -=====的图象,了解它们的变化情况.二、知识概述: 1.幂函数的概念(1)一般地,形如ny x =的函数叫做幂函数,其中x 是自变量,n 是常数.(2)在同一平面直角坐标系中,幂函数12312,,,,y x y x y x y x y x -=====的图象的比较如下.2.幂函数的性质:(1)恒过点(1,1);(2)在第一象限当0n >时ny x =是增函数,当0n <时ny x =是减函数; (3)幂函数的图象不经过第四项限. 3.判数函数是幂函数的依据:【考点讲解】幂函数错误!未找到引用源。
,其中错误!未找到引用源。
为常数,其本质特征是以幂的底错误!未找到引用源。
为自变量,指数错误!未找到引用源。
为常数,这是判断一个函数是否是幂函数的重要依据和唯一标准. 4.在错误!未找到引用源。
上,幂函数中指数越大,函数图象越靠近x 轴 (简记为“指大图低”),在(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数的图象与坐标轴相交,则交点一定是原点.5.幂函数y =x α的图像与性质由于α的值不同而比较复杂,一般从两个方面考查:(1)α的正负:α>0时,图像过原点和(1,1),在第一象限的图像上升;α<0时,图像不过原点,在第一象限的图像下降.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸;0<α<1时,曲线上凸;α<0时,曲线下凸. 2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数.借助其单调性进行比较,准确掌握各个幂函数的图像和性质是解题的关键.1. 【2019年高考北京文数】下列函数中,在区间(0,+∞)上单调递增的是( ) A .12y x = B .y =2x - C .12log y x =D .1y x=【解析】本题考查简单的指数函数、对数函数、幂函数的单调性问题,由题意可知函数122,log xy y x -==,1y x=在区间(0,)+∞上单调递减,函数12y x =在区间(0,)+∞上单调递增.故选A.【答案】A【真题分析】2.【2018优选题】函数()()952411=---+m m f x m m x是幂函数,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a +b >0,ab <0,则f (a )+f (b )的值( )A .恒大于0B .恒小于0C .等于0D .无法判断【解析】由题意可知,当x ∈(0,+∞)时,f (x )单调递增.∵()()952411=---+m m f x m m x是幂函数,∴m 2-m -1=1,解得m =2或m =-1.当m =2时,4m 9-m 5+1=4×29-25+1=2017, f (x )=x 2017 在(0,+∞)上为增函数,符合题意;当m =-1时,4m 9-m 5+1=4×(-1)9-(-1)5+1=-2, f (x )=x -2在 (0,+∞)上为减函数,不符合题意.∴f (x )=x 2017,该函数为R 上的奇函数,且为R 上的增函数.∵a +b >0,∴a >-b ,∴f (a )>f (-b )=-f (b ),即f (a )+f (b )>0.故选A. 【答案】A3.【2018优选题】在同一平面直角坐标系内,函数y =x a (a ≠0)和y =ax +1a的图像可能是( )【解析】当a >0时,函数y =x a 在第一象限单调递增,直线y =ax +1a 经过第一、二、三象限,无选项符合题意;当a <0时,函数y =x a 在第一象限单调递减,直线y =ax +1a 经过第二、三、四象限,选项B 符合题意.故选B. 【答案】B4.【2016全国Ⅲ】已知a =432,b =233,c =1325,则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b【解析】∵b =233=433,c =1325=235=435,a =432,且函数y =43x 在区间(0,+∞)上单调递增,5>2>3,∴)435>432>433,∴b <a <c .故选A.【答案】A5.【2019优选题】幂函数f (x )的图像经过点(4,2),若0<a <b <1,则下列各式正确的是( )A .f (a ) < f (b ) < f ⎝⎛⎭⎫1a < f ⎝⎛⎭⎫1bB .f ⎝⎛⎭⎫1a < f ⎝⎛⎭⎫1b < f (b ) < f (a )C .f (a ) < f (b ) < f ⎝⎛⎭⎫1b < f ⎝⎛⎭⎫1aD .f ⎝⎛⎭⎫1a < f (a ) < f ⎝⎛⎭⎫1b < f (b ) 【解析】设幂函数的解析式为f (x )=x α,由f (x )的图像经过点(4,2),得4α=2,解得α=12,即f (x )=12x .∵f (x )=12x 在(0,+∞)上是增函数,且0 < a < b < 1,∴0 < a < b < 1b < 1a ,∴f (a )< f (b ) < f ⎝⎛⎭⎫1b < f ⎝⎛⎭⎫1a . 【答案】C6.【2018上海卷7】已知⎭⎬⎫⎩⎨⎧---∈3,2,1,21,21,1,2α,若幂函数αx x f =)(为奇函数,且在0+∞(,)上递减,则α=_____【解析】本题考点是幂函数与奇函数的综合应用,由题意可知幂函数要满足两个条件,一个条件就是奇函数,此时3,1,1-=α,另一个条件是在区间0+∞(,)上递减,此时1-=α,所以答案是-1. 【答案】1-7.【2014上海,理9】若2132)(x x x f -=,则满足0)(<x f 的x 取值范围是 .【解析】根据幂函数的性质,由于1223<,所以当01x <<时2132x x <,当1x >时,2132x x >,因此()0f x <的解集为(0,1). 【答案】(0,1)8.【2019优选题】幂函数1222)33)(+-+-=m m x m m x f (在区间()+∞,0上是增函数,则=m .【解析】若幂函数1222)33)(+-+-=m m xm m x f (在区间()+∞,0上是增函数,则由2331m m -+=,解得:2m =或1m =,2m =时,()f x x =,是增函数,1m =时,()1f x =,是常函数,故答案为2.【答案】29.【2017优选题】幂函数错误!未找到引用源。
高三幂函数知识点
高三幂函数知识点幂函数是数学中常见的一类函数,其中最为典型的就是高三幂函数。
高三幂函数是指幂指数为3的函数,可以表示为f(x) = ax^3 + bx^2 + cx + d的形式。
在高三数学学习中,掌握高三幂函数的相关知识点对于解题和理解函数的性质非常重要。
本文将从定义、图像、性质以及函数应用等方面来介绍高三幂函数的知识要点。
一、定义高三幂函数是由幂指数为3的变量函数所构成的,函数表达式为f(x) = ax^3 + bx^2 + cx + d,其中a、b、c、d为常数,a≠0。
其中,a决定了函数的开口方向,正值开口向上,负值开口向下;b、c、d分别对应二次项、一次项和常数项的系数。
二、图像特点高三幂函数的图像特点与其系数a的正负值有关。
当a>0时,函数图像开口朝上;当a<0时,函数图像开口朝下。
而且,当幂函数为3次时,其图像可能与x轴交于三个不同的点,也可能与x轴相切于某一点。
这些交点或者切点被称为函数的零点。
三、性质1. 零点和与坐标轴的交点:在图像上,高三幂函数的零点是与x轴交点的横坐标值,也是函数的解;与y轴的交点为函数的截距点,对应的坐标为(0, d)。
2. 单调性:当a>0时,高三幂函数在定义域上单调递增,当a<0时,高三幂函数在定义域上单调递减。
3. 奇偶性:高三幂函数在定义域上为奇函数,即满足f(-x) = -f(x)的性质。
4. 极值点:由于高三幂函数的图像可能存在局部最小值或者最大值,因此其极值点可以通过求导数或者观察图像得到。
5. 函数的拐点:高三幂函数的拐点是函数图像从凹向上凸或者从凸向上凹的点,对应的坐标为(x, f(x))。
四、函数应用高三幂函数在实际问题中具有广泛的应用,下面列举一些常见的应用场景:1. 物体的运动问题:高三幂函数可用于描述物体的运动状态,如自由落体运动、弹性碰撞等。
2. 经济学中的成本、收益分析:高三幂函数可以用来分析成本和收益之间的关系,从而对经济决策进行评估和优化。
高考数学中的幂函数和指数函数的性质解析
高考数学中的幂函数和指数函数的性质解析高考数学中的幂函数和指数函数是非常重要的知识点。
这两种函数在数理化等学科中都有广泛的应用,因此在高考中也成为了不可忽视的重点。
掌握它们的性质,不仅可以解决一些基本的计算问题,还可以引申出很多思维难度较大的问题。
本文将对幂函数和指数函数的性质进行深入的解析。
一、幂函数的性质幂函数是一种非常基础的函数类型。
它的形式可以表示为$y = x^a$,其中$x$为自变量,$a$为指数。
幂函数的性质有以下几个方面。
1. 定义域:幂函数的定义域为$x>0$或$x<0$,即幂函数不能为负数。
2. 制图特点:当$a>1$时,幂函数的图像在第一象限上单调递增;当$0<a<1$时,幂函数的图像在第一象限上单调递减;当$a<0$时,幂函数的图像则关于$x$轴对称。
3. 奇偶性:当$a$为偶数时,幂函数关于$y$轴对称;当$a$为奇数时,幂函数关于原点对称。
4. 渐进线:当$a>0$时,幂函数的左渐近线为$x=0$,右渐近线为$y=0$;当$a<0$时,幂函数的左渐近线为$x=0$,右渐近线为$y=0$。
5. 导数规律:当$y=x^a$,则$\dfrac{dy}{dx}=ax^{a-1}$。
在幂函数的导数规律中,指数减1并乘以常数,就是导数。
以上是幂函数的几个常见性质,可以根据具体问题作出判断。
下面将重点介绍指数函数的性质。
二、指数函数的性质指数函数是另一种基础的函数类型。
它的形式可以表示为$y = a^x$,其中$a$为底数,$x$为自变量。
指数函数的性质有以下几个方面。
1. 定义域:指数函数的定义域为$(-\infty,+\infty)$,可以为任意实数。
2. 制图特点:当$0<a<1$时,指数函数的图像在第一象限上单调递减,且关于$y$轴对称;当$a>1$时,指数函数的图像在第一象限上单调递增。
3. 反函数:指数函数的反函数为对数函数,即$y = \log_{a}x$。
高考数学知识点 幂函数知识点_知识点总结
高考数学知识点幂函数知识点_知识点总结幂函数是高中数学中重要的知识点之一,它在高考数学考试中经常出现。
掌握幂函数的知识点对于顺利解决各类与幂函数相关的数学题目至关重要。
本文将对幂函数的相关知识点进行总结和归纳,帮助同学们理清思路,加强对该知识点的掌握。
一、幂函数的定义幂函数是指函数y = x^n,其中x为自变量,n为常数。
在幂函数中,x的指数是常数,y与x之间存在特定的关系。
二、幂函数的图像特点1. 当n为正整数时,幂函数的图像是以原点为中心的相似变换。
当n为正奇数时,函数具有奇对称性,图像关于坐标原点对称;当n为正偶数时,函数具有偶对称性,图像关于y轴对称,并且右侧都是正数部分;当n为正数时,函数图像都通过第一象限。
2. 当n为负整数时,幂函数的图像将关于x轴对称,并且经过第一象限和第三象限的两点。
3. 当n为0时,幂函数的图像为直线y = 1,是一个常数函数。
三、幂函数的性质1. 定义域:所有实数。
2. 值域:当n为正奇数时,函数的值域为(-∞, +∞);当n为正偶数时,函数的值域为[0, +∞);当n为负奇数时,函数的值域为(-∞, 0);当n为负偶数时,函数的值域为[0, +∞)。
3. 单调性:当n为正数时,幂函数在定义域上是递增函数;当n为负数时,幂函数在定义域上是递减函数。
4. 对称性:当n为正奇数时,幂函数的图像关于原点对称;当n为正偶数时,幂函数的图像关于y轴对称;当n为负整数时,幂函数的图像关于x轴对称。
5. 渐近线:当n为正数时,幂函数的图像与x轴无交点;当n为负整数时,幂函数的图像与y轴无交点。
四、幂函数的应用幂函数广泛应用于数学中的各种实际问题中,比如面积、体积、变量关系等。
在解决这些问题时,我们可以通过列方程、求导等方法将其转化为幂函数的求解过程。
例如,求解一个正方形的面积与边长之间的关系。
我们可以将正方形的面积设为y,边长设为x,那么根据正方形的性质可得 y = x^2,这就是一个幂函数的表达式,通过对该函数进行数学分析,我们可以得出边长与面积之间的关系,并解决相关的数学问题。
高考数学知识点幂函数知识点总结
高考数学知识点幂函数知识点总结幂函数是高考数学中的重要知识点之一。
它在求解各类问题中具有广泛的应用。
本文将对幂函数的定义、性质以及解题技巧进行总结,以帮助考生全面掌握相关知识。
一、幂函数的定义与性质1. 定义:幂函数是指形如f(x) = a^x的函数,其中a为实数且a>0且a≠1。
2. 幂函数的基本性质:(1) 当a>1时,幂函数是递增函数;(2) 当0<a<1时,幂函数是递减函数;(3) 幂函数的图象是关于y轴对称的;(4) 当x取整数时,幂函数的函数值为恒定值。
3. 幂函数的特殊情况:(1) 当a>1时,幂函数的图象在x轴正半轴上逼近y轴;(2) 当0<a<1时,幂函数的图象在x轴正半轴上逼近x轴;(3) 当a=1时,幂函数为常数函数。
二、幂函数的常见解题技巧1. 求解幂函数的零点:对于幂函数f(x) = a^x = 0,可以通过求解a^x = 0的条件来得到幂函数的零点。
由于指数函数a^x的定义域为实数集,而等式0^x没有意义,因此幂函数的零点不存在。
2. 求解幂函数的最值:当幂函数f(x) = a^x存在最值时,可以通过导数法求解。
具体步骤为:(1) 求得f'(x) = a^x * ln(a),其中ln(a)表示以e为底的对数;(2) 令f'(x) = 0,解得x = ln(a);(3) 将x = ln(a)带入幂函数,得到最值点或者端点的函数值;(4) 比较得到最值。
3. 幂函数与其他函数的复合:幂函数和其他常见函数的复合,如幂函数与线性函数、指数函数、对数函数的复合等,可以通过替换变量或者利用函数关系进行求解。
具体步骤需要根据题目的要求和已知条件进行灵活运用。
4. 幂函数在实际问题中的应用:幂函数在生活和工作中有广泛的应用,比如指数增长与衰减问题,利润与销售量关系的建模,物理中的涉及到指数增长和衰减的问题等,需要考生能够将幂函数与实际问题相结合,进行建模和求解。
高考数学知识点幂函数知识点知识点总结
高考数学知识点幂函数知识点知识点总结高考数学知识点:幂函数知识点总结在高中数学课程中,幂函数是一个重要的知识点。
幂函数的数学表达式为f(x) = ax^n,其中a和n分别代表常数,x代表自变量。
幂函数具有许多特殊性质和应用,下面将对幂函数的相关知识点进行总结。
一、定义和性质1. 幂函数的定义:幂函数是指具有形如f(x) = ax^n的函数,其中a和n为实数常数,且a≠0。
2. 幂函数的图像:根据a和n的取值不同,幂函数的图像可以表现为增函数、减函数或恒函数。
3. 幂函数的对称性:当幂函数的幂指数n为正偶数时,函数图像关于y轴对称;当n为正奇数时,函数图像关于原点对称;当n为负数时,函数图像关于x轴对称。
二、基本性质和运算法则1. 幂函数的基本性质:a) 当n>0时,幂函数是增函数;当n<0时,幂函数是减函数。
b) 当a>1时,幂函数递增速度大于直线函数y=x;当0<a<1时,幂函数递增速度小于直线函数y=x。
c) 当n=1时,幂函数是一次函数;当n=0时,幂函数是常值函数。
2. 幂函数的运算法则:a) 幂函数相乘:f(x) = ax^m * bx^n = abx^(m+n)。
b) 幂函数相除:f(x) = (ax^m) / (bx^n) = (a/b)x^(m-n),其中b≠0。
c) 幂函数相乘的分配律:(a * b)x^n = a * bx^n,其中a和b为常数,n为指数。
d) 幂函数的复合:f(g(x)) = (ax^m)^n = a^n*x^(m*n),其中a、g(x)和n为常数。
三、幂函数的应用1. 函数图像:通过掌握幂函数图像的特点,我们可以辨认各类函数的图像特征,帮助解题。
2. 变化率计算:由于幂函数在不同区间具有不同的递增、递减性质,可以用来计算变化率,例如速度、增长率等。
3. 经济学应用:幂函数可以描述经济学中的一些指数关系,如价格与需求量的关系等。
高考数学幂函数知识点总结
高考数学幂函数知识点总结一、幂函数的定义和性质幂函数是数学中一种常见的函数形式,它的定义形式为y = ax^n,其中a和n都为实数,x为自变量,y为因变量。
幂函数在数学中扮演着重要的角色,广泛应用于自然科学和工程技术领域。
下面我们来总结一些幂函数的重要性质和应用。
1. 幂函数的定义域和值域:幂函数y = ax^n的定义域为实数集R,值域则取决于a和n 的取值范围。
当a>0时,n为整数时,函数的值域为正实数集R+;当a<0时,n为奇数时,函数的值域为负实数集R-。
2. 幂函数的奇偶性:当n为偶数时,函数为偶函数;当n为奇数时,函数为奇函数。
具体而言,当n为偶数时,对于任意x,有f(-x)=f(x);当n为奇数时,对于任意x,有f(-x)=-f(x)。
3. 幂函数的图像变换:幂函数y = ax^n在平面直角坐标系中的图像变换与参数a和n的取值相关。
当a>1时,函数图像沿y轴方向压缩,当0<a<1时,函数图像沿y轴方向拉伸;当n>1时,函数图像在原点左侧上升,当0<n<1时,函数图像在原点右侧上升。
4. 幂函数的极限:当a>1时,幂函数在正无穷大时趋于正无穷大;当0<a<1时,幂函数在正无穷大时趋于0。
若n>0,幂函数在负无穷大时趋于正无穷大;若n<0,幂函数在负无穷大时趋于0。
二、幂函数的常见应用幂函数因为其特殊的形式和性质,在科学和工程中有广泛的应用。
以下是幂函数在一些具体问题中的运用。
1. 物质的增长和衰减:在生物学和经济学中,常常需要研究物质的增长和衰减过程。
幂函数可用来描述这种过程。
例如,生物种群的增长可以用幂函数进行建模,其中a表示种群的初始数量,n表示增长率。
同样,经济学中的人口增长、环境污染以及经济发展等问题也可以利用幂函数进行分析。
2. 各种规律的描述:幂函数可以应用于描述一些规律和现象。
例如,光的强度随距离的关系、金融领域中财富分布的不平等系数、能量消耗与功率之间的关系等都可以用幂函数来表达。
数学高考知识点幂函数
数学高考知识点幂函数数学高考知识点:幂函数幂函数是高考数学中非常重要的一个知识点,它是指形如y=x^a的函数,其中a是一个实数。
在高考中,幂函数常常会与其他函数进行比较或者求解方程等相关问题,因此熟练掌握幂函数的性质和应用是非常重要的。
一、幂函数的性质1. 幂函数的定义域:幂函数y=x^a的定义域是所有使得x^a有意义的实数x。
2. 幂函数的奇偶性:当指数a为偶数时,幂函数具有关于y轴的对称性,即f(-x) = f(x)。
当指数a为奇数时,幂函数关于原点对称,即f(-x) = -f(x)。
3. 幂函数的单调性:当指数a大于0时,幂函数在定义域上是递增的;当指数a小于0时,幂函数在定义域上是递减的。
4. 幂函数的图像:幂函数的图像呈现出如下特点:当a>1时,幂函数在∞处增加,0处取到最小值;当0<a<1时,幂函数在∞处减小,0处取到最大值;当a<0时,幂函数在定义域上是奇函数,图像关于原点对称。
二、幂函数的应用1. 幂函数与对数函数的关系:幂函数和对数函数是互为反函数的,即y=x^a和y=loga(x)是一对反函数。
这一性质在解决指数方程和对数方程时非常有用。
2. 幂函数的极限:对于幂函数y=x^a,当x趋近于正无穷时,幂函数趋近于正无穷;当x趋近于负无穷时,幂函数趋近于零。
这一性质在求解极限时常常会被用到。
3. 幂函数的应用:幂函数在物理学、生物学、经济学等领域具有广泛的应用。
例如,在物理学中,速度和加速度的计算常常涉及到幂函数的运算。
三、幂函数在高考中的常见题型解析1. 求解方程:高考经常出现要求解幂函数方程的题目,在解这类问题时,我们可以利用幂函数和对数函数互为反函数的特性,将幂函数方程转化为对数方程进行求解。
2. 判断性质:高考中会出现判断幂函数性质的题目,例如给出一个函数的图像,要求判断该函数的奇偶性、单调性等。
在解这类问题时,我们需要运用幂函数的性质和图像特点进行分析。
高考数学函数必考知识点总结
高考数学函数必考知识点总结高考数学中,函数是必考知识点,作为数学的重要基础概念,它是高考中经常涉及的内容之一。
本文将总结高考数学中函数必考知识点,希望对广大考生有所帮助。
一、函数的定义函数是一种特殊的映射,它将一个自变量映射到一个因变量上。
用数学语言来描述,如果有集合A和集合B,让A中的元素x代入函数f,就可以得到一个对应于x的唯一的B中的元素y,表示为y=f(x)。
二、常见函数类型1. 线性函数:y=kx+b,其中k为斜率,b为截距。
2. 幂函数:y=x^a,其中a为实数。
3. 指数函数:y=a^x,其中a为正数。
4. 对数函数:y=log_ax,其中a为正数,且a≠1。
5. 三角函数:包括正弦函数、余弦函数、正切函数等。
三、函数的性质1. 奇偶性:如果f(-x)=-f(x),则函数为奇函数;如果f(-x)=f(x),则函数为偶函数。
2. 单调性:如果在f(x)的定义域内,当x1<x2时,有f(x1)<f(x2),则函数为单调递增函数;如果在f(x)的定义域内,当x1<x2时,有f(x1)>f(x2),则函数为单调递减函数。
3. 周期性:如果对于定义域内任何一个实数x,都有f(x+T)=f(x),其中T为正实数,则称函数具有周期性。
四、函数的图像函数的图像是函数概念的重要表现形式。
在平面直角坐标系中,横轴表示自变量的取值范围,纵轴表示因变量的取值范围,用一条曲线把函数的所有点连起来就形成了函数的图像。
五、高考数学中的典型应用1. 函数与方程:利用函数的定义和性质,求解各种函数方程。
2. 极值问题:求解函数的极值和最值,通常需要用到导数概念和优化算法。
3. 算术与几何平均数的不等关系:用到数学分析中的积分概念。
4. 设计问题:通过构造函数和模型,来解决各种设计问题,如最优化设计、约束条件下的设计等。
总之,函数是数学的一个基础概念,也是高考中必考的知识点之一。
通过深入理解函数的定义和性质,加强对不同函数类型的认识和分析,练习各种函数的应用,能够帮助考生在高考数学中获得更好的成绩。
幂函数高考知识点总结
幂函数高考知识点总结幂函数是高中数学中非常重要的一部分内容,也是高考中经常出现的知识点之一。
幂函数在数学中具有广泛的应用,不仅仅体现在纵坐标的数值关系上,更是涉及到图像特征、函数性质以及解题方法等方面。
下面我将对幂函数的相关知识进行总结和梳理,希望对大家复习和备考有所帮助。
1、幂函数的定义和性质幂函数的一般形式可以表示为:f(x) = ax^b,其中a和b是常数,而x是变量。
其中,a称为幂函数的系数,b称为幂函数的指数。
幂函数的定义域由指数b的正负决定,若b为正整数,则定义域是全体实数;若b为负整数,则定义域是x ≠ 0的一切实数;若b为0,则幂函数的定义域是x > 0的一切实数。
当只考虑幂函数f(x)在正数定义域上的取值时,幂函数的图像可以分为两种情况:当a > 1时,图像呈现递增趋势;当0 < a < 1时,图像则呈现递减趋势。
2、幂函数的图像特征通过观察幂函数的图像,我们可以得出一些重要的结论。
首先,当幂函数的系数a为正数时,图像都经过第一象限的点(1, a)。
其次,当幂函数的指数b为奇数时,幂函数的图像对称于y轴;当幂函数的指数b为偶数时,幂函数的图像具有原点对称性。
除此之外,我们还可以通过改变系数a和指数b的值,来改变幂函数图像的特征,如峰值的高低、函数图像的陡峭程度等。
3、幂函数的运算与应用幂函数的求导是高中数学中的重要内容之一。
对于幂函数f(x) =ax^b,其中a为常数,b为实数,我们可以通过求导的方法来确定幂函数的导函数形式。
具体来说,当指数为整数时,我们可以利用幂函数的定义进行求导;当指数为实数且不为整数时,我们则需要利用对数函数的性质来求导。
此外,由于幂函数具有多种性质和特点,在解决实际问题时也能够提供很多启示和方法。
4、幂函数的解题技巧和例题分析在高考中,幂函数常常出现在各种数学题目中,因此熟练掌握幂函数的解题方法是非常重要的。
对于幂函数的解题技巧,我们可以利用以下几点进行分析和总结:首先,要熟悉幂函数的性质和特点,了解其图像形态和函数性质;其次,要能够根据题目给出的条件和要求,建立幂函数方程或不等式;最后,要善于运用数学方法和思维工具,进行合理的推导和计算。
高考数学知识点幂函数知识点知识点总结
高考数学知识点幂函数知识点知识点总结幂函数知识点总结幂函数是数学中重要的函数之一,也是高考数学中的考点内容。
本文将对幂函数的相关知识点进行总结,包括定义、性质、图像和应用等内容。
一、定义幂函数是指函数y = ax^n,其中a和n均为常数,且a ≠ 0,n为正整数。
其中,a称为幂函数的底数,n称为幂函数的指数。
幂函数的定义域为全体实数,值域根据指数的奇偶性而定。
当指数n为奇数时,值域为全体实数;当指数n为偶数时,值域为非负实数。
二、性质1. 当底数a大于1时,幂函数的图像随着自变量x的增大而增大;当底数a介于0和1之间时,幂函数的图像随着自变量x的增大而减小。
2. 当指数n为正整数时,幂函数的图像在第一象限上且经过点(1,a)。
3. 当指数n为奇数时,幂函数的图像关于y轴对称;当指数n为偶数时,幂函数的图像关于原点对称。
三、图像根据幂函数的性质,我们可以画出幂函数的大致图像。
以y = 2x^2为例,我们可以按照以下步骤绘制图像:1. 计算出若干个点的坐标,取x的值为-2,-1,0,1,2,3等,并计算出对应的y值。
2. 将这些点连接起来,形成平滑的曲线。
3. 注意幂函数的对称性,根据对称轴上的点可以在其他位置上找到对应的点。
四、应用幂函数在实际问题中有广泛的应用,其中一些典型的应用包括:1. 复利计算:由于幂函数的特性,它可以很好地描述复利增长的情况。
例如,存款的本金在每年按一定的比例增长,这就可以用幂函数来表示。
2. 科学实验:在某些科学实验中,现象的变化与自变量并非线性关系,而是呈现幂函数的规律。
通过研究幂函数的图像和性质,可以更好地理解实验结果。
3. 经济增长:幂函数也可以描述经济增长的规律。
例如,某地区的GDP每年按一定的比例增长,可以用幂函数来表示。
总结:幂函数是高考数学中的重要知识点,掌握了幂函数的定义、性质、图像和应用,能够解决与幂函数相关的各种问题。
在学习过程中,我们还可以通过练习题加深对幂函数的理解和应用能力。
幂函数-高考数学复习
(
1
2 ,则α= ,∴ f ( x )=
2
,∴ y = +1- x =-
1
5
5
2
- ) + ,∴所求最大值为 .故选B.
2
4
4
1
2
3
4
5
6
7
8
9
10
11
12
13
目录
5. 已知函数 f ( x )= x -3,若 a = f (0.60.6), b = f (0.60.4), c = f
幂函数
1. 通过具体实例,理解幂函数的概念.
2.
1
结合 y = x , y = , y = x 2, y =
变化规律.
, y = x 3的图象,理解它们的
目录
1
C O N T E N T S
2
3
知识 逐点夯实
考点 分类突破
课时 跟踪检测
PART
1
知识 逐点夯实
课前自修
必备知识 系统梳理 基础重落实
C. 是奇函数,且在(0,+∞)上单调递减
D. 是奇函数,且在(0,+∞)上单调递增
1
3
解析: 因为 f ( x )= ,故 f ( x )是奇函数,且在(0,+
∞)上单调递增,故选D.
目录
4.
1
已知α∈{-2,-1, ,1,2,3}.若幂函数 f ( x )= x α为奇函数,
2
且在(0,+∞)上单调递减,则α=
调递减
目录
1. 判断正误.(正确的画“√”,错误的画“×”)
1
3
(1)函数 y =2 是幂函数.
(
高考数学复习幂函数定义与性质知识点讲解
高考数学复习幂函数定义与性质知识点讲解依照同学们的需求,查字典数学网编辑老师整理了幂函数定义与性质知识点讲解,欢迎大伙儿关注!把握幂函数的内部规律及本质是学好幂函数的关键所在,下面是中华考试网为大伙儿整理的幂函数公式大全,期望对宽敞朋友有所关心。
定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情形如下:假如a为任意实数,则函数的定义域为大于0的所有实数;假如a为负数,则x确信不能为0,只是这时函数的定义域还必须根[据q的奇偶性来确定,即假如同时q 为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;假如同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情形如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域性质:关于a的取值为非零有理数,有必要分成几种情形来讨论各自的特性:第一我们明白假如a=p/q,q和p差不多上整数,则x^(p/q)=q次根号(x 的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是[0,+)。
当指数n是负整数时,设a=-k,则x=1/(x^k),明显x0,函数的定义域是(-,0)(0,+).因此能够看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就能够明白:排除了为0与负数两种可能,即关于x0,则a能够是任意实数;单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新奇事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积存的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
如此,即巩固了所学的材料,又锤炼了学生的写作能力,同时还培养了学生的观看能力、思维能力等等,达到“一石多鸟”的成效。
高三幂函数总结知识点
高三幂函数总结知识点幂函数是数学中的一种重要函数形式,它的形式为f(x) = ax^b,其中a和b都是常数,b表示幂指数。
在高三学习中,幂函数是一个重要的内容,本文将对高三幂函数的知识点进行总结。
一、函数的定义与基本性质1. 幂函数的定义:幂函数是指数为常数的函数,形式为f(x) =ax^b,其中a和b都是常数,a称为系数,b称为幂指数。
2. 幂函数的定义域:对于幂函数来说,定义域是实数集。
3. 幂函数的图像特点:当b为正数时,幂函数的图像在第一象限上增长,当b为负数时,则在第一象限上递减。
二、幂函数的分类根据幂指数b的取值,我们可以将幂函数进行分类。
1. 当b>0时,幂函数为正幂函数,图像随着x的增大而增大。
2. 当b=0时,幂函数为常数函数,图像为一条水平直线。
3. 当b<0时,幂函数为倒数函数,图像随着x的增大而减小。
三、幂函数的性质1. 对称性:当b为偶数时,幂函数的图像关于y轴对称;当b为奇数时,幂函数的图像关于原点对称。
2. 增减性:当b>0时,幂函数是递增函数;当b<0时,幂函数是递减函数。
3. 渐近线:当b>0时,幂函数的图像都有一条水平渐近线y=0;当b<0时,幂函数的图像都有一条垂直渐近线x=0。
四、幂函数与其他函数的关系在高三学习中,我们经常需要与其他函数进行比较与分析。
1. 幂函数与线性函数:当b=1时,幂函数退化为一次函数,即f(x) = ax。
2. 幂函数与指数函数:幂函数是指数函数的逆运算,即幂函数是指数函数的反函数。
3. 幂函数与对数函数:幂函数与对数函数是互逆函数关系,幂函数是对数函数的反函数,对数函数可以视为幂函数的解析式。
五、解题技巧与应用在高三数学中,幂函数是必考内容,掌握解题技巧和应用非常重要。
1. 求幂函数的零点:将幂函数设置为零,解方程得到x的值。
2. 求幂函数的最值:通过分析幂函数的增减性和图像特点,可以求得幂函数的最大值和最小值。
最新高中数学幂函数知识点总结
精品文档高中数学幂函数知识点总结(一)定义:的函数,即以底数为自变量幂为因变量,指数为常量)y=x^a(a为常数形如的函数称为幂函数。
定义域和值域:为任意实数,如果a当a为不同的数值时,幂函数的定义域的不同情况如下:,不过肯定不能为0如果a为负数,则x则函数的定义域为大于0的所有实数;xq为偶数,则据q的奇偶性来确定,即如果同时这时函数的定义域还必须根[则函为奇数,q0的所有实数;如果同时不能小于0,这时函数的定义域为大于幂函数的值域的不同为不同的数值时,的所有实数。
当x数的定义域为不等于0时,则0x小于的实数。
在x大于0时,函数的值域总是大于0情况如下:在才进入函数0a为正数,只有同时q为奇数,函数的值域为非零的实数。
而只有的值域性质:a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:对于p的x^(p/q)=q次根号(x和首先我们知道如果a=p/q,qp都是整数,则,是偶数,函数的定义域是q[0,如果q是奇数,函数的定义域是R,如果次方),函数的定义0x≠,显然是负整数时,设∞+)。
当指数na=-k,则x=1/(x^k)所受到的限制来源于两点,一是有可能x).+(00)(-域是∞,∪,∞因此可以看到精品文档.精品文档一是有可能在偶数次的根号下而不能为负数,那么我们就,作为分母而不能是0 可以知道:可以是任意实数;,则a 排除了为0与负数两种可能,即对于x>0不能是偶数;的所有实数,q这种可能,即对于x<0和x>0 排除了为0就不能是的所有实数,a即对于x为大于且等于0 排除了为负数这种可能,负数。
幂函数的定义域的不同情况如a为不同的数值时,总结起来,就可以得到当下:0的所有实数;如果a为任意实数,则函数的定义域为大于的q0,不过这时函数的定义域还必须根据如果a为负数,则x肯定不能为,这时函数的定义域为大0为偶数,则x不能小于奇偶性来确定,即如果同时q 的所有实数。
为奇数,则函数的定义域为不等于0于0的所有实数;如果同时q 0的实数。
幂函数、指数函数和对数函数 知识点梳理
幂函数、指数函数和对数函数知识点梳理
函数是高中数学的一个基本而重要的知识点,它的有关概念和理论是研究运动变化着的变量间相互依赖关系的规律的工具。
在高考试题中占有很大的比重。
在高中阶段是运用集合、对应的思想,即"映射"的观点去概括函数的一般定义,深化函数的概念。
函数作为中学数学的重要知识体系,不但其自身内容十分丰富,而且与不等式、数列、三角、复数、解析几何等都紧密相连,因此,要用运动变化,相互联系,相互制约,相互转化的观点和方法去分析问题和解决问题。
此外,还应重视数形结合,分类讨论,等价转化(包括变形,换元等)等重要的思想方法的运用,加强函数与各部分知识间的联系,加强综合运用知识和方法的能力,在函数复习中应给予高度的.现将有关知识点作如下归纳,供复习参考.
1.幂函数
(1)定义形如y=xα的函数叫幂函数,其中α为常数,在中学阶段只研究α为有理数的情形
2.指数函数和对数函数
(1)定义
指数函数,y=a x(a>0,且a≠1),注意与幂函数的区别.
对数函数y=log a x(a>0,且a≠1).
指数函数y=a x与对数函数y=log a x互为反函数.
(2)指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)的图象和性质如表1-2.
(3)指数方程和对数方程
指数方程和对数方程属于超越方程,在中学阶段只要求会解一些简单的特殊类型指数方程和对数方程,基本思想是将它们化成代数方程来解.其基本类型和解法见表1-3.。
幂函数知识点总结
幂函数知识点总结
受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a 就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学知识点:幂函数知识点_知识点总结
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。