《选区电子衍射SAED及衍射花样标定》

合集下载

电子衍射花样的标定方法

电子衍射花样的标定方法

电子衍射花样的标定方法1.标准花样对照法这种方法只适用于简单立方、面心立方、体心立方和密排六方的低指数晶带轴。

因为这些晶系的低指数晶带的标准花样可以在有的书上查到,如果得到的衍射花样跟标准花样完全一致,则基本上可以确定该花样。

不过需要注意的是,通过标准花样对照法标定的花样,标定完了以后,一定要验算它的相机常数,因为标准花样给出的只是花样的比例关系,而对于有的物相,某些较高指数花样在形状上与某些低指数花样十分相似,但是由两者算出来的相机常数会相差很远。

所以即使知道该晶体的结构,在对比时仍然要小心。

2.尝试-校核法a)量出透射斑到各衍射斑的矢径的长度,利用相机常数算出与各衍射斑对应的晶面间距,确定其可能的晶面指数;b)首先确定矢径最小的衍射斑的晶面指数,然后用尝试的办法选择矢径次小的衍射斑的晶面指数,两个晶面之间夹角应该自恰;c)然后用两个矢径相加减,得到其它衍射斑的晶面指数,看它们的晶面间距和彼此之间的夹角是否自恰,如果不能自恰,则改变第二个矢径的晶面指数,直到它们全部自恰为止;d)由衍射花样中任意两个不共线的晶面叉乘,即可得出衍射花样的晶带轴指数。

尝试-校核法应该注意的问题对于立方晶系、四方晶系和正交晶系来说,它们的晶面间距可以用其指数的平方来表示,因此对于间距一定的晶面来说,其指数的正负号可以随意。

但是在标定时,只有第一个矢径是可以随意取值的,从第二个开始,就要考虑它们之间角度的自恰;同时还要考虑它们的矢量相加减以后,得到的晶面指数也要与其晶面间距自恰,同时角度也要保证自恰。

另外晶系的对称性越高,h,k,l之间互换而不会改变面间距的机会越大,选择的范围就会更大,标定时就应该更加小心。

3.查表法(比值法)-1a)选择一个由斑点构成的平行四边形,要求这个平行四边形是由最短的两个邻边组成,测量透射斑到衍射斑的最小矢径和次小矢径的长度和两个矢径之间的夹角r1, r2,θ;b)根据矢径长度的比值r2/r1 和θ角查表,在与此物相对应的表格中查找与其匹配的晶带花样;c)按表上的结果标定电子衍射花样,算出与衍射斑点对应的晶面的面间距,将其与矢径的长度相乘看它等不等于相机常数(这一步非常重要);d)由衍射花样中任意两个不共线的晶面叉乘,验算晶带轴是否正确。

电子衍射及衍射花样标定讲解

电子衍射及衍射花样标定讲解
成以❖入电衍射子射电束成子照像射原束多理为晶与、多轴纳晶、米X射2晶q线体为衍时射, 衍射圆锥相2似q。不同,但各衍射圆
❖ 不产生消光的晶面均有机会产 生衍射。
3.多晶体电子衍射花样
花样
➢与X射线衍射法所得花样的几何特征相似,由一系列不同 半径的同心圆环组成,是由辐照区内大量取向杂乱无章的细 小晶体颗粒产生,d值相同的同一(hkl)晶面族所产生的衍射 束,构成以入射束为轴,2θ为半顶角的圆锥面,它与照相底 板的交线即为半径为R=Lλ/d=K/d的圆环。 ➢R和1/d存在简单的正比关系 ➢对立方晶系:1/d2=(h2+k2+l2)/a2=N/a2 ➢通过R2比值确定环指数和点阵类型。
❖微束选区衍射 ----用微细的入射束直接在样品上选择 感兴趣部位获得该微区衍射像。电子束可聚焦很细, 所选微区可小于0.5m 。可用于研究微小析出相和单 个晶体缺陷等。目前已发展成为微束衍射技术。
透射电镜光路图
电子衍射花样特征
单晶
多晶
非晶
准晶(quasicrystals)
分布集合而成一半径为1/d的 园环,因3.此多,晶样体品电各子晶衍粒射花样
[001]
晶带定律:若晶面(hkl)属于晶 带轴[uvw], 则有 hu+kv+lw=0 这就是晶带定理。
已知两晶面,求其晶带轴
如果(h1k1l1)和(h2k2l2)是[uvw]晶带中的两个晶 面,则由方程组 h1u+k1v+l1w=0和h2u+k2v+l2w=0 得出 [uvw]的解是 (这应该是在立方晶体中,因为只有在 立方晶体中与某晶面指数相同的晶向才与该晶面垂 直。)
K=Rd=( )mm.nm
2.电子显微镜中的电子衍射

选区电子衍射SAED-PPT课件

选区电子衍射SAED-PPT课件


四氧化三铁
原子对电子的散射强度远高于原子对X射线的散射强度;
3
与 X 射线的衍射一样,电子衍射也有衍射的目的是进行微区的结 构分析,因此,需要的是衍射斑点或衍射线的位置,而不是强 度,因此,电子衍射中主要分析的是其方向问题。而衍射强度 在X射线的衍射分析中则起着非常重要的作用。 电子衍射方向与X射线一样,同样决定于布拉格方程:
8
选区电子衍射的准确性: 1)物镜球差的影响。 2)物镜聚焦的影响。
TiO2纳米材料


晶体可视化软件——可以模拟选区电子衍射和粉末 衍射 包含CrystalMaker、CrystalDiffract (模拟粉末衍射)、 SingleCrystal(模拟选区电子衍射)、 Crystal.Impact.Diamond
4
当电子波的波长小于两倍晶面间距时,才能发 生衍射。常见晶体的晶面间距都在0. 2 ~ 0. 4 nm 之间,电子波的波长一般在 0. 00251 ~ 0.00370 nm ,因此,电子束在晶体中产生衍射是不成问 题的。且其衍射半角 θ 极小,一般在 10-3 ~ 10-2 rad之间。
5
选区电子衍射SAED基本原理
2
电子衍射
电子衍射在材料科学中已得到广泛应用,主要用于材料的物 相和结构分析、晶体位向的确定和晶体缺陷及其晶体学特征的 表征等三个方面。 电子衍射与X射线衍射的异同点 电子衍射的原理与X射线的衍射原理基本相似, 根据与电子束作用单元的尺寸不同, 分为原子对电子束的散射、单胞对电子束的散射和单晶体对 电子束的散射有3种。 原子对电子的散射又包括原子核和核外电子两部分的散射, 这不同于原子对 X射线的散射,因为原子中仅核外电子对 X 射 线产生散射,而原子核对X射线的散射反比于自身质量的平方, 相比于电子散射就可忽略不计

电子衍射标定

电子衍射标定
Miller指数的符号应满足右手螺旋法则,该法则决定了两基本 矢量与晶带轴之间的关系 两个基本矢量的线性组合,一定能标出属于相同Laue 区的所 有衍射斑点的指数
21

单晶体电子衍射花样
花样特征 规则排列的衍射斑点。它是过倒易点阵 原点的一个二维倒易面的放大像。 大量强度不等的衍射斑点。有些并不精 确落在Ewald球面上仍能发生衍射,只是 斑点强度较弱。倒易杆存在一个强度分布。
电子衍射标定
赵彪 2012,10,13
1
晶体结构与空间点阵
空间点阵+结构基元=晶体结构 晶面:(hkl),{hkl} 用面间距和晶面法向来 表示 晶向: [uvw], <uvw> 晶带:平行晶体空间同一晶向的所有晶面的 总称 ,[uvw]
2
q
q
A
反射面法线
q E B F
布拉格反射
2d sinq = n l, 2dHKL sinq =l , 选择反射,是产生衍射的必要条件,但不充分
30
A C B D
低碳合金钢基体的电子衍射花样
31
图是由某低碳合金钢薄膜样品的区域记录的单晶 花样,以些说明分析方法: 选中心附近A、B、C、D四斑点, 测得RA=7.1mm,RB=10.0mm,RC= 12.3mm,RD=21.5mm,同时用量角器测 得R之间的夹角分别为(RA, RB)=900, (RA, RC)=550, (RA, RD)=710, 求得R2比值为2:4:6:18, RB/RA=1.408, RC/RA=1.732, RB/RA=3.028, 表明样品该区为体心立方点阵,A斑N为2, {110},假定A为(1-10)。B斑点N为4,表明 属于{200}晶面族,选(200),代入晶面夹 角公式得f=450,不符,发现(002)相符

电子衍射及衍射花样标定ppt

电子衍射及衍射花样标定ppt
研究土壤、水等环境样品的成分和结构。
研究人体组织、细胞等生物样品的结构和功能。
02
电子衍射实验结果分析
03
数据处理与筛选
对采集到的数据进行处理和筛选,去除异常值和噪声,确保数据的质量和可靠性。
实验数据收集与整理
01
选择合适的实验条件
根据需要选择适当的加速电压、束流强度、样品厚度等实验条件,以确保实验数据的可靠性和稳定性。
药物设计与筛选
基于生物大分子的结构信息,电子衍射技术可用于药物设计与筛选,发现能够与目标分子结合的药物分子,提高药物研发的效率和成功率。
药效机制研究
01
通过对药物作用靶点的结构分析,电子衍射技术有助于研究药物的疗效机制和作用方式。
药物研发与筛选
药物优化设计
02
基于药物的靶点结构和药效机制,电子衍射技术可以优化药物设计,提高药物的疗效和降低副作用。
研究材料合成方法
新材料研发
04
电子衍射技术在医学及生物学中的应用
医学影像分析
高分辨率成像
电子衍射技术能够提供医学影像的高分辨率成像,有助于诊断病情和评估治疗效果。
蛋白质结构分析
通过电子衍射技术,可以解析蛋白质的三维结构,有助于研究蛋白质的功能和作用机制。
生物大分子结构解析
核酸结构研究
电子衍射技术也可用于研究核酸的结构,如DNA和RNA的双螺旋结构和高级结构,揭示遗传信息的传递和表达调控机制。
高能电子衍射技术的发展将促进材料科学、物理学和化学等学科的交叉与融合。
03
原位电子衍射技术的应用将推动材料科学、物理化学等领域的发展,为实际应用提供更多有价值的信息。
原位电子衍射技术应用
01
原位电子衍射技术能够实时观察材料在特定条件下的结构变化。

电子衍射及衍射花样标定

电子衍射及衍射花样标定

4.单晶电子衍射花样标定
单晶电子衍射花样标定实例 例1,如图为某一电子衍射花样,试标定。已知, RA=7.3mm,RB=12.7mm,RC=12.6mm, RD=14.6mm,RE=16.4mm,=73; 加速电压200kV,相机长度800mm。
C B E
000 A D
4.单晶电子衍射花样标定
要求在这些已知结构中找出符合的结构来。
4.单晶电子衍射花样标定
单晶电子衍射花样的指数化标定基本程序 主要方法有:
尝试-校核法
标准花样对照法
标定步骤:
1)选择靠近中心且不在一直线上
的几个斑点,测量它们的R值; 2)利用R2比值的递增规律确定点阵类型和这几个斑点所属的晶面 族指数{hkl}。 如果已知样品和相机常数,可分别计算产生这几个斑点的晶面间 距(R=K/d),并与标准d值比较直接写出{hkl};


与测量值不一致。测量值(RARB)90o 4 )假定B 为 002,与测量值一致。 所以 A= 1 1and B=002 0 由矢量合成法, 得知:
R R R 1 1 0 002 1 1 2 c A B
5)算出 (RARC)=57.74o 与测量值一致( 55o).
4.单晶电子衍射花样标定
不x射线衍射法所得花样的几何特征相似由一系列丌同半径的同心圆环组成是由辐照区内大量叏向杂乱无章的细小晶体颗粒产生d值相同的同一hkl晶面族所产生的衍射束构成以入射束为轴2为半顶角的园锥面它与照相底板的交线即为半径为rldkd的圆环
电子衍射及衍射 花样标定
主要内容
1.电子衍射的原理 2.电子显微镜中的电子衍射 3.多晶体电子衍射花样 4.单晶电子衍射花样标定 5.复杂电子衍射花样

电子衍射及衍射花样标定精品文档

电子衍射及衍射花样标定精品文档

4.单晶电子衍射花样标定
5)任取不在同直线上的两个斑点 (如h1k1l1和h2k2l2 ) 确定晶带轴指数[uvw]。
求晶带轴指数:逆时针法则
h2k2l2
排列按逆时针
h1k1l1
[ uvw ] R 1 R 2 h1 k1 l1 h1 k1 l1 h2 k2 l2 h2 k2 l2
17.46mm,20.06mm,28.64mm,33.48mm;对应指数 (111),(200),(220),(311); 对应面间距d分别为 0.2355nm,0.2039nm,0.1442nm,0.1230nm
K=Rd
2.电子显微镜中的电子衍射
选区电子衍射
选区衍射就是在样品上选择一个感兴趣的区域,并限制其大小,得 到该微区电子衍射图的方法。也称微区衍射。两种方法:
4 5.05
8 10.1
8
10
220 310
220 301
验证 g 110 g 211 73 1 3
11 0 1 1 0
晶带轴为 113[ ],或倒易1面 13) 为 (
21 1 2 11
此为体心立方, 数a点 0阵 .3常 88nm
11 3
4.单晶电子衍射花样标定
例2:下图为某物质的电子衍射花样 ,试指标化并求其晶 胞参数和晶带方向。
3)会聚束花样:会聚束与单晶作用产生盘、线状花样;可以 用来确定晶体试样的厚度、强度分布、取向、点群、空间
群以及晶体缺陷等。
1.电子衍射的原理
入射束
厄瓦尔德球
o
试样
1 2q 1
L1d GFra bibliotek倒易点阵
o
G 底板
R
电子衍射花样形成示意图

选区电子衍射SAED及衍射花样标定

选区电子衍射SAED及衍射花样标定
选区电子衍射SAED
-------------选区电子衍射 衍射花样的标定
电子衍射
是指入射电子与晶体作用后,发生弹性散射的电子, 由于其波动性,发生了相互干涉作用,在某些方向上 得到加强,而在某些方向上则被削弱的现象。
在相干散射增强的方向上产生电子衍射束。根据能量的高低:
电子衍射
低能电子衍射:电子能量较低,加速电压仅有 10~500 V,主要用于表面的结构分析
高能电子衍射:高能电子衍射的电子能量高,加速 电压一般在100 kV以上,透射电镜 采用的就是高能电子束。
2
电子衍射在材料科学中已得到广泛应用,主要用于材料的物 相和结构分析、晶体位向的确定和晶体缺陷及其晶体学特征的 表征等三个方面。
电子衍射与X射线衍射的异同点 电子衍射的原理与X射线的衍射原理基本X射线的散射强度;
3
与X射线的衍射一样,电子衍射也有衍射的方向和强度,但 由于电子衍射束的强度一般较强,衍射的目的是进行微区的结 构分析,因此,需要的是衍射斑点或衍射线的位置,而不是强 度,因此,电子衍射中主要分析的是其方向问题。而衍射强度 在X射线的衍射分析中则起着非常重要的作用。
5
选区电子衍射SAED基本原理
选区电子衍射(SAED,selected area electron diffraction)
由选区形貌观察与电子衍射结构分析的微区对应性, 实现晶体样品的形貌特征与晶体学性质的原位分析。
简单地说,选区电子衍射借助设置在物镜像平面的 选区光栏,可以对产生衍射的样品区域进行选择, 并对选区范围的大小加以限制,从而实现形貌观察 和电子衍射的微观对应。
根据与电子束作用单元的尺寸不同, 分为原子对电子束的散射、单胞对电子束的散射和单晶体对 电子束的散射有3种。

电子衍射及衍射花样的标定

电子衍射及衍射花样的标定

电子衍射原理
电子衍射花样特征
单晶体:一般为斑点花样
多晶体:同心圆环状花样
非晶态:漫散的中心斑点
电子衍射原理
Bragg 定律
相邻两束衍射波的光程差为波长 的整数倍时, 干涉加强,即相邻晶面间衍射线 干涉加强的条件:2dsinθ=nλ d=晶面间距 λ=电子波长 θ= Bragg衍射角
电子衍射花样形成示意图
电子衍射及衍射花样的标定
Section header
概述
Section header
Section header
Section header
Section header
电子衍射原理 电镜中的电子衍射
单晶体的衍射花样
单晶体电子衍射花样标定
单晶体衍射花样
衍射花样的形成
单晶体衍射花样是由反射球与一个倒易 平面上的倒易杆相交形成的。 透射斑点与倒易原点相对应,衍射斑点分 别与各倒易点相对应,衍射花样是满足衍 射条件的倒易平面的放大像。
相机常数
衍射花样的投影距离: r=Ltan2θ 当θ很小时,tan2θ=2θ sinθ=θ 联立布拉格方程2d sinθ=λ得到: rd=L λ=相机常数
电镜中的电子衍射
选区电子衍射
常用的方法:光阑选区衍 射光阑选区衍射——用位 于物镜像平面上的选区光 阑限制微区大小。 操作:先在明场像上找到 感兴趣的微区,将其移到 荧光屏中心,在用选区光 阑套住微区而将其余部分 挡掉。
电子衍射原理
倒易点阵 定义:满足下面关系式 ai ·aj*=1,当i=j ai ·aj*=0,当i≠j (i,j=1,2,3) 则以aj*为基本矢量的点阵式原晶体点阵 的倒易点阵 性质: (a)倒易矢量ghkl垂直于正点阵中相应的(hkl)晶面 (b)倒易点阵中的一个点代表的是正点阵中的一组晶 面

演讲稿选区电子衍射SAED.ppt

演讲稿选区电子衍射SAED.ppt
原子对电子的散射强度远高于原子对X射线的散射强度;
.,.,
3
与X射线的衍射一样,电子衍射也有衍射的方向和强度,但 由于电子衍射束的强度一般较强,衍射的目的是进行微区的结 构分析,因此,需要的是衍射斑点或衍射线的位置,而不是强 度,因此,电子衍射中主要分析的是其方向问题。而衍射强度 在X射线的衍射分析中则起着非常重要的作用。
.,.,
8
选区电子衍射的准确性: 1)物镜球差的影响。 2)物镜聚焦的影响。
.,.,
9
.,.,
10
.,.,
11
TiO2纳米材料
.,.,
12
.,.,
13
晶体可视化软件——可以模拟选区电子衍射和粉末 衍射
包含CrystalMaker、CrystalDiffract (模拟粉末衍射)、 SingleCrystal(模拟选区电子衍射)、 Crystal.Impact.Diamond

.,.,
6
选区电子衍射的基本原理见图。选区光栏用于挡住 光栏孔以外的电子束,只允许光栏孔以内视场所对 应的样品微区的成像电子束通过,使得在荧光屏上 观察到的电子衍射花样仅来自于选区范围内晶体的 贡献。
实际上,选区形貌观察和电子衍射花样.,., 不能完全对 7
选区电子衍射的操作: 1) 在成像的操作方式下,使物镜精确聚焦,获得清
晰的形貌像。
2) 插入并选用尺寸合适的选区光栏围住被选择的视 场。
3) 减小中间镜电流,使其物平面与物镜背焦面重合, 转入衍射操作方式。对于近代的电镜,此步操作可 按“衍射”按钮自动完成。
4) 移出物镜光栏,在荧光屏上显示电子衍射花样可 供观察。
5) 需要拍照记录时,可适当减小第二聚光镜电流, 获得更趋近平行的电子束,使衍射斑点尺寸变小。

电子衍射及衍射花样标定资料讲解

电子衍射及衍射花样标定资料讲解
电子衍射及衍射花样标定
1.电子衍射的原理 -Bragg定律
l
θO
θ
d
θR
θ
dsinqP l/2
d
2d·sinq = l
❖ 各晶面的散射线干涉加强的条件是光程差为波长的整数倍,即 2dsinθ=nλ 即Bragg定律,是产生衍射的必要条件。
❖ 但是满足上述条件的要求,也未必一定产生衍射,这样,把满足布拉 格条件而不产生衍射的现象称为结构消光。
即 u=k1l2-l1k2,v=l1h2-h1l2,w=h1k2-k1h2
电子衍射基本公式
由图可知:
衍射花样投影距离:R=Ltan2θ

当θ很小
tan2θ≈2θ
sinθ≈θ
∴ tan2θ=2 sinθ ∴ R=L2 sinθ 由布拉格方程;2d Nhomakorabeainθ=λ
得到:Rd=Lλ=K
这就是电子衍射基本公式。
[001]
晶带定律:若晶面(hkl)属于晶 带轴[uvw], 则有 hu+kv+lw=0 这就是晶带定理。
已知两晶面,求其晶带轴
如果(h1k1l1)和(h2k2l2)是[uvw]晶带中的两个晶 面,则由方程组 h1u+k1v+l1w=0和h2u+k2v+l2w=0 得出 [uvw]的解是 (这应该是在立方晶体中,因为只有在 立方晶体中与某晶面指数相同的晶向才与该晶面垂直 。)
❖ 表达花样对称性的基本单元为平行四边形。
•平行四边形可用两边夹一角来表征。 •平行四边形的选择: •最短边原则:R1<R2<R3<R4 •锐角原则:60°≤θ≤90° •如图所示,选择平行四边形。
已知 h1k1l1 和 h2k2l2 可求 h3=h1+h2 k3=k1+k2 L3=L1+L2

材料研究方法电子衍射花样与标定

材料研究方法电子衍射花样与标定

k2 1
l2 1
h2 2
k2 2
l2 2
算出任意两个衍射斑点的夹角。核对夹角,若符合则标定正确,否则重返设定新的晶面, 直至符合为止。
3)矢量法得其它各点。并由矢量叉乘得晶带轴指数,晶带轴与电子束的入射方向反向平行。
4)核查各过程,计算晶格常数。
四、单晶体电子衍射花样的标定
2. 未知晶体结构的花样标定
未知晶体结构时,可由N规律,初步确定其结构,再定其晶面指数。 举例2 已知相机常数K=1.700mm.nm,各直径见表,确定物相。
由N的规律确定为BCC结构,由d=Lλ/r得d,查ASTM卡片发现α-Fe最符,故为α-Fe相。
谢谢!再见!
五、多晶体的电子衍射花样
多晶体的电子衍射花样等同于多晶体的X射线衍射花样,为系列同心圆。 其花样标定相对简单,同样分以下两种情况: 1.已知晶体结构 具体步骤如下: 1)测定各同心圆直径Di,算得各半径Ri; 2)由Ri/K(K为相机常数)算得1/di; 3)对照已知晶体PDF卡片上的di值,直接确定各环的晶面指数{hkl}。 2.未知晶体结构
四、单晶体电子衍射花样的标定
6)由确定了的两个斑点指数(h1k1l1)和(h2k2l2),通过矢量合成其它点
7)定出晶带轴。
u k1l 2 k 2l1
v
l1h2
l 2h1
w h1k 2 h2k1
8)系统核查各过程,算出晶格常数。
举例1已知纯镍(fcc)简单电子 衍射花样(a=0.3523nm),花样 见图,定谱。
当晶体的点阵结构未知时,首先分析斑点的特点,确定其所属的点阵结构,然后再由前面所 介绍的8步骤标定其衍射花样。如何确定其点阵结构呢?主要从斑点的对称特点(见表6-1) 或1/d2值的递增规律(见表6-2)来确定。 花样标定的具体步骤: 1)判断是否简单电子衍射谱。如是则选择三个与中心斑点最近斑点:P1、 P2、P3,并与中心构成平行四边形,并测量三个斑点至中心的距离ri。 2)测量各衍射斑点间的夹角。 3)由rd=Lλ,将测的距离换算成面间距di。 4)由试样成分及处理工艺及其它分析手段,初步估计物相,并找出相应的卡片,与实验得到 的di对照,得出相应的{hkl}. 5)用试探法选择一套指数,使其满足矢量叠加原理。 6)由已标定好的指数,根据ASTM卡片所提供的晶系计算相应的夹角,检验计算的夹角是否 与实测的夹角相符。 7)若各斑点均已指数化,夹角关系也符合,则被鉴定的物相即为STAM卡片相,否则重新标 定指数。

电子衍射花样标定

电子衍射花样标定

复合斑点
[011]γ
[001- ]α
022γ
1- 11γ 011 // 001
111γ
110α
000
020α
1-10α
011 // 001
111
//
110


例2. Mg2SiO4 a=4.67, b=10.2, c=5.99
K 为相机常数,单位:mm.Å
已知相机常数K,就可根据底板上测得的R值算出 衍射晶面d值,同时根据R的方位,可知道衍射晶 面的位置(R 垂直与衍射晶面)。
五. 结构消光规律
衍射束的强度I(hkl) 和结构因素F(hkl)有关,
即 I (hkl) ∝∣F (hkl)∣2
F (hkl)表示晶体中单位晶胞内所有原子的 散射波在(hkl)晶面衍射束方向上的振幅之
和。
F (hkl)=0 叫结构消光
N
F(hkl) f j exp[ 2i(hx j kyj lz j )] j 1
共轭复数公式
exp[2i(hxj kyj lz j )] =cos2 (hxj kyj lzj) i sin 2 (hxj kyj lzj)
及计算过程)。
R1=10.2mm, R2=10.2mm R3=14.4mm , R1和R2间夹角为90°
R1=10.0mm, R2=10.0mm, R3=16.8mm, R1和R2间夹角为70°
[011]γ
022γ 111γ
-111γ 000
1 1 1 1 11
0 2 20 2 2 0 -2 2
k = 2.15mm.nm
Ri di
4.3 5 8.8 2.44 8.8 2.44 10.5 2.05

saed多晶衍射环标定

saed多晶衍射环标定

saed多晶衍射环标定
多晶衍射环标定是一种常见的实验方法,用于确定材料中晶体的
晶格常数和晶向。

在SAED图像中,多晶衍射环出现在衍射斑点的周围,每个衍射环对应材料中的一个晶面族。

SAED多晶衍射环标定的步骤如下:
1. 从SAED图像中选择一组清晰明显的衍射环,这些衍射环最好
是无重叠、大小相似的。

2. 确定所选衍射环的半径和圆心位置,并用像素单位记录。

3. 查找并记录每个衍射环对应的晶面族指数(hkl)。

通过比对衍
射环的位置和强度,可以确定每个衍射环对应的晶面族。

4. 利用已知晶面族的理论晶格常数和晶面族指数,建立标定曲线。

通过拟合实验测得的衍射环半径和对应的晶面族指数,可以得到
晶格常数。

5. 对于复杂的多晶体材料,可能需要进行多次衍射环标定来得
到更准确的晶格常数。

需要注意的是,SAED多晶衍射环标定的过程中应尽量减小误差。

选择清晰明显的衍射环、准确确定衍射环位置和测量衍射环半径都是
减小误差的关键步骤。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的准确性: 1)物镜球差的影响。 2)物镜聚焦的影响。
TiO2纳米材料
晶体可视化软件——可以模拟选区电子衍射和粉末 衍射
包含CrystalMaker、CrystalDiffract (模拟粉末衍射)、 SingleCrystal(模拟选区电子衍射)、 Crystal.Impact.Diamond
原子对电子的散射强度远高于原子对X射线的散射强度;
3
与X射线的衍射一样,电子衍射也有衍射的方向和强度,但 由于电子衍射束的强度一般较强,衍射的目的是进行微区的结 构分析,因此,需要的是衍射斑点或衍射线的位置,而不是强 度,因此,电子衍射中主要分析的是其方向问题。而衍射强度 在X射线的衍射分析中则起着非常重要的作用。
高能电子衍射:高能电子衍射的电子能量高,加速 电压一般在100 kV以上,透射电镜 采用的就是高能电子束。
2
电子衍射在材料科学中已得到广泛应用,主要用于材料的物 相和结构分析、晶体位向的确定和晶体缺陷及其晶体学特征的 表征等三个方面。
电子衍射与X射线衍射的异同点 电子衍射的原理与X射线的衍射原理基本相似,
5
选区电子衍射SAED基本原理
选区电子衍射(SAED,selected area electron diffraction)
由选区形貌观察与电子衍射结构分析的微区对应性, 实现晶体样品的形貌特征与晶体学性质的原位分析。
简单地说,选区电子衍射借助设置在物镜像平面的 选区光栏,可以对产生衍射的样品区域进行选择, 并对选区范围的大小加以限制,从而实现形貌观察 和电子衍射的微观对应。

选区电子衍射的基本原理见图。选区光栏用于挡住 光栏孔以外的电子束,只允许光栏孔以内视场所对 应的样品微区的成像电子束通过,使得在荧光屏上 观察到的电子衍射花样仅来自于选区范围内晶体的 贡献。
实际上,选区形貌观察和电子衍射花样不能完全对
选区电子衍射的操作: 1) 在成像的操作方式下,使物镜精确聚焦,获得清
电子衍射方向与X射线一样,同样决定于布拉格方程:
4
当电子波的波长小于两倍晶面间距时,才能发
生衍射。常见晶体的晶面间距都在0. 2 ~ 0. 4 nm 之间,电子波的波长一般在0. 00251 ~ 0.00370 nm,因此,电子束在晶体中产生衍射是不成问 题的。且其衍射半角θ极小,一般在10-3 ~ 10-2 rad之间。
选区电子衍射SAED
-------------选区电子衍射 衍射花样的标定
电子衍射
是指入射电子与晶体作用后,发生弹性散射的电子, 由于其波动性,发生了相互干涉作用,在某些方向上 得到加强,而在某些方向上则被削弱的现象。
在相干散射增强的方向上产生电子衍射束。根据能量的高低:
电子衍射
低能电子衍射:电子能量较低,加速电压仅有 10~500 V,主要用于表面的结构分析
根据与电子束作用单元的尺寸不同, 分为原子对电子束的散射、单胞对电子束的散射和单晶体对 电子束的散射有3种。
原子对电子的散射又包括原子核和核外电子两部分的散射, 这不同于原子对X射线的散射,因为原子中仅核外电子对X射 线产生散射,而原子核对X射线的散射反比于自身质量的平方, 相比于电子散射就可忽略不计
四氧化三铁
晰的形貌像。 2) 插入并选用尺寸合适的选区光栏围住被选择的视
场。 3) 减小中间镜电流,使其物平面与物镜背焦面重合,
转入衍射操作方式。对于近代的电镜,此步操作可 按“衍射”按钮自动完成。 4) 移出物镜光栏,在荧光屏上显示电子衍射花样可 供观察。 5) 需要拍照记录时,可适当减小第二聚光镜电流, 获得更趋近平行的电子束,使衍射斑点尺寸变小。
相关文档
最新文档