2020挑战压轴题中考数学强化训练专题

合集下载

2020年中考数学压轴题(含答案)

2020年中考数学压轴题(含答案)

2020年中考数学压轴题一、选择题1.如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0°<α<120°)得到△AB′C′,B′C′与BC,AC分别交于点D,E.设CD+DE=x,△AEC′的面积为y,则y与x的函数图象大致()A.B.C.D.2.如图,⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,O1O2=8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD的边只有一个公共点的情况一共出现()A.3次B.5次C.6次D.7次二、填空题3.如图所示,菱形ABCD的对角线AC、BD相交于点O.若AC=6,BD=8,AE⊥BC,垂足为E,则AE的长为.第3题第4题4.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B →A的方向运动,点Q以1cm/s的速度从A点出发沿着A→C的方向运动,当点P到达点A时,点Q 也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为.三、解答题5.如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x轴和y轴的正半轴上,连结AC,OA=3,∠OAC=30°,点D是BC的中点,(1)OC=:点D的坐标为(2)若点E在线段0A上,直线DE把矩形OABC面积分成为2:1,求点E坐标;(3)如图2,点P为线段AB上一动点(与A、B重合),连接DP;①将△DBP沿DP所在的直线翻折,若点B恰好落在AC上,求此时BP的长;②以线段DP为边,在DP所在直线的右上方作等边△DPQ,当动点P从点B运动到点A时,点Q也随之运动,请直接写出点Q运动路径的长.6.如图,抛物线y=ax2+bx+4交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求抛物线的解析式;(2)点P是抛物线上一点,设P点的横坐标为m.①当点P在第一象限时,过点P作PD⊥x轴,交BC于点D,过点D作DE⊥y轴,垂足为E,连接PE,当△PDE和△BOC相似时,求点P的坐标;②请直接写出使∠PBA=∠ABC的点P的坐标.【答案与解析】一、选择题1.【分析】可证△ABF≌△AC′E(AAS)、△CDE≌△B′DF(AAS),则B′D+DE=CD+ED=x,y=EC′×△AEC′的EC′边上的高,即可求解.【解答】解:∵△ABC绕点A逆时针旋转α,设AB′与BC交于点F,则∠BAB′=∠CAC′=α,∠B=∠C′=30°,AB=AC=AC′,∴△ABF≌△AC′E(AAS),∴BF=C′E,AE=AF,同理△CDE≌△B′DF(AAS),∴B′D=CD,∴B′D+DE=CD+ED=x,AB=AC=2,∠B=30°,则△ABC的高为1,等于△AEC′的高,BC=2=B′C′,y=EC′×△AEC′的EC′边上的高=(2)=﹣x+,故选:B.2.【分析】根据⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,设O1O2交圆O于M,求出PM=4,得出圆O1与以P为圆心,以4为半径的圆相外切,即可得到答案.【解答】解:∵⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,设O1O2交圆O于M,∴PM=8﹣3﹣1=4,圆O1与以P为圆心,以4为半径的圆相外切,∴根据图形得出有5次.故选:B.二、填空题3.【分析】利用菱形的面积公式:•AC•BD=BC•AE,即可解决问题;【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=3,OB=OD=4,∴AB=BC=5,∵•AC•BD=BC•AE,∴AE=,故答案为:,4.【分析】应分两种情况进行讨论:①当PQ⊥AC时,△APQ为直角三角形,根据△APQ∽△ABC,可将时间t求出;②当PQ⊥AB时,△APQ为直角三角形,根据△APQ∽△ACB,可将时间t求出.【解答】解:∵AB是直径,∴∠C=90°,又∵BC=2cm,∠ABC=60°,∴AB=2BC=4,AC=2,则AP=(4﹣2t)cm,AQ=t,∵当点P到达点A时,点Q也随之停止运动,∴0<t≤2,①如图1,当PQ⊥AC时,PQ∥BC,则△APQ∽△ABC,∴,∴,解得t=3﹣,②如图2,当PQ⊥AB时,△APQ∽△ACB,则,故,解得t=,故答案为:3﹣,.三、解答题5.【分析】(1)在Rt△AOC中,解直角三角形求出OC即可解决问题.(2)设E(m,0).由题意,分两种情形:S四边形OEDC=•(CD+OE)•OC=•S矩形OABC或S四边形OEDC=•(CD+OE)•OC=•S矩形OABC,分别构建方程即可解决问题.(3)①如图1﹣1中,在Rt△DPB中,解直角三角形求出PB即可.②如图2中,以BD为边向上作等边三角形DBQ′,连接QQ′.证明△Q′DQ≌△BDP(SAS),推出QQ′=PB,∠DQ′Q=∠DBP=90°,推出点Q的运动轨迹是线段QQ′,即可解决问题.【解答】解:(1)如图1中,∵四边形OABC是矩形,∴∠AOC=90°,∵OA=3,∠OAC=30°,∴OC=OA•tan30°=,故答案为,(,).(2)设E(m,0).由题意,S四边形OEDC=•(CD+OE)•OC=•S矩形OABC或S四边形OEDC=•(CD+OE)•OC=•S矩形OABC,∴•(CD+OE)•OC=×3×或•(CD+OE)•OC=×3×,∴•(+m)•=×3×或•(+m)•OC=×3×,解得,m=4﹣或2﹣.(3)①如图1﹣1中,∵tan∠OAC=,∴∠OAC=30°,∴∠ACB=∠OAC=30°,设将△DBP沿DP所在的直线翻折后,点B恰好落在AC上的B'处,则DB'=DB=DC,∠BDF=∠B'DF,∴∠DB'C=∠ACB=30°∴∠BDB'=60°,∴∠BDP=∠B'DF=30°,∴BP=BD•tan30°=,②如图2中,以BD为边向上作等边三角形DBQ′,连接QQ′.∵∠Q′DB=∠QDP=60°,∴∠Q′DQ=∠BDP,∵Q′D=BD,QD=PD,∴△Q′DQ≌△BDP(SAS),∴QQ′=PB,∠DQ′Q=∠DBP=90°,∴点Q的运动轨迹是线段QQ′,当动点P从点B运动到点A时,QQ′=AB=,∴点Q运动路径的长为.6.【分析】(1)用待定系数法进行解答便可;(2)①设出P点的横坐标为m,用m的代数式表示PD和DE,根据相似三角形的两种情况,由两直角边对应成比例,列出m的方程便可;②过B作BP平分∠ABC,交抛物线于点P,交OC于点M,过M作MN⊥BC于点N,设OM=x,根据勾股定理求出x值,求得M点坐标,进而求出直线BM与抛物线的交点坐标便可得出其中一个满足条件的P点坐标;再取M关于x轴的对称点K的坐标,进而求得BK与抛物线的交点坐标,便可得另一个满足条件的P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+4交x轴于A(﹣1,0)、B(3,0)两点,∴,解得,,∴抛物线的解析式为:;(2)令x=0,得=4,∴C(0,4),∴OC=4,∵B(3,0),设直线BC的解析式为y=kx+n(k≠0),则,解得,∴直线BC的解析式为:y=,设P(m,),则D(m,),∴DP=,DE=m,∴,∵∠BOC=∠PDE=90°,∴当△PDE和△BOC相似时,有两种情况:当△PDE∽△BOC时,则,即=,解得,m=,∴P(,);当△PDE∽△COB时,则,即=,解得,m=2,∴P(2,4).综上,当△PDE和△BOC相似时,点P的坐标(,)或(2,4);②过B作BP平分∠ABC,交抛物线于点P,交OC于点M,过M作MN⊥BC于点N,如图1,则∠PBA=∠ABC,OM=MN,在Rt△BOM和Rt△BNM中,,∴Rt△BOM≌Rt△BNM(HL),∴BN=BO=3,设OM=t,则MN=MO=t,CM=4﹣t,CN=BC﹣BN=﹣3=2,∵MN2+CN2=MC2,∴t2+22=(4﹣t)2,∴t=,∴M(0,),设BM的解析式为:y=mx+(m≠0),代入B(3,0)得,m=,∴直线BM的解析式为:y=﹣,解方程组得,,,∴p(,),取M(0,)关于x轴的对称点,K(0,﹣),连接BK,延长BK,交抛物线于点P',如图2所示,则∠ABP=∠ABC,设直线BK的解析式为y=px(p≠0),代入B(3,0)得,p=,∴直线BK的解析式为:y﹣,解方程组得,,∴P'(,),综上,使∠PBA=∠ABC的点P的坐标为(,)或(,).2020年中考数学压轴题每日一练(5.4)一、选择题1.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是()A.5 B.6 C.7 D.82.如图,在Rt△ABC中,∠C=90°,AC=BC,AB=8,点D为AB的中点,若直角EDF绕点D旋转,分别交AC于点E,交BC于点F,则下列说法正确的个数有()①AE=CF;②EC+CF=AD;③DE=DF;④若△ECF的面积为一个定值,则EF的长也是一个定值.A.1个B.2个C.3个D.4个二、填空题3.如图,在矩形ABCD中,AB=2AD=6,点P为AB边上一点,且AP≤3,连接DP,将△ADP沿DP 折叠,点A落在点M处,连接CM,BM,当△BCM为等腰三角形时,BP的长为.第3题第4题4.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ长度的最小值是.三、解答题5.如图,已知△ABC和△ADE均为等腰三角形,AC=BC,DE=AE,将这两个三角形放置在一起.(1)问题发现如图①,当∠ACB=∠AED=60°时,点B、D、E在同一直线上,连接CE,则∠CEB的度数为,线段AE、BE、CE之间的数量关系是;(2)拓展探究如图②,当∠ACB=∠AED=90°时,点B、D、E在同一直线上,连接CE.请判断∠CEB的度数及线段AE、BE、CE之间的数量关系,并说明理由;(3)解决问题如图③,∠ACB=∠AED=90°,AC=2,AE=2,连接CE、BD,在△AED绕点A旋转的过程中,当DE⊥BD时,请直接写出EC的长.6.如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.【答案与解析】一、选择题1.【分析】设⊙O与AC相切于点D,连接OD,作OP⊥BC垂足为P交⊙O于F,此时垂线段OP最短,MN最小值为OP﹣OF=,当N在AB边上时,M与B重合时,MN最大值=+1=,由此不难解决问题.【解答】解:如图,设⊙O与AC相切于点D,连接OD,作OP⊥BC垂足为P交⊙O于F,此时垂线段OP最短,PF最小值为OP﹣OF,∵AC=4,BC=3,∴AB=5∵∠OPB=90°,∴OP∥AC∵点O是AB的三等分点,∴OB=×5=,==,∴OP=,∵⊙O与AC相切于点D,∴OD⊥AC,∴OD∥BC,∴==,∴OD=1,∴MN最小值为OP﹣OF=﹣1=,如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,MN最大值=+1=,∴MN长的最大值与最小值的和是6.故选:B.2.【分析】①如果连接CD,可证△ADE≌△CDF,得出AE=CF;②由①知,EC+CF=EC+AE=AC,而AC为等腰直角△ABC的直角边,由于斜边AB=8,由勾股定理可求出AC=BC=4;③由①知DE=DF;④△ECF的面积=×CE×CF,如果这是一个定值,则CE•CF是一个定值,又EC+CF=4,从而可唯一确定EC与EF的值,由勾股定理知EF的长也是一个定值.【解答】解:①连接CD.∵在Rt△ABC中,∠ACB=90°,AC=BC,点D为AB的中点,∴CD⊥AB,CD=AD=DB,在△ADE与△CDF中,∠A=∠DCF=45°,AD=CD,∠ADE=∠CDF,∴△ADE≌△CDF,∴AE=CF.说法正确;②∵在Rt△ABC中,∠ACB=90°,AC=BC,AB=8,∴AC=BC=4.由①知AE=CF,∴EC+CF=EC+AE=AC=4.说法正确;③由①知△ADE≌△CDF,∴DE=DF.说法正确;④∵△ECF的面积=×CE×CF,如果这是一个定值,则CE•CF是一个定值,又∵EC+CF=4,∴可唯一确定EC与EF的值,再由勾股定理知EF的长也是一个定值,说法正确.故选:D.二、填空题3.【分析】①当BC=CM时,△BCM为等腰三角形,当BM=CM时,当△BCM为等腰三角形时,③当BC=BM=3时,由折叠的性质得,根据等腰三角形的性质和勾股定理即可得到结论.【解答】解:①如图1,当BC=CM时,△BCM为等腰三角形,∴点M落在CD边上,如图1,DN=AD=3,∴四边形APMD是正方形,∴AP=3,∵AB=CD=6,∴BP=3;②如图2,当BM=CM时,当△BCM为等腰三角形时,∴点M落在BC的垂直平分线上,如图2,过M作BC的垂直平分线交AD于H交BC于G,∴AH=DH=AD,∵将△ADP沿DP折叠,点A落在点M处,∴AD=DM,∴DH=DM,∴∠ADM=60°,∴∠ADP=∠PDM=30°,∴AP=AD=,∴PB=6﹣;③当BC=BM=3时,由折叠的性质得,DM=AD=3,∴DM+BM=6,而BD==3,∴DM+BM<BD,故这种情况不存在,综上所述,BP的长为3或6﹣,故答案为:3或6﹣.4.【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形FC+FD=PQ,由三角形的三边关系知,CF+FD>CD;只有当点F在CD上时,FC+FD=PQ有最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高上CD时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【解答】解:如图,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠ACB=90°,∴PQ是⊙F的直径,设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则FD⊥AB.∴FC+FD=PQ,∴CF+FD>CD,∵当点F在直角三角形ABC的斜边AB的高上CD时,PQ=CD有最小值∴CD=BC•AC÷AB=4.8.故答案为4.8.三、解答题5.【分析】(1)证明△ACE≌△ABD,得出CE=AD,∠AEC=∠ADB,即可得出结论;(2)证明△ACE∽△ABD,得出∠AEC=∠ADB,BD=CE,即可得出结论;(3)先判断出BD=CE,再求出AB=2,①当点E在点D上方时,先判断出四边形APDE是矩形,求出AP=DP=AE=2,再根据勾股定理求出,BP=6,得出BD=4;②当点E在点D下方时,同①的方法得,AP=DP=AE=1,BP=4,进而得出BD=BP+DP=8,即可得出结论.【解答】解:(1)在△ABC为等腰三角形,AC=BC,∠ACB=60°,∴△ABC是等边三角形,∴AC=AB,∠CAB=60°,同理:AE=AD,∠AED=∠ADE=∠EAD=60°,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∴△ACE≌△ABD(SAS),∴CE=AD,∠AEC=∠ADB,∵点B、D、E在同一直线上,∴∠ADB=180°﹣∠ADE=120°,∴∠AEC=120°,∴∠CEB=∠AEC﹣∠AEB=60°,∵DE=AE,∴BE=DE+BD=AE+CE,故答案为60°,BE=AE+CE;(2)在等腰三角形ABC中,AC=BC,∠ACB=90°,∴AB=AC,∠CAB=45°,同理,AD=AE,∠AED=90°,∠ADE=∠DAE=45°,∴,∠DAE=∠CAB,∴∠EAC=∠DAB,∴△ACE∽△ABD,∴,∴∠AEC=∠ADB,BD=CE,∵点B、D、E在同一条直线上,∴∠ADB=180°﹣∠ADE=135°,∴∠AEC=135°,∴∠EBC=∠AEC﹣∠AED=45°,∵DE=AE,∴BE=DE+BD=AE+CE;(3)由(2)知,△ACE∽△ABD,∴BD=CE,在Rt△ABC中,AC=2,∴AB=AC=2,①当点E在点D上方时,如图③,过点A作AP⊥BD交BD的延长线于P,∵DE⊥BD,∴∠PDE=∠AED=∠APD,∴四边形APDE是矩形,∵AE=DE,∴矩形APDE是正方形,∴AP=DP=AE=2,在Rt△APB中,根据勾股定理得,BP==6,∴BD=BP﹣AP=4,∴CE=BD=2;②当点E在点D下方时,如图④同①的方法得,AP=DP=AE=2,BP=4,∴BD=BP+DP=8,∴CE=BD=4,即:CE的长为2或4.6.【分析】(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标.(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.【解答】解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.在优弧AP1B上任取一点P,如图1,则∠APB=∠ACB=×60°=30°.∴使∠APB=30°的点P有无数个.故答案为:无数.(2)①当点P在y轴的正半轴上时,过点C作CG⊥AB,垂足为G,如图1.∵点A(1,0),点B(5,0),∴OA=1,OB=5.∴AB=4.∵点C为圆心,CG⊥AB,∴AG=BG=AB=2.∴OG=OA+AG=3.∵△ABC是等边三角形,∴AC=BC=AB=4.∴CG===2.∴点C的坐标为(3,2).过点C作CD⊥y轴,垂足为D,连接CP2,如图1,∵点C的坐标为(3,2),∴CD=3,OD=2.∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.∵CP2=CA=4,CD=3,∴DP2==.∵点C为圆心,CD⊥P1P2,∴P1D=P2D=.∴P2(0,2﹣).P1(0,2+).②当点P在y轴的负半轴上时,同理可得:P3(0,﹣2﹣).P4(0,﹣2+).综上所述:满足条件的点P的坐标有:(0,2﹣)、(0,2+)、(0,﹣2﹣)、(0,﹣2+).(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.理由:可证:∠APB=∠AEH,当∠APB最大时,∠AEH最大.由sin∠AEH=得:当AE最小即PE最小时,∠AEH最大.所以当圆与y轴相切时,∠APB最大.①当点P在y轴的正半轴上时,连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP.∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°.∴四边形OPEH是矩形.∴OP=EH,PE=OH=3.∴EA=3.∵∠EHA=90°,AH=2,EA=3,∴EH===∴OP=∴P(0,).②当点P在y轴的负半轴上时,同理可得:P(0,﹣).理由:①若点P在y轴的正半轴上,在y轴的正半轴上任取一点M(不与点P重合),连接MA,MB,交⊙E于点N,连接NA,如图2所示.∵∠ANB是△AMN的外角,∴∠ANB>∠AMB.∵∠APB=∠ANB,∴∠APB>∠AMB.②若点P在y轴的负半轴上,同理可证得:∠APB>∠AMB.综上所述:当点P在y轴上移动时,∠APB有最大值,此时点P的坐标为(0,)和(0,﹣).2020年中考数学压轴题每日一练(5.9)一、选择题1.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)2.如图,在等腰直角三角形ABC中,∠ACB=90°,BC=2,D是BC边上一动点,将AD绕点A逆时针旋转45°得AE,连接CE,则线段CE长的最小值为()A.B.C.﹣1 D.2﹣二、填空题3.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.第3题第4题4.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC =PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O 到△MNG三个顶点的距离和的最小值是.三、解答题5.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.6.在△AOB中,∠ABO=90°,AB=3,BO=4,点C在OB上,且BC=1,(1)如图1,以O为圆心,OC长为半径作半圆,点P为半圆上的动点,连接PB,作DB⊥PB,使点D落在直线OB的上方,且满足DB:PB=3:4,连接AD①请说明△ADB∽△OPB;②如图2,当点P所在的位置使得AD∥OB时,连接OD,求OD的长;③点P在运动过程中,OD的长是否有最大值?若有,求出OD长的最大值:若没有,请说明理由.(2)如图3,若点P在以O为圆心,OC长为半径的圆上运动.连接PA,点P在运动过程中,PA﹣是否有最大值?若有,直接写出最大值;若没有,请说明理由.【答案与解析】一、选择题1.【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:A.2.【分析】在AB上截取AF=AC=2,由旋转的性质可得AD=AE,由勾股定理可求AB=2,可得BF =2﹣2,由“SAS”可证△ACE≌△AFD,可得CE=DF,则当DF⊥BC时,DF值最小,即CE的值最小,由直角三角形的性质可求线段CE长的最小值.【解答】解:如图,在AB上截取AF=AC=2,∵旋转∴AD=AE∵AC=BC=2,∠ACB=90°∴AB=2,∠B=∠BAC=45°,∴BF=2﹣2∵∠DAE=45°=∠BAC∴∠DAF=∠CAE,且AD=AE,AC=AF∴△ACE≌△AFD(SAS)∴CE=DF,当DF⊥BC时,DF值最小,即CE的值最小,∴DF最小值为=2﹣故选:D.二、填空题3.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD =5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.4.【分析】(1)在BC上截取BG=PD,通过三角形全等证得AG=AP,BG=DP,得出△AGP是等边三角形,得出AP=GP,则PA+PC=GP+PC=GC=PE,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO 的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴PA+PC=GP+PC=GC=PE∴PA+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,三、解答题5.【分析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.【解答】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC==4cm,当点A′落在边BC上时,由题意得,四边形APA′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4﹣5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴,即=,解得:x=,∴当点A′落在边BC上时,x=;(2)当A′B=BC时,(5﹣8x)2+(3x)2=32,解得:.∵x≤,∴;当A′B=A′C时,x=.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=PA'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=,∴A′B′=QE﹣PD=x=;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5﹣7x,∴cos B=,∴x=,∴A′B′=B′D﹣A′D=;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=,∴A′B′=PA′sin A=;当A′B′⊥AB时,x=,A′B′=;当A′B′⊥BC时,x=,A′B′=;当A′B′⊥AC时,x=,A′B′=.6.【分析】(1)①由∠ABO=90°和DB⊥PB可得∠DBA=∠PBO,结合边长关系由两边对应成比例及其夹角相等的三角形相似即可证明结论.②过D点作DH⊥BO交OB延长线于H点,由AD∥OB平行可得∠DAB=90°,而△ADB∽△OPB可知∠POB=90°,由已知可求出AD.由Rt△DHO即可计算OD的长,③由△ADB∽△OPB可知,可求AD=,由此可知D在以A为圆心AD为半径的圆上运动,所以OD的最大值为OD过A点时最大.求出OA即可得到答案.(2)在OC上取点B′,使OB′=OP=,构造△BOP~△POB′,可得=PA﹣PB′≤AB',求出AB’即可求出最大值.【解答】解:(1)①∵DB⊥PB,∠ABO=90°,∴∠ADB=∠CDP,又∵AB=3,BO=4,DB:PB=3:4,即:,∴△ADB∽△OPB;②如解图(2),过D点作DH⊥BO交OB延长线于H点,∵AD∥OB,∠ABD=90°,∴∠DAB=90°,又∵△ADB∽△OPB,∴,∴AD=,∵四边形ADHB为矩形,∴HD=AB=3,HB=AD=,∴OH=OB+HB=在Rt△DHO中,OD===.③在△AOB中,∠ABO=90°,AB=3,BO=4,∴OA=5.由②得AD=,∴D在以A为圆心AD为半径的圆上运动,∴OD的最大值为OD过A点时最大,即OD的最大值为=OA+AD=5+=.(2)如解图(4),在OC上取点B′,使OB′=OP=,∵∠BOP=∠POB′,=,∴△BOP~△POB′,∴,∴=PA﹣PB′≤AB',∴∴有最大值为AB′,在Rt△ABB′中,AB=3,BB′==,∴AB′===,即:点P在运动过程中,PA﹣有最大值为,2020年中考数学压轴题每日一练(5.8)一、选择题1.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.90°B.100°C.110°D.120°2.如图,P是半圆O上一点,Q是半径OA延长线上一点,AQ=OA=1,以PQ为斜边作等腰直角三角形PQR,连接OR.则线段OR的最大值为()A.B.3 C.D.1二、填空题3.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为.第3题第4题4.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题5.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.6.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.【答案与解析】一、选择题1.【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交ED于N,则A′A″即为△AMN的周长最小值.作EA延长线AH,∵∠BAE=120°,∴∠HAA′=60°,∴∠A′+∠A″=∠HAA′=60°,∵∠A′=∠MAA′,∠NAE=∠A″,且∠A′+∠MAA′=∠AMN,∠NAE+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAE+∠A″=2(∠A′+∠A″)=2×60°=120°,故选:D.2.【分析】将△RQO绕点R顺时针旋转90°,可得△RPE,可得ER=RO,∠ERO=90°,PE=OQ=2,由直角三角形的性质可得EO=RO,由三角形三边关系可得EO≤PO+EP=3,即可求解.【解答】解:将△RQO绕点R顺时针旋转90°,可得△RPE,∴ER=RO,∠ERO=90°,PE=OQ=2∴EO=RO,∵EO≤PO+EP=3∴RO≤3∴OR的最大值=故选:A.二、填空题3.【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.4.【分析】以AC为直径作圆O′,连接BO′、BC.在点P移动的过程中,点D在以AC为直径的圆上运动,当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D,利用勾股定理求出BO′即可解决问题.【解答】解:如图,以AC为直径作圆O′,连接BO′、BC,O'D,∵CD⊥AP,∴∠ADC=90°,∴在点P移动的过程中,点D在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AB=8,∠CAB=60°,∴BC=AB•sin60°=4,AC=AB•cos60°=4,∴AO'=CO'=2,∴BO'===2,∵O′D+BD≥O′B,∴当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D=2﹣2,故答案为2﹣2.三、解答题5.【分析】(1)根据角平分线的定义得到∠EDF=∠ADF,根据圆内接四边形的性质和圆周角定理结论得到结论;(2)根据圆周角定理得到AD⊥BF,推出△ACB是等边三角形,得到∠ADB=∠ACB=60°,根据等腰三角形的性质得到结论;(3)设CD=k,BC=2k,根据勾股定理得到BD==k=10,求得=2,BC=AC=4,根据相似三角形的性质即可得到结论【解答】(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.6.【分析】(1)过点E作EG⊥BC,垂足为点G.AE=x,则EC=2﹣x.根据BG=EG构建方程求出x 即可解决问题.(2)①证明△AEF∽△BEC,可得,由此构建关系式即可解决问题.②分两种情形:当∠CAD<120°时,当120°<∠CAD<180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.2020年中考数学压轴题每日一练(5.7)一、选择题1.已知函数y =ax 2+bx +c 的图象的一部分如图所示,则a +b +c 取值范围是( )A .﹣2<a +b +c <0B .﹣2<a +b +c <2C .0<a +b +c <2D .a +b +c <22.如图所示,矩形OABC 中,OA =2OC ,D 是对角线OB 上的一点,OD =OB ,E 是边AB 上的一点.AE =AB ,反比例函数y =(x >0)的图象经过D ,E 两点,交BC 于点F ,AC 与OB 交于点M .EF与OB 交于点G ,且四边形BFDE 的面积为.下列结论:①EF ∥AC ;②k =2;③矩形OABC 的面积为;④点F 的坐标为(,)正确结论的个数为( )A .1个B .2个C .3个D .4个 二、填空题 3.如图,二次函数y =(x +2)2+m 的图象与y 轴交于点C ,与x 轴的一个交点为A (﹣1,0),点B 在抛物线上,且与点C 关于抛物线的对称轴对称.已知一次函数y =kx +b 的图象经过A ,B 两点,根据图象,则满足不等式(x +2)2+m ≤kx +b 的x 的取值范围是 .4.如图,AE=4,以AE 为直径作⊙O ,点B 是直径AE 上的一动点,以AB 为边在AE 的上方作正方形ABCD ,取CD 的中点M ,将△ADM 沿直线AM 对折,当点D 的对应点D ´落在⊙O 上时,BE 的长为 .三、解答题5.在平面直角坐标系xOy 中,有不重合的两个点Q (x 1,y 1)与P (x 2,y 2).若Q ,P 为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与x 轴或y 轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q 与点P 之间的“折距”,记做D PQ .特别地,当PQ 与某条坐标轴平EA OB D CM D´行(或重合)时,线段PQ的长即点Q与点P之间的“折距”.例如,在图1中,点P(1,﹣1),点Q(3,﹣2),此时点Q与点P之间的“折距”D PQ=3.(1)①已知O为坐标原点,点A(3,﹣2),B(﹣1,0),则D AO=,D BO=.②点C在直线y=﹣x+4上,请你求出D CO的最小值.(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线y=3x+6上以动点.请你直接写出点E与点F之间“折距”D EF的最小值.6.如图1,在矩形ABCD中,AB=4,BC=5,点E在AD上,ED=3.动点P从点B出发沿BC方向以每秒3个单位的速度向点C运动,过点P作PF∥CE,与边BA交于点F,过点F作FG∥BC,与CE交于点G,当点F与点A重合时,点P停止运动,设点P运动的时间为t秒.(1)用含t的代数式分别表示线段BF和PF的长度,则有BF=,PF=.(2)如图2,作点D关于CE的对称点D′,当FG恰好过点D′时,求t的值.(3)如图3,作△FGP的外接圆⊙O,当点P在运动过程中.①当外接圆⊙O与四边形ABCE的边BC或CE相切时,请求出符合要求的t的值;②当外接圆⊙O的圆心O落在△FGP的内部(不包括边上)时,直接写出t的取值范围.【答案与解析】一、选择题1.【分析】函数y=ax2+bx+c的图象开口向下可知a小于0,由于抛物线顶点在第一象限即抛物线对称轴在y轴右侧,当x=1时,抛物线的值必大于0由此可求出a的取值范围,将a+b+c用a表示出即可得出答案.【解答】解:由图象可知:a<0,图象过点(0,1),所以c=1,图象过点(﹣1,0),则a﹣b+1=0,当x=1时,应有y>0,则a+b+1>0,将a﹣b+1=0代入,可得a+(a+1)+1>0,解得a>﹣1,所以,实数a的取值范围为﹣1<a<0.又a+b+c=2a+2,∴0<a+b+c<2.故选:C.2.【分析】设E(a,b),F(m,n),则a=OA=BC,b=AE,CF=m,n=CO=AB,证明=即可判断①;表示出D和E的坐标,根据系数k的几何意义求得k的值即可判断②;求得B的坐标,求得矩形OABC的面积即可判断③;求得F的坐标即可判断④.【解答】解:设E(a,b),F(m,n),则a=OA=BC,b=AE,CF=m,n=CO=AB,∴B(a,n),∵E,F在反比例函数y=上,∴ab=mn,∴BC•AE=CF•AB,∴=,∴EF∥AC,故①正确;∵OD=OB,AE=AB,∴D(a,n),E(a,n),∵OA=2OC,∴a=2n,∴B(2n,n),D(n,n),E(2n,n),∵反比例函数y=经过点F,E,∴k=mn=2n•n,∴m=n,∴F(n,n),∴BF=2n﹣n=n,BE=n,∵四边形BFDE的面积=S△BDF+S△BDE=,。

2020年春学期九年级数学中考压轴题精选精练(含答案解析)

2020年春学期九年级数学中考压轴题精选精练(含答案解析)

2020年春学期九年级数学中考压轴题精选精练一、选择题(6题)1.如图,点A是射线y═(x≥0)上一点,过点A作AB⊥x轴于点B,以AB为边在其右侧作正方形ABCD,过点A的双曲线y=交CD边于点E,则的值为()A.B.C.D.12.如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A 在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是()A.6 B.C.D.3. 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P 与点B之间的距离为()A.1 B.54C.1或3 D.54或54.已知直线y=﹣x+7a+1与直线y=2x﹣2a+4同时经过点P,点Q是以M(0,﹣1)为圆心,MO为半径的圆上的一个动点,则线段PQ的最小值为()A.103B.163C.85D.1855.如图,平行四边形ABCD的顶点A的坐标为(﹣,0),顶点D在双曲线y=(x>0)上,AD交y轴于点E(0,2),且四边形BCDE的面积是△ABE面积的3倍,则k的值为()A.4 B.6 C.7 D.86.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为()A.3+2B.4+3C.2+2D.10二、填空题(6题)1.如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE =2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是.2.如图,在四边形ABCD中,AB∥CD,AB=BC=BD=2,AD=1,则AC=.3.如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,△AOB与△COD 面积分别为8和18,若双曲线kyx恰好经过BC的中点E,则k的值为.第3题第4题4.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.5.如图,在平面直角坐标系中,已知点A(0,1),B(0,1+m),C(0,1﹣m)(m>0),点P在以D(﹣4,﹣2)为圆心,为半径的圆上运动,且始终满足∠BPC=90°,则m的取值范围是.第3题第4题6.如图,在矩形ABCD中,AB=15,AD=10,点P是AB边上任意一点(不与A点重合),连接PD,以线段PD为直角边作等腰直角△DPQ(点Q在直线PD右侧),∠DPQ=90°,连接BQ,则BQ的最小值为.三、解答题(6题)1.如图,正方形ABCD的边长为2,点E、F分别是边AB、AD上的动点,且∠ECF=45°,CF的延长线交BA的延长线于点G,GE的延长线交DA的延长线于点H,连接AE、CF.(1)求证:△AEF的周长为定值;(2)求AG•AH的值;(3)当△CGH是等腰三角形时,求AF的值.2.如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0),与y轴交于点C,顶点为D.(1)求抛物线的解析式及点D的坐标.(2)在线段BC下方的抛物线上,是否存在异于点D的点E,使S△BCE=S△BCD?若存在,求出点E的坐标;若不存在,请说明理由.(3)点M在抛物线上,点P为y轴上一动点,求MP+PC的最小值.3.如图①,一次函数122y x =-的图象交x 轴于点A ,交y 轴于点B ,二次函数212y x bx c =-++的图象经过A 、B 两点,与x 轴交于另一点C .(1)求二次函数的关系式及点C 的坐标; (2)如图②,若点P 是直线AB 上方的抛物线上一点,过点P 作PD ∥x 轴交AB 于点D ,PE ∥y 轴交AB 于点E ,求PD +PE 的最大值;(3)如图③,若点M 在抛物线的对称轴上,且∠AMB =∠ACB ,求出所有满足条件的点M 的坐标.4.如图,矩形ABCD 中,AB =6,AD =8.动点E ,F 同时分别从点A ,B 出发,分别沿着射线AD 和射线BD 的方向均以每秒1个单位的速度运动,连接EF ,以EF 为直径作⊙O 交射线BD 于点M ,设运动的时间为t .(1)当点E 在线段AD 上时,用关于t 的代数式表示DE ,DM . (2)在整个运动过程中,①连结CM ,当t 为何值时,△CDM 为等腰三角形.②圆心O 处在矩形ABCD 内(包括边界)时,求t 的取值范围,并直接写出在此范围内圆心运动的路径长.5.如图1,矩形ABCD中,AB=6,动点P从点A出发,沿A→B→C的方向在AB和BC 上移动,记P A=x,点D到直线P A的距离为y,y关于x的函数图象由C1、C2两段组成,如图2所示.(1)求AD的长;(2)求图2中C2段图象的函数解析式;(3)当△APD为等腰三角形时,求y的值.6.如图,顶点为A的抛物线y=a(x+2)2﹣4交x轴于点B(1,0),连接AB,过原点O 作射线OM∥AB,过点A作AD∥x轴交OM于点D,点C为抛物线与x轴的另一个交点,连接CD.(1)求抛物线的解析式;(2)若动点P从点O出发,以每秒1个单位长度的速度沿着射线OM运动,设点P运动的时间为t秒,问:当t为何值时,OB=AP;(3)若动点P从点O出发,以每秒1个单位长度的速度沿线段OD向点D运动,同时动点Q从点C出发,以每秒2个单位长度的速度沿线段CO向点O运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t秒,连接PQ.问:当t为何值时,四边形CDPQ的面积最小?并求此时PQ的长.【答案与解析】一、选择题1.【分析】设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=x得到点A的坐标,结合正方形的性质,得到点C,点D和点E的横坐标,把点A的坐标代入反比例函数y=,得到关于m的k的值,把点E的横坐标代入反比例函数的解析式,得到点E的纵坐标,求出线段DE和线段EC的长度,即可得到答案.【解答】解:设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=x得:y=m,则点A的坐标为:(m,m),线段AB的长度为m,点D的纵坐标为m,∵点A在反比例函数y=上,∴k=m2,即反比例函数的解析式为:y=,∵四边形ABCD为正方形,∴四边形的边长为m,点C,点D和点E的横坐标为m+m=m,把x=m代入y=得:y=m,即点E的纵坐标为m,则EC=m,DE=m﹣m=m,=,故选:A.2.【分析】点A,C分别在x轴、y轴上,当点A在x轴运动时,点C随之在y轴上运动,在运动过程中,点O在到AC的中点的距离不变.本题可通过设出AC的中点坐标,根据B、D、O在一条直线上时,点B到原点O的最大可得出答案.【解答】解:作AC的中点D,连接OD、DB,∵OB≤OD+BD,∴当O、D、B三点共线时OB取得最大值,∵D是AC中点,∴OD=AC=2,∵BD==2,OD=AC=2,∴点B到原点O的最大距离为2+2,故选:D.3.【分析】分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得,可求BE,DE的长,由勾股定理可求PB的长.【解答】解:如图,若点B1在BC左侧,∵∠C=90°,AC=3,BC=4,∴AB==5∵点D是AB的中点,∴BD=BA=∵B1D⊥BC,∠C=90°∴B1D∥AC∴∴BE=EC=BC=2,DE=AC=∵折叠∴B1D=BD=,B1P=BP∴B1E=B1D﹣DE=1∴在Rt△B1PE中,B1P2=B1E2+PE2,∴BP2=1+(2﹣BP)2,∴BP=如图,若点B1在BC右侧,∵B1E=DE+B1D=+,∴B1E=4在Rt△EB1P中,B1P2=B1E2+EP2,∴BP2=16+(BP﹣2)2,∴BP=5故答案为:或5 故选:D.4.【分析】先解方程组得P点坐标为(3a﹣1,4a+2),则可确定点P为直线y =x+上一动点,设直线y=x+与坐标的交点为A、B,如图,则A(﹣,0),B(0,),利用勾股定理计算出AB=,过M点作MP⊥直线AB于P,交⊙M于Q,此时线段PQ的值最小,证Rt△MBP∽Rt△ABO,利用相似比计算出MP=,则PQ =,即线段PQ的最小值为.【解答】解:解方程组得,∴P点坐标为(3a﹣1,4a+2),设x=3a﹣1,y=4a+2,∴y=x+,即点P为直线y=x+上一动点,设直线y=x+与坐标的交点为A、B,如图,则A(﹣,0),B(0,),∴AB==,过M点作MP⊥直线AB于P,交⊙M于Q,此时线段PQ的值最小,∵∠MBP=∠ABO,∴Rt△MBP∽Rt△ABO,∴MP:OA=BM:AB,即MP:=:,∴MP=,∴PQ=﹣1=,即线段PQ的最小值为.故选:C.5.【分析】连结BD,由四边形EBCD的面积是△ABE面积的3倍得平行四边形ABCD的面积是△ABE面积的4倍,根据平行四边形的性质得S△ABD=2S△ABE,则AD=2AE,即点E为AD的中点,E点坐标为(0,2),A点坐标为(﹣,0),利用线段中点坐标公式得D点坐标为,再利用反比例函数图象上点的坐标特征得k的值.【解答】解:如图,连结BD,∵四边形EBCD的面积是△ABE面积的3倍,∴平行四边形ABCD的面积是△ABE面积的4倍,∴S△ABD=2S△ABE,∴AD=2AE,即点E为AD的中点,∵E点坐标为(0,2),A点坐标为(﹣,0),∴D点坐标为(,4),∵顶点D在双曲线y=(x>0)上,∴k=×4=6,故选:B.6.【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE 的值;【解答】解:将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得D’E=DG+GE=4+3,∴MA+MD+ME的最小值为4+3.故选:B.二、填空题.【分析】如图作点D关于BC的对称点D′,连接PD′,ED′.由DP=PD′,推出PD+PF =PD′+PF,又EF=EA=2是定值,即可推出当E、F、P、D′共线时,PF+PD′定值最小,最小值=ED′﹣EF.【解答】解:如图作点D关于BC的对称点D′,连接PD′,ED′.在Rt△EDD′中,∵DE=6,DD′=8,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=10﹣2=8,∴PF+PD的最小值为8,故答案为8.2.【分析】不能用全等、相似的判定和性质求得AC的情况下,考虑构造直角三角形用勾股定理来求,故过点C作AB垂线CF.由于△ABD三边确定,可用勾股定理列方程求得AB边上的高DE的长.根据平行线间距离处处相等,即有CF=DE,进而求得BF和AF,再在Rt△ACF中用勾股定理求AC.【解答】解:过点D作DE⊥AB于点E,过点C作CF⊥AB交AB延长线于点F∴∠AED=∠BED=∠F=90°设AE=x,∵AB=BC=BD=2,AD=1∴BE=AB﹣AE=2﹣x∵在Rt△ADE中,AE2+DE2=AD2,在Rt△BDE中,BE2+DE2=BD2∴DE2=AD2﹣AE2=BD2﹣BE2得:12﹣x2=22﹣(2﹣x)2解得:x=∴DE2=AD2﹣AE2=12﹣()2=∵AB∥CD∴CF=DE∴在Rt△BCF中,BF=∴AF=AB+BF=2+=∴在Rt△ACF中,AC=3.【分析】由平行线的性质得∠OAB=∠OCD,∠OBA=∠ODC,两个对应角相等证明△OAB∽△OCD,其性质得,再根据三角形的面积公式,等式的性质求出m=,线段的中点,反比例函数的性质求出k的值为6.【解答】解:如图所示:∵AB∥CD,∴∠OAB=∠OCD,∠OBA=∠ODC,∴△OAB∽△OCD,∴,若=m,由OB=m•OD,OA=m•OC,又∵,,∴=,又∵S△OAB=8,S△OCD=18,∴,解得:m=或m=(舍去),设点A、B的坐标分别为(0,a),(0,b),∵,∴点C的坐标为(0,﹣a),又∵点E是线段BC的中点,∴点E的坐标为(),又∵点E在反比例函数上,∴=﹣=,故答案为6.4.【分析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB =1,A′B′∥AB,推出四边形A′B′CD是平行四边形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根据平移的性质得到点A′在过点A且平行于BD的定直线上,作点D关于定直线的对称点E,连接CE交定直线于A′,则CE 的长度即为A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到结论.【解答】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.5.【分析】由题意P A=AB=AC=m,求出P A的最大值和最小值即可解决问题;【解答】解:∵A(0,1),B(0,1+m),C(0,1﹣m)(m>0),∴AB=AC=m,∵∠BPC=90°,∴P A=AB=AC,∵D(﹣4,﹣2),A(0,1),∴AD==5,∵点P在⊙D上运动,∴P A的最小值为5﹣,P A的最大值为5+,∴满足条件的m的取值范围为:5﹣≤m≤5+故答案为5﹣≤m≤5+.6.【分析】过Q作QE⊥AB于E,在EP上截取EF=EQ,连接QF,依据全等三角形的性质,即可得到AF=PE=10(定值),依据△EFQ是等腰直角三角形,可得FQ与FB的夹角始终为45°,进而得到当BQ⊥FQ时,BQ的长最小,根据△BQF是等腰直角三角形,即可得到BQ的长度.【解答】解:如图所示,过Q作QE⊥AB于E,在EP上截取EF=EQ,连接QF,∵△DPQ是等腰直角三角形,四边形ABCD是矩形,∴DP=PQ,∠A=∠PEQ,∠ADP=∠EPQ,∴△ADP≌△EPQ(AAS),∴AP=QE=FE,AD=PE=10,∴AF=PE=10(定值),又∵△EFQ是等腰直角三角形,∴∠QFE=45°,即FQ与FB的夹角始终为45°,如图,当BQ⊥FQ时,BQ的长最小,此时,△BQF是等腰直角三角形,又∵QE⊥BF,∴BE=EF=QE=AP,∴BE=AP==,∴BF=5,∴BQ=cos45°×BF=,即BQ的最小值为,故答案为:.三、解答题1.【分析】(1)先构造出△CDN≌△CBE(SAS),得出CN=CE,∠DCN=∠BCE,进而判断出△FCN≌△FCE,即可得出结论;(2)利用等式的性质得出∠AHC=∠ACG,进而判断出△ACH∽△AGC,即可得出结论;(3)分三种情况,①当HC=HG时,判断出△HCD≌△GHA(AAS),得出AH=CD=2,HD=AG=4,再判断出△AFG∽△BCG,即可得出结论;②当GC=GH时,判断出△GBC≌△HAG(AAS),得出AG=BC=2=AB,进而判断出AF是三角形BCG的中位线,即可得出结论;③当CG=CH时,先判断出△CAG≌△CAH(SAS),得出∠DCF=∠ACF=22.5°,在CD上取点M使DM=DF=m,得出MF=CM=m,再判断出CM=MF,得出m+m =2,即可得出结论.【解答】(1)证明:如图,延长AD至N,使DN=BE,∵四边形ABCD是正方形,∴∠CDN=∠B=90°,CD=CB,∴△CDN≌△CBE(SAS),∴CN=CE,∠DCN=∠BCE,∵∠ECF=45°,∴∠DCF+∠BCE=45°,∴∠DCF+DCN=45°=∠FCN,∴∠FCN=∠FCE,∵CF=CF,∴△FCN≌△FCE,∴FN=EF,∴△AEF的周长为AE+AF+EF=AB﹣BE+AF+FN=AB﹣BE+AF+DF+DN=AB﹣BE+AF+DF+BE=AB+AD=2AB=4是定值;(2)∵AC是正方形ABCD的对角线,∴∠CAD=∠CAB=45°,∴∠CAH=∠CAG=135°,又∵∠DAC=∠AHC+∠ACH=45°,∠ECF=∠ACF+∠ACH=45°,∴∠AHC=∠ACG,∴△ACH∽△AGC,∴,∴AC2=AG•AH,∵正方形ABCD的边长为2,∴AC=2,∴AG•AH=8;(3)①当HC=HG时,∴∠HGC=∠HCG=45°,∴∠CHG=90°,∴∠CHD+∠AHG=90°,∴∠CHD+∠DCH=90°,∴∠DCH=∠AHG,∵∠CDH=∠HAG=90°∴△HCD≌△GHA(AAS)∴AH=CD=2,HD=AG=4,∵AF∥BC,∴△AFG∽△BCG,∴,∴,∴AF=,②当GC=GH时,∴∠CHG=∠HCG=45°,∴∠CGH=90°,∴∠BGC+∠AGH=90°,∵∠BGC+∠BCG=90°,∴∠BCG=∠AGH,∵∠CBG=∠GAH=90°,∴△GBC≌△HAG(AAS),∴AG=BC=2=AB,∵AF∥BC,∴CF=GF,∴AF=BC=1;③当CG=CH时,∴∠CGH=∠CHG,∵AC是正方形ABCD的对角线,∴∠DAC=∠BAC=45°,∴∠CAG=∠CAH=135°,∵CA=CA,∴△CAG≌△CAH(SAS),∴∠DCF=∠ACF=22.5°如备用图,在CD上取点M使DM=DF=m,连接MF,∴MF=CM=m,∠DFM=45°=∠CFM+∠DCF=∠CFM+22.5°,∴∠CFM=22.5°=∠DCF,∴CM=MF,∴m+m=2 ∴m=2﹣2,∴AF=AD﹣DF=4﹣2综上所述:当△CGH是等腰三角形时,AF的值为或1或4﹣2.2.【分析】(1)根据点A,B的坐标,利用待定系数法可求出抛物线的解析式,再利用配方法可求出顶点D的坐标;(2)利用二次函数图象上点的坐标特征可求出点B的坐标,过点D作DE∥BC,交抛物线于点E,则S△BCE=S△BCD,由点B,C的坐标,利用待定系数法可求出直线BC的解析式,由BC∥DE结合点D的坐标可得出直线DE的解析式,再连接直线DE和抛物线的解析式成方程组,通过解方程组可求出点E的坐标;(3)利用二次函数图象上点的坐标特征可求出点M的坐标,过点M作MF⊥直线BC于点F,交y轴于点P,过点B作BN⊥直线BC,交y轴于点N,由OC=OB结合BN⊥直线BC可得出点N的坐标,由点B,N的坐标,利用待定系数法可求出直线BN的解析式,由MF∥BN结合点M的坐标可得出直线MF的解析式,联立直线MF和直线BC的解析式成方程组,通过解方程组可求出点F的坐标,进而可求出MF的长度,由∠PCF=45°,∠PFC=90°可得出△PCF为等腰直角三角形,进而可得出PF=PC,结合点到直线之间垂直线段最短可得出当MF⊥BC时,MP+PC取得最小值,最小值为MF的长度,此题得解.【解答】解:(1)将A(﹣1,0),B(3,0)代入y=ax2+bx﹣3,得:,解得:,∴抛物线的解析式为y=x2﹣2x﹣3.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,﹣4).(2)当x=0时,y=x2﹣2x﹣3=﹣3,∴点C的坐标为(0,﹣3).过点D作DE∥BC,交抛物线于点E,则S△BCE=S△BCD,如图1所示.设直线BC的解析式为y=kx+c(k≠0),将B(3,0),C(0,﹣3)代入y=kx+c,得:,解得:,∴直线BC的解析式为y=x﹣3.∵BC∥DE,∴设直线DE的解析式为y=x+d,将D(1,﹣4)代入y=x+d,得:﹣4=1+d,解得:d=﹣5,∴直线DE的解析式为y=x﹣5.连接直线DE和抛物线的解析式成方程组,得:,解得:,,∴在线段BC下方的抛物线上,存在异于点D的点E,使S△BCE=S△BCD,点E的坐标为(2,﹣3).(3)当x=﹣时,y=x2﹣2x﹣3=,∴点M的坐标为(﹣,).过点M作MF⊥直线BC于点F,交y轴于点P,过点B作BN⊥直线BC,交y轴于点N,如图2所示.∵OB=OC,∴∠BCO=45°,∴∠BNC=45°=∠BCO,∴ON=OC=3,∴点N的坐标为(0,3).设直线BN的解析式为y=nx+t(n≠0),将B(3,0),N(0,3)代入y=nx+t,得:,解得:,∴直线BN的解析式为y=﹣x+3.设直线MF的解析式为y=﹣x+q,将M(﹣,)代入y=﹣x+q,得:+q=,解得:q=,∴直线MF的解析式为y=﹣x+.联立直线MF和直线BC的解析式成方程组,得:,解得:,∴点F的坐标为(,﹣),∴MF==.∵∠PCF=45°,∠PFC=90°,∴△PCF为等腰直角三角形,∴PF=PC,∴当MF⊥BC时,MP+PC=MP+PF=MF最小,最小值为.3.【分析】(1)先根据一次函数解析式确定A(4,0),B(0,﹣2),再利用待定系数法求抛物线解析式;然后解方程﹣x2+x﹣2=0得C点坐标;(2)如图2,先证明△PDE∽△OAB.利用相似比得到PD=2PE.设P(m,﹣m2+m ﹣2),则E(m,m﹣2).再利用m表示出PD+PE得到PD+PE=3×[﹣m2+m﹣2﹣(m﹣2)],然后根据二次函数的性质解决问题;(3)讨论:当点M在直线AB上方时,根据圆周角定理可判断点M在△ABC的外接圆上,如图1,由于抛物线的对称轴垂直平分AC,则△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,﹣t),根据半径相等得到()2+(﹣t+2)2=(﹣4)2+t2,解方程求出t得到圆心O1的坐标为(,﹣2),然后确定⊙O1的半径半径为.从而得到此时M点坐标;当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2,通过证明∠O1AB=∠OAB可判断O2在x轴上,则点O2的坐标为(,0),然后计算出DM即可得到此时M点坐标.【解答】解:(1)令y==0,解得x=4,则A(4,0).令x=0,得y=﹣2,则B(0,﹣2);∵二次函数y=的图象经过A、B两点,∴,解得∴二次函数的关系式为y=﹣x2+x﹣2;当y=0时,﹣x2+x﹣2=0,解得x1=1,x2=4,则C(1,0);(2)如图2,∵PD∥x轴,PE∥y轴,∴∠PDE=∠OAB,∠PED=∠OBA.∴△PDE∽△OAB.∴===2,∴PD=2PE.设P(m,﹣m2+m﹣2),则E(m,m﹣2).∴PD+PE=3PE=3×[﹣m2+m﹣2﹣(m﹣2)]=﹣m2+6m=﹣(m﹣2)2+6;∵0<m<4,∴当m=2时,PD+PE有最大值6;(3)当点M在直线AB上方时,则点M在△ABC的外接圆上,如图1.∵△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,﹣t),∵O1B=O1A,∴()2+(﹣t+2)2=(﹣4)2+t2,解得t=2.∴圆心O1的坐标为(,﹣2).∴O1A==,即⊙O1的半径半径为.此时M点坐标为(,);当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x轴,∴∠O1BA=∠OAB.∴∠O1AB=∠OAB,O2在x轴上,∴点O2的坐标为(,0).∴O2D=1,∴DM==.此时点M的坐标为(,).综上所述,点M的坐标为(,)或(,).4.【分析】(1)在Rt△ABD中,依据勾股定理可求得BD的长,然后依据MD=ED•cos∠MDE,cos∠MDE=cos∠ADB=,由此即可解决问题.(2)①可分为点E在AD上,点E在AD的延长线上画出图形,然后再依据MC=MD,CM=CD、DM=DC三种情况求解即可;②当t=0时,圆心O在AB边上.当圆心O在CD边上时,过点E作EH∥CD交BD的延长线与点H.先求得DH的长,然后依据平行线分线段成比例定理可得到DF=DH,然后依据DF=DH列出关于t的方程,从而可求得t的值,故此可得到t的取值范围.【解答】解:(1)如图1所示:连接ME.∵AE=t,AD=8,∴ED=AD﹣AE=8﹣t.∵EF为⊙O的直径,∴∠EMF=90°.∴∠EMD=90°.∴MD=ED•cos∠MDE=.(2)①a、如图2所示:连接MC.当DM=CD=6时,=6,解得t=;b、如图3所示:当MC=MD时,连接MC,过点M作MN⊥CD,垂足为N.∵MC=MD,MN⊥CD,∴DN=NC.∵MN⊥CD,BC⊥CD,∴BC∥MN.∴M为BD的中点.∴MD=5,即=5,解得t=;c、如图4所示:CM=CD时,过点C作CG⊥DM.∵CM=CD,CG⊥MD,∴GD=MD=.∵=,∴DG=CD=.∴=.解得:t=﹣1(舍去).d、如图5所示:当CD=DM时,连接EM.∵AE=t,AD=8,∴DE=t﹣8.∵EF为⊙O的直径,∴EM⊥DM.∴DM=ED•cos∠EDM=.∴=6,解得:t=.综上所述,当t=或t=或t=时,△DCM为等腰三角形.②当t=0时,圆心O在AB边上.如图6所示:当圆心O在CD边上时,过点E作EH∥CD交BD的延长线与点H.∵HE∥CD,OF=OE,∴DF=DH.∵DH==,DF=10﹣t,∴=10﹣t.解得:t=.综上所述,在整个运动过程中圆心O处在矩形ABCD内(包括边界)时,t的取值范围为0≤t≤.5.【分析】(1)由图1和图2直接确定出AD;(2)先利用互余即可得出∠BAP=∠DGA,进而判断出△ABP∽△DGA即可确定出函数关系式;(3)分三种情况利用等腰三角形的性质和勾股定理求出x的值,即可求出y的值.【解答】解:(1)如图,当点P在AB上移动时,点P到P A的距离不变,当点P从B点向C点移动时,点D到P A的距离在变化,由图2知,AD=10,(2)∵四边形ABCD是矩形,∴∠ABP=∠BAD=90°,∵DG⊥AP,∴∠AGD=90°,∴∠ABP=∠DGA,∵∠BAP+∠GAD=90°,∠CAG+∠ADG=90°,∴∠BAP=∠DGA,∴△ABP∽△DGA,∴,∵AB=6,AP=x,DG=y,AD=10,∴,∴y=(6<x≤2);即:图2中C2段图象的函数解析式y=(6<x≤2);(3)∵四边形ABCD是矩形,∴CD=AB=6,BC=AD=10,∠ABC=∠DCB=90°,当AD=AP时,∵AD=10,∴x=AP=10,∴y==6,当AD=DP时,∴DP=10,在Rt△DCP中,CD=AB=6,DP=10,∴CP=8,∴BP=BC﹣CP=2,在Rt△ABP中,根据勾股定理得,x=AP===2,∴y===3,当AP=DP时,点P是线段AD的垂直平分线,∴点P是BC的中点,∴BP=BC=AD=5,在Rt△ABP中,根据勾股定理得,x=AP===,∴y===.6.【分析】(1)将点B的坐标代入到抛物线的解析式中即可求得a值,从而求得其解析式;(2)利用两点坐标求得线段AB的长,然后利用平行四边形的对边相等求得t=5时,四边形ABOP为平行四边形;若四边形ABOP为等腰梯形,连接AP,过点P作PG⊥AB,过点O作OH⊥AB,垂足分别为G、H,根据△APG≌△BOH求得线段OP=GH=AB﹣2BH=.(3)首先判定四边形ABOD是平行四边形,然后确定S△DOC=×5×4=10.过点P作PN⊥BC,垂足为N,利用△OPN∽△BOH得到PN=t,然后表示出四边形CDPQ的面积S=S△DOC﹣S△OPQ=10﹣×(5﹣2t)×t=t2﹣2 t+10,从而得到当t=时,四边形CDPQ的面积S最小.然后得到点P的坐标是(﹣,﹣1),点Q的坐标是(﹣,0),利用两点坐标公式确定PQ的长即可.【解答】解:(1)把(1,0)代入y=a(x+2)2﹣4,得a=.∴y=(x+2)2﹣4,即y=x2+x﹣;(2)由题意得OP=t,AB==5,若OB∥AP,即四边形ABOP为平行四边形时,OB=AP,且OP=AB=5,即当t=5时,OB=AP,若OB不平行于AP,即四边形ABOP为等腰梯形时,OB=AP,连接AP,过点P作PG ⊥AB,过点O作OH⊥AB,垂足分别为G、H,∴△APG≌△BOH,在Rt△OBM中,∵OM=,OB=1,∴BM=,∴OH=,∴BH=,∴OP=GH=AB﹣2BH=,即当t=时,OB=AP;(3)将y=0代入y=x2+x﹣,得x2+x﹣=0,解得x=1或﹣5.∴C(﹣5,0).∴OC=5,∵OM∥AB,AD∥x轴,∴四边形ABOD是平行四边形,∴AD=OB=1,∴点D的坐标是(﹣3,﹣4),∴S△DOC=×5×4=10,过点P作PN⊥BC,垂足为N.易证△OPN∽△BOH,∴=,即=,∴PN=t,∴四边形CDPQ的面积S=S△DOC﹣S△OPQ=10﹣×(5﹣2t)×t=t2﹣2t+10,∴当t=时,四边形CDPQ的面积S最小,此时,点P的坐标是(﹣,﹣1),点Q的坐标是(﹣,0),∴PQ==.。

2020年中考数学压轴题(含答案)

2020年中考数学压轴题(含答案)

2020年中考数学压轴题一、选择题1.如图,△ABC中,AB=AC,∠A=40°,延长AC到D,使CD=BC,点P是△ABD的内心,则∠BPC=()A.145°B.135°C.120°D.105°2.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时.设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是()A.B.C.D.二、填空题3.已知二次函数y=x2+bx+c的图象与x轴两交点的坐标分别为(m,0)、(﹣3m,0)(m≠0),对称轴为直线x=1,则该二次函数的最小值为.4.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2.下列结论:①4a+2b+c<0;②a<﹣1;③b2+8a>4ac;④2a﹣b<0.其中结论正确的有.(把所有正确答案的序号都填写在横线上)三、解答题5.如图,在四边形ABCD中,AB∥DC,CB⊥AB.AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,设运动的时间为t(s),0<t<5.(1)用含t的代数式表示AP;(2)当以点A.P,Q为顶点的三角形与△ABD相似时,求t的值;(3)当QP⊥BD时,求t的值.6.如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(﹣4,0),B(0,3),动点P从点O出发,沿x轴负方向以每秒1个单位的速度运动,同时动点Q从点B出发,沿射线BO方向以每秒2个单位的速度运动,过点P作PC⊥AB于点C,连接PQ,CQ,以PQ,CQ为邻边构造平行四边形PQCD,设点P运动的时间为t秒.(1)当点Q在线段OB上时,用含t的代数式表示PC,AC的长;(2)在运动过程中.①当点D落在x轴上时,求出满足条件的t的值;②若点D落在△ABO内部(不包括边界)时,直接写出t的取值范围;(3)作点Q关于x轴的对称点Q′,连接CQ′,在运动过程中,是否存在某时刻使过A,P,C三点的圆与△CQQ′三边中的一条边相切?若存在,请求出t的值;若不存在,请说明理由.【答案与解析】一、选择题1.【分析】已知P为△ABD的内心,则P点必在∠BAC的角平分线上,由于AB=AC,根据等腰三角形的性质可知:P点必在BC的垂直平分线上,即BP=PC,△BPC也是等腰三角形,欲求∠BPC,必先求出∠PBC的度数.等腰△ABC中,已知了顶角∠A的度数,可求得∠ABC、∠ACB的度数;由于CB=CD,∠ACB是△ABC的外角,由此可求出∠D和∠CBD的度数;由于P是△ABD的内心,则PB平分∠ABD,由此可求得∠PBD的度数,根据∠PBC=∠PBD﹣∠CBD可求出∠PBC的度数,由此得解.【解答】解:△ABC中,AB=AC,∠A=40°;∴∠ABC=∠ACB=70°;∵P是△ABD的内心,∴P点必在等腰△ABC底边BC的垂直平分线上,∴PB=PC,∠BPC=180°﹣2∠PBC;在△CBD中,CB=CD,∴∠CBD=∠D=∠ACB=35°;∵P是△ABD的内心,∴PB平分∠ABD,∴∠PBD=∠ABD=(∠ABC+∠CBD)=52.5°,∴∠PBC=∠PBD﹣∠CBD=52.5°﹣35°=17.5°;∴∠BPC=180°﹣2∠PBC=145°.故选:A.2.【分析】本题考查动点函数图象的问题.【解答】解:点C从点A运动到点B的过程中,x的值逐渐增大,DE的长度随x值的变化先变大再变小,当C与O重合时,y有最大值,∵x=0,y=ABx=AB﹣AB时,DE过点O,此时:DE=ABx=AB,y=AB所以,随着x的增大,y先增后降,类抛物线故选:A.二、填空题3.【分析】根据抛物线与x轴的交点坐标和抛物线的对称性得到x=﹣m=1,解得m=﹣1,则抛物线与x轴两交点的坐标分别为(﹣1,0)、(3,0),根据抛物线的交点式得到y=(x+1)(x﹣3)=x2﹣2x﹣3=(x﹣1)2﹣4,然后根据抛物线的最值问题求解.【解答】解:∵二次函数y=x2+bx+c的图象与x轴两交点的坐标分别为(m,0)、(﹣3m,0)(m≠0),∴抛物线的对称轴为直线x=﹣m=1,解得m=﹣1,∴抛物线与x轴两交点的坐标分别为(﹣1,0)、(3,0),∴y=(x+1)(x﹣3)=x2﹣2x﹣3=(x﹣1)2﹣4,∴x=1时,y的最小值为﹣4.故答案为﹣4.4.【分析】由抛物线可知当x=2时y<0,x=﹣1时y<0,则有4a+2b+c<0,a﹣b+c<0;由抛物线过(1,2)可得a+b+c=2;由抛物线的开口方向可得a<0;由抛物线的顶点位置和对称轴位置可得,>0;然后进行推理,即可对各个结论作出判断.【解答】解:由二次函数的图象可得:当x=2时y<0,则有4a+2b+c<0(1),故①正确;∵二次函数的图象经过点(1,2),∴a+b+c=2(2),由二次函数的图象可得:当x=﹣1时,y<0,则有a﹣b+c<0(3),把(2)代入(1)得到2+3a+b<0,则有a<,把(2)代入(3)得到2﹣2b<0,则有b>1,则a<﹣1,故②正确;由二次函数的图象中顶点的位置,可得:>2(4),由抛物线开口向下,可得:a<0,则由(4)可得4ac﹣b2<8a,即b2+8a>4ac,故③正确;由抛物线的对称轴的位置,可得>0,则b>0,又由a<0,则有2a﹣b<0,故④正确;故答案为:①②③④.三、解答题5.【分析】(1)如图作DH⊥AB于H则四边形DHBC是矩形,利用勾股定理求出AD的长即可解决问题;(2)根据相似三角形的性质列方程即可得到结论;(3)当PQ⊥BD时,∠PQN+∠DBA=90°,∠QPN+∠PQN=90°,推出∠QPN=∠DBA,推出tan∠QPN==,由此构建方程即可解决问题.【解答】解:(1)如图作DH⊥AB于H,则四边形DHBC是矩形,∴CD=BH=8,DH=BC=6,∴AH=AB﹣BH=8,AD==10,BD==10,由题意AP=AD﹣DP=10﹣2t.(2)当以点A.P,Q为顶点的三角形与△ABD相似时,∴或,∴=或,解得:t=或t=,∴当t=或t=时,当以点A,P,Q为顶点的三角形与△ABD相似;(3)过P作PN⊥AB于N,当PQ⊥BD时,∠PQN+∠DBA=90°,∵∠QPN+∠PQN=90°,∴∠QPN=∠DBA,∴tan∠QPN==,∴=,解得t=,经检验:t=是分式方程的解,∴当t=s时,PQ⊥BD.6.【分析】(1)利用三角函数sin∠OAB==,cos∠OAB==,列出关系式即可解决问题.(2)①当D在x轴上时,如图2中,由QC∥OA,得=,由此即可解决问题.②当点D在AB上时,如图3中,由PQ∥AB,得=,求出时间t,求出①②两种情形时的△POQ的面积即可解决问题.(3)如图4中,当QC与⊙M相切时,则QC⊥CM,首先证明QB=QC,作QN∠BC 于N,根据cos∠ABO==,列出方程即可解决问题,当CQ′是⊙M切线时,方法类似,t=0时,也符合题意;【解答】解:(1)如图1中,∵OA=3,OB=4,∴AB===5,在Rt△ACP中,P A=4﹣t,∵sin∠OAB==,∴PC=(4﹣t),∵cos∠OAB==,∴AC=(4﹣t).(2)①当D在x轴上时,如图2中,∵QC∥OA,∴=,∴=,解得t=.∴t=s时,点D在x轴上,②如图3中,∵PQ∥AB,∴=,∴=,∴t=,综上所述,当<t<时,点D落在△ABO内部(不包括边界).(3)如图4中,作QN⊥BC于N,∵Q(0,3﹣2t),Q′(0,2t﹣3),当QC与⊙M相切时,则QC⊥CM,∴∠QCM=90°,∴∠QCP+∠PCM=90°,∵∠QCP+∠QCB=90°,∴∠BCQ=∠PCM=∠CPM,∵∠CPM+∠P AC=90°,∠OBA+∠OAB=90°,∴∠APC=∠OBA,∴∠QBC=∠QCB,∴BQ=CQ,∵cos∠ABO==,∴=,解得t=,当CQ′是⊙M切线时,同法可得=,解得t=,t=0时,⊙M与QQ′相切∴t=0s或s或时,过A,P,C三点的圆与△CQQ′三边中的一条边相切.2020年中考数学压轴题一、选择题1.如图,菱形AOBC的顶点A在x轴上,反比例函数kyx=(0,0k x>>)的图像经过顶点B,和边AC的中点D.若6OA=,则k的值为A. 5B. 25C. 45D.852.已知⊙O的半径为2,A为圆内一定点,AO=1.P为圆上一动点,以AP为边作等腰△APG,AP=PG,∠APG=120°,OG的最大值为()A.1+B.1+2C.2+D.2﹣1二、填空题3.如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠,使点B落在点F处,连接FC,若∠DAF=18°,则∠DCF=度.第3题第4题4.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连结OQ.则线段OQ的最大值是.三、解答题5.如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB 的两条外角平分线交于点P,P在反比例函数y=的图象上.P A的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.6.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P 从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【答案与解析】一、选择题 1.【分析】如图,延长CB 交y 轴于点E ,设出D 点坐标,表示出C ,B 的坐标,因为B ,D 在反比例函数图像上,利用反比例函数积为定值,从而构造出方程,进而解决问题. 【解答】延长CB 交y 轴于点E ,设D (a ,k a ),所以C (2a -6, 2k a ),B (2a -12, 2ka )因为,B (2a -12,2k a )在反比例函数y=kx上, 所以,(2a -12)·2ka =k ,解得a =8 所以B (4, k4)所以BE =4,因为BO =6,在直角三角形BEO 中,由勾股定理得EO =2 5 所以k =4×2 5 =8 5 故选D2.【分析】如图,将线段OA 绕点O 顺时针旋转120°得到线段OT ,连接AT ,GT ,OP .则AO =OT =1,AT =,利用相似三角形的性质求出GT ,再根据三角形的三边关系解决问题即可,【解答】解:如图,将线段OA 绕点O 顺时针旋转120°得到线段OT ,连接AT ,GT ,OP .则AO =OT =1,AT =,∵△AOT ,△APG 都是顶角为120°的等腰三角形, ∴∠OAT =∠P AG =30°,E∴∠OAP=∠TAG,==∴=,∴△OAP∽△TAG,∴==,∵OP=2,∴TG=2,∵OG≤OT+GT,∴OG≤1+2,∴OG的最大值为1+2,故选:B.二、填空题3.【分析】由折叠的性质得:FE=BE,∠F AE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠F AE=36°,由直角三角形的性质得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性质求出∠ECF=54°,即可得出∠DCF的度数.【解答】解:∵四边形ABCD是矩形,∴∠BAD=∠B=∠BCD=90°,由折叠的性质得:FE=BE,∠F AE=∠BAE,∠AEB=∠AEF,∵∠DAF=18°,∴∠BAE=∠F AE=(90°﹣18°)=36°,∴∠AEF=∠AEB=90°﹣36°=54°,∴∠CEF=180°﹣2×54°=72°,∵E为BC的中点,∴BE=CE,∴FE=CE,∴∠ECF=(180°﹣72°)=54°,∴∠DCF=90°﹣∠ECF=36°;故答案为:36.4.【分析】连接BP,如图,先解方程x2﹣4=0得A(﹣4,0),B(4,0),再判断OQ为△ABP的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.【解答】解:连接BP,如图,当y=0时,x2﹣4=0,解得x1=4,x2=﹣4,则A(﹣4,0),B(4,0),∵Q是线段P A的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.三、解答题5.【分析】(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.利用全等三角形的性质解决问题即可.(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,利用勾股定理求出a,b 之间的关系,求出OC,OD即可解决问题.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,可得AB=6﹣a﹣b,推出OA+OB+AB=6,可得a+b+=6,利用基本不等式即可解决问题.【解答】解:(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠P AM=∠P AH,P A=P A,∴△P AM≌△P AH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∴∠MPN=90°,∴∠APB=∠APH+∠BPH=(∠MPH+∠NPH)=45°,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=9,∵m>0,∴m=3,∴P(3,3).(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(6﹣a﹣b)2,可得ab=18﹣6a﹣6b,∴9﹣3a﹣3b=ab,∵PM∥OC,∴=,∴=,∴OC=,同法可得OD=,∴S△COD=•OC•DO====6.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∴OA+OB+AB=6,∴a+b+=6,∴2+≤6,∴(2+)≤6,∴≤3(2﹣),∴ab≤54﹣36,∴S△AOB=ab≤27﹣18,∴△AOB的面积的最大值为27﹣18.6.【分析】(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P 作PM⊥AO,根据相似三角形的性质得到AP=t=,②当AP=AO=t=5,于是得到结论;(2)过点O作OH⊥BC交BC于点H,已知BE=PD,则可求△BOE的面积;可证得△DFQ∽△DOC,由相似三角形的面积比可求得△DFQ的面积,从而可求五边形OECQF 的面积.(3)根据题意列方程得到t=,t=0,(不合题意,舍去),于是得到结论;(4)由角平分线的性质得到DM=DN=,根据勾股定理得到ON=OM==,由三角形的面积公式得到OP=5﹣t,根据勾股定理列方程即可得到结论.【解答】解:(1)∵在矩形ABCD中,AB=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM=AO=,∵∠PMA=∠ADC=90°,∠P AM=∠CAD,∴△APM∽△ACD,∴,∴AP=t=,②当AP=AO=t=5,∴当t为或5时,△AOP是等腰三角形;(2)过点O作OH⊥BC交BC于点H,则OH=CD=AB=3cm.由矩形的性质可知∠PDO=∠EBO,DO=BO,又得∠DOP=∠BOE,∴△DOP≌BOE,∴BE=PD=8﹣t,则S△BOE=BE•OH=×3(8﹣t)=12﹣t.∵FQ∥AC,∴△DFQ∽△DOC,相似比为=,∴=∵S△DOC=S矩形ABCD=×6×8=12cm2,∴S△DFQ=12×=∴S五边形OECQF=S△DBC﹣S△BOE﹣S△DFQ=×6×8﹣(12﹣t)﹣=﹣t2+t+12;∴S与t的函数关系式为S=﹣t2+t+12;(3)存在,∵S△ACD=×6×8=24,∴S五边形OECQF:S△ACD=(﹣t2+t+12):24=9:16,解得t=3,或t=,∴t=3或时,S五边形S五边形OECQF:S△ACD=9:16;(4)如图3,过D作DM⊥PE于M,DN⊥AC于N,∵∠POD=∠COD,∴DM=DN=,∴ON=OM==,∵OP•DM=3PD,∴OP=5﹣t,∴PM=﹣t,∵PD2=PM2+DM2,∴(8﹣t)2=(﹣t)2+()2,解得:t=16(不合题意,舍去),t=,∴当t=时,OD平分∠COP.2020年中考数学压轴题一、选择题1.若整数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣3有正整数解,则满足条件的a的值之积为()A.28 B.﹣4 C.4 D.﹣22.如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1 B.2 C.3 D.4二、填空题3.如图,点P是⊙O的直径AB的延长线上一点,过点P作直线交⊙O于C、D两点.若AB=6,BP=2,则tan∠P AC•tan∠P AD=.第3题第4题4.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E,F分别在AC,BC边上运动(点E不与点A,C重合),且保持ED⊥FD,连接DE,DF,EF,在此运动变化的过程中,有下列结论:①AE=CF;②EF最大值为2;③四边形CEDF的面积不随点E位置的改变而发生变化;④点C到线段EF的最大距离为.其中结论正确的有(把所有正确答案的序号都填写在横线上)三、解答题5.阅读下列材料,解答下列问题材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”,如:65362,362﹣65=297=11×27,称65362是“网红数”.材料二:对任的自然数p均可分解为P=100x+10y+z(x≥0,0≤y≤9,0≤z≤9且x、y,z均为整数)如:5278=52×100+10×7+8,规定:G(P)=.(1)求证:任两个“网红数”之和一定能被11整除;(2)已知:S=300+10b+a,t=1000b+100a+1142(1≤a≤7,0≤b≤5,其a、b均为整数),当s+t为“网红数”时,求G(t)的最大值.6.如图已知:直线y=﹣x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(﹣1,0),在直线y=﹣x+3上有一点P,使△ABO与△ADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使△ADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.【答案与解析】一、选择题1.【分析】表示出不等式组的解集,由不等式组无解确定出a的范围,分式方程去分母转化为整式方程,表示出分式方程的解,由分式方程有正整数解确定出a的值,即可求出所求.【解答】解:不等式组整理得:,由不等式组无解,得到3a﹣2≤a+2,解得:a≤2,分式方程去分母得:ax+5=﹣3x+15,即(a+3)x=10,由分式方程有正整数解,得到x=,即a+3=1,2,10,解得:a=﹣2,2,7,综上,满足条件a的为﹣2,2,之积为﹣4,故选:B.2.【分析】连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用S△BOD=S△COE得到四边形ODBE的面积=S△ABC=,则可对③进行判断;作OH⊥DE,如图,则DH=EH,计算出S△ODE=OE2,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=4+DE=4+OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【解答】解:连接OB、OC,如图,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O是△ABC的中心,∴OB=OC,OB、OC分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE,在△BOD和△COE中,∴△BOD≌△COE,∴BD=CE,OD=OE,所以①正确;∴S△BOD=S△COE,∴四边形ODBE的面积=S△OBC=S△ABC=××42=,所以③正确;作OH⊥DE,如图,则DH=EH,∵∠DOE=120°,∴∠ODE=∠OEH=30°,∴OH=OE,HE=OH=OE,∴DE=OE,∴S△ODE=•OE•OE=OE2,即S△ODE随OE的变化而变化,而四边形ODBE的面积为定值,∴S△ODE≠S△BDE;所以②错误;∵BD=CE,∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,∴△BDE周长的最小值=4+2=6,所以④正确.故选:C.二、填空题3.【分析】连接BC、BD.因为AB是直径,推出∠ACB=∠ADB=90°,可得tan∠P AC•tan ∠P AD=•=•,利用相似三角形的性质转化即可解决问题;【解答】解:连接BC、BD.∵AB是直径,∴∠ACB=∠ADB=90°,∴tan∠P AC•tan∠P AD=•=•,∵△PCB∽△P AD,∴=,∵△PBD∽△PCA,∴=,∴tan∠P AC•tan∠P AD=•==,故答案为.4.【分析】①作常规辅助线连接CD,由SAS定理可证△CDF和△ADE全等,即可证得AE =CF;②根据AE=CF,设CE=x,用含x的式子表示出CF的长,根据勾股定理,即可表示出EF的长,根据二次函数的增减性,表示出EF的最小值;③由割补法可知四边形CEDF的面积保持不变;④由①可知,DE=EF,可得△DEF是等腰直角三角形,当DF与BC垂直,即DF最小时,FE取最小值2,此时点C到线段EF的最大距离.【解答】解:如图,连接CD.∵在△ABC中,AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵D是AB的中点,∴CD=AD=BD,∠ADC=90°,∠ACD=∠BCD=45°,∴∠1+∠2=90°,∵ED⊥FD,∴∠2+∠3=90°,∴∠1=∠3,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴AE=CF;故①正确;(2)设CE=x,则CF=AE=4﹣x,在Rt△CEF中,,∵2(x﹣2)2+8有最小值,最小值为8,∴EF有最小值,最小值为.故②错误;③由①知,△ADE≌△CDF,∴S四边形EDFC=S△EDC+S△FDC=S△EDC+S△ADE=S△ADC,∴四边形CEDF的面积不随点E位置的改变而发生变化.故③正确;④由①可知,△ADE≌△CDF,∴DE=DF,∴△DEF是等腰直角三角形,∴,当EF∥AB时,∵AE=CF,∴E,F分别是AC,BC的中点,故EF是△ABC的中位线,∴EF取最小值=,∵CE=CF=2,∴此时点C到线段EF的最大距离为.故④正确.故答案为:①③④.三、解答题5.【分析】(1)设两个“网红数”为,,(n、b表示末三位表示的数,m、a表示末三位之前的数字),则n﹣m=11k,b﹣a=11h,所以+=1001m+1001a+11(k+h)=11(91m+91n+h+k),即可证明;(2)s=3×100+10b+a,t=1000(b+1)+100(a+1)+4×10+2,所以s+t=1000(b+1)+100(a+4)+10(b+4)+a+2;①当1≤a≤5时,s+t=,则﹣(b+1)能被11整除,即101a+9b+441=11×9a+2a+11b﹣2b+40×11+1能被11整除,由已知可得﹣7≤2a﹣2b+1≤11,求出a=5,b=0;②当6≤a≤7时,s+t=,则﹣(b+2)能被11整除,所以101a+9b﹣560=11×9a+2a+11b﹣2b﹣51×11+1能被11整除,可得3≤2a﹣2b+1≤15,求出a=6,b=1或a=7,b=2,分别求出相应的G(t)值即可.【解答】解:(1)设两个“网红数”为,,(n、b表示末三位表示的数,m、a表示末三位之前的数字),∴n﹣m=11k,b﹣a=11h,∵+=1001m+1001a+11(k+h)=11(91m+91n+h+k),∴m、a、k、h都是整数,∴91m+91n+h+k为整数,∴任两个“网红数”之和一定能被11整除;(2)s=3×100+10b+a,t=1000(b+1)+100(a+1)+4×10+2,∴s+t=1000(b+1)+100(a+4)+10(b+4)+a+2,①当1≤a≤5时,s+t=,则﹣(b+1)能被11整除,∴101a+9b+441=11×9a+2a+11b﹣2b+40×11+1能被11整除,∴2a﹣2b+1能被11整除,∵1≤a≤5,0≤b≤5,∴﹣7≤2a﹣2b+1≤11,∴2a﹣2b+1=0或11,∴a=5,b=0,∴t=1642,G(1642)=17.25;②当6≤a≤7时,s+t=,则﹣(b+2)能被11整除,∴101a+9b﹣560=11×9a+2a+11b﹣2b﹣51×11+1能被11整除,∴2a﹣2b+1能被11整除,∵6≤a≤7,0≤b≤5,∴3≤2a﹣2b+1≤15,∴2a﹣2b+1=11,∴a=6,b=1或a=7,b=2,∴t=2742或3842,∴G(2742)=28或G(3842)=39,∴G(t)的最大值39.6.【分析】(1)首先确定A、B、C三点的坐标,然后利用待定系数法求抛物线的解析式;(2)△ABO为等腰直角三角形,若△ADP与之相似,则有两种情形,如答图1所示.利用相似三角形的性质分别求解,避免遗漏;(3)如答图2所示,分别计算△ADE的面积与四边形APCE的面积,得到面积的表达式.利用面积的相等关系得到一元二次方程,将点E是否存在的问题转化为一元二次方程是否有实数根的问题,从而解决问题.需要注意根据(2)中P点的不同位置分别进行计算,在这两种情况下,一元二次方程的判别式均小于0,即所求的E点均不存在.【解答】解:(1)由题意得,A(3,0),B(0,3)∵抛物线经过A、B、C三点,∴把A(3,0),B(0,3),C(1,0)三点分别代入y=ax2+bx+c,得方程组解得:∴抛物线的解析式为y=x2﹣4x+3(2)由题意可得:△ABO为等腰三角形,如答图1所示,若△ABO∽△AP1D,则∴DP1=AD=4,∴P1(﹣1,4)若△ABO∽△ADP2 ,过点P2作P2 M⊥x轴于M,AD=4,∵△ABO为等腰三角形,∴△ADP2是等腰三角形,由三线合一可得:DM=AM=2=P2M,即点M与点C重合,∴P2(1,2)综上所述,点P的坐标为P1(﹣1,4),P2(1,2);(3)不存在.理由:如答图2,设点E(x,y),则S△ADE=①当P1(﹣1,4)时,S四边形AP1CE=S△ACP1+S△ACE==4+|y| ∴2|y|=4+|y|,∴|y|=4∵点E在x轴下方,∴y=﹣4,代入得:x2﹣4x+3=﹣4,即x2﹣4x+7=0,∵△=(﹣4)2﹣4×7=﹣12<0∴此方程无解②当P2(1,2)时,S四边形AP2CE=S△ACP2+S△ACE==2+|y|,∴2|y|=2+|y|,∴|y|=2∵点E在x轴下方,∴y=﹣2,代入得:x2﹣4x+3=﹣2,即x2﹣4x+5=0,∵△=(﹣4)2﹣4×5=﹣4<0∴此方程无解综上所述,在x轴下方的抛物线上不存在这样的点E.2020年中考数学压轴题一、选择题1.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第9个图案中共有()和黑子.A.37 B.42 C.73 D.1212.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A.B.C.D.二、填空题3.如图,长方形纸片ABCD中,AB=4,将纸片折叠,折痕的一个端点F在边AD上,另一个端点G在边BC上,若顶点B的对应点E落在长方形内部,E到AD的距离为1,BG=5,则AF的长为.第3题第4题4.如图,射线OP过Rt△ABC的边AC、AB的中点M、N,AC=4cm,BC=4cm,OM =3cm.射线OP上有一动点Q从点O出发,沿射线OP以每秒1cm的速度向右移动,以Q为圆心,QM为半径的圆,经过t秒与BC、AB中的一边所在的直线相切,请写出t的所有可能值(单位:秒)三、解答题5.△ABC内接⊙O,AD⊥BC与D,连接OA.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,作BE⊥AC交CA延长线于E交⊙O于F,延长AD交⊙O于G,连接AF,求证:AD+AF=DG;(3)在第(2)问的条件下,如图3,OA交BC于点T,CA=CT,AD=2AF,AB=4,求DT长.6.如图1,在平面直角坐标系xOy中,三角形ABC如图放置,点C(0,4),点A,B 在x轴上,且OB=4OA,tan∠CBO=.(1)求过点A、C直线解析式;(2)如图2,点M为线段BC上任意一点,点D在OC上,且CD=DM,设M的横坐标为t,△CDM的面积为S,求S与t之间的函数关系式,直接写出t的取值范围;(3)在(2)的条件下,如图3,在OB上取点N,过N作NF⊥DM,垂足为点F,连接CF,AF,∠DCF+∠AFN=60°,NF=BO时,求点D的坐标.【答案与解析】一、选择题1.【分析】观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,…,据此规律可得.【解答】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个,第9、10图案中黑子有1+2×6+4×6+6×6+8×6=121个,故选:D.2.【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:A.二、填空题3.【分析】设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,然后求出EM、EN,在Rt△ENG中,利用勾股定理列式求出GN,再根据△GEN和△EKM相似,利用相似三角形对应边成比例列式求出EK、KM,再求出KH,然后根据△FKH和△EKM 相似,利用相似三角形对应边成比例列式求解即可.【解答】解:设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,∵E到AD的距离为1,∴EM=1,EN=4﹣1=3,在Rt△ENG中,GN===4,∵∠GEN+∠KEM=180°﹣∠GEH=180°﹣90°=90°,∠GEN+∠NGE=180°﹣90°=90°,∴∠KEM=∠NGE,又∵∠ENG=∠KME=90°,∴△GEN∽△EKM,∴==,即==,解得EK=,KM=,∴KH=EH﹣EK=4﹣=,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴=,即=,解得FH=,∴AF=FH=.故答案为.4.【分析】如图,作OG⊥AB于G,由题意OG=ON=>3,所以⊙Q在AC的左边不可能与AB相切.接下来分三种情形讨论求解即可.【解答】解:如图,作OG⊥AB于G,由题意OG=ON=>3,所以⊙Q在AC的左边不可能与AB相切.相切有三种可能:当⊙Q与BC相切时,MQ=2,∴|t﹣3|=2,∴t=1或5.当⊙Q与AB相切时,设切点为H,连接QH.易知QN=2QH,∴2﹣(t﹣3)=2(t﹣3),解得t=,综上所述,t=1s或5s或()s时,⊙Q与BC/AB相切.故答案为1s或5s或()s三、解答题5.△ABC内接⊙O,AD⊥BC与D,连接OA.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,作BE⊥AC交CA延长线于E交⊙O于F,延长AD交⊙O于G,连接AF,求证:AD+AF=DG;(3)在第(2)问的条件下,如图3,OA交BC于点T,CA=CT,AD=2AF,AB=4,求DT长.【分析】(1)延长AO交圆于点M,连结BM,由∠M+∠BAM=90°,∠C+∠CAD=90°,结论可得证;(2)分别延长DA、BE交于点H,连结BG,可证得△AFM和△BGM是等腰三角形,由等腰三角形的性质可证出结论;(3)连GO并延长GO交AB于点N,连BG,由CA=CT可得∠TAC=∠ATC,证得AG =BG,得出AN长,证出△BAD∽△GAN,由比例线段可求出AD长,BD长,再证明△ADT∽△BDA,得AD2=DT•BD,则DT长可求.【解答】(1)证明:如图1,延长AO交圆于点M,连结BM,∵AM是圆的直径,∴∠ABM=90°,∴∠M+∠BAM=90°,∵AD⊥BC,∴∠C+∠CAD=90°,∵∠M=∠C,∴∠BAO=∠CAD;(2)证明:如图2,分别延长DA、BE交于点H,连结BG,∵AE⊥BE,AD⊥DC,∴∠EAH+∠H=90°,∠DAC+∠C=90°,∵∠DAC=∠EAH,∴∠H=∠C,∵四边形AFBC是圆内接四边形,∴∠EF A=∠C,∴∠EF A=∠H,∴AF=AH,又∵∠C=∠BGH,∴∠H=∠BGH,∵BD⊥GH,∴DG=DM=AD+AH=AD+AF;(3)解:如图3,连GO并延长GO交AB于点N,连BG,∵CT=AC,∴∠TAC=∠ATC,∵∠TAC=∠TAD+∠DAC,∠ATC=∠TBA+∠BAT,∠DAC=∠BAT,∴∠TAD=∠TBA,又∵∠GBC=∠DAC=∠BAO,∴AG=BG,由轴对称性质可知NG⊥AB,∴∠GNA=∠BDA=90°,AN=BN=2,∵∠NAG=∠BAD∴△BAD∽△GAN,∴,∵AD+AF=DG,AD=2AF,∴,∴,设AD=x,则AG=,∴,解得:x=4,即AD=4,∴==8,在△ADT和△BDA中,∠TAD=∠DBA,∠TDA=∠BDA=90°,∴△ADT∽△BDA,∴,∴,∴DT=2.6.【分析】(1)由锐角三角函数可求点A坐标,由待定系数法可求解析式;(2)过点M作MH⊥OC于H,由锐角三角函数可求∴∠BCO=30°,由直角三角形的性质可求CD的长,由三角形面积公式可求解;(3)作FE⊥OB于E,CP⊥EF于P,FK⊥OC于K.则四边形CPEO是矩形,设PC=OE=m.只要证明△PCF∽△EF A,可得,由此构建方程求出m即可解决问题.【解答】解:(1)∵点C(0,4),∴OC=4,∵tan∠CBO==,∴OB=4,∵OB=4OA,∴OA=1,∴点A(﹣1,0)设过点A、C直线解析式为:y=kx+4,∴0=﹣k+4,∴k=4,∴过点A、C直线解析式为:y=4x+4;(2)如图2,过点M作MH⊥OC于H,∵M的横坐标为t,∴MH=t,∵tan∠BCO===,∴∠BCO=30°,∵CD=DM,∴∠DCM=∠CMD=30°,∴∠MDH=60°,且MH⊥OC,∴DH=t,DM=2DH=t=CD,∴△CDM的面积为S=×t×t=t2,(0<t≤4)(3)作FE⊥OB于E,CP⊥EF于P,FK⊥OC于K.则四边形CPEO是矩形,∴CP=OE,CO=PE=4,设PC=OE=m.∵∠DON+∠DFN+∠ODF+∠ONF=360°,∴∠FNO=120°,∴∠FNE=60°,且EF⊥BO,FN=OB=4,∴EF=2,∴PF=2∵∠DCF+∠AFN=60°,∠DCF+∠DFC=60°,∴∠DFC=∠AFN,∴∠CF A=∠DFN=90°,∴∠FCP+∠PFC=90°,∠PFC+∠AFE=90°,∴∠PCF=∠AFE,且∠P=∠AEF=90°,∴△PCF∽△EF A,∴,∴∴m=3或﹣4(舍弃),∴F(3,2),在Rt△DEK中,∵∠DFK=30°,FK=3,∴DK=,∴OD=3,∴D(0,3).2020年中考数学压轴题一、选择题1.如图,是半径为1的圆弧,△AOC为等边三角形,D是上的一动点,则四边形AODC 的面积s的取值范围是()A.≤s≤B.<s≤C.≤s≤D.<s<2.如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和等边△ACE,F 为AB的中点,DE,AB相交于点G,若∠BAC=30,下列结论:①EF⊥AC;②AD=AE;③AD=4AG;④记△ABC的面积为S1,四边形FBCE的面积为S2,则S1:S2=2:3.其中正确的结论的序号是()A.①③B.②④C.①③④D.①②③④二、填空题3.如图,⊙O是△ABC的外接圆,其中AB是⊙O的直径,将△ABC沿AB翻折后得到△ABD,点E在AD延长线上,BE与⊙O相切于点B,分别延长线段AE、CB相交于点F,若BD=3,AE=10,则线段EF的长为.4.已知关于x的方程x2﹣4x+t﹣2=0(t为实数)两非负实数根a,b,则(a2﹣1)(b2﹣1)的最小值是.三、解答题5.如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP 的长.6.如图,在平面直角坐标系xOy中,抛物线y=ax2+x+c与x轴交于A,B两点(点A 在点B的左侧),交y轴于点C,经过B,C两点的直线为y=.(1)求抛物线的函数表达式;(2)点P为抛物线上的动点,过点P作x轴的垂线,交直线BC于点M,连接PC,若△PCM为直角三角形,求点P的坐标;(3)当P满足(2)的条件,且点P在直线BC上方的抛物线上时,如图2,将抛物线沿射线BC方向平移,平移后B,P两点的对应点分别为B′,P′,取AB的中点E,连接EB′,EP′,试探究EB'+EP'是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.【答案与解析】一、选择题1.【分析】根据题意,得四边形AODC的最小面积即是三角形AOC的面积,最大面积即是当OD⊥OC时四边形的面积.要求三角形AOC的面积,作CD⊥AO于D.根据等边三角形的性质以及直角三角形的性质,求得CD=,得其面积是;要求最大面积,只需再进一步求得三角形DOC的面积,即是,则最大面积是.【解答】解:根据题意,得四边形AODC的面积最小即是三角形AOC的面积,最大面积即是当OD⊥OC时四边形的面积.作CH⊥AO于H,∵△AOC为等边三角形∴CH=∴S△AOC=;当OD⊥OC时面积最大,∴S△OCD=,则最大面积是+=∴四边形AODC的面积s的取值范围是<s≤.故选:B.2.【分析】根据直角三角形的性质和线段垂直平分线的性质,可得①正确;根据等边三角形的性质和直角三角形的斜边与直角边不相等,可得②不正确;根据等边三角形的性质、全等三角形的判定和性质、平行四边形的判定和性质,可得③正确;根据直角三角形的性质、三角形面积、梯形面积公式,可得④正确.【解答】证明:如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD 和等边△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30,下列结论:①EF。

2020中考数学压轴题综合提升训练(解析版)

2020中考数学压轴题综合提升训练(解析版)

决战2020中考数学压轴题综合提升训练:(《二次函数》、《反比例函数》、《三角形》、《四边形》、《图形的相似》、《一次函数》、《圆的综合》)《二次函数》1.如图,在平面直角坐标系中,二次函数y=ax2+bx+3(a≠0)的图象经过点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求a,b的值;(2)若点P为直线BC上一点,点P到A,B两点的距离相等,将该抛物线向左(或向右)平移,得到一条新抛物线,并且新抛物线经过点P,求新抛物线的顶点坐标.解:(1)∵二次函数y=ax2+bx+3(a≠0)的图象经过点A(﹣1,0),点B(3,0),∴,解得;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,C(3,0),∵点P到A,B两点的距离相等,∴点P在抛物线的对称轴x=1上,∵B(3,0),C(0,3),∴直线BC的解析式为y=﹣x+3,令x=1,则y=﹣1+3=2,∴P(1,2),设平移后的新抛物线的解析式为y=﹣(x﹣h)2+4,∵新抛物线经过点P,∴2=﹣(1﹣h)2+4,解得h1=1+,h2=1﹣,∴新抛物线的顶点坐标为(1+,4)或(1﹣,4).2.如图a,已知抛物线y=﹣x2+bx+c经过点A(4,0)、C(0,2),与x轴的另一个交点为B.(1)求出抛物线的解析式.(2)如图b,将△ABC绕AB的中点M旋转180°得到△BAC′,试判断四边形B C′AC的形状.并证明你的结论.(3)如图a,在抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC 全等?若存在,请直接写出点D的坐标;若不存在请说明理由.解:(1)将点A、C的坐标代入抛物线表达式并解得:b=1,c=2,故:抛物线的解析式为:y=﹣x2+x+2;(2)四边形BC′AC为矩形.抛物线y=﹣x2+x+2与x轴的另一个交点为:(﹣1,0)由勾股定理求得:BC=,AC=2,又AB=5,由勾股定理的逆定理可得:△ABC直角三角形,故∠BCA=90°;已知,△ABC绕AB的中点M旋转180o得到△BAC′,则A、B互为对应点,由旋转的性质可得:BC=AC',AC=BC'所以,四边形BC′AC为平行四边形,已证∠BCA=90°,∴四边形BC′AC为矩形;(3)存在点D,使得以A、B、D三点为顶点的三角形与△ABC全等,则点D与点C关于函数对称轴对称,故:点D的坐标为(3,2).3.如图,已知二次函数y=x2﹣2x+m的图象与x轴交于点A、B,与y轴交于点C,直线AC交二次函数图象的对称轴于点D,若点C为AD的中点.(1)求m的值;(2)若二次函数图象上有一点Q,使得tan∠ABQ=3,求点Q的坐标;(3)对于(2)中的Q点,在二次函数图象上是否存在点P,使得△QBP∽△COA?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)设对称轴交x轴于点E,交对称轴于点D,函数的对称轴为:x=1,点C为AD的中点,则点A(﹣1,0),将点A的坐标代入抛物线表达式并解得:m=﹣3,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)tan∠ABQ=3,点B(3,0),则AQ所在的直线为:y=±3x(x﹣3)…②,联立①②并解得:x=﹣4或3(舍去)或2,故点Q(﹣4,21)或(2,﹣3);(3)不存在,理由:△QBP∽△COA,则∠QBP=90°①当点Q(2,﹣3)时,则BQ的表达式为:y=﹣(x﹣3)…③,联立①③并解得:x=3(舍去)或﹣,故点P(﹣,),此时BP:PQ≠OA:OB,故点P不存在;②当点Q(﹣4,21)时,同理可得:点P(﹣,),此时BP:PQ≠OA:OB,故点P不存在;综上,点P不存在.4.如图,已知二次函数y=ax2+4ax+c(a≠0)的图象交x轴于A、B两点(A在B的左侧),交y轴于点C.一次函数y=﹣x+b的图象经过点A,与y轴交于点D(0,﹣3),与这个二次函数的图象的另一个交点为E,且AD:DE=3:2.(1)求这个二次函数的表达式;(2)若点M为x轴上一点,求MD+MA的最小值.解:(1)把D(0,﹣3)代入y=﹣x+b得b=﹣3,∴一次函数解析式为y=﹣x﹣3,当y=0时,﹣x﹣3=0,解得x=﹣6,则A(﹣6,0),作EF⊥x轴于F,如图,∵OD∥EF,∴==,∴OF=OA=4,∴E点的横坐标为4,当x=4时,y=﹣x﹣3=﹣5,∴E点坐标为(4,﹣5),把A(﹣6,0),E(4,﹣5)代入y=ax2+4ax+c得,解得,∴抛物线解析式为y=﹣x2﹣x+;(2)作MH⊥AD于H,作D点关于x轴的对称点D′,如图,则D′(0,3),在Rt△OAD中,AD==3,∵∠MAH=∠DAO,∴Rt△AMH∽Rt△ADO,∴=,即=,∴MH=AM,∵MD=MD′,∴MD+MA=MD′+MH,当点M、H、D′共线时,MD+MA=MD′+MH=D′H,此时MD+MA的值最小,∵∠D′DH=∠ADO,∴Rt△DHD′∽Rt△DOA,∴=,即=,解得D′H=,∴MD+MA的最小值为.5.如图1,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)如图2,直线AD:y=x+1与y轴交于点D,P点是x轴上一个动点,过点P作PG∥y轴,与抛物线交于点G,与直线AD交于点H,当点C、D、H、G四个点组成的四边形是平行四边形时,求此时P点坐标.(3)如图3,连接AC和BC,Q点是抛物线上一个动点,连接AQ,当∠QAC=∠BCO 时,求Q点的坐标.解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),故﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3…①;(2)直线AD:y=x+1与y轴交于点D,则点D(0,1),则CD=2;设点P(x,0),则点H(x,x+1)、点G(x,﹣x2﹣2x+3),则GH=CD=2,即|x+1﹣(﹣x2﹣2x+3)|=2,解得:x=﹣或,故点P(﹣,0)或(,0)或(,0);(3)设直线AQ′交y轴于点H,过点H作HM⊥AC交于点M,交AQ于点H′,设:MH=x=MC,∠QAC=∠BCO,则tan∠CAH=,则AM=3x,故AC=AM+CM=4x=3,解得:x=,则CH=x=,OH=OC﹣CH=,故点H(0,),同理点H′(﹣,3),由点AH坐标得,直线AH的表达式为:y=(x+3)…②,同理直线AH′的表达式为:y=2(x+3)…③,联立①②并解得:x=﹣3(舍去)或;联立①③并解得:x=﹣3(舍去)或﹣1;故点Q的坐标为:(,)或(﹣1,4).6.在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y =x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)直接写出:b的值为﹣;c的值为﹣2 ;点A的坐标为(﹣1,0);(2)点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点D 的横坐标为m.①如图1,过点D作DM⊥BC于点M,求线段DM关于m的函数关系式,并求线段DM的最大值;②若△CDM为等腰直角三角形,直接写出点M的坐标 1 .解:(1)直线y=x﹣2与x轴交于点B,与y轴交于点C,则点B、C的坐标为:(4,0)、(0,﹣2),将点B、C的坐标代入抛物线表达式并解得:b=﹣,c=﹣2,故抛物线的表达式为:y=x2﹣x﹣2…①,点A(﹣1,0);故答案为:﹣,﹣2,(﹣1,0);(2)①如图1,过点D作y轴的平行线交BC于点H,设点D(m,m2﹣m﹣2),点H(m,m﹣2),则∠MDH=∠OBC=α,tan∠OBC==tanα,则cos;MD=DH cos∠MDH=(m﹣2﹣m2+m+2)=(﹣m2+4m),∵<0,故DM有最大值;设点M、D的坐标分别为:(s,s﹣2),(m,n),n=m2﹣m﹣2;②(Ⅰ)当∠CDM=90°时,如图2左图,过点M作x轴的平行线交过点D于x轴的垂线于点F,交y轴于点E,则△MEC≌△DFM(AAS),∴ME=FD,MF=CE,即s﹣2=2=m﹣s,s=s﹣2﹣n,解得:s=,故点M(,﹣);(Ⅱ)当∠MDC=90°时,如图2右图,同理可得:s=,故点M(,﹣);(Ⅲ)当∠MCD=90°时,则直线CD的表达式为:y=﹣2x﹣2…②,联立①②并解得:x=0或﹣1,故点D(﹣1,0),不在线段BC的下方,舍去;综上,点M坐标为:(,﹣)或(,﹣).7.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A,B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点D,点C是BD的中点时,求直线BD和抛物线的解析式,(3)在(2)的条件下,点P是直线BC下方抛物线上的一点,过P作PE⊥BC于点E,作PF∥AB交BD于点F,是否存在一点P,使得PE+PF最大,若存在,请求出该最大值;若不存在,请说明理由.解:(1)a(x﹣1)(x﹣3)=0,x1=1,x2=3,则点A的坐标为(1,0),点B的坐标为(3,0),∴OA=1,OB=3,∵△OCA∽△OBC,∴=,即=,解得,OC=;(2)在Rt△BOD中,点C是BD的中点,∴BD=2OC=2,由勾股定理得,OD===,∴点D的坐标为(0,﹣)设直线BD的解析式为:y=kx+b,则,解得,,则直线BD的解析式为:y=x﹣,∵点B的坐标为(3,0),点D的坐标为(0,﹣),点C是BD的中点,∴点C的坐标为(,﹣),∴﹣=a(﹣1)(﹣3),解得,a=,∴抛物线的解析式:y=(x﹣1)(x﹣3),即y=x2﹣x+2;(3)作PG⊥OB交BD于G,tan∠OBD==,∴∠OBD=30°,∵PF∥AB,∴∠PFG=∠OBD=30°,∴PF=PG,∵PE⊥BC,PF⊥PG,∴∠EPG=∠PFG=30°,∴PE=PG,∴PE+PF=PG+PG=PG,设点P的坐标为(m,m2﹣m+2),点G的坐标为(m,m﹣),∴PG=m﹣﹣(m2﹣m+2)=﹣m2+3m﹣3∴PE+PF=PG=﹣3m2+m﹣=﹣3(m﹣)2+,则PE+PF的最大值为.8.已知抛物线y=ax2+bx+c经过点A(﹣2,0),B(3,0),与y轴负半轴交于点C,且OC=OB.(1)求抛物线的解析式;(2)在y轴负半轴上存在一点D,使∠CBD=∠ADC,求点D的坐标;(3)点D关于直线BC的对称点为D′,将抛物线y=ax2+bx+c向下平移h个单位,与线段DD′只有一个交点,直接写出h的取值范围.解:(1)OC=OB,则点C(0,﹣3),抛物线的表达式为:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=,故抛物线的表达式为:y=x2﹣x﹣3;(2)设:CD=m,过点D作DH⊥BC交BC的延长线于点H,则CH=HD=m,tan∠ADC==tan∠DBC==,解得:m=3或﹣4(舍去﹣4),故点D(0,﹣6);(3)过点C作x轴的平行线交DH的延长线于点D′,则D′(﹣3,﹣3);平移后抛物线的表达式为:y=x2﹣x﹣3﹣h,当平移后的抛物线过点C时,抛物线与线段DD′有一个公共点,此时,h=3;当平移后的抛物线过点D′时,抛物线与线段DD′有一个公共点,即﹣3=9﹣h,解得:h=15,故3≤h≤15.9.如图①,在平面直角坐标系中,抛物线y=x2的对称轴为直线l,将直线l绕着点P(0,2)顺时针旋转∠α的度数后与该抛物线交于AB两点(点A在点B的左侧),点Q是该抛物线上一点(1)若∠α=45°,求直线AB的函数表达式;(2)若点p将线段分成2:3的两部分,求点A的坐标(3)如图②,在(1)的条件下,若点Q在y轴左侧,过点p作直线l∥x轴,点M是直线l上一点,且位于y轴左侧,当以P,B,Q为顶点的三角形与△PAM相似时,求M的坐标.解:(1)∵∠α=45°,则直线的表达式为:y=x+b,将(0,2)代入上式并解得:b=2,故直线AB的表达式为:y=x+2;(2)①AP:PB=2:3,设A(﹣2a,4a2)B(3a,9a2),,解得:,(舍去),∴;②AP:PB=3:2,设A(﹣3a,9a2),B(2a,4a2),,解得:,(舍去),∴,综上或;(3)∠MPA=45°,∠QPB≠45°A(﹣1,1),B(2,4),①∠QBP=45°时,此时B,Q关于y轴对称,△PBQ为等腰直角三角形,∴M1(﹣1,2)M2(﹣2,2),②∠BQP=45°时,此时Q(﹣2,4)满足,左侧还有Q'也满足,∵BQP=∠BQ'P,∴Q',B,P,Q四点共圆,则圆心为BQ中点D(0,4);设Q'(x,x2),(x<0),Q'D=BD,∴(x﹣0)2+(x2﹣4)2=22(x2﹣4)(x2﹣3)=0,∵x<0且不与Q重合,∴,∴,Q'P=2,∵Q'P=DQ'=DP=2,∴△DPQ'为正三角形,则,过P作PE⊥BQ',则,,∴,当△Q'BP~△PMA时,,,则,故点;当△Q'PB~△PMA时,,,则,故点;综上点M的坐标:(﹣1,2),(﹣2,2),,.10.如图,Rt△FHG中,∠H=90°,FH∥x轴,=0.6,则称Rt△FHG为准黄金直角三角形(G在F的右上方).已知二次函数y1=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点E(0,﹣3),顶点为C(1,﹣4),点D为二次函数y2=a(x﹣1﹣m)2+0.6m﹣4(m>0)图象的顶点.(1)求二次函数y1的函数关系式;(2)若准黄金直角三角形的顶点F与点A重合、G落在二次函数y1的图象上,求点G的坐标及△FHG的面积;(3)设一次函数y=mx+m与函数y1、y2的图象对称轴右侧曲线分别交于点P、Q.且P、Q两点分别与准黄金直角三角形的顶点F、G重合,求m的值,并判断以C、D、Q、P为顶点的四边形形状,请说明理由.解:(1)设二次函数y1的函数关系式为y1=a(x﹣1)2﹣4,将E(0,﹣3)代入得a﹣4=﹣3,解得a=1,∴y1=(x﹣1)2﹣4=x2﹣2x﹣3;(2)设G[a,0.6(a+1)],代入函数关系式,得,(a﹣1)2﹣4=0.6(a+1),解得a1=3.6,a2=﹣1(舍去),所以点G坐标为(3.6,2.76).由x2﹣2x﹣3=0知x1=﹣1,x2=3,∴A(﹣1,0)、B(3,0),则AH=4.6,GH=2.76,∴S△FHG=×4.6×2.76=6.348;(3)∵y=mx+m=m(x+1),∴当x=﹣1时,y=0,∴直线y=mx+m过点A,延长QH,交x轴于点R,由平行线的性质得,QR⊥x轴.∵FH∥x轴,∴∠QPH=∠QAR,∴∠PHQ=∠ARQ=90°,∴△AQR∽△PHQ,∴==0.6,设Q[n,0.6(n+1)],代入y=mx+m中,得mn+m=0.6(n+1),整理,得:m(n+1)=0.6(n+1),∵n+1≠0,∴m=0.6.四边形CDPQ为平行四边形,理由如下:连接CD,并延长交x轴于点S,过点D作DK⊥x轴于点K,延长KD,过点C作CT垂直KD延长线,垂足为T,∵y2=(x﹣1﹣m)2+0.6m﹣4,∴点D由点C向右平移m个单位,再向上平移0.6m个单位所得,∴==0.6,∴tan∠KSD=tan∠QAR,∴∠KSD=∠QAR,∴AQ∥CS,即CD∥PQ.∵AQ∥CS,由抛物线平移的性质可得,CT=PH,DT=QH,∴PQ=CD,∴四边形CDPQ为平行四边形.11.如图,点P是二次函数y=﹣+1图象上的任意一点,点B(1,0)在x轴上.(1)以点P为圆心,BP长为半径作⊙P.①直线l经过点C(0,2)且与x轴平行,判断⊙P与直线l的位置关系,并说明理由.②若⊙P与y轴相切,求出点P坐标;(2)P1、P2、P3是这条抛物线上的三点,若线段BP1、BP2、BP3的长满足,则称P2是P1、P3的和谐点,记做T(P1,P3).已知P1、P3的横坐标分别是2,6,直接写出T(P1,P3)的坐标(1,﹣).解:(1)①⊙P与直线相切.过P作PQ⊥直线,垂足为Q,设P(m,n).则PB2=(m﹣1)2+n2,PQ2=(2﹣n)2∵,即:(m﹣1)2=4﹣4n,∴PB2=(m﹣1)2+n2=4﹣4n+n2=(2﹣n)2=PQ2∴PB=PQ,∴⊙P与直线相切;②当⊙P与y轴相切时PD=PB=PQ∴|m|=2﹣n,即:n=2±m代入(m﹣1)2=4﹣4n得:m2﹣6m+5=0或m2+2m+5=0.解得:m1=1,m2=5.∴P(1,1)或P(5,﹣3);(2)∵,则BP2=(BP1+BP2),P1、P3的横坐标分别是2,6,则点P1、P2的坐标分别为:(2,)、(6,﹣),BP2=(BP1+BP2)=(+)=,设点P2的坐标为:(m,n),n=﹣(m﹣1)2+1,则(m﹣1)2+(n)2=()2,解得:m=1±,故点P2的坐标,即T(P1,P3)的坐标为:或.12.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,连接BC.(1)求该抛物线的函数表达式;(2)若点N为抛物线对称轴上一点,抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由;(3)点P是直线BC上方抛物线上的点,若∠PCB=∠BCO,求出P点的到y轴的距离.(1)解:(1)将点A(﹣1,0),B(3,0)代入y=ax2+bx+2,可得,,∴;(2)存在点M使得以B,C,M,N为顶点的四边形是平行四边形,由题得,B(3,0),C(0,2),设N(1,n),M(x,y),①四边形CMNB是平行四边形时,,∴x=﹣2,∴;②四边形CNBM时平行四边形时,,∴x=2,∴M(2,2);③四边形CNNB时平行四边形时,,∴x=4,∴;综上所述:M(2,2)或或;(3)解法一:过点B作BH平行于y轴交PC的延长线与H点.∵BH∥OC∴∠OCB=∠HBC又∠OCB=∠BCP∴∠PCB=∠HBC∴HC=HB又OC⊥OB∴HB⊥OB故可设H(3,m),即HB=HC=m过点H作HN垂直y轴于N在Rt△HCN中,则m2=32+(m﹣2)2解得∴由点C、P的坐标可得,设直线CP的解析式为;故解得x1=0(舍去),即点P到y轴的距离是解法二、过点B作CP的垂线,垂足为M,过点M作x轴的平行线交y轴于点N,再过点B作DN的垂线,垂足为D,(以下简写)可得△BOC≌△BMC得BM=BC=3,OC=CM=2设点M(m,n)得BD=n,CN=n﹣2,MN=m,MD=3﹣m可证△BDM∽△MNC所以得解得,则同解法一直线CP的解析式故解得x1=0(舍去),即点P到y轴的距离是13.如图,已知抛物线y=ax2+bx+c的图象经过点A(3,3)、B(4,0)和原点O,P为直线OA上方抛物线上的一个动点.(1)求直线OA及抛物线的解析式;(2)过点P作x轴的垂线,垂足为D,并与直线OA交于点C,当△PCO为等腰三角形时,求D的坐标;(3)设P关于对称轴的点为Q,抛物线的顶点为M,探索是否存在一点P,使得△PQM 的面积为,如果存在,求出P的坐标;如果不存在,请说明理由.解:(1)设直线OA的解析式为y1=kx,把点A坐标(3,3)代入得:k=1,直线OA的解析式为y=x;再设y2=ax(x﹣4),把点A坐标(3,3)代入得:a=﹣1,函数的解析式为y=﹣x2+4x,∴直线OA的解析式为y=x,二次函数的解析式是y=﹣x2+4x.(2)设D的横坐标为m,则P的坐标为(m,﹣m2+4m),∵P为直线OA上方抛物线上的一个动点,∴0<m<3.此时仅有OC=PC,,∴,解得,∴;(3)函数的解析式为y=﹣x2+4x,∴对称轴为x=2,顶点M(2,4),设P(n,﹣n2+4n),则Q(4﹣n,﹣n2+4n),M到直线PQ的距离为4﹣(﹣n2+4n)=(n﹣2)2,要使△PQM的面积为,则,即,解得:或,∴或.14.在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n与x轴交于点A,B(A在B的左侧).(1)如图1,若抛物线的对称轴为直线x=﹣3,AB=4.①点A的坐标为(﹣5 ,0 ),点B的坐标为(﹣1 ,0 );②求抛物线的函数表达式;(2)如图2,将(1)中的抛物线向右平移若干个单位,再向下平移若干个单位,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP 是等腰直角三角形,求点P的坐标.解:(1)①∵抛物线的对称轴为直线x=﹣3,AB=4,∴点A的坐标为(﹣5,0),点B的坐标为(﹣1,0),故答案为:﹣5;0﹣1;0;②∵抛物线经过(﹣5,0),(﹣1,0),∴,解得,,则抛物线的解析式为y=﹣x2﹣6x﹣5;(2)如图2,作PD⊥OC于D,∵△OCP是等腰直角三角形,∴PD=OC=OD,设点P的坐标为(a,a),设抛物线的解析式为y=﹣(x﹣a)2+a,∵抛物线经过原点,∴﹣(0﹣a)2+a=0,解得,a1=0(不合题意),a2=1,∴△OCP是等腰直角三角形时,点P的坐标为(1,1).15.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0),B(1,0)两点,与y轴交于点C(0,﹣3),顶点为D,其对称轴与x轴交于点E.(1)求二次函数的解析式;(2)点P为第三象限内抛物线上一点,△APC的面积记为S,求S的最大值及此时点P 的坐标.解:(1)∵二次函数过A(﹣3,0),B(1,0)两点,∴设二次函数解析式为y=a(x+3)(x﹣1),∵二次函数过C点(0,﹣3),∴﹣3=a(0+3)(0﹣1),解得,a=1,∴y=(x+3)(x﹣1)=x2+2x﹣3即二次函数解析式为y=x2+2x﹣3;(2)设直线AC解析式为:y=kx+b,∵A(﹣3,0),C(0,﹣3),∴,解得,,∴直线AC的解析式为y=﹣x﹣3,过点P作x轴的垂线交AC于点G,设点P的坐标为(x,x2+2x﹣3),则G(x,﹣x﹣3),∵点P在第三象限,∴PG=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x,∴===,∴当时,,点P(﹣,﹣).,即S的最大值是,此时点P的坐标是(﹣,﹣).决战2020中考数学压轴题综合提升训练:《反比例函数》1.如图,反比例函数y1=和一次函数y2=mx+n相交于点A(1,3),B(﹣3,a),(1)求一次函数和反比例函数解析式;(2)连接OA,试问在x轴上是否存在点P,使得△OAP为以OA为腰的等腰三角形,若存在,直接写出满足题意的点P的坐标;若不存在,说明理由.解:(1)∵点A(1,3)在反比例函数y1=的图象上,∴k=1×3=3,∴反比例函数的解析式为y1=,∵点B(﹣3,a)在反比例函数y1=的图象上,∴﹣3a=3,∴a=﹣1,∴B(﹣3,﹣1),∵点A(1,3),B(﹣3,﹣1)在一次函数y2=mx+n的图象上,∴,∴,∴一次函数的解析式为y2=x+2;(2)如图,∵△OAP为以OA为腰的等腰三角形,∴①当OA=OP时,∵A(1,3),∴OA=,∵OP=,∵点P在x轴上,∴P(﹣,0)或(,0),②当OA=AP时,则点A是线段OP的垂直平分线上,∵A(1,3),∴P(2,0),即:在x轴上存在点P,使得△OAP为以OA为腰的等腰三角形,此时,点P的坐标为(﹣,0)或(2,0)或(,0).2.在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A(3,2),直线l:y =kx﹣1(k≠0)与y轴交于点B,与图象G交于点C.(1)求m的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,C之间的部分与线段BA,BC围成的区域(不含边界)为W.①当直线l过点(2,0)时,直接写出区域W内的整点个数;②若区域W内的整点不少于4个,结合函数图象,求k的取值范围.解:(1)把A(3,2)代入y=得m=3×2=6,(2)①当直线l过点(2,0)时,直线解析式为y=x﹣1,解方程=x﹣1得x1=1﹣(舍去),x2=1+,则C(1+,),而B(0,﹣1),如图1所示,区域W内的整点有(3,1)一个;②如图2,直线l在AB的下方时,直线l:y=kx﹣1过(6,1)时,1=6k﹣1,解得k=,当直线在OA的上方时,直线经过(1,4)时,4=k﹣1,解得k=5,观察图象可知:当k≤或k≥5时,区域W内的整点不少于4个.3.如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,0),B(4,3),C(0,3).动点P从点O出发,以每秒个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒1个单位长度的速度沿边BC向终点C运动,设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:;(2)当PQ=时,求t的值;(3)连接OB交PQ于点D,若双曲线y=经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.解:(1)过点P作PE⊥BC于点E,如图1所示.当运动时间为t秒时(0≤t≤4)时,点P的坐标为(t,0),点Q的坐标为(4﹣t,3),∴PE=3,EQ=|4﹣t﹣t|=|4﹣t|,∴PQ2=PE2+EQ2=32+|4﹣t|2=t2﹣20t+25,∴y关于t的函数解析式及t的取值范围:;故答案为:.(2)当时,整理,得5t2﹣16t+12=0,解得:t1=2,.(3)经过点D的双曲线的k值不变.连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.∵OC=3,BC=4,∴.∵BQ∥OP,∴△BDQ∽△ODP,∴,∴OD=3.∵CB∥OA,∴∠DOF=∠OBC.在Rt△OBC中,,,∴,,∴点D的坐标为,∴经过点D的双曲线的k值为.4.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B (n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积;(3)若P(x1,y1),Q(x2,y2)是该反比例函数图象上的两点,且当x1<x2时,y1>y2,指出点P、Q各位于哪个象限?解:(1)将A(﹣3,m+8)代入反比例函数y=得﹣3(m+8)=m,解得m=﹣6,∴点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得﹣6n=﹣6,解得n=1,∴点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,解得,∴一次函数解析式为y=﹣2x﹣4;(2)设AB与x轴相交于点C,如图,当﹣2x﹣4=0,解得x=﹣2,则点C的坐标为(﹣2,0),∴S△AOB=S△AOC+S△BOC,=×2×2+×2×6,=2+6,=8;(3)∵当x1<x2时,y1>y2,∴点P和点Q不在同一象限,∴P在第二象限,Q在第四象限.5.如图,平面直角坐标系中,一次函数y=x﹣1的图象与x轴,y轴分别交于点A,B,与反比例函数y=的图象交于点C,D,CE⊥x轴于点E,=.(1)求反比例函数的表达式与点D的坐标;(2)以CE为边作?ECMN,点M在一次函数y=x﹣1的图象上,设点M的横坐标为a,当边MN与反比例函数y=的图象有公共点时,求a的取值范围.解:(1)由题意A(1,0),B(0,﹣1),∴OA=OB=1,∴∠OAB=∠CAE=45°∵AE=3OA,∴AE=3,∵EC⊥x轴,∴∠AEC=90°,∴∠EAC=∠ACE=45°,∴EC=AE=3,∴C(4,3),∵反比例函数y=经过点C(4,3),∴k=12,由,解得或,∴D(﹣3,﹣4).(2)如图,设M(a,a﹣1).当点N在反比例函数的图象上时,N(a,),∵四边形ECMN是平行四边形,∴MN=EC=3,∴|a﹣1﹣|=3,解得a=6或﹣2或﹣1±(舍弃),∴M(6,5)或(﹣2,﹣3),观察图象可知:当边MN与反比例函数y=的图象有公共点时4<a≤6或﹣3≤a≤﹣2.6.如图,一次函数y=kx+2的图象与y轴交于点A,正方形ABCD的顶点B在x轴上,点D在直线y=kx+2上,且AO=OB,反比例函数y=(x>0)经过点C.(1)求一次函数和反比例函数的解析式;(2)点P是x轴上一动点,当△PCD的周长最小时,求出P点的坐标;(3)在(2)的条件下,以点C、D、P为顶点作平行四边形,直接写出第四个顶点M 的坐标.解:(1)设一次函数y=kx+2的图象与x轴交于点E,连接BD,如图1所示.当x=0时,y=kx+2=2,∴OA=2.∵四边形ABCD为正方形,OA=OB,∴∠BAE=90°,∠OAB=∠OBA=45°,∴∠OAE=∠OEA=45°,∴OE=2,点E的坐标为(﹣2,0).将E(﹣2,0)代入y=kx+2,得:﹣2k+2=0,解得:k=1,∴一次函数的解析式为y=x+2.∵∠OBD=∠ABD+∠OBA=90°,∴BD∥OA.∵OE=OB=2,∴BD=2OA=4,∴点D的坐标为(2,4).∵四边形ABCD为正方形,∴点C的坐标为(2+2﹣0,0+4﹣2),即(4,2).∵反比例函数y=(x>0)经过点C,∴n=4×2=8,∴反比例函数解析式为y=.(2)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时△PCD的周长取最小值,如图2所示.∵点D的坐标为(2,4),∴点D′的坐标为(2,﹣4).设直线CD′的解析式为y=ax+b(a≠0),将C(4,2),D′(2,﹣4)代入y=ax+b,得:,解得:,∴直线CD′的解析式为y=3x﹣10.当y=0时,3x﹣10=0,解得:x=,∴当△PCD的周长最小时,P点的坐标为(,0).(3)设点M的坐标为(x,y),分三种情况考虑,如图3所示.①当DP为对角线时,,解得:,∴点M1的坐标为(,2);②当CD为对角线时,,解得:,∴点M2的坐标为(,6);③当CP为对角线时,,解得:,∴点M3的坐标为(,﹣2).综上所述:以点C、D、P为顶点作平行四边形,第四个顶点M的坐标为(,2),(,6)或(,﹣2).7.如图在平面直角坐标系中,一次函数y=﹣2x﹣4的图象与反比例函数y=的图象交于点A(1,n),B(m,2)(1)求反比例函数关系式及m的值;(2)若x轴正半轴上有一点M满足△MAB的面积为16,求点M的坐标;(3)根据函数图象直接写出关于x的不等式在<﹣2x﹣4的解集解:(1)∵一次函数y=﹣2x﹣4的图象过点A(1,n),B(m,2)∴n=﹣2﹣4,2=﹣2m﹣4∴n=﹣6,m=﹣3,∴A(1,﹣6)把A(1,﹣6)代入y=得,k=﹣6,∴反比例函数关系式为y=﹣;(2)设直线AB与x轴交于N点,则N(﹣2,0),设M(m,0),m>0,∵S△MAB=S△BMN+S△AMN,△MAB的面积为16,∴|m+2|×(2+6)=16,解得m=2或﹣6(不合题意舍去),∴M(2,0);(3)由图象可知:不等式在<﹣2x﹣4的解集是x<﹣3或0<x<1.8.如图,在平面直角坐标系中,点A(3,5)与点C关于原点O对称,分别过点A、C 作y轴的平行线,与反比例函数的图象交于点B、D,连结AD、BC,AD与x轴交于点E(﹣2,0).(1)求直线AD对应的函数关系式;(2)求k的值;(3)直接写出阴影部分图形的面积之和.解:(1)设直线AD对应的函数关系式为y=ax+b.∵直线AD过点A(3,5),E(﹣2,0),∴解得∴直线AD的解析式为y=x+2.(2)∵点A(3,5)关于原点O的对称点为点C,∴点C的坐标为(﹣3,﹣5),∵CD∥y轴,∴设点D的坐标为(﹣3,a),∴a=﹣3+2=﹣1,∴点D的坐标为(﹣3,﹣1),∵反比例函数y=的图象经过点D,∴k=﹣3×(﹣1)=3;(3)如图:∵点A和点C关于原点对称,∴阴影部分的面积等于平行四边形CDGF的面积,∴S阴影=4×3=12.9.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.解:(1)把点A(4,3)代入函数得:a=3×4=12,∴y=,OA=5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:∴y=2x﹣5;(2)作MD⊥y轴.∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5).∵MB=MC,∴CD=BD,∴x2+(8﹣2x+5)2=x2+(﹣5﹣2x+5)2∴8﹣(2x﹣5)=2x﹣5+5解得:x=∴2x﹣5=,∴点M的坐标为(,).10.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=(k≠0)的第一象限内的图象上,OA=3,OC=5,动点P在x轴的上方,且满足S△PAO=S矩形OABC.(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、PA,求PO+PA的最小值;(3)若点Q是平面内一点,使得以A、B、P、Q为顶点的四边形是菱形,则请你直接写出满足条件的所有点Q的坐标.解:(1)由题意,可知:点B的坐标为(3,5).∵点B在反比例函数y=(k≠0)的第一象限内的图象上,∴k=3×5=15,∴反比例函数的解析式为y=.∵S△PAO=S矩形OABC,∴×3×y P=×3×5,∴y P=3.当y=3时,=3,解得:x=5,∴当点P在这个反比例函数的图象上时,点P的坐标为(5,3).(2)由(1)可知:点P在直线y=3上,作点O关于直线y=3的对称点O′,连接AO′交直线y=3于点P,此时PO+PA取得最小值,如图1所示.∵点O的坐标为(0,0),∴点O′的坐标为(0,6).∵点A的坐标为(3,0),∴AO′==3,∴PO+PA的最小值为3.(3)∵AB∥y轴,AB=5,点P的纵坐标为3,∴AB不能为对角线,只能为边.设点P的坐标为(m,3),分两种情况考虑,如图2所示:①当点Q在点P的上方时,AP=AB=5,即(m﹣3)2+(3﹣0)2=25,解得:m1=﹣1,m2=7,∴点P1的坐标为(﹣1,3),点P2的坐标为(7,3).又∵PQ=5,且PQ∥AB∥y轴,∴点Q1的坐标为(﹣1,8),点Q2的坐标为(7,8);②当点Q在点P的下方时,BP=AB=5,即(m﹣3)2+(3﹣5)2=25,解得:m3=3﹣,m4=3+,同理,可得出:点Q3的坐标为(3﹣,﹣2),点Q4的坐标为(3+,﹣2).综上所述:当以A、B、P、Q为顶点的四边形是菱形时,点Q的坐标为(﹣1,8),(7,8),(3﹣,﹣2)或(3+,﹣2).11.如图,已知C,D是反比例函数y=图象在第一象限内的分支上的两点,直线CD分别交x轴、y轴于A,B两点,设C,D的坐标分别是(x1,y1)、(x2,y2),且x1<x2,连接OC、OD.(1)若x1+y1=x2+y2,求证:OC=OD;(2)tan∠BOC=,OC=,求点C的坐标;(3)在(2)的条件下,若∠BOC=∠AOD,求直线CD的解析式.(1)证明:∵C,D是反比例函数y=图象在第一象限内的分支上的两点,∴y1=,y2=.∵x1+y1=x2+y2,即x1+=x2+,∴x1﹣x2=.又∵x1<x2,∴=1,∴=x2=y1,=x1=y2.∴OC==,OD==,∴OC=OD.(2)解:∵tan∠BOC=,∴=.又∵OC=,∴+=10,∴x1=1,y1=3或x1=﹣1,y1=﹣3.∵点C在第一象限,∴点C的坐标为(1,3).(3)解:∵∠BOC=∠AOD,∴tan∠AOD=,∴=.∵点C(1,3)在反比例函数y=的图象上,∴m=1×3=3,∴x2?y2=3,∴x2=3,y2=1或x2=﹣3,y2=﹣1.∵点D在第一象限,∴点D的坐标为(3,1).设直线CD的解析式为y=kx+b(k≠0),将C(1,3),D(3,1)代入y=kx+b,得:,解得:,∴直线CD的解析式为y=﹣x+4.12.如图,在平面直角坐标系中,矩形OABC的两边分别在x轴、y轴上,D是对角线的交点,若反比例函数y=的图象经过点D,且与矩形OABC的两边AB,BC分别交于点E,F.(1)若D的坐标为(4,2)①则OA的长是8 ,AB的长是 4 ;②请判断EF是否与AC平行,井说明理由;③在x轴上是否存在一点P.使PD+PE的值最小,若存在,请求出点P的坐标及此时PD+PE的长;若不存在.请说明理由.(2)若点D的坐标为(m,n),且m>0,n>0,求的值.解:(1)①∵点D的坐标为(4,2),∴点B的坐标为(8,4),∴OA=8,AB=4.故答案为:8;4.②EF∥AC,理由如下:∵反比例函数y=的图象经过点D(4,2),∴k=4×2=8.∵点B的坐标为(8,4),BC∥x轴,AB∥y轴,∴点F的坐标为(2,4),点E的坐标为(8,1),∴BF=6,BE=3,∴=,=,∴=.∵∠ABC=∠EBF,∴△ABC∽△EBF,∴∠BCA=∠BFE,∴EF∥AC.③作点E关于x轴对称的点E′,连接DE′交x轴于点P,此时PD+PE的值最小,如图所示.∵点E的坐标为(8,1),∴点E′的坐标为(8,﹣1),∴DE′==5.设直线DE′的解析式为y=ax+b(a≠0),将D(4,2),E′(8,﹣1)代入y=ax+b,得:,解得:,∴直线DE′的解析式为y=﹣x+5.当y=0时,﹣x+5=0,解得:x=,∴当点P的坐标为(,0)时,PD+PE的值最小,最小值为5.(2)∵点D的坐标为(m,n),∴点B的坐标为(2m,2n).∵反比例函数y=的图象经过点D(m,n),∴k=mn,∴点F的坐标为(m,2n),点E的坐标为(2m,n),∴BF=m,BE=n,∴=,=,∴=.又∵∠ABC=∠EBF,∴△ABC∽△EBF,∴==.13.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A (﹣3,1),B(1,n)两点.(1)求反比例函数和一次函数解析式;(2)结合图象直接写出不等式﹣kx﹣b>0的解.解:(1)∵点A(﹣3,1)在反比例函数y=(m≠0)的图象上,∴m=(﹣3)×1=﹣3,∴反比例函数的表达式为y=﹣,∵点B(1,n)也在反比例函数y=﹣的图象上,∴n=﹣=﹣3,即B(1,﹣3),把点A(﹣3,1),点B(1,﹣3)代入一次函数y=kx+b中,得,解得,∴一次函数的表达式为y=﹣x﹣2;(2)如图所示,当>kx+b时,x的取值范围是﹣3<x<0或x>1,所以不等式﹣kx﹣b>0的解是:﹣3<x<0或x>1.14.如图,在平面直角坐标系xOy内,函数y=的图象与反比例函数y=(k≠0)图象有公共点A,点A的坐标为(8,a),AB⊥x轴,垂足为点B.(1)求反比例函数的解析式;(2)点P在线段OB上,若AP=BP+2,求线段OP的长;(3)点D为射线OA上一点,在(2)的条件下,若S△ODP=S△ABO,求点D的坐标.解:(1)∵函数y=的图象过点A(8,a),∴a=×8=4,∴点A的坐标为(8,4),∵反比例函数y=(k≠0)图象过点A(8,4),∴4=,得k=32,∴反比例函数的解析式为y=;(2)设BP=b,则AP=b+2,∵点A(8,4),AB⊥x轴于点B,∴AB=4,∠ABP=90°,∴b2+42=(b+2)2,解得,b=3,∴OP=8﹣3=5,即线段OP的长是5;(3)设点D的坐标为(d,d),∵点A(8,4),点B(8,0),点P(5,0),S△ODP=S△ABO,∴,解得,d=,∴d=,∴点D的坐标为(,).15.阅读理解:如图(1),在平面直角坐标系xOy中,已知点A的坐标是(1,2),点B的坐标是(3,4),过点A、点B作平行于x轴、y轴的直线相交于点C,得到Rt△ABC,由勾股定理可得,线段AB==.得出结论:(1)若A点的坐标为(x1,y1),B点的坐标为(x2,y2)请你直接用A、B两点的坐标表示A、B两点间的距离;应用结论:(2)若点P在y轴上运动,试求当PA=PB时,点P的坐标.(3)如图(2)若双曲线L1:y=(x>0)经过A(1,2)点,将线段OA绕点O旋。

教育部2020年中考数学必考压轴题及答案

教育部2020年中考数学必考压轴题及答案

教育部2020年中考数学必考压轴题及答案教育部2020年中考数学必考压轴题及答案一、函数与几何综合的压轴题1.如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D且AD与B相交于E点.已知:A(-2,-6),C(1,-3)求证:E点在y轴上;如果有一抛物线经过A,E,C三点,求此抛物线方程.如果AB位置不变,再将DC水平向右移动k(k>0)个单位,此时AD与BC相交于E′点,如图②,求△AE′C的面积S关于k的函数解析式.[解](1)(本小题介绍二种方法,供参考)方法一:过E作EO′⊥x轴,垂足O′∴AB∥EO′∥DC∴又∵DO′+BO′=DB∴∵AB=6,DC=3,∴EO′=2又∵,∴∴DO′=DO,即O′与O重合,E在y轴上方法二:由D(1,0),A(-2,-6),得DA直线方程:y=2x-2①再由B(-2,0),C(1,-3),得BC直线方程:y=-x-2②联立①②得∴E点坐标(0,-2),即E点在y轴上(2)设抛物线的方程y=ax2+bx+c(a≠0)过A(-2,-6),C(1,-3)E(0,-2)三点,得方程组解得a=-1,b=0,c=-2∴抛物线方程y=-x2-2(3)(本小题给出三种方法,供参考)由(1)当DC水平向右平移k后,过AD与BC的交点E′作E′F⊥x 轴垂足为F。

同(1)可得:得:E′F=2方法一:又∵E′F∥AB,∴S△AE′C=S△ADC-S△E′DC===DB=3+kS=3+k为所求函数解析式方法二:∵BA∥DC,∴S△BCA=S△BDA∴S△AE′C=S△BDE′∴S=3+k为所求函数解析式.证法三:S△DE′C∶S△AE′C=DE′∶AE′=DC∶AB=1∶2同理:S△DE′C∶S△DE′B=1∶2,又∵S△DE′C∶S△ABE′=DC2∶AB2=1∶4∴∴S=3+k为所求函数解析式.2.已知:如图,在直线坐标系中,以点M(1,0)为圆心、直径AC为的圆与y轴交于A、D两点.求点A的坐标;设过点A的直线y=x+b与x轴交于点B.探究:直线AB是否⊙M 的切线?并对你的结论加以证明;连接BC,记△ABC的外接圆面积为S1、⊙M面积为S2,若,抛物线y=ax2+bx+c经过B、M两点,且它的顶点到轴的距离为.求这条抛物线的解析式.解:由已知AM=,OM=1,在Rt△AOM中,AO=,∴点A的坐标为A(0,1)证:∵直线y=x+b过点A(0,1)∴1=0+b即b=1∴y=x+1令y=0则x=-1∴B(—1,0),AB=在△ABM中,AB=,AM=,BM=2∴△ABM是直角三角形,∠BAM=90°∴直线AB是⊙M的切线解法一:由⑵得∠BAC=90°,AB=,AC =2,∴BC=∵∠BAC=90°∴△ABC的外接圆的直径为BC,∴而,设经过点B(—1,0)、M(1,0)的抛物线的解析式为:y=a(+1)(x-1),(a≠0)即y=ax2-a,∴-a=±5,∴a =±5∴抛物线的解析式为y=5x2-5或y=-5x2+5解法二:(接上)求得∴h=5由已知所求抛物线经过点B(—1,0)、M(1、0),则抛物线的对称轴是y轴,由题意得抛物线的顶点坐标为(0,±5)∴抛物线的解析式为y=a(x-0)2±5又B(-1,0)、M(1,0)在抛物线上,∴a±5=0,a=±5∴抛物线的解析式为y=5x2-5或y=-5x2+5解法三:(接上)求得∴h=5因为抛物线的方程为y=ax2+bx+c(a≠0)由已知得∴抛物线的解析式为y=5x2-5或y=-5x2+5.3.如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线过点A、B,且顶点C在⊙P上.(1)求⊙P上劣弧的长;(2)求抛物线的解析式;(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由如图,连结PB,过P 作PM⊥x轴,垂足为M.在Rt△PMB中,PB=2,PM=1,∴∠MPB=60°,∴∠APB=120°的长=(2)在Rt△PMB中,PB=2,PM=1,则MB=MA=.又OM=1,∴A(1-,0),B(1+,0),由抛物线及圆的对称性得知点C在直线PM上,则C(1,-3).点A、B、C在抛物线上,则解之得抛物线解析式为(3)假设存在点D,使OC与PD互相平分,则四边形OPCD为平行四边形,且PC∥OD.又PC∥y轴,∴点D在y轴上,∴OD=2,即D(0,-2).又点D(0,-2)在抛物线上,故存在点D(0,-2),使线段OC与PD互相平分.如图,在平面直角坐标系内,Rt△ABC的直角顶点C(0,)在轴的正半轴上,A、B是轴上是两点,且OA∶OB=3∶1,以OA、OB为直径的圆分别交AC于点E,交BC于点F.直线EF交OC于点Q.求过A、B、C三点的抛物线的解析式;请猜想:直线EF与两圆有怎样的位置关系?并证明你的猜想.在△AOC中,设点M是AC边上的一个动点,过M作MN∥AB交OC于点N.试问:在轴上是否存在点P,使得△PMN是一个以MN为一直角边的等腰直角三角形?若存在,求出P点坐标;若.[解](1)在Rt△AB C中,OC⊥AB,∴△AOC≌△COB.∴OC2=OA·OB.∵OA∶OB=3∶1,C(0,),∴∴OB=1.∴OA=3.∴A(-3,0),B(1,0).设抛物线的解析式为则解之,得∴经过A、B、C三点的抛物线的解析式为(2)EF与⊙O1、⊙O2都相切.证明:连结O1E、OE、OF.∵∠ECF=∠AEO=∠BFO=90°,∴四边形EOFC为矩形.∴QE=QO.∴∠1=∠2.∵∠3=∠4,∠2+∠4=90°,∴EF与⊙O1相切.同理:EF理⊙O2相切.(3)作MP⊥OA于P,设MN=a,由题意可得MP=MN=a.∵MN∥OA,∴△CMN∽△CAO.∴∴解之,得此时,四边形OPMN是正方形.∴∴考虑到四边形PMNO此时为正方形,∴点P在原点时仍可满足△PNN是以MN为一直角边的等腰直角三角形.故轴上存在点P使得△PMN是一个以MN为一直角边的等腰直角三角形且或5.如图,已知点A(0,1)、C(4,3)、E(,),P是以AC为对角线的矩形ABCD内部(不在各边上)的—个动点,点D在y轴,抛物线y =ax2+bx+1以P为顶点.(1)说明点A、C、E在一条条直线上;(2)能否判断抛物线y=ax2+bx+1的开口方向?请说明理由;(3)设抛物线y=ax2+bx+1与x轴有交点F、G(F在G的左侧),△GAO与△FAO的面积差为3,且这条抛物线与线段AE有两个不同的交点.这时能确定a、b的值吗?若能,请求出a、b的值;若不能,请确定a、b的取值范围.(本题图形仅供分析参考用)x+1.将点E的坐标E(,)代入y=x+1中,左边=,右边=×+1=,∵左边=右边,∴点E在直线y=x+1上,即点A、C、E在一条直线上.(2)解法一:由于动点P在矩形ABCD内部,∴点P的纵坐标大于点A的纵坐标,而点A与点P都在抛物线上,且P为顶点,∴这条抛物线有最高点,抛物线的开口向下解法二:∵抛物线y=ax2+bx+c的顶点P的纵坐标为,且P在矩形ABCD内部,∴1<<3,由1<1—得—>0,∴a<0,∴抛物线的开口向下.(3)连接GA、FA,∵S△GAO—S△FAO=3∴GO·AO—FO·AO=3∵OA=1,∴GO—FO=6.设F(x1,0)、G(x2,0),则x1、x2为方程ax2+bx+c=0的两个根,且x1<x2,又∵a<0,∴x1·x2=<0,∴x1<0<x2,∴GO=x2,FO=—x1,∴x2—(—x1)=6,即x2+x1=6,∵x2+x1=—∴—=6,∴b=—6a,∴抛物线解析式为:y=ax2—6ax+1,其顶点P的坐标为(3,1—9a),∵顶点P在矩形ABCD内部,∴1<1—9a<3,∴—<a<0.∴x=0或x==6+.当x=0时,即抛物线与线段AE交于点A,而这条抛物线与线段AE有两个不同的交点,则有:0<6+≤,解得:—≤a<—综合得:—<a<—∵b=—6a,∴<b<6.已知两点O(0,0)、B(0,2),⊙A过点B且与x轴分别相交于点O、C,⊙A被y轴分成段两圆弧,其弧长之比为3∶1,直线l与⊙A切于点O,抛物线的顶点在直线l上运动.求⊙A的半径;若抛物线经过O、C两点,求抛物线的解析式;过l上一点P的直线与⊙A交于C、E两点,且PC=CE,求点E的坐标;若抛物线与x轴分别相交于C、F两点,其顶点P的横坐标为m,求△PEC的面积关于m的函数解析式.(1)由弧长之比为3∶1,可得∠BAO=90o再由AB=AO=r,且OB=2,得r=(2)⊙A的切线l过原点,可设l为y=kx任取l上一点(b,kb),由l与y轴夹角为45o可得:b=-kb或b=kb,得k=-1或k=1,∴直线l的解析式为y=-x或y=x又由r=,易得C(2,0)或C(-2,0)由此可设抛物线解析式为y=ax(x-2)或y=ax(x+2)再把顶点坐标代入l的解析式中得a=1∴抛物线为y=x2-2x或y=x2+2x ……6分(3)当l的解析式为y=-x时,由P在l上,可设P(m,-m)(m >0)过P作PP′⊥x轴于P′,∴OP′=|m|,PP′=|-m|,∴OP=2m2,又由切割线定理可得:OP2=PC.PE,且PC=CE,得PC=PE=m=PP′7分∴C与P′为同一点,即PE⊥x轴于C,∴m=-2,E(-2,2) (8)分同理,当l的解析式为y=x时,m=-2,E(-2,2)(4)若C(2,0),此时l为y=-x,∵P与点O、点C不重合,∴m≠0且m≠2,当m<0时,FC=2(2-m),高为|yp|即为-m,∴S =同理当0<m<2时,S=-m2+2m;当m>2时,S=m2-2m;∴S=又若C(-2,0),此时l为y=x,同理可得;S=.如图,直线与函数的交于A、B两点,且与x、y轴分别交于C、D两点.(1)若的面积的倍,求与之间的函数关系式;(2)在(1)的条件下,是否存在和,使得以为直径的圆经过点.若存在,求出和的值;若不存在,请说明理由.[解](1)设,(其中),由,得∴··(····),,又,∴,即,由可得,代入可得①∴,,∴,即.又方程①的判别式,∴所求的函数关系式为.(2)假设存在,,使得以为直径的圆经过点.则,过、分别作轴的垂线,垂足分别为、.∵与都与互余,∴.∴Rt∽Rt,∴.∴,∴,∴,即②由(1)知,,代入②得,∴或,又,∴或,∴存在,,使得以为直径的圆经过点,且或.8.已知抛物线与x轴交于两点、,与y轴交于点C,且AB=6.(1)求抛物线和直线BC的解析式.(2)在给定的直角坐标系中,画抛物线和直线BC.(3)若过A、B、C三点,求的半径.(4)抛物线上是否存在点M,过点M作轴于点N,使被直线BC 分成面积比为1)由题意得:解得经检验m=1,∴抛物线的解析式为:或:由得,或抛物线的解析式为由得∴A(-50),B(1,0),C(0,-5.设直线BC的解析式为则∴直线BC的解析式为(2)图象略.(3)法一:在中,.又∴的半径法二:由题意,圆心P在AB的中垂线上,即在抛物线的对称轴直线上,设P(-2-hh>0),连结PB、PC,则,由,即,解得h=2.的半径.法三:延长CP交于点F.为的直径,又又的半径为(4)设MN交直线BC于点E,点M的坐标为则点E的坐标为若则解得(不合题意舍去),若则解得(不合题意舍去),存在点M,点M的坐标为或(15,280).9.如图,⊙M与x轴交于A、B两点,其坐标分别为、,直径CD⊥x轴于N,直线CE切⊙M于点C,直线FG切⊙M于点F,交CE于G,已知点G的横坐标为3.若抛物线经过A、B、D三点,求m的值及点D的坐标.求直线DF的解析式.是否存在过点G的直线,使它与(1)中抛物线的两个交点的横坐标之和等于4?若存在,请求出满足条件的直线的解析式;若不存在,请说明理由.[解](1)∵抛物线过A、B两点,∴,m=3.∴抛物线为.又抛物线过点D,由圆的对称性知点D为抛物线的顶点. ∴D点坐标为.(2)由题意知:AB=4.∵CD⊥x轴,∴NA=NB=2.∴ON=1.由相交弦定理得:NA·NB=ND·NC,∴NC×4=2×2.∴NC=1.∴C点坐标为.设直线DF交CE于P,连结CF,则∠CFP=90°.∴∠2+∠3=∠1+∠4=90°.∵GC、GF是切线,∴GC=GF.∴∠3=∠4.∴∠1=∠2.∴GF=GP.∴GC=GP.可得CP=8.∴P点坐标为设直线DF的解析式为则解得∴直线DF的解析式为:(3)假设存在过点G的直线为,则,∴.由方程组得由题意得,∴.当时,,∴方程无实数根,方程组无实数解.∴满足条件的直线不存在.10.已知二次函数的图象经过点A(-3,6),并与x轴交于点B (-1,0)和点C,顶点为P.求这个二次函数的解析式,并在下面的坐标系中画出该二次函数的图象;设D为线段OC上的一点,满足∠DPC=∠BAC,求点D的坐标;在x轴上是否存在一点M,使以M为圆心的圆与AC、PC所在的直线及y轴都相切?如果存在,请求出点M的坐标;若不存在,请说明理由.(1)解:∵二次函数的图象过点A(-3,6),B(-1,0)得解得∴这个二次函数的解析式为:由解析式可求P(1,-2),C(3,0)画出二次函数的(2)解法一:易证:∠ACB=∠PCD=45°又已知:∠DPC=∠BAC∴△DPC∽△BAC∴易求∴∴∴解法二:过A作AE⊥x轴,垂足为E.设抛物线的对称轴交x轴于F.亦可证△AEB∽△PFD、∴.易求:AE=6,EB=2,PF=2∴∴∴(3)存在.(1°)过M作MH⊥AC,MG⊥PC垂足分别为H、G,设AC交y轴于S,CP的延长线交y轴于T∵△SCT是等腰直角三角形,M是△SCT的内切圆圆心,∴MG=MH=OM又∵且OM+MC=OC∴∴(2°)在x轴的负半轴上,存在一点M′同理OM′+OC=M′C,得∴M′即在x轴上存在满足条件的两个点.在平面直角坐标系中,A(-1,0),B(3,0).(1)若抛物线过A,B两点,且与y轴交于点(0,-3),求此抛物线的顶点坐标;(2)如图,小敏发现所有过A,B两点的抛物线如果与y轴负半轴交于点C,M为抛物线的顶点,那么△ACM与△ACB的面积比不变,请你求出这个比值;(3)若对称轴是AB的中垂线l的抛物线与x轴交于点E,F,与y轴交于点C,过C作CP∥x轴交l于点P,M为此抛物线的顶点.若四边形PEMF是有一个内角为60°的菱形,求次抛物线的解析式.(1),顶点坐标为(1,-4).(2)由题意,设y=a(x+1)(x-3),即y=ax2-2ax-3a,∴A(-1,0),B(3,0),C(0,-3a),M(1,-4a),∴S△ACB=×4×=6,而a>0,∴S△ACB=6A、作MD⊥x轴于D,又S△ACM=S△ACO+SOCMD-S△AMD=·1·3a+(3a+4a)-·2·4a=a,∴S△ACM:S△ACB=1:6.(3)①当抛物线开口向上时,设y=a(x-1)2+k,即y=ax2-2ax+a+k,有菱形可知=,a+k>0,k<0,∴k=,∴y=ax2-2ax+,∴.记l与x轴交点为D,若∠PEM=60°,则∠FEM=30°,MD=DE·tan30°=,∴k=-,a=,∴抛物线的解析式为.若∠PEM=120°,则∠FEM=60°,MD=DE·tan60°=,∴k=-,a=,∴抛物线的解析式为.②当抛物线开口向下时,同理可得,.已知:在平面直角坐标系xOy中,一次函数的图象与x轴交于点A,抛物线经过O、A两点。

2020年中考数学压轴题(含答案)

2020年中考数学压轴题(含答案)

2020年中考数学压轴题一、选择题1.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8 B.﹣8 C.4 D.﹣4第1题第2题2.如图,在平面直角坐标系中,已知点A坐标(0,3),点B坐标(4,0),将点O沿直线34y x b=-+对折,点O恰好落在∠OAB的平分线上的O’处,则b的值为()A.12B.65C.98D.1516二、填空题3.如图,在Rt△ABC中BC=AC=4,D是斜边AB上的一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D垂直于Rt△ABC的直角边时,AD的长为.第3题第4题4.如图,在正方形ABCD中,AB=4,以B为圆心,BA长为半径画弧,点M为弧上一点,MN ⊥CD 于N ,连接CM ,则CM -MN 的最大值为 . 三、解答题5.如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径, ⌒ BD = ⌒AD ,DE ⊥BC ,垂足为E . (1)求证:CD 平分∠ACE ;(2)判断直线ED 与⊙O 的位置关系,并说明理由; (3)若CE =2,AC =8,阴影部分的面积为 .6.如图,抛物线y =ax 2+bx +c (a <0,a 、b 、c 为常数)与x 轴交于A 、C 两点,与y 轴交于B 点,A (﹣6,0),C (1,0),B (0,).(1)求该抛物线的函数关系式与直线AB 的函数关系式;(2)已知点M (m ,0)是线段OA 上的一个动点,过点M 作x 轴的垂线l ,分别与直线AB 和抛物线交于D 、E 两点,当m 为何值时,△BDE 恰好是以DE 为底边的等腰三角形?(3)在(2)问条件下,当△BDE 恰妤是以DE 为底边的等腰三角形时,动点M 相应位置记为点M ′,将OM ′绕原点O 顺时针旋转得到ON (旋转角在0°到90°之间);i :探究:线段OB 上是否存在定点P (P 不与O 、B 重合),无论ON 如何旋转,始终保持不变,若存在,试求出P 点坐标:若不存在,请说明理由;ii :试求出此旋转过程中,(NA +NB )的最小值.EO CBA【答案与解析】一、选择题1.A2.D二、填空题3.【分析】由等腰直角三角形的性质和勾股定理得出AB=4,∠B=∠A′CB=45°,①如图1,当A′D∥BC,设AD=x,根据折叠的性质得到∠A′=∠A=∠A′CB=45°,A′D=AD =x,推出A′C⊥AB,求得BH=BC=2,DH=A′D=x,然后列方程即可得到结果,②如图2,当A′D∥AC,根据折叠的性质得到AD=A′D,AC=A′C,∠ACD =∠A′CD,根据平行线的性质得到∠A′DC=∠ACD,于是得到∠A′DC=∠A′CD,推出A′D=A′C,于是得到AD=AC=2.【解答】解:Rt△ABC中,BC=AC=4,∴AB=4,∠B=∠A′CB=45°,①如图1,当A′D∥BC,设AD=x,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴∠A′=∠A=∠A′CB=45°,A′D=AD=x,∵∠B =45°, ∴A ′C ⊥AB , ∴BH =BC =2,DH =A ′D =x ,∴x +x +2=4,∴x =4﹣4, ∴AD =4﹣4;②如图2,当A ′D ∥AC ,∵把△ACD 沿直线CD 折叠,点A 落在同一平面内的A ′处, ∴AD =A ′D ,AC =A ′C ,∠ACD =∠A ′CD , ∵∠A ′DC =∠ACD , ∴∠A ′DC =∠A ′CD , ∴A ′D =A ′C , ∴AD =AC =4, 综上所述:AD 的长为:4﹣4或4.4. 2 三、解答题 5、(1),BD AD BAD ACD =∴=∠∠°+180ABCD O BAD BCD ∴=四边形内接于圆,∠∠°+180BCD DCE =又∠∠,DCE BAD ∴=∠∠ACD DCE ∴=∠∠即CD 平分∠ACE(2)直线ED 与⊙O 相切。

2020中考数学压轴题专题练习及答案

2020中考数学压轴题专题练习及答案

2020中考数学压轴题专题练习及答案26.(12分)如图,在等边△ABC中,AB=6cm,动点P从点A出发以lcm/s的速度沿AB 匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P 到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.【分析】(1)当BQ=2BP时,∠BPQ=90°,由此构建方程即可解决问题.(2)如图1中,连接BF交AC于M.证明EF=2EM,由此构建方程即可解决问题.(3)证明DE=AC即可解决问题.(4)如图3中,连接AM,AB′.根据AB′≥AM﹣MB′求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∴当BQ=2BP时,∠BPQ=90°,∴6+t=2(6﹣t),∴t=3,∴t=3时,△BPQ是直角三角形.(2)存在.理由:如图1中,连接BF交AC于M.∵BF平分∠ABC,BA=BC,∴BF⊥AC,AM=CM=3cm,∵EF∥BQ,∴∠EFM=∠FBC=∠ABC=30°,∴EF=2EM,∴t=2?(3﹣t),解得t=3.(3)如图2中,作PK∥BC交AC于K.∵△ABC是等边三角形,∴∠B=∠A=60°,∵PK∥BC,∴∠APK=∠B=60°,∴∠A=∠APK=∠AKP=60°,∴△APK是等边三角形,∴P A=PK,∵PE⊥AK,∴AE=EK,∵AP=CQ=PK,∠PKD=∠DCQ,∠PDK=∠QDC,∴△PKD≌△QCD(AAS),∴DK=DC,∴DE=EK+DK=(AK+CK)=AC=3(cm).(4)如图3中,连接AM,AB′∵BM=CM=3,AB=AC,∴AM⊥BC,∴AM==3,∵AB′≥AM﹣MB′,∴AB′≥3﹣3,∴AB′的最小值为3﹣3.【点评】本题属于四边形综合题,考查了等边三角形的性质,平行四边形的判定和性质,翻折变换,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.(2019年湖南怀化22题)22.(12分)如图,A、B、C、D、E是⊙O上的5等分点,连接AC、CE、EB、BD、DA,得到一个五角星图形和五边形MNFGH.(1)计算∠CAD的度数;(2)连接AE,证明:AE=ME;(3)求证:ME2=BM?BE.【分析】(1)由题意可得∠COD=70°,由圆周角的定理可得∠CAD=36°;(2)由圆周角的定理可得∠CAD=∠DAE=∠AEB=36°,可求∠AME=∠CAE=72°,可得AE=ME;(3)通过证明△AEN∽△BEA,可得,可得ME2=BE?NE,通过证明BM=NE,即可得结论.【解答】解:(1)∵A、B、C、D、E是⊙O上的5等分点,∴的度数==72°∴∠COD=70°∵∠COD=2∠CAD∴∠CAD=36°(2)连接AE∵A、B、C、D、E是⊙O上的5等分点,∴∴∠CAD=∠DAE=∠AEB=36°∴∠CAE=72°,且∠AEB=36°∴∠AME=72°∴∠AME=∠CAE∴AE=ME(3)连接AB∵∴∠ABE=∠DAE,且∠AEB=∠AEB∴△AEN∽△BEA∴∴AE2=BE?NE,且AE=ME∴ME2=BE?NE∵∴AE=AB,∠CAB=∠CAD=∠DAE=∠BEA=∠ABE=36°∴∠BAD=∠BNA=72°∴BA=BN,且AE=ME∴BN=ME∴BM=NE∴ME2=BE?NE=BM?BE【点评】本题是圆的综合题,考查了圆的有关知识,相似三角形的性质和判定,证明△AEN∽△BEA是本题的关键.(2019年湖南娄底27题)27.如图甲,在△ABC 中,∠ACB=90°,AC=4cm,BC=3cm.如果点P 由点 B 出发沿BA 方向向点 A 匀速运动,同时点Q 由点 A 出发沿AC 方向向点 C 匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ 的面积为S,当t 为何值时,S 取得最大值?S 的最大值是多少?(2)如图乙,连接PC,将△PQC 沿QC 翻折,得到四边形PQP′C,当四边形PQP′C 为菱形时,求t的值;′(3)当t 为何值时,△APQ 是等腰三角形?考点:相似形综合题分析:(1)过点P 作PH⊥AC 于H,由△APH∽△ABC,得出=,从而求出AB,再根据=,得出PH=3﹣t,则△AQP 的面积为:AQ?PH=t(3﹣t),最后进行整理即可得出答案;(2)连接PP′交QC 于E,当四边形PQP′C 为菱形时,得出△APE∽△ABC,=,求出AE=﹣t+4,再根据QE=AE﹣AQ,QE=QC 得出﹣t+4=﹣t+2,再求t 即可;(3)由(1)知,PD=﹣t+3,与(2)同理得:QD=﹣t+4,从而求出PQ=,在△APQ 中,分三种情况讨论:①当AQ=AP,即t=5﹣t,②当PQ=AQ,即=t,③当PQ=AP,即=5﹣t,再分别计算即可.解答:解:(1)如图甲,过点P 作PH⊥AC 于H,∵∠C=90°,∴AC⊥BC,∴PH∥BC,∴△APH∽△ABC,∴=,∵AC=4cm,BC=3cm,∴AB=5cm,∴=,∴PH=3﹣t,∴△AQP 的面积为:S= ×AQ×PH= ×t×(3﹣t)=﹣(t﹣)2+,∴当t 为秒时,S 最大值为cm2.(2)如图乙,连接PP′,PP′交QC 于E,当四边形PQP′C 为菱形时,PE 垂直平分QC,即PE⊥AC,QE=EC,∴△APE∽△ABC,∴=,∴AE= ==﹣t+4 QE=AE﹣AQ═﹣t+4﹣t=﹣t+4,QE= QC= (4﹣t)=﹣t+2,∴﹣t+4=﹣t+2,解得:t=,∵0<<4,∴当四边形PQP′C 为菱形时,t 的值是s;(3)由(1)知,PD=﹣t+3,与(2)同理得:QD=AD﹣AQ=﹣t+4∴PQ===,在△APQ 中,①当AQ=AP,即t=5﹣t 时,解得:t1=;②当PQ=AQ,即=t 时,解得:t2=,t3=5;③当PQ=AP,即=5﹣t 时,解得:t4=0,t5=;∵0<t<4,∴t3=5,t4=0 不合题意,舍去,∴当t 为s 或s 或s 时,△APQ 是等腰三角形.点评:此题主要考查了相似形综合,用到的知识点是相似三角形的判定与性质、勾股定理、三角形的面积公式以及二次函数的最值问题,关键是根据题意做出辅助线,利用数形结合思想进行解答.(2019年湖南邵阳25题)25.(8分)如图1,已知⊙O外一点P向⊙O作切线PA,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出的值;若不存在,请说明理由.【分析】(1)由切线性质和直径AC可得∠PAO=∠CDA=90°,由PB∥AD可得∠POD =∠CAD,即可得:△APO~△DCA;(2)①连接OD,由AD=OA=OD可得△OAD是等边三角形,由此可得∠POA=60°,∠P=30°;②作BQ⊥AC交⊙O于Q,可证ABQP为菱形,求可转化为求.【解答】解:(1)证明:如图1,∵P A切⊙O于点A,AC是⊙O的直径,∴∠P AO=∠CDA=90°∵CD⊥PB∴∠CEP=90°∴∠CEP=∠CDA∴PB∥AD∴∠POA=∠CAO∴△APO~△DCA(2)如图2,连接OD,①∵AD=AO,OD=AO∴△OAD是等边三角形∴∠OAD=60°∵PB∥AD∴∠POA=∠OAD=60°∵∠P AO=90°∴∠P=90°﹣∠POA=90°﹣60°=30°②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠P AO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OPA=30°∴AB=AP∴BQ=AP∵P A⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴==tan∠ACB=tan60°=【点评】本题是有关圆的综合题,难度不大;主要考查了切线性质,圆周角与圆心角,等边三角形性质,特殊角三角函数值,菱形性质等.(2019年湖南湘潭26题)26.(10分)如图一,在射线DE的一侧以AD为一条边作矩形ABCD,AD=5,CD=5,点M是线段AC上一动点(不与点A重合),连结BM,过点M作BM的垂线交射线DE 于点N,连接BN.(1)求∠CAD的大小;(2)问题探究:动点M在运动的过程中,①是否能使△AMN为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②∠MBN的大小是否改变?若不改变,请求出∠MBN的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.【分析】(1)在Rt△ADC中,求出∠DAC的正切值即可解决问题.(2)①分两种情形:当NA=NM时,当AN=AM时,分别求解即可.②∠MBN=30°.利用四点共圆解决问题即可.(3)首先证明△ABM是等边三角形,再证明BN垂直平分线段AM,解直角三角形即可解决问题.【解答】解:(1)如图一(1)中,∵四边形ABCD是矩形,∴∠ADC=90°,∵tan∠DAC===,∴∠DAC=30°.(2)①如图一(1)中,当AN=NM时,∵∠BAN=∠BMN=90°,BN=BN,AN=NM,∴Rt△BNA≌Rt△BNM(HL),∴BA=BM,在Rt△ABC中,∵∠ACB=∠DAC=30°,AB=CD=5,∴AC=2AB=10,∵∠BAM=60°,BA=BM,∴△ABM是等边三角形,∴AM=AB=5,∴CM=AC﹣AM=5.如图一(2)中,当AN=AM时,易证∠AMN=∠ANM=15°,∵∠BMN=90°,∴∠CMB=75°,∵∠MCB=30°,∴∠CBM=180°﹣75°﹣30°=75°,∴∠CMB=∠CBM,∴CM=CB=5,综上所述,满足条件的CM的值为5或5.②结论:∠MBN=30°大小不变.理由:如图一(1)中,∵∠BAN+∠BMN=180°,∴A,B,M,N四点共圆,∴∠MBN=∠MAN=30°.如图一(2)中,∵∠BMN=∠BAN=90°,∴A,N,B,M四点共圆,∴∠MBN+∠MAN=180°,∵∠DAC+∠MAN=180°,∴∠MBN=∠DAC=30°,综上所述,∠MBN=30°.(3)如图二中,∵AM=MC,∴BM=AM=CM,∴AC=2AB,∴AB=BM=AM,∴△ABM是等边三角形,∴∠BAM=∠BMA=60°,∵∠BAN=∠BMN=90°,∴∠NAM=∠NMA=30°,∴NA=NM,∵BA=BM,∴BN垂直平分线段AM,∴FM=,∴NM==,∵∠NFM=90°,NH=HM,∴FH=MN=.【点评】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,解直角三角形,等边三角形的判定和性质,锐角三角函数,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.(2019年湖南益阳26题)26.(12分)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.【分析】(1)作CE⊥y轴,先证∠CDE=∠OAD=30°得CE=CD=2,DE==2,再由∠OAD=30°知OD=AD=3,从而得出点C坐标;(2)先求出S△DCM=6,结合S四边形OMCD=知S△ODM=,S△OAD=9,设OA=x、OD=y,据此知x 2+y2=36,xy=9,得出x2+y2=2xy,即x=y,代入x2+y2=36求得x的值,从而得出答案;(3)由M为AD的中点,知OM=3,CM=5,由OC≤OM+CM=8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,ON⊥AD,证△CMD∽△OMN得==,据此求得MN=,ON=,AN=AM﹣MN=,再由OA=及cos∠OAD=可得答案.【解答】解:(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=CD=2,DE==2,在Rt△OAD中,∠OAD=30°,∴OD=AD=3,∴点C的坐标为(2,3+2);(2)∵M为AD的中点,∴DM=3,S△DCM=6,又S四边形OMCD=,∴S△ODM=,∴S△OAD=9,设OA=x、OD=y,则x2+y2=36,xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=3(负值舍去),∴OA=3;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM==5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴==,即==,解得MN=,ON=,∴AN=AM﹣MN=,在Rt△OAN中,OA==,∴cos∠OAD==.【点评】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点.(2019年湖南益阳23题)23.(10分)操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF 上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN.(1)如图1,求证:BE=BF;(2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;(3)类比探究:若DE=a,CF=b.①如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;②如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系.(不要求写证明过程)【分析】(1)证明∠BEF=∠BFE即可解决问题(也可以利用全等三角形的性质解决问题即可).(2)如图2中,连接BP,作EH⊥BC于H,则四边形ABHE是矩形.利用面积法证明PM+PN=EH,利用勾股定理求出AB即可解决问题.(3)①如图3中,连接BP,作EH⊥BC于H.由S△EBP﹣S△BFP=S△EBF,可得BE?PM ﹣?BF?PN=?BF?EH,由BE=BF,推出PM﹣PN=EH=,由此即可解决问题.②如图4,当点P在线段FE的延长线上运动时,同法可证:QM﹣QN=PN﹣PM=.【解答】(1)证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠EFB,由翻折可知:∠DEF=∠BEF,∴∠BEF=∠EFB,∴BE=BF.(2)解:如图2中,连接BP,作EH⊥BC于H,则四边形ABHE是矩形,EH=AB.∵DE=EB=BF=5,CF=2,∴AD=BC=7,AE=2,在Rt△ABE中,∵∠A=90°,BE=5,AE=2,∴AB==,∵S△BEF=S△PBE+S△PBF,PM⊥BE,PN⊥BF,∴?BF?EH=?BE?PM+?BF?PN,∵BE=BF,∴PM+PN=EH=,∵四边形PMQN是平行四边形,∴四边形PMQN的周长=2(PM+PN)=2.(3)①证明:如图3中,连接BP,作EH⊥BC于H.∵ED=EB=BF=a,CF=b,∴AD=BC=a+b,∴AE=AD﹣DE=b,∴EH=AB=,∵S△EBP﹣S△BFP=S△EBF,∴BE?PM﹣?BF?PN=?BF?EH,∵BE=BF,∴PM﹣PN=EH=,∵四边形PMQN是平行四边形,∴QN﹣QM=(PM﹣PN)=.②如图4,当点P在线段FE的延长线上运动时,同法可证:QM﹣QN=PN﹣PM=.【点评】本题属于四边形综合题,考查了矩形的性质和判定,翻折变换,等腰三角形的性质,平行四边形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,学会利用面积法证明线段之间的关系,属于中考压轴题.(2019年湖南长沙24题)24.(9分)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;(假命题)②三个角分别相等的两个凸四边形相似;(假命题)③两个大小不同的正方形相似.(真命题)(2)如图1,在四边形ABCD和四边形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,==.求证:四边形ABCD与四边形A1B1C1D1相似.(3)如图2,四边形ABCD中,AB∥CD,AC与BD相交于点O,过点O作EF∥AB分别交AD,BC于点E,F.记四边形ABFE的面积为S1,四边形EFCD的面积为S2,若四边形ABFE与四边形EFCD相似,求的值.【分析】(1)根据相似多边形的定义即可判断.(2)根据相似多边形的定义证明四边成比例,四个角相等即可.(3)四边形ABFE与四边形EFCD相似,证明相似比是1即可解决问题,即证明DE=AE即可.【解答】(1)解:①四条边成比例的两个凸四边形相似,是假命题,角不一定相等.②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例.③两个大小不同的正方形相似.是真命题.故答案为假,假,真.(2)证明:如图1中,连接BD,B1D1.∵∠BCD=∠B1C1D1,且=,∴△BCD∽△B1C1D1,∴∠CDB=∠C1D1B1,∠C1B1D1=∠CBD,∵==,∴=,∵∠ABC=∠A1B1C1,∴∠ABD=∠A1B1D1,∴△ABD∽△A1B1D1,∴=,∠A=∠A1,∠ADB=∠A1D1B1,∴,===,∠ADC=∠A1D1C1,∠A=∠A1,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,∴四边形ABCD与四边形A1B1C1D1相似.(3)如图2中,∵四边形ABCD与四边形EFCD相似.∴=,∵EF=OE+OF,∴=,∵EF∥AB∥CD,∴=,==,∴+=+,∴=,∵AD=DE+AE,∴=,∴2AE=DE+AE,∴AE=DE,∴=1.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,相似多边形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.(2019年湖南株洲25题)25.(11分)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.【分析】(1)由圆周角的定理可得∠DBC=∠DAC=∠ACH,可证AD∥CH,由一组对边平行且相等的是四边形是平行四边形可证四边形ADCH是平行四边形;(2)①由平行线的性质可证∠ADH=∠CHD=90°,由∠CDB=∠CAB=45°,可证△DHC为等腰直角三角形;②通过证明△ADP∽△CBP,可得,可得,通过证明△CHD∽△ACB,可得,可得AB=CD,可求CD=2,由等腰直角三角形的性质可求CH 的长度.【解答】证明:(1)∵∠DBC=∠DAC,∠ACH=∠CBD∴∠DAC=∠ACH∴AD∥CH,且AD=CH∴四边形ADCH是平行四边形(2)①∵AB是直径∴∠ACB=90°=∠ADB,且AC=BC∴∠CAB=∠ABC=45°,∴∠CDB=∠CAB=45°∵AD∥CH∴∠ADH=∠CHD=90°,且∠CDB=45°∴∠CDB=∠DCH=45°∴CH=DH,且∠CHD=90°∴△DHC为等腰直角三角形;②∵四边形ABCD是⊙O的圆内接四边形,∴∠ADP=∠PBC,且∠P=∠P∴△ADP∽△CBP∴,且PB=PD,∴,AD=CH,∴∵∠CDB=∠CAB=45°,∠CHD=∠ACB=90°∴△CHD∽△ACB∴∴AB=CD∵AB+CD=2(+1)∴CD+CD=2(+1)∴CD=2,且△DHC为等腰直角三角形∴CH=【点评】本题是圆的综合题,考查了圆的有关知识,平行四边形的判定和性质,相似三角形的判定和性质等知识,求CD的长度是本题的关键.(2019年湖南永州26题)26.(12分)(1)如图1,在平行四边形ABCD中,∠A=30°,AB=6,AD=8,将平行四边形ABCD分割成两部分,然后拼成一个矩形,请画出拼成的矩形,并说明矩形的长和宽.(保留分割线的痕迹)(2)若将一边长为1的正方形按如图2﹣1所示剪开,恰好能拼成如图2﹣2所示的矩形,则m的值是多少?(3)四边形ABCD是一个长为7,宽为5的矩形(面积为35),若把它按如图3﹣1所示的方式剪开,分成四部分,重新拼成如图3﹣2所示的图形,得到一个长为9,宽为4的矩形(面积为36).问:重新拼成的图形的面积为什么会增加?请说明理由.【解答】解:(1)如图所示:(2)依题意有∴直角三角形的斜边与直角梯形的斜腰不在一条直线上,故重新拼成的图形的面积会增加.(2019年湖南常德26题)26.(10分)在等腰三角形△ABC中,AB=AC,作CM⊥AB交AB于点M,BN⊥AC交AC 于点N.(1)在图1中,求证:△BMC≌△CNB;(2)在图2中的线段CB上取一动点P,过P作PE∥AB交CM于点E,作PF∥AC交BN于点F,求证:PE+PF=BM;(3)在图3中动点P在线段CB的延长线上,类似(2)过P作PE∥AB交CM的延长线于点E,作PF∥AC交NB的延长线于点F,求证:AM?PF+OM?BN=AM?PE.【分析】(1)根据等腰三角形的性质得到∠ABC=∠ACB,利用AAS定理证明;(2)根据全等三角形的性质得到BM=NC,证明△CEP∽△CMB、△BFP∽△BNC,根据相似三角形的性质列出比例式,证明结论;(3)根据△BMC≌△CNB,得到MC=BN,证明△AMC∽△OMB,得到=,根据比例的性质证明即可.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵CM⊥AB,BN⊥AC,∴∠BMC=∠CNB=90°,在△BMC和△CNB中,,∴△BMC≌△CNB(AAS);(2)∵△BMC≌△CNB,∴BM=NC,∵PE∥AB,∴△CEP∽△CMB,∴=,∵PF∥AC,∴△BFP∽△BNC,∴=,∴+=+=1,∴PE+PF=BM;(3)同(2)的方法得到,PE﹣PF=BM,∵△BMC≌△CNB,∴MC=BN,∵∠ANB=90°,∴∠MAC+∠ABN=90°,∵∠OMB=90°,∴∠MOB+∠ABN=90°,∴∠MAC=∠MOB,又∠AMC=∠OMB=90°,∴△AMC∽△OMB,∴=,∴AM?MB=OM?MC,∴AM×(PE﹣PF)=OM?BN,∴AM?PF+OM?BN=AM?PE.【点评】本题考查的是相似三角形的判定和性质、全等三角形的判定和性质、等腰三角形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.(2019年湖南郴州25题)25.(10分)如图1,矩形ABCD中,点E为AB边上的动点(不与A,B重合),把△ADE 沿DE翻折,点A的对应点为A1,延长EA1交直线DC于点F,再把∠BEF折叠,使点B的对应点B1落在EF上,折痕EH交直线BC于点H.(1)求证:△A1DE∽△B1EH;(2)如图2,直线MN是矩形ABCD的对称轴,若点A1恰好落在直线MN上,试判断△DEF的形状,并说明理由;(3)如图3,在(2)的条件下,点G为△DEF内一点,且∠DGF=150°,试探究DG,EG,FG的数量关系.【分析】(1)由折叠图形的性质可得∠DA1E=∠EB1H=90°,∠DEA1+∠HEB1=90°从而可得∠DEA1=∠EHB1,依据两个角对应相等的三角形相似可得△A1DE∽△B1EH;(2)由A1恰好落在直线MN上可知A1在EF的中点,由SAS易证△A1DE≌△A1DF,即可得∠ADE=∠EDA1=∠FDA1=30°,(3)将△DGE逆时针旋转60°到△DG'F位置,由旋转的旋转将DG,EG,FG集中到△G′GF中结合∠DGF=150°,可得△G′GF为直角三角形,由勾股定理可得G'G 2+GF2=G'F2,即可证明DG2+GF2=GE2,【解答】解:(1)证明:由折叠的性质可知:∠DAE=∠DA1E=90°,∠EBH=∠EB1H =90°,∠AED=∠A1ED,∠BEH=∠B1EH,∴∠DEA1+∠HEB1=90°.又∵∠HEB1+∠EHB1=90°,∴∠DEA1=∠EHB1,∴△A1DE∽△B1EH;(2)结论:△DEF是等边三角形;理由如下:∵直线MN是矩形ABCD的对称轴,∴点A1是EF的中点,即A1E=A1F,在△A1DE和△A1DF中,∴△A1DE≌△A1DF(SAS),∴DE=DF,∠FDA1=∠EDA1,又∵△ADE≌△A1DE,∠ADF=90°.∴∠ADE=∠EDA1=∠FDA1=30°,∴∠EDF=60°,∴△DEF是等边三角形;(3)DG,EG,FG的数量关系是DG2+GF2=GE2,理由如下:由(2)可知△DEF是等边三角形;将△DGE逆时针旋转60°到△DG'F位置,如解图(1),∴G'F=GE,DG'=DG,∠GDG'=60°,∴△DGG'是等边三角形,∴GG'=DG,∠DGG'=60°,∵∠DGF=150°,∴∠G'GF=90°,∴G'G2+GF2=G'F2,∴DG2+GF2=GE2,【点评】本题考查翻折变换、相似三角形证明、全等三角形的判定和性质、勾股定理矩形的性质等知识,解(3)题的关键是灵活运用旋转得全等三角形,构造Rt△G′GF.(2019年吉林24题)24.(8分)性质探究如图①,在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为8+4,则它的面积为4;(2)如图②,在四边形EFGH中,EF=EG=EH.①求证:∠EFG+∠EHG=∠FGH;②在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=10,直接写出线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为2sinα(用含α的式子表示).【分析】性质探究作CD⊥AB于D,则∠ADC=∠BDC=90°,由等腰三角形的性质得出AD=BD,∠A =∠B=30°,由直角三角形的性质得出AC=2CD,AD=CD,得出AB=2AD=2CD,即可得出结果;理解运用(1)同上得出则AC=2CD,AD=CD,由等腰三角形的周长得出4CD+2CD=8+4,解得:CD=2,得出AB=4,由三角形面积公式即可得出结果;(2)①由等腰三角形的性质得出∠EFG=∠EGF,∠EGH=∠EHG,得出∠EFG+∠EHG =∠EGF+∠EGH=∠FGH即可;②连接FH,作EP⊥FH于P,由等腰三角形的性质得出PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,由四边形内角和定理求出∠FEH=120°,由等腰三角形的性质得出∠EFH=30°,由直角三角形的性质得出PE=EF=5,PF=PE=5,得出FH=2PF=10,证明MN是△FGH的中位线,由三角形中位线定理即可得出结果;类比拓展作AD⊥BC于D,由等腰三角形的性质得出BD=CD,∠BAD=∠BAC=α,由三角函数得出BD=AB×sinα,得出BC=2BD=2AB×sinα,即可得出结果.【解答】性质探究解:作CD⊥AB于D,如图①所示:则∠ADC=∠BDC=90°,∵AC=BC,∠ACB=120°,∴AD=BD,∠A=∠B=30°,∴AC=2CD,AD=CD,∴AB=2AD=2CD,∴==;故答案为:;理解运用(1)解:如图①所示:同上得:AC=2CD,AD=CD,∵AC+BC+AB=8+4,∴4CD+2CD=8+4,解得:CD=2,∴AB=4,∴△ABC的面积=AB×CD=×4×2=4;故答案为:4(2)①证明:∵EF=EG=EH,∴∠EFG=∠EGF,∠EGH=∠EHG,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH;②解:连接FH,作EP⊥FH于P,如图②所示:则PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,∴∠FEH=360°﹣120°﹣120°=120°,∵EF=EH,∴∠EFH=30°,∴PE=EF=5,∴PF=PE=5,∴FH=2PF=10,∵点M、N分别是FG、GH的中点,∴MN是△FGH的中位线,∴MN=FH=5;类比拓展解:如图③所示:作AD⊥BC于D,∵AB=AC,∴BD=CD,∠BAD=∠BAC=α,∵sinα=,∴BD=AB×sinα,∴BC=2BD=2AB×sinα,∴==2sinα;故答案为:2sinα.【点评】本题是四边形综合题目,考查了等腰三角形的性质、直角三角形的性质、三角形中位线定理、四边形内角和定理、就直角三角形等知识;本题综合性强,熟练掌握等腰三角形的性质和含30°角的直角三角形的性质是解题的关键.(2019年吉林25题)25.(10分)如图,在矩形ABCD中,AD=4cm,AB=3cm,E为边BC上一点,BE=AB,连接AE.动点P、Q从点A同时出发,点P以cm/s的速度沿AE向终点E运动;点Q 以2cm/s的速度沿折线AD﹣DC向终点C运动.设点Q运动的时间为x(s),在运动过程中,点P,点Q经过的路线与线段PQ围成的图形面积为y(cm2).(1)AE=3cm,∠EAD=45°;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)当PQ=cm时,直接写出x的值.【分析】(1)由勾股定理可求AE的长,由等腰三角形的性质可求∠EAD的度数;(2)分三种情况讨论,由面积和差关系可求解;(3)分三种情况讨论,由勾股定理可求解.【解答】解:(1)∵AB=3cm,BE=AB=3cm,∴AE==3cm,∠BAE=∠BEA=45°∵∠BAD=90°∴∠DAE=45°故答案为:3,45(2)当0<x≤2时,如图,过点P作PF⊥AD,∵AP=x,∠DAE=45°,PF⊥AD∴PF=x=AF,∴y=S△PQA=×AQ×PF=x2,(2)当2<x≤3时,如图,过点P作PF⊥AD,∵PF=AF=x,QD=2x﹣4∴DF=4﹣x,∴y=x2+(2x﹣4+x)(4﹣x)=﹣x2+8x﹣8当3<x≤时,如图,点P与点E重合.∵CQ=(3+4)﹣2x=7﹣2x,CE=4﹣3=1cm ∴y=(1+4)×3﹣(7﹣2x)×1=x+4(3)当0<x≤2时∵QF=AF=x,PF⊥AD∴PQ=AP∵PQ=cm∴x=∴x=当2<x≤3时,过点P作PM⊥CD∴四边形MPFD是矩形∴PM=DF=4﹣2x,MD=PF=x,∴MQ=x﹣(2x﹣4)=4﹣x∵MP2+MQ2=PQ2,∴(4﹣2x)2+(4﹣x)2=∵△<0∴方程无解当3<x≤时,∵PQ2=CP2+CQ2,∴=1+(7﹣2x)2,∴x=综上所述:x=或【点评】本题是四边形综合题,考查了矩形的判定和性质,勾股定理,等腰三角形的性质,利用分类讨论思想解决问题是本题的关键.(2019年吉林长春23题)23.(10分)如图,在Rt△ABC中,∠C=90°,AC=20,BC=15.点P从点A出发,沿AC向终点C运动,同时点Q从点C出发,沿射线CB运动,它们的速度均为每秒5个单位长度,点P到达终点时,P、Q同时停止运动.当点P不与点A、C重合时,过点P 作PN⊥AB于点N,连结PQ,以PN、PQ为邻边作?PQMN.设?PQMN与△ABC重叠部分图形的面积为S,点P的运动时间为t秒.(1)①AB的长为25;②PN的长用含t的代数式表示为3t.(2)当?PQMN为矩形时,求t的值;(3)当?PQMN与△ABC重叠部分图形为四边形时,求S与t之间的函数关系式;(4)当过点P且平行于BC的直线经过?PQMN一边中点时,直接写出t的值.【分析】(1)根据勾股定理即可直接计算AB的长,根据三角函数即可计算出PN.(2)当?PQMN为矩形时,由PN⊥AB可知PQ∥AB,根据平行线分线段成比例定理可得,即可计算出t的值.(3)当?PQMN与△ABC重叠部分图形为四边形时,有两种情况,Ⅰ.?PQMN在三角形内部时,Ⅱ.?PQMN有部分在外边时.由三角函数可计算各图形中的高从而计算面积.(4)当过点P且平行于BC的直线经过?PQMN一边中点时,有两种情况,Ⅰ.过MN 的中点,Ⅱ.过QM的中点.分别根据解三角形求相关线段长利用平行线等分线段性质和可列方程计算t值.【解答】解:(1)在Rt△ABC中,∠C=90°,AC=20,BC=15.∴AB===25.∴,由题可知AP=5t,∴PN=AP?sin∠CAB==3t.故答案为:①25;②3t.(2)当?PQMN为矩形时,∠NPQ=90°,∵PN⊥AB,∴PQ∥AB,∴,由题意可知AP=CQ=5t,CP=20﹣5t,∴,解得t=,即当?PQMN为矩形时t=.(3)当?PQMN△ABC重叠部分图形为四边形时,有两种情况,Ⅰ.如解图(3)1所示.?PQMN在三角形内部时.延长QM交AB于G点,由(1)题可知:cosA=sinB=,cosB=,AP=5t,BQ=15﹣5t,PN=QM=3t.∴AN=AP?cosA=4t,BG=BQ?cosB=9﹣3t,QG=BQ?sinB=12﹣4t,∵.?PQMN在三角形内部时.有0<QM≤QG,∴0<3t≤12﹣4t,∴0<t.∴NG=25﹣4t﹣(9﹣3t)=16﹣t.∴当0<t时,?PQMN与△ABC重叠部分图形为?PQMN,S与t之间的函数关系式为S=PN?NG=3t?(16﹣t)=﹣3t2+48t.Ⅱ.如解图(3)2所示.当0<QG<QM,?PQMN与△ABC重叠部分图形为梯形PQMG 时,即:0<12﹣4t<3t,解得:,?PQMN与△ABC重叠部分图形为梯形PQMG的面积S===.综上所述:当0<t时,S=﹣3t2+48t.当,S=.(4)当过点P且平行于BC的直线经过?PQMN一边中点时,有两种情况,Ⅰ.如解题图(4)1,PR∥BC,PR与AB交于K点,R为MN中点,过R点作RH⊥AB,∴∠PKN=∠HKR=∠B,NK=PN?cot∠PKN=3t=,∵NR=MR,HR∥PN∥QM,∴NH=GH=,HR=,∴GM=QM﹣QG=3t﹣(12﹣4t)=7t﹣12.HR=.∴KH=HR?cot∠HKR==,∵NK+KH=NH,∴,解得:t=,Ⅱ.如解题图(4)2,PR∥BC,PR与AB交于K点,R为MQ中点,过Q点作QH⊥PR,∴∠HPN=∠A=∠QRH,四边形PCQH为矩形,∴HQ=QR?sin∠QRH=∵PC=20﹣5t,∴20﹣5t=,解得t=.综上所述:当t=或时,点P且平行于BC的直线经过?PQMN一边中点时,【点评】此题考查了相似形的综合,用到的知识点是勾股定理、三角形中位线定理及相似三角形的判定与性质等,关键是根据题意画出图形,分情况进行讨论,避免出现漏解.(2019年江西15题)15.(6分)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF,使EF∥BC;(2)在图2中以BC为边作一个45°的圆周角.【分析】(1)分别延长BA、CA交半圆于E、F,利用圆周角定理可等腰三角形的性质可得到∠E=∠ABC,则可判断EF∥BC;(2)在(1)基础上分别延长AE、CF,它们相交于M,则连接AM交半圆于D,然后证明MA⊥BC,从而根据圆周角定理可判断DBC=45°.【解答】解:(1)如图1,EF为所作;(2)如图2,∠BCD为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.(2019年江西22题)22.(9分)在图1,2,3中,已知?ABCD,∠ABC=120°,点E为线段BC上的动点,连接AE,以AE为边向上作菱形AEFG,且∠EAG=120°.(1)如图1,当点E与点B重合时,∠CEF=60°;(2)如图2,连接AF.①填空:∠FAD=∠EAB(填“>”,“<“,“=”);②求证:点F在∠ABC的平分线上;(3)如图3,连接EG,DG,并延长DG交BA的延长线于点H,当四边形AEGH是平行四边形时,求的值.【分析】(1)根据菱形的性质计算;(2)①证明∠DAB=∠FAE=60°,根据角的运算解答;②作FM⊥BC于M,FN⊥BA交BA的延长线于N,证明△AFN≌△EFM,根据全等三角形的性质得到FN=FM,根据角平分线的判定定理证明结论;(3)根据直角三角形的性质得到GH=2AH,证明四边形ABEH为菱形,根据菱形的性质计算,得到答案.【解答】解:(1)∵四边形AEFG是菱形,∴∠AEF=180°﹣∠EAG=60°,∴∠CEF=∠AEC﹣∠AEF=60°,故答案为:60°;(2)①∵四边形ABCD是平行四边形,∴∠DAB=180°﹣∠ABC=60°,∵四边形AEFG是菱形,∠EAG=120°,∴∠FAE=60°,∴∠FAD=∠EAB,故答案为:=;②作FM⊥BC于M,FN⊥BA交BA的延长线于N,则∠FNB=∠FMB=90°,∴∠NFM=60°,又∠AFE=60°,∴∠AFN=∠EFM,∵EF=EA,∠FAE=60°,∴△AEF为等边三角形,∴F A=FE,在△AFN和△EFM中,,∴△AFN≌△EFM(AAS),∴FN=FM,又FM⊥BC,FN⊥BA,∴点F在∠ABC的平分线上;(3)∵四边形AEFG是菱形,∠EAG=120°,∴∠AGF=60°,∴∠FGE=∠AGE=30°,∵四边形AEGH为平行四边形,∴GE∥AH,∴∠GAH=∠AGE=30°,∠H=∠FGE=30°,∴∠GAH=90°,又∠AGE=30°,∴GH=2AH,∵∠DAB=60°,∠H=30°,∴∠ADH=30°,∴AD=AH=GE,∵四边形ABEH为平行四边形,∴BC=AD,∴BC=GE,∵四边形ABEH为平行四边形,∠HAE=∠EAB=30°,∴平行四边形ABEH为菱形,∴AB=AH=HE,∴GE=3AB,∴=3.【点评】本题考查的是相似三角形的判定和性质、全等三角形的判定和性质、菱形的性质、平行四边形的性质,掌握全等三角形的判定定理和性质定理、菱形的性质、直角三角形的性质是解题的关键.(2019年辽宁沈阳23题)23.(10分)在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.。

2020年中考数学压轴题(含答案) (2)

2020年中考数学压轴题(含答案) (2)

2020年中考数学压轴题一、选择题1.如图,在△ABC中,点D、E、F分别在AB、AC、BC边上,DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.第1题第2题2.如图,在平面直角坐标系xOy中,A(﹣3,0),B(3,0),若在直线y=﹣x+m上存在点P满足∠APB=60°,则m的取值范围是()A.≤m≤B.﹣﹣5≤m≤+5C.﹣2≤m≤+2D.﹣﹣2≤m≤+2二、填空题18.如图,点G是矩形ABCD的对角线BD上一点,过点G作EF∥AB交AD于E,交BC 于F,若EG=5,BF=2,则图中阴影部分的面积为.第3题第4题24.如图为二次函数y=ax2+bx+c图象,直线y=t(t>0)与抛物线交于A,B两点,A,B 两点横坐标分别为m,n.根据函数图象信息有下列结论:①abc>0;②若对于t>0的任意值都有m<﹣1,则a≥1;③m+n=1;④m<﹣1;⑤当t为定值时,若a变大,则线段AB变长.其中,正确的结论有(写出所有正确结论的序号)三、解答题5.如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.(1)若F为CD上一动点,求出当△DEF与△COD相似时点F的坐标;(2)过E作x轴的垂线l,在直线l上是否存在一点Q,使∠CQO=∠CDO?若存在,求出Q点的坐标;若不存在,请说明理由.6.如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.【答案与解析】一、选择题1.【分析】根据平行线分线段成比例定理列出比例式,再分别对每一项进行判断即可.【解答】A.∵EF∥AB,∴=,故本选项正确,B.∵DE∥BC,∴=,∵EF∥AB,∴DE=BF,∴=,∴=,故本选项正确,C.∵EF∥AB,∴=,∵CF≠DE,∴≠,故本选项错误,D.∵EF∥AB,∴=,∴=,故本选项正确,故选:C.2.【分析】作等边三角形ABE,然后作外接圆,求得直线y=﹣x+m与外接圆相切时的m的值,即可求得m的取值范围.【解答】解:如图,作等边三角形ABE,∵A(﹣3,0),B(3,0),∴OA=OB=3,∴E在y轴上,当E在AB上方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P1重合时m的值最大,当P与P1重合时,连接QP1,则QP1⊥直线y=﹣x+m,∵OA=3,∴OE=3,设⊙Q的半径为x,则x2=32+(3﹣x)2,解得x=2,∴EQ=AQ=PQ=2,∴OQ=,由直线y=﹣x+m可知OD=OC=m,∴DQ=m﹣,CD=m,∵∠ODC=∠P1DQ,∠COD=∠QP1D,∴△QP1D∽△COD,∴=,即=,解得m=+2,当E在AB下方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P2重合时m的值最小,当P与P2重合时,同理证得m=﹣﹣2,∴m的取值范围是﹣﹣2≤m≤+2,故选:D.二、填空题3.【分析】由矩形的性质可证明S矩形AEGM=S矩形CFGN=2×5=10,即可求解.【解答】解:作GM⊥AB于M,延长MG交CD于N.则有四边形AEGM,四边形DEGN,四边形CFGN,四边形BMGF都是矩形,∴AE=BF=2,S△ADB=S△DBC,S△BGM=S△BGF,S△DEG=S△DNG,∴S矩形AEGM=S矩形CFGN=2×5=10,∴S阴=S矩形CFGN=5,故答案为:5.4.【分析】由图象分别求出a>0,c=﹣2,b=﹣a<0,则函数解析式为y=ax2﹣ax﹣2,则对称轴x=,由开口向上的函数的图象开口与a的关系可得:当a变大,函数y=ax2﹣ax﹣2的开口变小,依据这个性质判断m的取值情况.【解答】解:由图象可知,a>0,c=﹣2,∵对称轴x=﹣=,∴b=﹣a<0,∴abc>0;∴①正确;A、B两点关于x=对称,∴m+n=1,∴③正确;a>0时,当a变大,函数y=ax2﹣ax﹣2的开口变小,则AB的距离变小,∴⑤不正确;若m<﹣1,n>2,由图象可知n>1,∴④不正确;当a=1时,对于t>0的任意值都有m<﹣1,当a>1时,函数开口变小,则有m>﹣1的时候,∴②不正确;故答案①③.三、解答题5.【分析】(1)当△DEF∽△COD时,=,DF=DE cos∠CDO=,据此求出EF的长度和点F的坐标即可;(2)首先以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=;然后求出点P的坐标是多少;设Q(﹣1,a),则()2+(a﹣)2=,据此求出a的值是多少,进而求出Q点坐标是多少即可.【解答】解:(1)∵A(1,0),B(0,3),∴OA=1,OB=3,∵将△AOB绕点O逆时针旋转90°,得到△COD,∴OC=1,OD=3,∴C(0,1),D(﹣3,0),如图1,当△DEF∽△COD时,=∴EF=,∴F(﹣1,);当△DEF∽△COD时,DF=DE cos∠CDO=,作FK⊥OD于K,则FK=DF sin∠CDO=,DK=DF cos∠CDO=,∴F(﹣,);(2)如图2,以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=,又∵P为CD中点,P(﹣,),设Q(﹣1,a),则()2+(a﹣)2=,解得a=2或﹣1,∴Q(﹣1,2)或(﹣1,﹣1).6.【分析】(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;(2)作PF∥BO交AB于点F,证△PFD∽△OBD,得比例线段,则PF取最大值时,求得的最大值;(3)(i)点F在y轴上时,P在第一象限或第二象限,如图2,3,过点P作PH⊥x轴于H,根据正方形的性质可证明△CPH≌△FCO,根据全等三角形对应边相等可得PH=CO=2,然后利用二次函数解析式求解即可;(ii)点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,可得PS=PK,则P点的横纵坐标互为相反数,可求出P点坐标;点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,可得PN=PM,则P点的横纵坐标相等,可求出P点坐标.由此即可解决问题.【解答】解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入解析式得,,解得,,∴抛物线的解析式为;(2)如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,∴,∵OB为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,若P在第二象限,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,x=﹣1+(舍去).∴,如图3,点F在y轴上时,若P在第一象限,同理可得点P的纵坐标为2,此时P2点坐标为(﹣1+,2)(ii)如图4,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴,解得x=2(舍去),x=﹣2,∴,如图5,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P点坐标为,,.。

决战2020年中考数学压轴题综合提升训练:《四边形》(含答案)

决战2020年中考数学压轴题综合提升训练:《四边形》(含答案)

决战2020中考数学压轴题综合提升训练:《四边形》1.如图①,在矩形ABCD中,已知BC=8cm,点G为BC边上一点,满足BG=AB=6cm,动点E以1cm/s的速度沿线段BG从点B移动到点G,连接AE,作EF⊥AE,交线段CD于点F.设点E移动的时间为t(s),CF的长度为y(cm),y与t的函数关系如图②所示.(1)图①中,CG= 2 cm,图②中,m= 2 ;(2)点F能否为线段CD的中点?若可能,求出此时t的值,若不可能,请说明理由;(3)在图①中,连接AF,AG,设AG与EF交于点H,若AG平分△AEF的面积,求此时t的值.解:(1)∵BC=8cm,BG=AB=6cm,∴CG=2cm,∵EF⊥AE,∴∠AEB+∠FEC=90°,且∠AEB+∠BAE=90°,∴∠BAE=∠FEC,且∠B=∠C=90°,∴△ABE∽△ECF,∴,∵t=6,∴BE=6cm,CE=2cm,∴∴CF=2cm,∴m=2,故答案为:2,2;(2)若点F是CD中点,∴CF=DF=3cm,∵△ABE∽△ECF,∴,∴∴EC2﹣8EC+18=0∵△=64﹣72=﹣8<0,∴点F不可能是CD中点;(3)如图①,过点H作HM⊥BC于点M,∵∠C=90°,HM⊥BC,∴HM∥CD,∴△EHM∽△EFC,∴∵AG平分△AEF的面积,∴EH=FH,∴EM=MC,∵BE=t,EC=8﹣t,∴EM=CM=4﹣t,∴MG=CM﹣CG=2﹣,∵,∴∴CF=∵EM=MC,EH=FH,∴MH=CF=∵AB=BG=6,∴∠AGB=45°,且HM⊥BC,∴∠HGM=∠GHM=45°,∴HM=GM,∴=2﹣,∴t=2或t=12,且t≤6,∴t=2.2.问题提出:(1)如图1,△ABC的边BC在直线n上,过顶点A作直线m∥n,在直线m上任取一点D,连接BD、CD,则△ABC的面积=△DBC的面积.问题探究:(2)如图2,在菱形ABCD和菱形BGFE中,BG=6,∠A=60°,求△DGE的面积;问题解决:(3)如图3,在矩形ABCD中,AB=12,BC=10,在矩形ABCD内(也可以在边上)存在一点P,使得△ABP的面积等于矩形ABCD的面积的,求△ABP周长的最小值.解:问题提出:(1)∵两条平行线间的距离一定,∴△ABC与△DBC同底等高,即△ABC的面积=△DBC的面积,故答案为:=;问题探究:(2)如图2,连接BD,∵四边形ABCD,四边形BGFE是菱形,∴AD∥BC,BC∥EF,AD=AB,BG=BE,∴∠A=∠CBE=60°,∴△ADB是等边三角形,△BGE是等边三角形,∴∠ABD=∠GBE=60°,∴BD∥GE,∴S△DGE=S△BGE=BG2=9;(3)如图3,过点P作PE∥AB,交AD于点E,∵△ABP的面积等于矩形ABCD的面积的,∴×12×AE=×12×10∴AE=8,作点A关于PE的对称点A',连接A'B交PE于点P,此时△ABP周长最小,∴A'E=AE=8,∴AA'=16,∴A'B===20,∴△ABP周长的最小值=AP+AB+PB=A'P+PB+AB=20+12=32.3.(1)方法感悟:如图①,在正方形ABCD中,点E、F分别为DC、BC边上的点,且满足∠EAF=45°,连接EF.将△ADE绕点A顺时针旋转90°得到△ABG,易证△GAF≌△EAF,从而得到结论:DE+BF=EF.根据这个结论,若CD=6,DE=2,求EF的长.(2)方法迁移:如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF=∠BAD,试猜想DE,BF,EF之间有何数量关系,证明你的结论.(3)问题拓展:如图③,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F 分别是边BC、CD延长线上的点,且∠EAF=∠BAD,试探究线段EF、BE、FD之间的数量关系,请直接写出你的猜想(不必说明理由).解:(1)方法感悟:∵将△ADE绕点A顺时针旋转90°得到△ABG,∴GB=DE=2,∵△GAF≌△EAF∴GF=EF,∵CD=6,DE=2∴CE=4,∵EF2=CF2+CE2,∴EF2=(8﹣EF)2+16,∴EF=5;(2)方法迁移:DE+BF=EF,理由如下:如图②,将△ADE绕点A顺时针旋转90°得到△ABH,由旋转可得,AH=AE,BH=DE,∠1=∠2,∠D=∠ABH,∵∠EAF=∠DAB,∴∠HAF=∠1+∠3=∠2+∠3=∠BAD,∴∠HAF=∠EAF,∵∠ABH+∠ABF=∠D+∠ABF=180°,∴点H、B、F三点共线,在△AEF和△AHF中,∴△AEF≌△AHF(SAS),∴EF=HF,∵HF=BH+BF,∴EF=DE+BF.(3)问题拓展:EF=BF﹣FD,理由如下:在BC上截取BH=DF,∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,∴∠B=∠ADF,且AB=AD,BH=DF,∴△ABH≌△ADF(SAS)∴∠BAH=∠DAF,AH=AD,∵∠EAF=∠BAD,∴∠DAE+∠BAH=∠BAD,∴∠HAE=∠BAD=∠EAF,且AE=AE,AH=AD,∴△HAE≌△FAE(SAS)∴HE=EF,∴EF=HE=BE﹣BH=BE﹣DF.4.如图1,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图2,设移动时间为t(s)(0<<4),连结PQ,MQ,解答下列问题:(1)当t为何值时,PQ∥MN?(2)当t为何值时,∠CPQ=45°?(3)当t为何值时,PQ⊥MQ?解:(1)∵AB=3cm,BC=5cm,AC⊥AB,∴AC==4cm,∵MN∥AB,PQ∥MN,∴PQ∥AB,∴,∴,∴t=s(2)如图2,过点Q作QE⊥AC,则QE∥AB,∴,∴,∴CE=,QE=t,∵∠CPQ=45°,∴PE=QE=t,∴t+t+t=4,∴t=s(3)如图2,过点P作PF⊥BC于F点,过点M作MH⊥BC,交BC延长线于点H,∴四边形PMHF是矩形,∴PM=FH=5,∵∠A=∠PFC=90°,∠ACB=∠PCF,∴△ABC∽△FPC,∴,∴=∴PF=,CF=,∴QH=5﹣FQ=5﹣(CF﹣CQ)=,∵PQ⊥MQ,∴∠PQF+∠MQH=90°,且∠PQF+∠FPQ=90°,∴∠FPQ=∠MQH,且∠PFQ=∠H=90°,∴△PFQ∽△QHM,∴,∴∴t=s.5.问题背景:如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得四边形EFGH是正方形.类比探究:如图2,在正△ABC的内部,作∠1=∠2=∠3,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合).(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;(2)△DEF是否为正三角形?请说明理由;(3)如图3,进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC=AC,又∵∠1=∠2=∠3,∴∠ABD=∠BCE=∠CAF,在△ABD、△BCE和△CAF中,,∴△ABD≌△BCE≌△CAF(ASA);(2)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)c2=a2+ab+b2.作AG⊥BD于G,如图所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c2=(a+b)2+(b)2,∴c2=a2+ab+b2.6.如图,在四边形ABCD中,AC是对角线,∠ABC=∠CDA=90°,BC=CD,延长BC交AD的延长线于点E.(1)求证:AB=AD;(2)若AE=BE+DE,求∠BAC的值;(3)过点E作ME∥AB,交AC的延长线于点M,过点M作MP⊥DC,交DC的延长线于点P,连接PB.设PB=a,点O是直线AE上的动点,当MO+PO的值最小时,点O与点E是否可能重合?若可能,请说明理由并求此时MO+PO的值(用含a的式子表示);若不可能,请说明理由.(1)证明:∵∠ABC=∠CDA=90°,∵BC=CD,AC=AC,∴Rt△ABC≌Rt△ADC(HL).∴AB=AD.(2)解:∵AE=BE+DE,又∵AE=AD+DE,∴AD=BE.∵AB=AD,∴AB=BE.∴∠BAD=∠BEA.∵∠ABC=90°,∴∠BAD═45°.∵由(1)得△ABC≌△ADC,∴∠BAC=∠DAC.∴∠BAC═22.5°.(3)解:当MO+PO的值最小时,点O与点E可以重合,理由如下:∵ME∥AB,∴∠ABC=∠MEC=90°,∠MAB=∠EMA.∵MP⊥DC,∴∠MPC=90°.∴∠MPC=∠ADC=90°.∴PM∥AD.∴∠EAM=∠PMA.由(1)得,Rt△ABC≌Rt△ADC,∴∠EAC=∠MAB,∴∠EMA=∠AMP.即MC平分∠PME.又∵MP⊥CP,ME⊥CE,∴PC=EC.如图,连接PB,连接PE,延长ME交PD的延长线于点Q.设∠EAM=α,则∠MAP=α.在Rt△ABE中,∠BEA=90°﹣2α.在Rt△CDE中,∠ECD=90°﹣∠BEA=2α.∵PC=EC,∴∠PEB=∠EPC=∠ECD=α.∴∠PED=∠BEA+∠PEB=90°﹣α.∵ME∥AB,∴∠QED=∠BAD=2α.当∠PED=∠QED时,∵∠PDE=∠QDE,DE=DE,∴△PDE≌△QDE(ASA).∴PD=DQ.即点P与点Q关于直线AE成轴对称,也即点M、点E、点P关于直线AE的对称点Q,这三点共线,也即MO+PO的值最小时,点O与点E重合.因为当∠PED=∠QED时,90°﹣α=2α,也即α=30°.所以,当∠ABD=60°时,MO+PO取最小值时的点O与点E重合.此时MO+PO的最小值即为ME+PE.∵PC=EC,∠PCB=∠ECD,CB=CD,∴△PCB≌△ECD(SAS).∴∠CBP=∠CDE=90°.∴∠CBP+∠ABC=180°.∴A,B,P三点共线.当∠ABD=60°时,在△PEA中,∠PAE=∠PEA=60°.∴∠EPA=60°.∴△PEA为等边三角形.∵EB⊥AP,∴AP=2AB=2a.∴EP=AE=2a.∵∠EMA=∠EAM=30°,∴EM=AE=2a.∴MO+PO的最小值为4a.7.已知:如图,在正方形ABCD中,点E在AD边上运动,从点A出发向点D运动,到达D点停止运动.作射线CE,并将射线CE绕着点C逆时针旋转45°,旋转后的射线与AB边交于点F,连接EF.(1)依题意补全图形;(2)猜想线段DE,EF,BF的数量关系并证明;(3)过点C作CG⊥EF,垂足为点G,若正方形ABCD的边长是4,请直接写出点G 运动的路线长.解:(1)补全图形如图1所示:(2)线段DE,EF,BF的数量关系为:EF=DE+BF.理由如下:延长AD到点H,使DH=BF,连接CH,如图2所示:∵四边形ABCD是正方形,∴∠BCD=∠ADC=∠B=90°,BC=DC,∴∠CDH=90°=∠B,在△CDH和△CBF中,,∴△CDH≌△CBF(SAS).∴CH=CF,∠DCH=∠BCF.∵∠ECF=45°,∴∠ECH=∠ECD+∠DCH=∠ECD+∠BCF=45°.∴∠ECH=∠ECF=45°.在△ECH和△ECF中,,∴△EC H≌△ECF(SAS).∴EH=EF.∵EH=DE+DH,∴EF=DE+BF;(3)由(2)得:△ECH≌△ECF(SAS),∴∠CEH=∠CEF,∵CD⊥AD,CG⊥EF,∴CD=CG=4,∴点G的运动轨迹是以C为圆心4为半径的弧DB,∴点G运动的路线长==2π.8.如图,在正方形ABCD中,P是边BC上的一动点(不与点B,C重合),点B关于直线AP的对称点为E,连接AE.连接DE并延长交射线AP于点F,连接BF.(1)若∠BAP=α,直接写出∠ADF的大小(用含α的式子表示);(2)求证:BF⊥DF;(3)连接CF,用等式表示线段AF,BF,CF之间的数量关系,并证明.(1)解:由轴对称的性质得:∠EAP=∠BAP=α,AE=AB,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠DAE=90°﹣2α,AD=AE,∴∠ADF=∠AED=(180°﹣∠DAE)=(90°+2α)=45°+α;(2)证明:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵点E与点B关于直线AP对称,∴∠AEF=∠ABF,AE=AB.∴AE=AD.∴∠ADE=∠AED.∵∠AED+∠AEF=180°,∴在四边形ABFD中,∠ADE+∠ABF=180°,∴∠BFD+∠BAD=180°,∴∠BFD=90°∴BF⊥DF;(3)解:线段AF,BF,CF之间的数量关系为AF=BF+CF,理由如下:过点B作BM⊥BF交AF于点M,如图所示:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABM=∠CBF,∵点E与点B关于直线AP对称,∠BFD=90°,∴∠MFB=∠MFE=45°,∴△BMF是等腰直角三角形,∴BM=BF,FM=BF,在△AMB和△CFB中,,∴△AMB≌△CFB(SAS),∴AM=CF,∵AF=FM+AM,∴AF=BF+CF.9.如图1,已知等腰Rt△ABC中,E为边AC上一点,过E点作EF⊥AB于F点,以为边作正方形,且AC=3,EF=.(1)如图1,连接CF,求线段CF的长;(2)将等腰Rt△ABC绕点旋转至如图2的位置,连接BE,M点为BE的中点,连接MC,MF,求MC与MF关系.解:(1)如图1,∵△ABC是等腰直角三角形,AC=3,∴AB=3,过点C作CM⊥AB于M,连接CF,∴CM=AM=AB=,∵四边形AGEF是正方形,∴AF=EF=,∴MF=AM﹣AF=﹣,在Rt△CMF中,CF===;(2)CM=FM,CM⊥FM,理由:如图2,过点B作BH∥EF交FM的延长线于H,连接CF,CH,∴∠BHM=∠EFM,∵四边形AGEF是正方形,∴EF=AF∵点M是BE的中点,∴BM=EM,在△BMH和△EMF中,,∴△BMH≌△EMF(AAS),∴MH=MF,BH=EF=AF∵四边形AGEF是正方形,∴∠FAG=90°,EF∥AG,∵BH∥EF,∴BH∥AG,∴∠BAG+∠ABH=180°,∴∠CBH+∠ABC+∠BAC+∠CAG=180°.∵△ABC是等腰直角三角形,∴BC=AC,∠ABC=∠BAC=45°,∴∠CBH+∠CAG=90°,∵∠CAG+∠CAF=90°,∴∠CBH=∠CAF,在△BCH和△ACF中,,∴△BCH≌△ACF(SAS),∴CH=CF,∠BCH=∠ACF,∴∠HCF=∠BCH+∠BCF=∠ACF+∠BCF=90°,∴△FCH是等腰直角三角形,∵MH=MF,∴CM=FM,CM⊥FM;10.如图将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°)得到正方形AB′C′D′.(1)如图1,B′C′与AC交于点M,C′D′与AD所在直线交于点N,若MN∥B′D′,求α;(2)如图2,C′B′与CD交于点Q,延长C′B′与BC交于点P,当α=30°时.①求∠DAQ的度数;②若AB=6,求PQ的长度.解:(1)如图1中,∵MN∥B′D′,∴∠C′MN=∠C′B′D′=45°,∠C′NM=∠C′D′B′=45°,∴∠C′MN=∠C′NM,∴C′M=C′N,∵C′B′=C′D′,'∴MB′=ND′,∵AB′=AD′,∠AB′M=∠AD′N=90°,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠B′AD′=90°,∠MAN=45°,∴∠B′AM=∠D′AN=22.5°,∵∠BAC=45°,∴∠BAB′=22.5°,∴α=22.5°.(2)①如图2中,∵∠AB′Q=∠ADQ=90°,AQ=AQ,AB′=AD,∴Rt△AQB′≌Rt△AQD(HL),∴∠QAB′=∠QAD,∵∠BAB′=30°,∠BAD=90°,∴∠B′AD=30°,∴∠QAD=∠B′AD=30°.②如图2中,连接AP,在AB上取一点E,使得AE=EP,连接EP.设PB=a.∵∠ABP=∠AB′P=90°,AP=AP,AB=AB′,∴Rt△APB≌Rt△APB′(HL),∴∠BAP=∠PAB′=15°,∵EA=EP,∴∠EAP=∠EPA=15°,∴∠BEP=∠EAP+∠EPA=30°,∴PE=AE=2a,BE=a,∵AB=6,∴2a+a=6,∴a=6(2﹣).∴PB=6(2﹣),∴PC=BC﹣PB=6﹣6(2﹣)=6﹣6,∵∠CPQ+∠BPB′=180°,∠BAB′+∠BPB′=180°,∴∠CPQ=∠BAB′=30°,∴PQ===12﹣4.11.已知,如图1,在边长为2的正方形ABCD中,E是边AB的中点,点F在边AD上,过点A作AG⊥EF,分别交线段CD、EF于点G、H(点G不与线段CD的端点重合).(1)如图2,当G是边CD中点时,求AF的长;(2)设AF=x,四边形FHGD的面积是y,求y关于x的函数关系式,并写出x的取值范围;(3)联结ED,当∠FED=45°时,求AF的长.解:(1)∵E是AB的中点,AB=2,∴AE=AB=1,同理可得DG=1,∵AG⊥EF,∴∠AHF=∠HAF+∠AFH=90°,∵四边形ABCD是正方形,∴∠ADG=90°=∠DAG+∠AGD,∴∠AFH=∠AGD,∵∠EAF=∠ADG=90°,∴△EAF∽△ADG,∴,即,∴AF=;(2)如图1,由(1)知:△EAF∽△ADG,∴,即,∴DG=2x,∵∠HAF=∠DAG,∠AHF=∠ADG=90°,∴∠AHF∽△ADG,∴=,∴=,∴AH==,FH==,∴y=S△ADG﹣S△AFH,=,=2x﹣,如图2,当G与C重合时,∵EF⊥AG,∴∠AHE=90°,∵∠EAH=45°,∴∠AEH=45°,∴AF=AE=1,∴0<x<1;∴y关于x的函数关系式为:y=2x﹣(0<x<1);(3)如图3,过D作DM⊥AG,交BC于M,连接EM,延长EA至N,使AN=CM,连接DN,设CM=a,则AN=a,∵AD=CD,∠NAD=∠DCM=90°,∴△NAD≌△MCD(SAS),∴∠ADN=∠CDM,DN=DM,∵EF⊥AG,DM⊥AG,∴EF∥DM,∴∠EDM=∠FED=45°,∴∠ADE+∠CDM=∠EDM=45°,∴∠NDA+∠ADE=∠NDE=∠EDM,∵ED=ED,∴△NDE≌△MDE(SAS),∴EN=EM=a+1,∵BM=2﹣a,在Rt△EBM中,由勾股定理得:BE2+BM2=EM2,∴12+(2﹣a)2=(a+1)2,a=,∵∠AEF+∠EAG=∠EAG+∠DAG,∴∠AEF=∠DAG=∠CDM,∴tan∠AEF=tan∠CDM,∴,∴,∴AF=.12.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,△ACB中,∠ACB=90°,AC⊥AG且AC=AG,AB⊥AE 且AE=AB,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.解:(1)四边形ABCD是垂美四边形,理由如下:连接AC,BD,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴AC是线段BD的垂直平分线,∴四边形ABCD是垂美四边形;(2)∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;故答案为:AB2+CD2=AD2+BC2;(3)∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.13.如图1,四边形ACEB,连接BC,∠ACB=∠BEC=90°,D在AB上,连接CD,∠ACD=∠ABC,BE=CD.(1)求证:四边形CDBE为矩形;(2)如图2,连接DE,DE交BC于点O,若tan∠A=2,在不添加任何辅助线和字母的情况下,请直接写出图中所有长度与AD的长度相等的线段.(1)证明:∵∠ACB=90°,∴∠A+∠ABC=90°,∵∠ACD=∠ABC,∴∠A+∠ACD=90°,∴∠ADC=90°,∴∠BDC=180°﹣90°=90°=∠BEC,在Rt△BCD和Rt△CBE中,,∴Rt△BCD≌Rt△CBE(HL),∴BD=CE,∵CD=BE,∴四边形CDBE是平行四边形,又∵∠BEC=90°,∴四边形CDBE为矩形;(2)解:图中所有长度与AD的长度相等的线段为AC=OC=OB=OD=OE=AD.理由如下:由(1)得:四边形CDBE为矩形,∠ADC=90°,∴BC=DE,OD=OE,OB=OC,∴OC=OB=OD=OE=BC,∵∠ADC=∠ACB=90°,∴tan∠A=2==,∴CD=2AD,BC=2AC,∴AC===AD,∴DE=BC=2AC,∴OC=OB=OD=OE=BC=AC=AD,∴AC=OC=OB=OD=OE=AD.14.如图在直角坐标系中,四边形ABCO为正方形,A点的坐标为(a,0),D点的坐标为(0,b),且a,b满足(a﹣3)2+|b﹣|=0.(1)求A点和D点的坐标;(2)若∠DAE=∠OAB,请猜想DE,OD和EB的数量关系,说明理由.(3)若∠OAD=30°,以AD为三角形的一边,坐标轴上是否存在点P,使得△PAD 为等腰三角形,若存在,直接写出有多少个点P,并写出P点的坐标,选择一种情况证明.解:(1)∵(a﹣3)2+|b﹣|=0,∴a=3,b=,∴D(0,),A(3,0);(2)DE=OD+EB;理由如下:如图1,在CO的延长线上找一点F,使OF=BE,连接AF,在△AOF和△ABE中,,∴△AOF≌△ABE(SAS),∴AF=AE,∠OAF=∠BAE,又∵∠OAB=90°,∠DAE=,∴∠BAE+∠DAO=45°,∴∠DAF=∠OAF+∠DAO=45°,∴∠DAF=∠EAD,在△AFD和△AED中,,∴△AFD≌△AED(SAS),∴DF=DE=OD+EB;(3)有3种情况共6个点:①当DA=DP时,如图2,Rt△ADO中,OD=,OA=3,∴AD===2,∴P 1(﹣3,0),P2(0,3),P3(0,﹣);②当AP4=DP4时,如图3,∴∠ADP4=∠DAP4=30°,∴∠OP4D=60°,Rt△ODP 4中,∠ODP4=30°,OD=,∴OP4=1,∴P4(1,0);③当AD=AP时,如图4,∴AD=AP 5=AP6=2,∴P 5(3+2,0),P6(3﹣2,0),综上,点P的坐标为:∴P(﹣3,0)或(0,3)或(0,﹣)或(1,0)或(3+2,0)或(3﹣2,0).证明:P 5(3+2,0),∵∠OAD=30°且△ADO是直角三角形,又∵AO=3,DO=,∴DA=2,而P 5A=|3+2﹣3|=2,∴P5A=DA,∴△P5AD是等腰三角形.15.已知,在四边形ABCD中,点M、N、P、Q分别为边AB、AD、CD、BC的中点,连接MN、NP、PQ、MQ.(1)如图1,求证:四边形MNPQ为平行四边形;(2)如图2,连接AC,AC分别交MN、PQ于点E、F,连接BD,BD分别交MQ、NP于点G、H,AC与BD交于点O,且AC⊥BD,若tan∠ADB=,在不添加任何辅助线的情况下,请直接写出图2中所有长度等于OD的线段.(1)证明:如图1,连接BD.∵Q,P分别是BC,CD的中点,所以PQ∥BD,PQ=BD.∵M,N分别是AB,AD的中点.∴MN∥BD,MN=BD.∴PQ∥MN,且PQ=MN.∴四边形MNPQ是平行四边形.(2)解:∵四边形MNPQ是平行四边形,AC⊥BD,∴四边形MNPQ是矩形,∴四边形NHOE和四边形EOGM都是矩形,∴NH=OE=MG=AE=,∵tan∠ADB=,∴,∴NH=OE=MG=AE=.即长度等于OD的线段有NH,OE,MG,AE.。

2020年中考数学压轴题专项训练:反比例函数的综合(含答案)

2020年中考数学压轴题专项训练:反比例函数的综合(含答案)

2020年数学中考压轴题专项训练:反比例函数的综合1.已知一次函数y=kx﹣(2k+1)的图象与x轴和y轴分别交于A、B两点,与反比例函数y=﹣的图象分别交于C、D两点.(1)如图1,当k=1,点P在线段AB上(不与点A、B重合)时,过点P作x轴和y轴的垂线,垂足为M、N.当矩形OMPN的面积为2时,求出点P的位置;(2)如图2,当k=1时,在x轴上是否存在点E,使得以A、B、E为顶点的三角形与△BOC相似?若存在,求出点E的坐标;若不存在,说明理由;(3)若某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,求k的值.解:(1)当k=1,则一次函数解析式为:y=x﹣3,反比例函数解析式为:y=﹣,∵点P在线段AB上∴设点P(a,a﹣3),a>0,a﹣3<0,∴PN=a,PM=3﹣a,∵矩形OMPN的面积为2,∴a×(3﹣a)=2,∴a=1或2,∴点P(1,﹣2)或(2,﹣1)(2)∵一次函数y=x﹣3与x轴和y轴分别交于A、B两点,∴点A(3,0),点B(0,﹣3)∴OA=3=OB,∴∠OAB=∠OBA=45°,AB=3,∵x﹣3=﹣∴x=1或2,∴点C(1,﹣2),点D(2,﹣1)∴BC==,设点E(x,0),∵以A、B、E为顶点的三角形与△BOC相似,且∠CBO=∠BAE=45°,∴,或,∴,或=,∴x=1,或x=﹣6,∴点E(1,0)或(﹣6,0)(3)∵﹣=kx﹣(2k+1),∴x=1,x=,∴两个函数图象的交点横坐标分别为1,,∵某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,∴1=,或5=∴k=2.如图,已知直线y=kx+b与反比例函数y=(x>0)的图象交于A(1,4)、B(4,1)两点,与x轴交于C点.(1)求一次函数与反比例函数的解析式;(2)根据图象直接回答:在第一象限内,当x取何值时,一次函数值大于反比例函数值?(3)点P是y=(x>0)图象上的一个动点,作PQ⊥x轴于Q点,连接PC,当S△CPQ =S时,求点P的坐标.△CAO解:(1)把A (1,4)代入y =(x >0),得m =1×4=4,∴反比例函数为y =;把A (1,4)和B (4,1)代入y =kx +b 得, 解得:, ∴一次函数为y =﹣x +5.(2)根据图象得:当1<x <4时,一次函数值大于反比例函数值;(3)设P (m ,),由一次函数y =﹣x +5可知C (5,0),∴S △CAO ==10,∵S △CPQ =S △CAO ,∴S △CPQ =5, ∴|5﹣m |•=5,解得m =或m =﹣(舍去), ∴P (,).3.如图,直线y =kx +b (b >0)与抛物线y =x 2相交于点A (x 1,y 1),B (x 2,y 2)两点,与x 轴正半轴相交于点D ,于y 轴相交于点C ,设△OCD 的面积为S ,且kS +8=0.(1)求b 的值.(2)求证:点(y 1,y 2)在反比例函数y =的图象上.(1)解:∵直线y=kx+b(b>0)与x轴正半轴相交于点D,于y轴相交于点C,∴D(0,b),C(﹣,0)∴由题意得OD=b,OC=﹣,∴S=∴k•()+8=0,∴b=4(b>0);(2)证明:∵,∴,∴x1•x2=﹣16∴,∴点(y1,y2)在反比例函数y=的图象上.4.如图,双曲线y=上的一点A(m,n),其中n>m>0,过点A作AB⊥x轴于点B,连接OA.(1)已知△AOB的面积是3,求k的值;(2)将△AOB绕点A逆时针旋转90°得到△ACD,且点O的对应点C恰好落在该双曲线上,求的值.解:(1)∵双曲线y=上的一点A(m,n),过点A作AB⊥x轴于点B,∴AB=n,OB=m,又∵△AOB的面积是3,∴mn=3,∴mn=6,∵点A在双曲线y=上,∴k=mn=6;(2)如图,延长DC交x轴于E,由旋转可得△AOB≌△ACD,∠BAD=90°,∴AD=AB=n,CD=OB=m,∠ADC=90°,∵AB⊥x轴,∴∠ABE=90°,∴四边形ABED是矩形,∴∠DEB=90°,∴DE=AB=n,CE=n﹣m,OE=m+n,∴C(m+n,n﹣m),∵点A,C都在双曲线上,∴mn=(m+n)(n﹣m),即m2+mn﹣n2=0,方程两边同时除以n2,得+﹣1=0,解得=,∵n>m>0,∴=.5.在平面直角坐标系xOy 中,对于点P (a ,b )和实数k (k >0),给出如下定义:当ka +b >0时,将以点P 为圆心,ka +b 为半径的圆,称为点P 的k 倍相关圆.例如,在如图1中,点P (1,1)的1倍相关圆为以点P 为圆心,2为半径的圆.(1)在点P 1(2,1),P 2(1,﹣3)中,存在1倍相关圆的点是 P 1 ,该点的1倍相关圆半径为 3 .(2)如图2,若M 是x 轴正半轴上的动点,点N 在第一象限内,且满足∠MON =30°,判断直线ON 与点M 的倍相关圆的位置关系,并证明.(3)如图3,已知点A 的(0,3),B (1,m ),反比例函数y =的图象经过点B ,直线l 与直线AB 关于y 轴对称.①若点C 在直线l 上,则点C 的3倍相关圆的半径为 3 .②点D 在直线AB 上,点D 的倍相关圆的半径为R ,若点D 在运动过程中,以点D 为圆心,hR 为半径的圆与反比例函数y =的图象最多有两个公共点,直接写出h 的最大值.解:(1)由题意知,k=1,(2,1),a=2,b=1,针对于P1∴ka+b=2+1=3>0,∴点P(2,1)的1倍相关圆为以点P为圆心,3为半径的圆,1(1,﹣3),a=1,b=﹣3,针对于P2∴ka+b=1﹣3=﹣2<0,∴点P(1,﹣3)不存在1倍相关圆2;3;故答案为:P1(2)如图2中,结论:直线ON与点M的倍相关圆的位置关系是相切.理由:设点M的坐标为(n,0),过M点作MP⊥ON于点P,∴点M的倍相关圆半径为n.∴OM=n.∵MP⊥ON,∴∠OPM=90°,∵∠MON=30°,∴MP=OM=n,∴点M的倍相关圆的半径为MP,∴直线ON与点M的倍相关圆相切;(3)①如图3中,记直线AB与x轴的交点为E,直线l与x轴的交点为F,∵B(1,m)在反比例函数y=的图象上,∴m=6,∴B(1,6)∵A(0,3),∴直线AB的解析式为y=3x+3,令y=0,则3x+3=0,∴x=﹣1,∴E(﹣1,0),∵直线l是直线AB关于y轴对称,∴点F与点E关于y轴对称,∴F(1,0),∴直线l的解析式为y=﹣3x+3,∵点C在直线l上,∴设C(c,﹣3c+3),由题意知,k=3,∴3c+(﹣3c+3)=3,∴点C的3倍相关圆的半径是3,故答案为:3;②∵点D在直线AB上,设D(d,3d+3),由题意知,k=,∴R=d+(3d+3)=d+3>0,∴d>﹣.6.如图,在平面直角坐标系中,直线y=2x+2与x轴、y轴分别交于A,B两点,与反比例函数y=的图象交于点M,且B为AM的中点.(1)求反比例函数y=的表达式;(2)过B做x轴的平行线,交反比例函数y=图象于点C,连接MC,AC.求△AMC的面积.解:(1)过点M作MH⊥y轴,垂足为H.∵AB=MB,∠MHB=∠AOB,∠MBH=∠ABO,∴△ABO≌△MBH(AAS),∴BH=BO,MH=AO,∵直线y=2x+2与x轴,y轴分别交于A,B两点,∴当y=0时,x=﹣1.当x=0时,y=2.∴A(﹣1,0),B(0,2).∴BH=BO=2,MH=AO=1.∴M(1,4).把M(1,4)代入中,得k=4.∴反比例函数的解析式为.(2)∵AB=BM,∴S△ABC =S△BCM.∵点C在反比例函数图象上,且BC∥x轴,∴点C纵坐标为2.把y=2代入,得x=2.∴点C坐标为(2,2),∴,∴S△AMC=4.7.已知:如图,在平面直角坐标系xOy中,点A(0,2),正方形OABC的顶点B在函数y =(k≠0,x<0)的图象上,直线l:y=﹣x+b与函数y=(k≠0,x<0)的图象交于点D,与x轴交于点E.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.①当一次函数y=﹣x+b的图象经过点A时,直接写出△DCE内的整点的坐标;②若△DCE内的整点个数恰有6个,结合图象,求b的取值范围.解:(1)依题意知:B(﹣2,2),∴反比例函数解析式为y=﹣.∴k的值为﹣4;(2)①∵一次函数y=﹣x+b的图象经过点A,∴b=2,∴一次函数的解析式为y=﹣x+2,解得,,,∴D(1﹣,1+),E(2,0),∴△DCE内的整点的坐标为(﹣1,1),(﹣1,2),(0,1);②当b=2时,△DCE内有3个整点,当b=3时,△DCE内有6个整点,∴b的取值范围是2<b≤3.8.如图,在平面直角坐标系xOy中,函数y=(x<0)的图象经过点A(﹣1,6).(1)求k的值;(2)已知点P(a,﹣2a)(a<0),过点P作平行于x轴的直线,交直线y=﹣2x﹣2于点M,交函数y=(x<0)的图象于点N.①当a=﹣1时,求线段PM和PN的长;②若PN≥2PM,结合函数的图象,直接写出a的取值范围.解:(1)∵函数y=(x<0)的图象经过点A(﹣1,6).∴k=﹣1×6=﹣6.(2)①当a=﹣1时,点P的坐标为(﹣1,2).∵直线y=﹣2x﹣2,反比例函数的解析式为y=﹣,PN∥x轴,∴把y=2代入y=﹣2x﹣2,求得x=﹣2,代入y=﹣求得x=﹣3,∴M(﹣2,2),N(﹣3,2),∴PM=1,PN=2.②∵当a=﹣1或a=﹣3时,PN=2PM,∴根据图象PN≥2PM,a的取值范围为a≤﹣3或﹣1≤a<0.9.如图,已知点D在反比例函数y=的图象上,过点D作DB⊥y轴,垂足为B(0,3),直线y=kx+b经过点A(5,0),与y轴交于点C,且BD=OC,OC:OA=2:5.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)连结AD,求∠DAC的正弦值.解:(1)∵BD=OC,OC:OA=2:5,点A(5,0),点B(0,3),∴OA=5,OC=BD=2,OB=3,又∵点C在y轴负半轴,点D在第二象限,∴点C的坐标为(0,﹣2),点D的坐标为(﹣2,3).∵点D(﹣2,3)在反比例函数的图象上,∴a=﹣2×3=﹣6,∴反比例函数的表达式为.将A(5,0)、C(0,﹣2)代入y=kx+b,得,解得:,∴一次函数的表达式为.(2)∵OA=BC=5,OC=BD=2,∠DBC=∠AOC=90°,∴△BDC≌△OCA(SAS),∴∠DCB=∠OAC,DC=CA,∴∠DCA=90°,∴△DCA是等腰直角三角形,∴∠DAC=45°,∴.10.如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA、AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(x>0)的图象于点C.①连接AC,求△ABC的面积;②在图上连接OC交AB于点D,求的值.解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=OB=2,∴AH===6,∴点A的坐标为(2,6).∵A为反比例函数y=图象上的一点,∴k=2×6=12;(2)①∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH⊥OB,∴AH∥BC,∴点A到BC的距离=BH=2,=×3×2=3;∴S△ABC②∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH∥BC,OH=BH,∴MH=BC=,∴AM=AH﹣MH=.∵AM∥BC,∴△ADM∽△BDC,∴=.11.如图,反比例函数y=的图象与一次函数y=x+1的图象相交于点A(2,3)和点B.(1)求反比例函数的解析式和点B的坐标;(2)连接OA,OB,求△AOB的面积.(3)结合图象,请直接写出使反比例函数值小于一次函数值的自变量x的取值范围.解:(1)把A(2,3)代入得,∴k=6.∴反比例函数的解析式为.联立解得或,∴点B的坐标为(﹣3,﹣2).(2)设直线AB与y轴交于点C.可知C点的坐标为(0,1),∴OC=1.∴.(3)当﹣3<x<0或x>2时,反比例函数值小于一次函数值.12.如图1,直线y=x与双曲线y=交于A,B两点,根据中心对称性可以得知OA=OB.(1)如图2,直线y=2x+1与双曲线y=交于A,B两点,与坐标轴交点C,D两点,试证明:AC=BD;(2)如图3,直线y=ax+b与双曲线y=交于A,B两点,与坐标轴交点C,D两点,试问:AC=BD还成立吗?(3)如果直线y=x+3与双曲线y=交于A,B两点,与坐标轴交点C,D两点,若DB+DC ≤5,求出k的取值范围.解:(1)如图1中,作AE⊥x轴于E,BF⊥y轴于F,连接EF,AF,BE.∵AE∥y轴,∴S△AOE =S△AEF=,∵BF∥x轴,∴S△BEF =S△OBF=,∴S△AEF =S△BEF,∴AB∥EF,∴四边形ACFE,四边形BDEF都是平行四边形,∴AC=EF,BD=EF,∴AC=BD.(2)如图1中,如图1中,作AE⊥x轴于E,BF⊥y轴于F,连接EF,AF,BE.∵AE∥y轴,∴S△AOE =S△AEF=,∵BF∥x轴,∴S△BEF =S△OBF=,∴S△AEF =S△BEF,∴AB∥EF,∴四边形ACFE,四边形BDEF都是平行四边形,∴AC=EF,BD=EF,∴AC=BD.(3)如图2中,∵直线y=x+3与坐标轴交于C,D,∴C(0,3),D(3,0),∴OC=OD=3,CD=3,∵CD+BD≤5,∴BD≤2,当BD=2时,∵∠CDO=45°,∴B(1,2),此时k=2,观察图象可知,当k≤2时,CD+BD≤5,13.综合与探究如图1,平面直角坐标系中,直线l:y=2x+4分别与x轴、y轴交于点A,B.双曲线y =(x>0)与直线l交于点E(n,6).(1)求k的值;(2)在图1中以线段AB为边作矩形ABCD,使顶点C在第一象限、顶点D在y轴负半轴上.线段CD交x轴于点G.直接写出点A,D,G的坐标;(3)如图2,在(2)题的条件下,已知点P是双曲线y=(x>0)上的一个动点,过点P作x轴的平行线分别交线段AB,CD于点M,N.请从下列A,B两组题中任选一组题作答.我选择①组题.A.①当四边形AGNM的面积为5时,求点P的坐标;②在①的条件下,连接PB,PD.坐标平面内是否存在点Q(不与点P重合),使以B,D,Q为顶点的三角形与△PBD全等?若存在,直接写出点Q的坐标;若不存在,说明理由.B.①当四边形AGNM成为菱形时,求点P的坐标;②在①的条件下,连接PB,PD.坐标平面内是否存在点Q(不与点P重合),使以B,D,Q为顶点的三角形与△PBD全等?若存在,直接写出点Q的坐标;若不存在,说明理由.解:(1)由已知可得A(﹣2,0),B(0,4),E(1,6),∴k=6;(2)∵AB⊥BC,∴BC的解析式为y=﹣x+4,联立,∴C(2,3),∵CD=AB=2,∴D(0,﹣1),∴CD的解析式为y=2x﹣1,∴G(,0);(3)A①设P(m,),∵MN∥x轴,∴M(﹣2,),N(+,),∴MN=,∵四边形AGNM的面积为5,∴×=5,∴m=3,∴P(3,2);②Q(3,1)、Q(﹣3,1)、Q(﹣3,2)时B,D,Q为顶点的三角形与△PBD全等.B①∵四边形AGNM成为菱形,MN=AM,∴=∴m=,∴P(,);②Q(﹣,)、Q(,3﹣)、Q(﹣,3﹣)时B,D,Q为顶点的三角形与△PBD全等.14.如图,直线AB与反比例函数y=(x>0)的图象交于点A,已知点A(3,4),B(0,﹣2),点C是反比例函数y=(x>0)的图象上的一个动点,过点C作x轴的垂线,交直线AB于点D.(1)求反比例函数的解析式;(2),求△ABC的面积;(3)在点C运动的过程中,是否存在点C,使BC=AC?若存在,请求出点C的坐标;若不存在,请说明理由.解:(1)∵反比例函数y=(x>0)的图象经过点A(3,4),∴k=xy=3×4=12,∴反比例函数的解析式为:y=;(2)作AE⊥y轴于点E,交CD于点F,则BE∥CD,∴==,∵点A的坐标为(3,4),∴EF=1,FA=2,∴点F的横坐标为1,∴点C的坐标为(1,12),设直线AB的解析式为:y=kx+b,则,解得,,∴直线AB的解析式为:y=2x﹣2,则点D的坐标为:(1,0),即CD=12,∴△ABC的面积=×12×1+×12×2=18;(3)不存在,理由如下:设点C的坐标为(m,),∵BC=AC,∴m2+(+2)2=(3﹣m)2+(﹣4)2,整理得,6m2﹣21m+144=0,△=212﹣4×6×144<0,则此方程无解,∴点C不存在.15.如图,在平面直角坐标系第一象限中,已知点A坐标为(1,0),点D坐标为(1,3),点G坐标为(1,1),动点E从点G出发,以每秒1个单位长度的速度匀速向点D方向运动,与此同时,x轴上动点B从点A出发,以相同的速度向右运动,两动点运动时间为t(0<t<2),以AD、AB分别为边作矩形ABCD,过点E作双曲线交线段BC于点F,作CD 中点M,连接BE、EF、EM、FM.(1)当t=1时,求点F的坐标.(2)若BE平分∠AEF,则t的值为多少?(3)若∠EMF为直角,则t的值为多少?解:(1)当t=1时, EG=1×1=1=AB∴点E(1,2)设双曲线解析式:y=∴k=1×2=2∴双曲线解析式:y=∵OB=OA+AB=2,∴当x=2时,y=1,∴点F(2,1)(2)∵EG=AB=t,∴点E(1,1+t),点B(1+t,0)设双曲线解析式:y=∴m=1+t∴双曲线解析式:y=当x=1+t时,y=1∴点F(1+t,1)∵BE平分∠AEF∴∠AEB=∠BEF,∵AD∥BC∴∠AEB=∠EBF=∠BEF∴EF=BF=1∴=t=1∴t=(3)延长EM,BC交于点N,∵EG=AB=t,∴点E(1,1+t),点B(1+t,0)∴DE=AD﹣AE=3﹣(1+t)=2﹣t,设双曲线解析式:y=∴n=1+t∴双曲线解析式:y=当x=1+t时,y=1∴点F(1+t,1)∵AD∥BC,∴∠ADC=∠NCD,∠DEM=∠MNC,且DM=CM,∴△DEM≌△CNM(AAS)∴EM=MN,DE=CN=2﹣t,∵CF=BC﹣BF=2∴NF=CF+CN=2﹣t+2=4﹣t,∵∠EMF为直角,∴∠EMF=∠NMF=90°,且EM=MN,MF=MF,∴△EMF≌△NMF(SAS),∴EF=NF,∴t=4﹣t∴t=4﹣4。

决战2020年中考数学压轴题综合提升训练《三角形》(含解析)

决战2020年中考数学压轴题综合提升训练《三角形》(含解析)

《三角形》1.已知,△ABC是等边三角形,过点C作CD∥AB,且CD=AB,连接BD交AC于点O.(1)如图1,求证:AC垂直平分BD;(2)如图2,点M在BC的延长线上,点N在线段CO上,且ND=NM,连接BN.求证:NB =NM.(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=∠CAB=60°,∵CD∥AB,且CD=AB,∴CD=CA=BC,∠ACD=∠ACB=60°,∴BO=DO,CO⊥BD,∴AC垂直平分BD;(2)由(1)知AC垂直平分BD,∴NB=ND,∵ND=NM,∴NB=NM.2.等腰Rt△ABC,点D为斜边AB上的中点,点E在线段BD上,连结CD,CE,作AH⊥CE,垂足为H,交CD于点G,AH的延长线交BC于点F.(1)求证:△ADG≌△CDE.(2)若点H恰好为CE的中点,求证:∠CGF=∠CFG.证明:(1)在等腰Rt△ABC中,∵点D为斜边AB上的中点,∴CD=AB,CD⊥AB,∵AD=AB,∴AD=CD,∵CD⊥AB,∴∠ADG=∠CDE=90°,∵AH⊥CE,∴∠CGH+∠GCH=90°,∵∠AGD+∠GAD=90°,又∵∠AGD=∠CGH,∴∠GAD=∠GCH,在△△ADG和△CDE中∵∠ADG=∠CDE=90°,AD=CD,∠GAD=∠GCH∴△ADG≌△CDE(ASA),(2)∵AH⊥CE,点H为CE的中点,∴AC=AE,∴∠CAH=∠EAH,∵∠CAH+∠AFC=90°,∠EAH+∠AGD=90°,∴∠AFC=∠AGD,∵∠AGD=∠CGH,∴∠AFC=∠CGH,即∠CGF=∠CFG.3.如图,在△ABC中,AD⊥BC且BD=DE,EF垂直平分AC,交AC于点F,交BC于点E.(1)若∠BAE=32°,求∠C的度数;(2)若AC=6cm,DC=5cm,求△ABC的周长.解:(1)∵AD⊥BC,BD=DE,EF垂直平分AC∴AB=AE=EC∴∠C=∠CAE,∵∠BAE=32°∴∠AED=(180°﹣32°)=74°;∴∠C=∠AED=37°;(2)由(1)知:AE=EC=AB,∵BD=DE,∴AB+BD=EC+DE=DC,∴△ABC的周长=AB+BC+AC,=AB+BD+DC+AC,=2DC+AC=2×5+6=16(cm).4.如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于F,交AC于E,过点O作OD⊥BC于D.(1)求证:∠AOB=90°+∠C;(2)求证:AE+BF=EF;(3)若OD=a,CE+CF=2b,请用含a,b的代数式表示△CEF的面积,S△CEF=ab(直接写出结果).证明:(1)∵OA,OB平分∠BAC和∠ABC,∴,,∴∠AOB=180°﹣∠OAB﹣∠OBA====(2)∵EF∥AB,∴∠OAB=∠AOE,∠ABO=∠BOF又∠OAB=∠EAO,∠OBA=∠OBF,∴∠AOE=∠EAO,∠BOF=∠OBF,∴AE=OE,BF=OF,∴EF=OE+OF=AE+BF;(3)∵点O在∠ACB的平分线上,∴点O到AC的距离等于OD,∴S△CEF=(CE+CF)•OD=•2b•a=ab,故答案为:ab.5.如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:BD•AD=DE•AC.(2)若AB=13,BC=10,求线段DE的长.(3)在(2)的条件下,求cos∠BDE的值.证明:(1)∵AB=AC,BD=CD,∴AD⊥BC,∠B=∠C,∵DE⊥AB,∴∠DEB=∠ADC,∴△BDE∽△CAD.∴,∴BA•AD=DE•CA;(2)∵AB=AC,BD=CD,∴AD⊥BC,在Rt△ADB中,AD===12,∵•AD•BD=•AB•DE,∴DE=.(3)∵∠ADB=∠AED=90°,∴∠BDE=∠BAD,∴cos∠BDE=cos∠BAD=.6.如图,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E.(1)求证:BD=CD.(2)若弧DE=50°,求∠C的度数.(3)过点D作DF⊥AB于点F,若BC=8,AF=3BF,求弧BD的长.(1)证明:如图,连接AD.∵AB是圆O的直径,∴AD⊥BD.又∵AB=AC,∴BD=CD.(2)解:∵弧DE=50°,∴∠EOD=50°.∴∠DAE=∠DOE=25°.∵由(1)知,AD⊥BD,则∠ADB=90°,∴∠ABD=90°﹣25°=65°.∵AB=AC,∴∠C=∠ABD=65°.(3)∵BC=8,BD=CD,∴BD=4.设半径OD=x.则AB=2x.由AF=3BF可得AF=AB=x,BF=AB=x,∵AD⊥BD,DF⊥AB,∴BD2=BF•AB,即42=x•2x.解得x=4.∴OB=OD=BD=4,∴△OBD是等边三角形,∴∠BOD=60°.∴弧BD的长是:=.7.阅读下面材料:数学课上,老师给出了如下问题:如图,AD为△ABC中线,点E在AC上,BE交AD于点F,AE=EF.求证:AC=BF.经过讨论,同学们得到以下两种思路:思路一如图①,添加辅助线后依据SAS可证得△ADC≌△GDB,再利用AE=EF可以进一步证得∠G=∠FAE=∠AFE=∠BFG,从而证明结论.思路二如图②,添加辅助线后并利用AE=EF可证得∠G=∠BFG=∠AFE=∠FAE,再依据AAS可以进一步证得△ADC≌△GDB,从而证明结论.完成下面问题:(1)①思路一的辅助线的作法是:延长AD至点G,使DG=AD,连接BG;②思路二的辅助线的作法是:作BG=BF交AD的延长线于点G.(2)请你给出一种不同于以上两种思路的证明方法(要求:只写出辅助线的作法,并画出相应的图形,不需要写出证明过程).解:(1)①延长AD至点G,使DG=AD,连接BG,如图①,理由如下:∵AD为△ABC中线,∴BD=CD,在△ADC和△GDB中,,∴△ADC≌△GDB(SAS),∴AC=BG,∵AE=EF,∴∠CAD=∠EFA,∵∠BFG=∠G,∠G=∠CAD,∴∠G=∠BFG,∴BG=BF,∴AC=BF.故答案为:延长AD至点G,使DG=AD,连接BG;②作BG=BF交AD的延长线于点G,如图②.理由如下:∵BG=BF,∴∠G=∠BFG,∵AE=EF,∴∠EAF=∠EFA,∵∠EFA=∠BFG,∴∠G=∠EAF,在△ADC和△GDB中,,∴△A DC≌△GDB(AAS),∴AC=BG,∴AC=BF;故答案为:作BG=BF交AD的延长线于点G;(2)作BG∥AC交AD的延长线于G,如图③所示:则∠G=∠CAD,∵AD为△ABC中线,∴BD=CD,在△ADC和△GDB中,,∴△ADC≌△GDB(AAS),∴AC=BG,∵AE=EF,∴∠CAD=∠EFA,∵∠BFG=∠G,∠G=∠CAD,∴∠G=∠BFG,∴BG=BF,∴AC=BF.8.如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣8n+16+|n﹣2m|=0.(1)求A、B两点的坐标;(2)若点D为AB中点,求OE的长;(3)如图2,若点P(x,﹣2x+4)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.解:(1)∵n2﹣8n+16+|n﹣2m|=0,∴(n﹣4)2+|n﹣2m|=0,∵(n﹣4)2≥0,|n﹣2m|≥0,∴(n﹣4)2=0,|n﹣2m|=0,∴m=2,n=4,∴点A为(2,0),点B为(0,4);(2)延长DE交x轴于点F,延长FD到点G,使得DG=DF,连接BG,设OE=x,∵OC平分∠AOB,∴∠BOC=∠AOC=45°,∵DE∥OC,∴∠EFO=∠FEO=∠BEG=∠BOC=∠AOC=45°,∴OE=OF=x,在△ADF和△BDG中,,∴△ADF≌△BDG(SAS),∴BG=AF=2+x,∠G=∠AFE=45°,∴∠G=∠BEG=45°,∴BG=BE=4﹣x,∴4﹣x=2+x,解得:x=1,∴OE=1;(3)如图2,分别过点F、P作FM⊥y轴于点M,PN⊥y轴于点N,设点E为(0,m),∵点P的坐标为(x,﹣2x+4),∴PN=x,EN=m+2x﹣4,∵∠PEF=90°,∴∠PEN+∠FEM=90°,∵FM⊥y轴,∴∠MFE+∠FEM=90°,∴∠PEN=∠MFE,在△EFM和△PEN中,,∴△EFM≌△PEN(AAS),∴ME=NP=x,FM=EN=m+2x﹣4,∴点F为(m+2x﹣4,m+x),∵F点的横坐标与纵坐标相等,∴m+2x﹣4=m+x,解得:x=4,∴点P为(4,﹣4).9.在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD 的下方作等边△CDE,连结BE.(1)若点D在线段AM上时(如图1),则AD=BE(填“>”、“<”或“=”),∠CAM =30 度;(2)设直线BE与直线AM的交点为O.①当动点D在线段AM的延长线上时(如图2),试判断AD与BE的数量关系,并说明理由;②当动点D在直线AM上时,试判断∠AOB是否为定值?若是,请直接写出∠AOB的度数;若不是,请说明理由.解:(1))∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DC E=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE.在△ADC和△BEC中,∴△ACD≌△BCE(SAS),∴AD=BE;∵△ABC是等边三角形,∴∠BAC=60°.∵线段AM为BC边上的中线∴∠CAM=∠BAC,∴∠CAM=30°.故答案为:=,30;(2)①AD=BE,理由如下:∵△ABC和△CDE都是等边三角形∴AB=BC,DC=EC,∠ACB=∠DCE=60°,∵∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS)∴AD=BE.②∠AOB是定值,∠AOB=60°,理由如下:当点D在线段AM上时,如图1,由①知△ACD≌△BCE,则∠CBE=∠CAD=30°,又∠ABC=60°,∴∠CBE+∠ABC=60°+30°=90°,∵△ABC是等边三角形,线段AM为BC边上的中线∴AM平分∠BAC,即,∴∠BOA=90°﹣30°=60°.当点D在线段AM的延长线上时,如图2,∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACB+∠DCB=∠DCB+∠DCE∴∠ACD=∠BCE在△ACD和△BCE中,∴△ACD≌△BCE(SAS)∴∠CBE=∠CAD=30°,同理可得:∠BAM=30°,∴∠BOA=90°﹣30°=60°.10.数学课上,王老师出示了如下框中的题目.小明与同桌小聪讨论后,进行了如下解答:(1)特殊情况•探索结论:在等边三角形ABC中,当点E为AB的中点时,点D在CB点延长线上,且ED=EC;如图1,确定线段AE与DB的大小关系.请你直接写出结论AE =DB;(2)特例启发,解答题目王老师给出的题目中,AE与DB的大小关系是:AE=DB.理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论,设计新题在△ABC中,AB=BC=AC=1;点E在AB的延长线上,AE=2;点D在CB的延长线上,ED =EC,如图3,请直接写CD的长1或3 .解:(1)如图1,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中,,∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,故答案为:=;(2)解答过程如下:如图2,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中,∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD.故答案为:AE=DB.(3)解:分为四种情况:如图3,∵AB=AC=1,AE=2,∴B是AE的中点,∵△ABC是等边三角形,∴AB=AC=BC=1,△ACE是直角三角形(根据直角三角形斜边的中线等于斜边的一半),∴∠ACE=90°,∠AEC=30°,∴∠D=∠ECB=∠BEC=30°,∠DBE=∠ABC=60°,∴∠DEB=180°﹣30°﹣60°=90°,即△DEB是直角三角形.∴BD=2BE=2(30°所对的直角边等于斜边的一半),即CD=1+2=3.如图4,过A作AN⊥BC于N,过E作EM⊥CD于M,∵等边三角形ABC,EC=ED,∴BN=CN=BC=,CM=MD=CD,AN∥EM,∴△BAN∽△BEM,∴,∵△ABC边长是1,AE=2,∴,∴MN=1,∴CM=MN﹣CN=1﹣=,∴CD=2CM=1;如图5,∵∠ECD>∠EBC(∠EBC=120°),而∠ECD不能大于120°,否则△EDC不符合三角形内角和定理,∴此时不存在EC=ED;如图6,∵∠EDC<∠ABC,∠ECB>∠ACB,又∵∠ABC=∠ACB=60°,∴∠ECD>∠EDC,即此时ED≠EC,∴此时情况不存在,答:CD的长是3或1.故答案为:1或3.11.定义:如果一个三角形的一个内角等于另一个内角的两倍,则称这样的三角形为“倍角三角形”.(1)如图1,△ABC中,AB=AC,∠A=36°,求证:△ABC是倍角三角形;(2)若△ABC是倍角三角形,∠A>∠B>∠C,∠B=30°,AC=,求△ABC面积;(3)如图2,△ABC的外角平分线AD与CB的延长线相交于点D,延长CA到点E,使得AE=AB,若AB+AC=BD,请你找出图中的倍角三角形,并进行证明.(1)证明:∵AB=AC,∴∠B=∠C,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=∠C=72°,∴∠A=2∠C,即△ABC是倍角三角形,(2)解:∵∠A>∠B>∠C,∠B=30°,①当∠B=2∠C,得∠C=15°,过C作CH⊥直线AB,垂足为H,可得∠CAH=45°,∴AH=CH=AC=4.∴BH=,∴AB=BH﹣AH=﹣4,∴S=.②当∠A=2∠B或∠A=2∠C时,与∠A>∠B>∠C矛盾,故不存在.综上所述,△ABC面积为.(3)∵AD平分∠BAE,∴∠BAD=∠EAD,∵AB=AE,AD=AD,∴△ABD≌△AED(SAS),∴∠ADE=∠ADB,BD=DE.又∵AB+AC=BD,∴AE+AC=BD,即CE=BD.∴CE=DE.∴∠C=∠BDE=2∠ADC.∴△ADC是倍角三角形.12.如图,在平面直角坐标系中,OA=OB,AC=CD,已知两点A(4,0),C(0,7),点D 在第一象限内,∠DCA=90°,点B在线段OC上,AB的延长线与DC的延长线交于点M,AC与BD交于点N.(1)点B的坐标为:(0,4);(2)求点D的坐标;(3)求证:CM=CN.解:(1)∵A(4,0),∴OA=OB=4,∴B(0,4),故答案为:(0,4).(2)∵C(0,7),∴OC=7,过点D作DE⊥y轴,垂足为E,∴∠DEC=∠AOC=90°,∵∠DCA=90°,∴∠ECD+∠BCA=∠ECD+∠EDC=90°∴∠BCA=∠EDC,∴△DEC≌△COA(AAS),∴DE=OC=7,EC=OA=4,∴OE=OC+EC=11,∴D(7,11);(3)证明:∵BE=OE﹣OB=11﹣4=7 ∴BE=DE,∴△DBE是等腰直角三角形,∴∠DBE=45°,∵OA=OB,∴∠OBA=45°,∴∠DBA=90°,∴∠BAN+∠ANB=90°,∵∠DCA=90°,∴∠CDN+∠DNC=90°,∵∠DNC=∠ANB,∴∠CDN=∠BAN,∵∠DCA=90°,∴∠ACM=∠DCN=90°,∴△DCN≌△ACM(ASA),∴CM=CN.13.如图,在△ABC中,BD⊥AC,垂足为C,且∠A<∠C,点E是一动点,其在BC上移动,连接DE,并过点E作EF⊥DE,点F在AB的延长线上,连接DF交BC于点G.(1)请同学们根据以上提示,在上图基础上补全示意图.(2)当△ABD与△FDE全等,且AD=FE,∠A=30°,∠AFD=40°,求∠C的度数.解:(1)补全示意图如图所示,(2)∵DE⊥EF,BD⊥AC,∴∠DEF=∠ADB=90°.∵△ABD与△DEF全等,∴AB=DF,又∵AD=FE,∴∠ABD=∠FDE,∴BD=DE.在Rt△ABD中,∠ABD=90°﹣∠A=60°.∴∠FDE=60°.∵∠ABD=∠BDF+∠AFD,∵∠AFD=40°,∴∠BDF=20°.∴∠BDE=∠BDF+∠FDE=20°+60°=80°.∵BD=DE,∴∠DBE=∠BED=(180°﹣∠BDE)=50°.在Rt△BDC中,∠C=90°﹣∠DBE=90°﹣50°=40°.14.如图.CP是等边△ABC的外角∠ACE的平分线,点D在边BC上,以D为顶点,DA为一条边作∠ADF=60°,另一边交射线CP于F.(1)求证.AD=FD;(2)若AB=2,BD=x,DF=y,求y关于x的函数解析式;(3)联结AF,当△ADF的面积为时,求BD的长.证明:(1)如图1,连接AF,∵∠ACB=60°,∴∠ACE=120°,∵CP平分∠ACE,∴∠ACP=∠PCE=60°,∴∠ADF=∠ACP=60°,∴A、D、C、F四点共圆,∴∠AFD=∠ACB=60°,∴∠ADF=∠AFD=60°,∴∠DAF=60°,∴△ADF是等边三角形,∴AD=FD;(2)如图2,过点A作AH⊥BC,∵△ABC是等边三角形,AH⊥BC,AB=2,∴BH=1,AH=BH=,∴HD=BD﹣BH=x﹣1,∵DF==,∴y=(3)∵△ADF是等边三角形,且△ADF的面积为,∴DF2=,∴DF2==x2﹣2x+4∴x=∴BD=或15.如图,△ABC是等边三角形,D是BC边的中点,以D为顶点作一个120°的角,角的两边分别交直线AB、直线AC于M、N两点.以点D为中心旋转∠MDN(∠MDN的度数不变),当DM与AB垂直时(如图①所示),易证BM+CN=BD.(1)如图②,当DM与AB不垂直,点M在边AB上,点N在边AC上时,BM+CN=BD是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,当DM与AB不垂直,点M在边AB上,点N在边AC的延长线上时,BM+CN =BD是否仍然成立?若不成立,请写出BM,CN,BD之间的数量关系,不用证明.解:(1)结论BM+CN=BD成立,理由如下:如图②,过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°,∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠EDC=120°,∴BD=BE=DE,∠EDN+∠CDN=120°,∵∠EDM+∠EDN=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM+EM=BM+CN;(2)上述结论不成立,BM,CN,BD之间的数量关系为:BM﹣CN=BD;理由如下:如图③,过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∴∠NCD=120°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°,∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠MED=∠EDC=120°,∴BD=BE=DE,∠NCD=∠MED,∠EDM+∠CDM=120°,∵∠CDN+∠CDM=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM﹣EM=BM﹣CN,∴BM﹣CN=BD.。

2020年中考数学压轴题(含答案)

2020年中考数学压轴题(含答案)

2020 年中考数学压轴题3.如图,在Rt △ ABC 中 BC = AC = 4, D 是斜边 AB 上的一个动点,把△ ACD 沿直线 CD折叠, 点 A 落在同一平面内的 A ′处, 当 A ′D 垂直于Rt △ ABC 的直角边时, AD 的长为.1 .如图,平行于 x 轴的直线与函数 y= 象分别相交于 A , B两点,点 A 在点 B k 1> 0, x> 0), y= ( k 2> 0, x>0)的图第 1题2 .如图,在平面直角坐标系中,已知点3 A 坐标( 0,3),点 B 坐标( 4,0),将点 O沿直1 A.26 B. 5 9 C.8 15 D.16第 3题 第 4题4. 如图,在正方形ABCD 中, AB=4 ,以 B 为圆心,BA 长为半径画弧,点M 为弧上一点,MN ⊥ CD 于 N,连接CM ,则 CM - MN 的最大值为.三、解答题B⌒D=A⌒D,DE⊥ BC,垂足为E.5.如图,四边形ABCD 是⊙ O的内接四边形,AC 为直径,( 1 )求证:CD 平分∠ACE;( 2 )判断直线ED 与⊙ O 的位置关系,并说明理由;(3)若CE=2 ,AC= 8,阴影部分的面积为.6.如图,抛物线y=ax2+bx+ c(a< 0,a、b、 c 为常数)与x轴交于A、C两点,与y 轴交于B 点,A(﹣6,0),C( 1 ,0),B(0,).( 1 )求该抛物线的函数关系式与直线AB 的函数关系式;( 2)已知点M (m, 0)是线段OA 上的一个动点,过点M作x轴的垂线l,分别与直线AB 和抛物线交于 D 、 E 两点,当m 为何值时,△ BDE 恰好是以DE 为底边的等腰三角形?( 3 )在( 2 )问条件下,当△BDE 恰妤是以DE 为底边的等腰三角形时,动点M 相应位置记为点M ′,将OM ′绕原点O 顺时针旋转得到ON(旋转角在0°到 90 °之间);i:探究:线段OB 上是否存在定点P(P 不与O、B 重合),无论ON 如何旋转,始终保持不变,若存在,试求出 P 点坐标:若不存在,请说明理由;NA + NB )的最小值.【答案与解析】一、选择题 1. A 2. D 二、填空题3. 【分析】由等腰直角三角形的性质和勾股定理得出 AB = 4 ,∠ B =∠ A ′ CB = 45 °,①如图 1 , 当 A ′D ∥ BC , 设 AD = x , 根据折叠的性质得到∠ A ′=∠ A =∠ A ′CB = 45°, A ′D = AD= x ,推出 A ′C ⊥ AB ,求得 BH =BC = 2 , DH =A ′D =x ,然后列方程即可得到结果,②如图 2,当 A ′D ∥ AC ,根据折叠的性质得到 AD = A ′D , AC = A ′C ,∠ ACD=∠ A ′CD ,根据平行线的性质得到∠ A ′DC =∠ACD ,于是得到∠ A ′DC =∠A ′CD ,推出 A ′ii :试求出此旋转过程中,D =A′C,于是得到AD =AC= 2.【解答】解:Rt△ ABC 中,BC=AC= 4,∴ AB= 4 ,∠ B=∠A′CB= 45°,①如图 1 ,当A′D∥ BC,设AD=x,∵把△ ACD 沿直线CD 折叠,点 A 落在同一平面内的 A ′处,A′=∠A=∠A′CB= 45°,A′D=AD=x,B= 45∴ A′C⊥ AB,∴ BH=BC= 2 ,DH=A′D=x,∴ x+ x+2 = 4 ,∴ x= 4 ﹣ 4 ,∴ AD = 4 ﹣ 4 ;②如图 2 ,当A′D∥ AC,∵把△ ACD 沿直线CD 折叠,点 A 落在同一平面内的 A ′处,∴ AD=A′D,AC=A′C,∠ ACD =∠ A′CD,∵∠ A′DC=∠ ACD,∴∠ A′DC=∠ A′CD,∴ A′D=A′C,∴ AD =AC = 4 ,综上所述:AD 的长为: 4 ﹣ 4 或 4.4. 2三、解答题5、( 1 )Q B?D ?AD, ∠ BAD ∠ ACDQ 四边形ABCD内接于圆O,∠ BAD +∠ BCD 180又 Q ∠ BCD +∠ DCE 180°, ∠ DCE ∠ BAD∠ ACD ∠ DCE 即 CD 平分∠ ACE( 2 )直线 ED 与⊙ O 相切。

2020年湖北省中考数学强化训练压轴题(附答案)

2020年湖北省中考数学强化训练压轴题(附答案)

湖北省中考数学强化训练压轴题第1题:如图在平面直角坐标系中,点A 的坐标为(m ,m ),点B 的坐标为(n ,n -),抛物线经过A 、O 、B 三点,连结OA 、OB 、AB ,线段AB 交y 轴于点C .已知实数m 、n (m <n )分别是方程2230x x --=的两根.(1)求抛物线的解析式;(2)若点P 为线段OB 上的一个动点(不与点O 、B 重合),直线PC 与抛物线交于D 、E 两点(点D 在y 轴右侧),连结OD 、BD.① 当△O PC 为等腰三角形时,求点P 的坐标; ② 求△BOD 面积的最大值,并写出此时点D 的坐标.第1题:解(1)解方程0322=--x x ,得 31=x ,12-=x . ∵n m <,∴1-=m ,3=n ∴A (-1,-1),B (3,-3). ∵抛物线过原点,设抛物线的解析式为bx ax y +=2.∴1,393.a b a b -=-⎧⎨-=-⎩ 解得21-=a ,21=b .∴抛物线的解析式为x x y 21212+-= . (2)①设直线AB 的解析式为b kx y +=.∴1,33.k b k b -=-+⎧⎨-=+⎩ 解得21-=k ,23-=b .∴直线AB 的解析式为1322y x =--.∴C 点坐标为(0,23-). ∵直线OB 过点O (0,0),B (3,-3),∴直线OB 的解析式为x y -=.∵△OPC 为等腰三角形,∴OC=OP 或OP=PC 或OC=PC. 设x P (,)x -,图14(i )当OC=OP 时, 229()4x x +-=.解得4231=x ,2324x =-(舍去). ∴ P 1(423, 423-).(ii )当OP=PC 时,点P 在线段OC 的中垂线上,∴ 2P (43,)43-. (iii )当OC=PC 时,由49)23(22=+-+x x , 解得231=x ,02=x (舍去). ∴ P 3()23,23-.∴P 点坐标为P 1(423,423-)或2P (43,)43-或P 3()23,23-.②过点D 作DG⊥x 轴,垂足为G ,交OB 于Q ,过B 作BH⊥x 轴,垂足为H. 设Q (x ,x -),D(x ,x x 21212+-). =+=∆∆∆BDQODQ BOD S S S =)(212121GH OG DQ GH DQ OG DQ +=⋅+⋅=3)2121(212⨯⎥⎦⎤⎢⎣⎡+-+x x x =1627)23(432+--x , ∵0<x <3, ∴当23=x 时,S 取得最大值为1627,此时D (23,)83-.第2题:如图,点A 在x 轴上,OA=4,将线段OA 绕点O 顺时针旋转120°至OB 的位置. (1)求点B 的坐标;(2)求经过点A 、O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,说明理由.第2题:解:(1)如图,过B 点作BC⊥x 轴,垂足为C ,则∠BCO=90°, ∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=12OB=12×4=2,BC=OB•sin60°=4×32=23,∴点B的坐标为(-2,-23).(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(-2,-23)代入,得1640,4223,a ba b+=⎧⎪⎨-=-⎪⎩解得3,623.ab⎧=-⎪⎪⎨⎪=⎪⎩∴此抛物线的解析式为y=-36x2+233x.(3)存在,如图,抛物线的对称轴是x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±23.当y=23时,在Rt△POD中,∠PDO=90°,sin∠POD=PDOP=3,∴∠POD=60°,∴∠POB=∠POD+∠AOB=60°+120°=180°,即P、O、B三点在同一直线上,∴y=23不符合题意,舍去.∴点P的坐标为(2,-23);②若OB=PB,则42+|y+23|2=42,解得y=-23,故点P的坐标为(2,-23);③若OP=BP,则22+|y|2=42+|y+23|2,解得y=-23,故点P的坐标为(2,-23).综上所述,符合条件的点P只有一个,其坐标为(2,-23).第3题:如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB′A′B 的面积是△A′B′O 面积4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B 是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.第3题:解:(1)△A ′B ′O 是由△ABO 绕原点O 逆时针旋转90°得到的, 又A (0,1),B (2,0),O (0,0), ∴A ′(﹣1,0),B ′(0,2).设抛物线的解析式为:2(0)y ax bx c a =++≠, ∵抛物线经过点A ′、B ′、B ,02042a b c ca b c =-+⎧⎪∴=⎨⎪=++⎩,解之得112a b c =-⎧⎪=⎨⎪=⎩, ∴满足条件的抛物线的解析式为22y x x =-++..(2)∵P 为第一象限内抛物线上的一动点,设P (x ,y ),则x >0,y >0,P 点坐标满足22y x x =-++. 连接PB ,PO ,PB ′,B OA B O OB PB A B S S S S '''''∆∆∆∴=++P P 四边形11112+2+2222x y =⋅⋅⋅⋅⋅⋅22(2)123x x x x x =+-+++=-++.假设四边形PB A B ''的面积是A B O ''∆面积的4倍,则2234x x -++=, 即2210x x -+=,解之得1x =,此时21122y =-++=,即(1,2)P .∴存在点P (1,2),使四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍.(3)四边形PB ′A ′B 为等腰梯形,答案不唯一,下面性质中的任意2个均可. ①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等; ③等腰梯形上底与下底平行;④等腰梯形两腰相等.或用符号表示:①∠B ′A ′B=∠PBA ′或∠A ′B ′P=∠BPB ′;②PA ′=B ′B ;③B ′P ∥A ′B ;④B ′A ′=PB .第4题:如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.第4题:解:(1)A(1,4).由题意知,可设抛物线解析式为y=a(x﹣1)2+4∵抛物线过点C(3,0),∴0=a(3﹣1)2+4,解得,a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3.(2)∵A(1,4),C(3,0),∴可求直线AC的解析式为y=﹣2x+6.∵点P(1,4﹣t).…(3分)∴将y=4﹣t代入y=﹣2x+6中,解得点E的横坐标为x=1+.∴点G的横坐标为1+,代入抛物线的解析式中,可求点G的纵坐标为4﹣.∴GE=(4﹣)﹣(4﹣t)=t﹣.又点A到GE的距离为,C到GE的距离为2﹣,即S△ACG=S△AEG+S△CEG=•EG•+•EG(2﹣)=•2(t﹣)=﹣(t﹣2)2+1.当t=2时,S△ACG的最大值为1.(3)t=或t=20﹣8.第5题:如图,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x 轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O)(1)求此抛物线的解析式.(2)过点P作CB所在直线的垂线,垂足为点R,①求证:PF=PR;②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF的形状.第5题:解:(1)∵抛物线的顶点为坐标原点,∴A、D关于抛物线的对称轴对称;∵E是AB的中点,∴O是矩形ABCD对角线的交点,又B(2,1)∴A(2,﹣1)、D(﹣2,﹣1);由于抛物线的顶点为(0,0),可设其解析式为:y=ax2,则有:4a=﹣1,a=﹣∴抛物线的解析式为:y=﹣x2.(2)①证明:由抛物线的解析式知:P(a,﹣a2),而R(a,1)、F(0,﹣1),则:则:PF===a2+1,PR==a2+1.∴PF=PR.②由①得:RF=;若△PFR为等边三角形,则RF=PF=FR,得:=a2+1,即:a4﹣a2﹣3=0,得:a2=﹣4(舍去),a2=12;∴a=±2,﹣a2=﹣3;∴存在符合条件的P点,坐标为(2,﹣3)、(﹣2,3).③同①可证得:QF=QS;在等腰△SQF中,∠1=(180°﹣∠SQF);同理,在等腰RPF中,∠2=(180°﹣∠RPF);∵QS⊥B C、P R⊥B C,∴QS∥PR,∠SQP+∠RPF=180°∴∠1+∠2=(360°﹣∠SQF﹣∠RPF)=90°∴∠SFR=180°﹣∠1﹣∠2=90°,即△SFR是直角三角形.第6题:如图,直线l 1经过点A (-1,0),直线l 2经过点B(3,0), l 1、l 2均与y 轴交于点C(0,3-),抛物线)0(2≠++=a c bx ax y 经过A 、B 、C三点. (1)求抛物线的函数表达式;(2)抛物线的对称轴依次与x 轴交于点D 、与l 2交于点E 、与抛物线交于点F 、与l 1交于点G 。

2020年中考数学专题训练:压轴题

2020年中考数学专题训练:压轴题

2020年中考数学专题训练:压轴题一、选择题1.如图,一次函数与反比例函数的图象交于A(1,8)和B(4,2)两点,点P是线段AB 上一动点(不与点A和B重合),过P点分别作x轴,y轴的垂线PC,PD交反比例函数图象于点E,F,则四边形OEPF面积的最大值是()A.3 B.4 C.D.6第1题第2题2.如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P 是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E、F分别为MN、QR的中点,连接EF,设EF的中点为G,则当点P从点C 运动到点D时,点G移动的路径长为()A.1 B.2 C.3 D.63.如图,过原点的直线与反比例函数y=(k>0)的图象交于点A,B两点,在x轴有一点C(3,0),AC⊥BC,连结AC交反比例函数图象于点D,若AD=CD,则k的值为()A.B.2 C.2D.44.七巧板是我国祖先的一项卓越创造,如图正方形ABCD可以制作一副七巧板,现将这副七巧板拼成如图2的“风车”造型(内部有一块空心),连结最外围的风车顶点M、N、P、Q得到一个四边形MNPQ,则正方形ABCD与四边形MNPQ的面积之比为()A.5:8 B.3:5 C.8:13 D.25:495.如图,△AOB和△ACD均为正三角形,且顶点B、D均在双曲线y=(x>0)上,若图中S△OBP=4,则k的值为()A.B.﹣C.﹣4 D.46.有一个著名的希波克拉蒂月牙问题:如图1,以直角三角形的各边为直径分别向上作半圆,则直角三角形的面积可表示成两个月牙形的面积之和,现将三个半圆纸片沿直角三角形的各边向下翻折得到图2,把较小的两张半圆纸片的重叠部分面积记为S1,大半圆纸片未被覆盖部分的面积记为S2,则直角三角形的面积可表示成()A.S1+S2B.S2﹣S1C.S2﹣2S1D.S1•S2二、填空题1.如图,四边形ABCD,四边形EBFG,四边形HMPN均是正方形,点E、F、P、N分别在边AB、BC、CD、AD上,点H、G、M在AC上,阴影部分的面积依次记为S1,S2,则S1:S2等于.第3题第4题2.如图,点A在反比例函数y=(x<0,k1<0)的图象上,点B,C在反比例函数y=(x>0,k2>0)的图象上,AB∥x轴,CD⊥x轴于点D,交AB于点E.若△ABC与△DBC的面积之差为3,=,则k1的值为.3.如图,矩形ABCD中,将△BCD绕点B逆时针旋转得△BEF,其中点C的对应点E恰好落在BD上.BF,EF分别交边AD于点G,H.若GH=4HD,则cos∠DBC的值为.第3题第4题4.如图,在矩形ABCD中,AB=3,BC=4,P是对角线BD上的动点,以BP为直径作圆,当圆与矩形ABCD的边相切时,BP的长为.5.如图,在平面直角坐标系中,菱形OABC的边长为2,∠AOC=60°,点D为AB边上的一点,经过O,A,D三点的抛物线与x轴的正半轴交于点E,连结AE交BC于点F,当DF⊥AB时,CE的长为.第5题第6题6.如图,已知AC=6,BC=8,AB=10,以点C为圆心,4为半径作圆.点D是⊙C上的一个动点,连接AD、BD,则AD+BD的最小值为.三、解答题1.如图1,Rt△ABC中,点D,E分别为直角边AC,BC上的点,若满足AD2+BE2=DE2,则称DE为Rt△ABC的“完美分割线”.显然,当DE为△ABC的中位线时,DE是△ABC 的一条完美分割线.(1)如图1,AB=10,cos A=,AD=3,若DE为完美分割线,则BE的长是.(2)如图2,对AC边上的点D,在Rt△ABC中的斜边AB上取点P,使得DP=DA,过点P画PE⊥PD交BC于点E,连结DE,求证:DE是直角△ABC的完美分割线.(3)如图3,在Rt△ABC中,AC=10,BC=5,DE是其完美分割线,点P是斜边AB 的中点,连结PD、PE,求cos∠PDE的值.2.抛物线y=ax2﹣2ax﹣3a图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,顶点M的纵坐标为4,直线MD⊥x轴于点D.(1)求抛物线的解析式;(2)如图1,N为线段MD上一个动点,以N为等腰三角形顶角顶点,NA为腰构造等腰△NAG,且G点落在直线CM上.若在直线CM上满足条件的G点有且只有一个时,请直接写出点N的坐标.(3)如图,点P为第一象限内抛物线上的一点,点Q为第四象限内抛物线上一点,点Q 的横坐标比点P的横坐标大1,连接PC、AQ.当PC=AQ时,求S△PCQ的值.3.定义:有一组对边与一条对角线均相等的四边形为对等四边形,这条对角线又称对等线.(1)如图1,在四边形ABCD中,∠C=∠BDC,E为AB的中点,DE⊥AB.求证:四边形ABCD是对等四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的对等四边形ABCD,使BD是对等线,C,D在格点上.(3)如图3,在图(1)的条件下,过点E作AD的平行线交BD,BC于点F,G,连结DG,若DG⊥EG,DG=2,AB=5,求对等线BD的长.4.如图,AB为⊙O的直径,点C为下方的一动点,连结OC,过点O作OD⊥OC交BC 于点D,过点C作AB的垂线,垂足为F,交DO的延长线于点E.(1)求证:EC=ED.(2)当OE=OD,AB=4时,求OE的长.(3)设=x,tan B=y.①求y关于x的函数表达式;②若△COD的面积是△BOD的面积的3倍,求y的值.5.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点P为直线BD上方抛物线上一点,若S△PBD=3,请求出点P的坐标.(3)如图3,M为线段AB上的一点,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,请求出点M的坐标.6.如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.参考答案一、选择题1.【分析】利用A和B两个点求出解析式,将面积转化为二次函数的形式,利用二次函数的性质求最大值;【解答】解:设一次函数解析式为y=kx+b,反比例函数解析式为y=,∵A(1,8)和B(4,2)是两个函数图象的交点,∴y=,∴,∴,∴y=﹣2x+10,∵S△ODF=S△ECO=4,设点P的坐标(x,﹣2x+10),∴四边形OEPF面积=xy﹣8=x(﹣2x+10)﹣8=﹣2x2+10x﹣8=﹣2(x﹣)2+,∴当x=时,面积最大为;故选:C.2.【分析】设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,判断出G的运行轨迹为△CSD的中位线,从而求出点G移动的路径长.【解答】解:设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,∴G为PS的中点,即在点P运动过程中,G始终为PS的中点,∴G的运行轨迹为△CSD的中位线,∵CD=AB﹣AC﹣BD=6﹣1﹣1=4,∴点G移动的路径长为×4=2.故选:B.3.【分析】设A(t,),利用线段的中点坐标公式得到D点坐标为(,),则•=k,解得t=1,所以A(1,k),再证明OC为Rt△ACB斜边上的中线,则OA=OC=3,然后利用勾股定理得到12+k2=32,最后解方程即可.【解答】解:设A(t,),∵C(3,0),AD=CD,∴D点坐标为(,),∵点D在反比例函数y=(k>0)的图象上,∴•=k,解得t=1,∴A(1,k),∵AC⊥BC,∴∠ACB=90°,∵过原点的直线与反比例函数y=(k>0)的图象交于点A,B两点,∴点A与点B关于原点对称,即OA=OB,∴OC=OA=OB=3,∴12+k2=32,解得k=2.故选:C.4.【分析】设AC=4a,解直角三角形求出AB、MQ,再求出两正方形的面积,即可得出答案.【解答】解:设AC=a+a+a+a=4a,则AB=BC=AC×sin45°=2 a,所以正方形ABCD的面积是(2 a)2=8a2;图2中ME=3a,EQ=2a,由勾股定理得:MQ==a,所以正方形MNPQ的面积为(a)2=13a2,所以图中正方形ABCD,MNPQ的面积比为,故选:C.5.【分析】先根据△AOB和△ACD均为正三角形可知∠AOB=∠CAD=60°,故可得出AD ∥OB,所以S△ABP=S△AOP,故S△AOB=S△OBP=4,过点B作BE⊥OA于点E,由反比例函数系数k的几何意义即可得出结论.【解答】解:如图:∵△AOB和△ACD均为正三角形,∴∠AOB=∠CAD=60°,∴AD∥OB,∴S△ABP=S△AOP,∴S△AOB=S△OBP=4,过点B作BE⊥OA于点E,则S△OBE=S△ABE=S△AOB=2,∵点B在反比例函数y=的图象上,∴S△OBE=k,∴k=4故选:D.6.【分析】设以Rt△ABC的斜边为直径的半圆为大半圆,以AC为直径的半圆为中半圆,以BC为直径的半圆为小半圆,根据圆的面积公式得到S小半圆=π×=BC2,S=AC2,S大半圆=AB2,根据勾股定理于是得到S△ABC=S2﹣S1.中半圆【解答】解:设以Rt△ABC的斜边为直径的半圆为大半圆,以AC为直径的半圆为中半圆,以BC为直径的半圆为小半圆,∵S小半圆=π×=BC2,S中半圆=AC2,S大半圆=AB2,∴S大半圆﹣S中半圆﹣S小半圆=(AB2﹣BC2﹣AC2)=0,∵S△ABC+S大半圆﹣S中半圆﹣S小半圆+S1=S2,∴S△ABC+S1=S2,∴S△ABC=S2﹣S1,∴直角三角形的面积可表示成S2﹣S1,故选:B.二、填空题1.【分析】设DP=DN=m,则PN=m,PC=2m,AD=CD=3m,AC=3m,CG=AG=m,求出两个阴影部分的面积即可解决问题.【解答】解:设DP=DN=m,则PN=m,PC=2m,AD=CD=3m,AC=3m,CG=AG=m,∴S1=m2,S2=••CG2=m2,∴==,故答案为4:9.2.【分析】设CE=2t,则DE=3t,利用反比例函数图象上点的坐标特征得到C(,5t),B(,3t),A(,3t),再根据三角形面积公式得到×(﹣)×2t﹣×5t (﹣)=3,然后化简后可得到的值.【解答】解:设CE=2t,则DE=3t,∵点B,C在反比例函数y=(x>0,k2>0)的图象上,AB∥x轴,CD⊥x轴,∴C(,5t),B(,3t),∴A(,3t),∵△ABC与△DBC的面积之差为3,∴×(﹣)×2t﹣×5t(﹣)=3,∴k1=﹣9.故答案为﹣9.3.【分析】由旋转的性质可得∠FBE=∠DBC,BF=BD,BE=BC,∠BEF=∠C=90°,再由矩形的性质得出∠EDH=∠DBC,设HD=x,GH=4x,设BE=BC=y,分别用x和y表示出BC、BD、DE、DH,根据cos∠DBC=cos∠EDH,列出比例式,化简得=,即cos∠DBC=.【解答】解:∵将△BCD绕点B逆时针旋转得△BEF,其中点C的对应点E恰好落在BD上.∴∠FBE=∠DBC,BF=BD,BE=BC,∠BEF=∠C=90°,∵矩形ABCD中,AD∥BC,∴∠EDH=∠DBC,∴∠FBE=∠DBC=∠EDH,∴BG=DG,∵GH=4HD,∴设HD=x,GH=4x,设BE=BC=y,则BG=DG=5x,∵∠DHE+∠EDH=90°,∠F+∠FBE=90°,∠FBE=∠EDH,∴∠F=∠DHE,∵∠FHG=∠DHE,∴∠F=∠FHG,∴GF=GH=4x,∴BF=BD=9x,DE=9x﹣y,∵cos∠DBC=cos∠EDH,∴=,∴=,∴xy=81x2﹣9xy,∴10xy=81x2,∴10y=81x,∴=,即cos∠DBC=.故答案为:.4.【分析】BP为直径的圆的圆心为O,作OE⊥AD于E,OF⊥CD于F,如图,设⊙O的半径为r,先利用勾股定理计算出BD=5,根据切线的判定方法,当OE=OB时,⊙O与AD相切,根据平行线分线段成比例定理得=,求出r得到BP的长;当OF=OB时利用同样方法求出BP的长.【解答】解:BP为直径的圆的圆心为O,作OE⊥AD于E,OF⊥CD于F,如图,设⊙O的半径为r,在矩形ABCD中,AB=3,BC=4,∴BD==5,当OE=OB时,⊙O与AD相切,∵OE∥AB,∴=,即=,解得r=,此时BP=2r=;当OF=OB时,⊙O与DC相切,∵OF∥BC,∴=,即=,解得r=,此时BP=2r=;综上所述,BP的长为或.故答案为或.5.【分析】先求出A(1,),B(3,),设BF=x,则CF=2﹣x,再由菱形的性质求出D(3﹣x,),由于抛物线经过O,A,D、E,根据抛物线的对称性可知点A与点D的中点横坐标与点O与点E的中点横坐标相同,可求E(4﹣x,0),由平行线分线段成比例可得=,从而建立等量关系=,求出x即可求CE.【解答】解:∵菱形OABC的边长为2,∠AOC=60°,∴OA=2,∴A(1,),∵菱形OABC,∴AB=OC=2,AB∥OC,∴B(3,),设BF=x,则CF=2﹣x,在菱形OABC中,∠B=∠AOC=60°,∵DF⊥AB,∴D(3﹣x,),∴点A与点D的中点为(2﹣x,),∵抛物线经过O,A,D、E,∴点O与点E的中点为(2﹣x,0),∴E(4﹣x,0),∴CE=4﹣x﹣2=2﹣x,∵AB∥CE,∴=,∴=,∴x=4+2(舍)或x=4﹣2,∴CE=,故答案为.6.【分析】在CB上找一点E,连接ED,使ED=BD,然后根据两间之间线段最短原量即可解决问题.【解答】解:如图,在CB上取一点E,使CE=2,连接CD、DE、AE.∵AC=6,BC=8,AB=10,所以AC2+BC2=AB2,∴∠ACB=90°,∵CD=4,∴==,∴△CED∼△CDB,∴==,∴ED=BD,∴AD+BD=AD+ED≥AE,当且仅当E、D、A三点共线时,AD+BD取得最小值AE==2.三、解答题1.【分析】(1)由勾股定理求出BC=6,设BE=x,则CE=6﹣x,则AD2+BE2=DE2,可得出32+x2=52+(6﹣x)2,解得:x=,则答案可求出;(2)证得AD2+BE2=DP2+EP2=DE2,则结论得证;(3)延长DP至F,使PF=PD,连接BF,EF,证明△APD≌△BPF(SAS),得出AD =BF,∠A=∠FBP,则∠EPD=90°,过点P作PM⊥AC,PN⊥BC,则∠MPD=∠NPE =90°﹣∠MPE,证明△MPD∽△NPE,得出PE=2PD,设PD=a,则PE=2a,则DE =a,则可求出答案.【解答】解:(1)∵AB=10,cos A=,∴cos A=,∴AC=8,CD=5,∴==6,设BE=x,则CE=6﹣x,在Rt△CDE中,DE2=CD2+CE2=52+(6﹣x)2,∵DE为完美分割线,∴AD2+BE2=DE2,∴32+x2=52+(6﹣x)2,解得:x=.∴BE=.故答案为:.(2)证明:如图2,∵DA=DP,∴∠DAP=∠DP A,∵PE⊥PD,∴∠DP A+∠EPB=90°,又∠A=∠B,∴∠EPB=∠B,∴EP=EB,∴AD2+BE2=DP2+EP2=DE2,∴DE是直角△ABC的完美分割线.(3)解:延长DP至F,使PF=PD,连接BF,EF,∵AP=BP,∠APD=∠BPF,∴△APD≌△BPF(SAS),∴AD=BF,∠A=∠FBP,∴∠EBF=∠CBA+∠FBP=∠CBA+∠A=90°,∵DE是完美分割线,∴DE2=AD2+BE2=BF2+BE2=EF2,即ED=EF.又PD=PF,∴∠EPD=90°,过点P作PM⊥AC,PN⊥BC,则∠MPD=∠NPE=90°﹣∠MPE,∴△MPD∽△NPE,∴,设PD=a,则PE=2a,则DE==a,∴cos∠PDE==.2.【分析】(1)求出对称轴得到顶点坐标,代入解析式求出a值即可.(2)当直线CM上满足条件的G点有且只有一个时,可分两种情况讨论:①NG⊥CM,且NG=NA,如图2,作CH⊥MD于H,如图2.设N(1,n),易得NG=MN=(4﹣n),NA2=22+n2=4+n2,由题可得NG=NA,由此即可得到关于n的方程,解这个方程就可解决问题;②A、N、G共线,且AN=GN,如图3,过点GT⊥x轴于T,则有AD=DT=2,运用待定系数法求出直线CM的解析式,从而得出点G的坐标,然后运用三角形的中位线定理就可解决问题.(3)根据点P在第一象限,点Q在第二象限,且横坐标相差1,进而设出点P(3﹣m,﹣m2+4m)(0<m<1);得出点Q(4﹣m,﹣m2+6m﹣5),得出CP2,AQ2,最后建立方程求解即可.【解答】解:(1)将顶点M坐标(1,4)代入解析式,可得a=﹣1,抛物线解析式为y =﹣x2+2x+3(2)当直线CM上满足条件的G点有且只有一个时,①NG⊥CM,且NG=NA,如图1,作CH⊥MD于H,则有∠MGN=∠MHC=90°.设N(1,n),当x=0时,y=3,点C(0,3).∵M(1,4),∴CH=MH=1,∴∠CMH=∠MCH=45°,∴NG=MN=(4﹣n).在Rt△NAD中,∵AD=DB=2,DN=n,∴NA2=22+n2=4+n2.则(4﹣n)2=4+n2整理得:n2+8n﹣8=0,解得:n1=﹣4+2,n2=﹣4﹣2(舍负),∴N(1,﹣4+2).②A、N、G共线,且AN=GN,如图2.过点GT⊥x轴于T,则有DN∥GT,根据平行线分线段成比例可得AD=DT=2,∴OT=3.设过点C(0,3)、M(1,4)的解析式为y=px+q,则,解得,∴直线CM的解析式为y=x+3.当x=3时,y=6,∴G(3,6),GT=6.∵AN=NG,AD=DT,∴ND=GT=3,∴点N的坐标为(1,3).综上所述:点N的坐标为(1,﹣4+2 )或(1,3).(3)如图3,过点P作PD⊥x轴交CQ于D,设P(3﹣m,﹣m2+4m)(0<m<1);∵C(0,3),∴PC2=(3﹣m)2+(﹣m2+4m﹣3)2=(m﹣3)2[(m﹣1)2+1],∵点Q的横坐标比点P的横坐标大1,∴Q(4﹣m,﹣m2+6m﹣5),∵A(﹣1,0).∴AQ2=(4﹣m+1)2+(﹣m2+6m﹣5)2=(m﹣5)2[(m﹣1)2+1]∵PC=AQ,∴81PC2=25AQ2,∴81(m﹣3)2[(m﹣1)2+1]=25(m﹣5)2[(m﹣1)2+1],∵0<m<1,∴[(m﹣1)2+1]≠0,∴81(m﹣3)2=25(m﹣5)2,∴9(m﹣3)=±5(m﹣5),∴m=或m=(舍),∴P(,),Q(,﹣),∵C(0,3),∴直线CQ的解析式为y=﹣x+3,∵P(,),∴D(,﹣),∴PD=+=∴S△PCQ=S△PCD+S△PQD=PD×x P+PD×(x Q﹣x P)=PD×x Q==.3.【分析】(1)由∠C=∠BDC,得出BC=BD,由等腰三角形的性质得出BD=AD,即可得出结论;(2)有两种画法:①作AB的垂直平分线与方格纸上的格点的交点即为点D,再以点B为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AD=BC=BD;②以点B为圆心、以AB长为半径画圆,圆与方格纸上的格点的交点即为点D,再以点D为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AB=CD=BD;(3)过点E作EH⊥AD于H,易证四边形DGEH是矩形,得出EH=DG=2,求出AE =BE=AB=,S△ADE=S△BDE,设DE=x,AD=BD=y,S△ADE=EH•AD=y,S△BDE =BE•DE=x,由勾股定理得出BD2=BE2+DE2,即y2=()2+x2,则,解方程组即可得出结果.【解答】(1)证明:∵∠C=∠BDC,∴BC=BD,∵E为AB的中点,DE⊥AB,∴BD=AD,∴BC=AD=BD,∴四边形ABCD是对等四边形;(2)解:有两种画法:①作AB的垂直平分线与方格纸上的格点的交点即为点D,再以点B为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AD=BC=BD,如图2﹣1所示;②以点B为圆心、以AB长为半径画圆,圆与方格纸上的格点的交点即为点D,再以点D为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AB=CD=BD,如图2﹣2所示;(3)解:过点E作EH⊥AD于H,如图3所示:则∠EHD=90°,∵EG∥AD,DG⊥EG,∴∠EGD=∠HDG=90°,∴四边形DGEH是矩形,∴EH=DG=2,∵E为AB的中点,AB=5,∴AE=BE=AB=,S△ADE=S△BDE,设DE=x,AD=BD=y,则S△ADE=EH•AD=×2×y=y,S△BDE=BE•DE=××x=x,∵在Rt△BDE中,∠BED=90°,∴BD2=BE2+DE2,即y2=()2+x2,∴,解得:,∴BD=.4.【分析】(1)欲证明EC=ED,只要证明∠ECD=∠EDC.(2)证明△ECD是等边三角形,推出∠E=60°即可解决问题.(3)①连接AC.首先证明x==,再证明∠ACF=∠B,推出tan∠B=tan∠ACF ==y,令OC=k,则OF=kx,CF===k•,推出AF=OA﹣OF=k﹣kx=k(1﹣x),根据y=计算即可.②作OH⊥BC于H.设BD=m,利用相似三角形的性质求出OH,BH(用m表示)即可解决问题.【解答】(1)证明:∵OD⊥OC,∴∠COD=90°,∴∠OCD+∠ODC=90°,∵EC⊥AB,∴∠CEB=90°,∴∠B+∠ECB=90°,∵OC=OB,∴∠B=∠OCD,∴∠ODC=∠ECB,∴EC=EB.(2)解:∵OE=OD,OC⊥ED,∴CE=CE,∵EC=ED,∴EC=ED=CD,∴△ECD是等边三角形,∵∠E=60°,在Rt△EOC中,∵∠EOC=90°,OC=AB=2,∴OE==.(3)解:①连接AC.∵EC=ED,∠EOC=90°∴==sin∠ECO,∵∠OFC=90°,∴sin∠ECO=,∴x==,∵AB是直径,∴∠ACB=90°,∵CE⊥AB,∴∠AFC=90°,∴∠ACF+∠A=90°,∠B+∠A=90°,∴∠ACF=∠B,∴tan∠B=tan∠ACF==y,令OC=k,则OF=kx,CF===k•,∴AF=OA﹣OF=k﹣kx=k(1﹣x),∴y===(0<x<1).②作OH⊥BC于H.设BD=m,∵△COD的面积是△BOD的面积的3倍,∴CD=3BD=3m,CB=4m,∵OH⊥BC,∴CH=BH=2m,∴HD=m,∵∠OCH+∠COH=90°,∠COH+∠DOH=90°,∴∠OCH=∠DOH,∵∠OHC=∠OHD=90°,∴△OHC∽△DHO,∴=,∴OH2=2m2,∴OH=m,∴y=tan B===.5.【分析】(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B的坐标代入求出a的值即可得出答案;(2)过点P作PQ∥y轴交DB于点Q,求出直线BD的解析式,设P(m,﹣m2+2m+3),则Q(m,﹣m+3),可得出S△PBD=﹣m,解方程可求出m的值,则答案可求出;(3)设M(a,0),证明△AMN∽△ABD,可得,再由△DNM∽△BMD,可得,得出关于a的方程,解方程即可得出答案.【解答】解:(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B(3,0)代入得,(3﹣1)2×a+4=0.解得:a=﹣1.∴抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3.(2)过点P作PQ∥y轴交DB于点Q,∵抛物线的解析式为y=﹣x2+2x+3∴D(0,3).设直线BD的解析式为y=kx+n,∴,解得:,∴直线BD的解析式为y=﹣x+3.设P(m,﹣m2+2m+3),则Q(m,﹣m+3),∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.∵S△PBD=S△PQD+S△PQB,∴S△PBD=×PQ×(3﹣m)=PQ=﹣m,∵S△PBD=3,∴﹣m=3.解得:m1=1,m2=2.∴点P的坐标为(1,4)或(2,3).(3)∵B(3,0),D(0,3),∴BD==3,设M(a,0),∵MN∥BD,∴△AMN∽△ABD,∴,即.∴MN=(1+a),DM==,∵△DNM∽△BMD,∴,∴DM2=BD•MN.∴9+a2=3(1+a).解得:a=或a=3(舍去).∴点M的坐标为(,0).6.【分析】(1)①利用勾股定理求出AC,由△PCB′∽△ACB,推出=,即可解决问题.②分三种情形分别求解即可:如图2﹣1中,当∠PCB′=90°时.如图2﹣2中,当∠PCB′=90°时.如图2﹣3中,当∠CPB′=90°时.(2)如图3﹣2中,首先证明四边形ABCD是正方形,如图3﹣2中,利用全等三角形的性质,翻折不变性即可解决问题.【解答】解:(1)①如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC==,∵∠PCB′=∠ACB,∠PB′C=∠ABC=90°,∴△PCB′∽△ACB,∴=,∴=,∴PB′=2﹣4.∴t=PB=2﹣4.②如图2﹣1中,当∠PCB′=90°时,∵四边形ABCD是矩形,∴∠D=90°,AB=CD=2,AD=BC=3,∴DB′==,∴CB′=CD﹣DB′=,在Rt△PCB′中,∵B′P2=PC2+B′C2,∴t2=()2+(3﹣t)2,∴t=2.如图2﹣2中,当∠PCB′=90°时,在Rt△ADB′中,DB′==,∴CB′=3在Rt△PCB′中则有:,解得t=6.如图2﹣3中,当∠CPB′=90°时,易证四边形ABP′为正方形,易知t=2.综上所述,满足条件的t的值为2s或6s或2s.(2)如图3﹣1中,∵∠P AM=45°∴∠2+∠3=45°,∠1+∠4=45°又∵翻折,∴∠1=∠2,∠3=∠4,又∵∠ADM=∠AB′M,AM=AM,∴△AMD≌△AMB′(AAS),∴AD=AB′=AB,即四边形ABCD是正方形,如图,设∠APB=x.∴∠P AB=90°﹣x,∴∠DAP=x,易证△MDA≌△B′AM(HL),∴∠BAM=∠DAM,∵翻折,∴∠P AB=∠P AB′=90°﹣x,∴∠DAB′=∠P AB′﹣∠DAP=90°﹣2x,∴∠DAM=∠DAB′=45°﹣x,∴∠MAP=∠DAM+∠P AD=45°.。

2020年江苏中考数学压轴题精选精练5(解析版)

2020年江苏中考数学压轴题精选精练5(解析版)

2020年中考数学压轴题精选精练5一、选择题1.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m2.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP =QO,则的值为()A.B.C.D.3.如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为()A.12 B.14 C.24 D.214.如图,AB是半圆O的直径,且AB=12,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是()A.4πB.5πC.6πD.8π5.如图,△ABC和△DCE都是边长为8的等边三角形,点B,C,E在同一条直线上接BD,AE,则四边形FGCH的面积为()A.B.C.D.6.如图,△ABC内接于⊙O,∠A=60°,BC=4,当点P在上由B点运动到C点时,弦AP的中点E运动的路径长为()A.πB.πC.πD.2二、填空题1.如图,四边形ABCD中,已知AB=AD,∠BAD=60°,∠BCD=120°,若四边形ABCD 的面积为4,则AC=.第1题第2题2.如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为.3.如图,边长为5的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN 长度的最小值是.第3题第4题4.如图,AB为⊙O的直径,点C、D分别是半圆AB的三等分点,AB=4,点P自A点出发,沿弧ABC向C点运动,T为△P AC的内心.当点P运动到使BT最短时就停止运动,点T运动的路径长为5.如图,在四边形ABCD中,∠ADC=90°,∠BAD=60°,对角线AC平分∠BAD,且AB=AC=4,点E、F分别是AC、BC的中点,连接DE、EF、DF,则DF的长为.第3题第4题6.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题1.如图,△ABC是等边三角形,D是BC边的中点,以D为顶点作一个120°的角,角的两边分别交直线AB、直线AC于M、N两点.以点D为中心旋转∠MDN(∠MDN的度数不变),当DM与AB垂直时(如图①所示),易证BM+CN=BD.(1)如图②,当DM与AB不垂直,点M在边AB上,点N在边AC上时,BM+CN=BD是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,当DM与AB不垂直,点M在边AB上,点N在边AC的延长线上时,BM+CN =BD是否仍然成立?若不成立,请写出BM,CN,BD之间的数量关系,不用证明.2.如图,抛物线23(0)y ax ax c a =-+≠与x 轴交于A ,B 两点,交y 轴于点C ,其中A (-1,0),C (0,3). (1) 求抛物线的解析式(2) 点P 是线段BC 上方抛物线上一动点(不与B ,C 重合),过点P 作PD ⊥x 轴,垂足为D ,交BC 于点E ,作PF ⊥直线BC 于点F ,设点P 的横坐标为x ,△PEF 的周长记为l ,求l 关于x 的函数关系式,并求出l 的最大值及此时点P 的坐标(3) 点H 是直线AC 上一点,该抛物线的对称轴上一动点G ,连接OG ,GH ,则两线段OG ,GH 的长度之和的最小值等于______,此时点G 的坐标为_____(直接写出答案。

2020年全国中考数学压轴题精选(六)

2020年全国中考数学压轴题精选(六)

2020年全国中考数学压轴题精选(六)51.〔08湖南郴州27题〕〔此题总分值10分〕如图10,平行四边形ABCD 中,AB = 5, BC = 10, BC 边上的高AM=4,E 为BC 边上的一个动点〔不与 B 、C 重合〕.过E 作直 线AB 的垂线,垂足为F . FE 与DC 的延长线相交于点G ,连结DE , DF ..〔1〕求证:^BEF s©EG .〔2〕当点E 在线段BC 上运动时,△ BEF 和厶CEG 的周长之间有什么关系?并讲明 你的理由.〔3〕设BE = x ,A DEF 的面积为y ,请你求出y 和x 之间的函数关系式,并求出当x 为何值时,y 有最大值,最大值是多少?〔08湖南郴州27题解析〕〔1〕 因为四边形ABCD 是平行四边形, 因此AB DG ......................................................................................................................... 1分 因此 B GCE , G BFE因此△ BEF CEG ............................................................................................ 3 分 〔2〕△ BEF 与厶CEG 的周长之和为定值. ............................ 4分 理由一:过点C 作FG 的平行线交直线AB 于H ,因为GF 丄AB ,因此四边形FHCG 为矩形.因此 FH = CG , FG = CH 因此,△ BEF 与厶CEG 的周长之和等于BC + CH + BH 由 BC = 10, AB = 5, AM = 4,可得 CH = 8, BH = 6, 因此 BC + CH + BH = 24 •£ 分理由二:由 AB = 5, AM = 4,可知在 Rt △ BEF 与 Rt A GCE 中,有:4 3 4 3 EF BE, BF BE, GE EC, GC CE ,5 5 5 512 12 B因此,△ BEF 的周长是12 BE , △ ECG 的周长是±CE55H又BE+ CE= 10,因此右BEF与&CEG的周长之和是24. .................................. 6分.直线AB 的函数表达式为y 3x 6 .4.................................................... 3分设对称轴与x 轴相交于点N ,在直角三角形AOB 中,AB . AO 2 OB 2 82 62 10. 因为O M 通过O 、A 、B 三点,且 AOB 90 , AB 为O M 的直径,.半径 MA=5,二N 为 AO 的中点 AN=NO=4,二 MN=3 . CN=MC-MN=5-3=2,二 C 点的坐标为〔-4, 2〕 设所求的抛物线为y ax 2 bx c〔3〕设 BE = x ,那么 EF * 4x, 5 1i4「3“ x[_(102怙5 因此 y *EF|D G3GC (10 x) 5 6 2 22 5] x x255x) 配方得:y因此,当x6 / 55、2 121 (x ) 25 6 6 55一时,y 有最大值. 6最大值为!61 10分52〔08湖南郴州28题〕〔此题总分值10分〕 如图13,在平面直角坐标系中,圆 M 通过原点0,且与x 轴、y 轴分不相交于A 8,0、B0, 6 两点. 〔1〕求出直线AB 的函数解析式; 〔2〕假设有一抛物线的对称轴平行于 y 轴且通过点M ,顶点C 在。

2020年中考数学压轴题(含答案解析)

2020年中考数学压轴题(含答案解析)

2020年中考数学压轴题一、选择题1.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)2.如图,在等腰直角三角形ABC中,∠ACB=90°,BC=2,D是BC边上一动点,将AD绕点A逆时针旋转45°得AE,连接CE,则线段CE长的最小值为()A.B.C.﹣1 D.2﹣二、填空题3.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.第3题第4题4.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC =PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O 到△MNG三个顶点的距离和的最小值是.三、解答题5.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.6.在△AOB中,∠ABO=90°,AB=3,BO=4,点C在OB上,且BC=1,(1)如图1,以O为圆心,OC长为半径作半圆,点P为半圆上的动点,连接PB,作DB⊥PB,使点D落在直线OB的上方,且满足DB:PB=3:4,连接AD①请说明△ADB∽△OPB;②如图2,当点P所在的位置使得AD∥OB时,连接OD,求OD的长;③点P在运动过程中,OD的长是否有最大值?若有,求出OD长的最大值:若没有,请说明理由.(2)如图3,若点P在以O为圆心,OC长为半径的圆上运动.连接PA,点P在运动过程中,PA﹣是否有最大值?若有,直接写出最大值;若没有,请说明理由.【答案与解析】一、选择题1.【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:A.2.【分析】在AB上截取AF=AC=2,由旋转的性质可得AD=AE,由勾股定理可求AB=2,可得BF =2﹣2,由“SAS”可证△ACE≌△AFD,可得CE=DF,则当DF⊥BC时,DF值最小,即CE的值最小,由直角三角形的性质可求线段CE长的最小值.【解答】解:如图,在AB上截取AF=AC=2,∵旋转∴AD=AE∵AC=BC=2,∠ACB=90°∴AB=2,∠B=∠BAC=45°,∴BF=2﹣2∵∠DAE=45°=∠BAC∴∠DAF=∠CAE,且AD=AE,AC=AF∴△ACE≌△AFD(SAS)∴CE=DF,当DF⊥BC时,DF值最小,即CE的值最小,∴DF最小值为=2﹣故选:D.二、填空题3.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD =5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.4.【分析】(1)在BC上截取BG=PD,通过三角形全等证得AG=AP,BG=DP,得出△AGP是等边三角形,得出AP=GP,则PA+PC=GP+PC=GC=PE,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO 的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴PA+PC=GP+PC=GC=PE∴PA+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,三、解答题5.【分析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.【解答】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC==4cm,当点A′落在边BC上时,由题意得,四边形APA′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4﹣5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴,即=,解得:x=,∴当点A′落在边BC上时,x=;(2)当A′B=BC时,(5﹣8x)2+(3x)2=32,解得:.∵x≤,∴;当A′B=A′C时,x=.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=PA'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=,∴A′B′=QE﹣PD=x=;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5﹣7x,∴cos B=,∴x=,∴A′B′=B′D﹣A′D=;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=,∴A′B′=PA′sin A=;当A′B′⊥AB时,x=,A′B′=;当A′B′⊥BC时,x=,A′B′=;当A′B′⊥AC时,x=,A′B′=.6.【分析】(1)①由∠ABO=90°和DB⊥PB可得∠DBA=∠PBO,结合边长关系由两边对应成比例及其夹角相等的三角形相似即可证明结论.②过D点作DH⊥BO交OB延长线于H点,由AD∥OB平行可得∠DAB=90°,而△ADB∽△OPB可知∠POB=90°,由已知可求出AD.由Rt△DHO即可计算OD的长,③由△ADB∽△OPB可知,可求AD=,由此可知D在以A为圆心AD为半径的圆上运动,所以OD的最大值为OD过A点时最大.求出OA即可得到答案.(2)在OC上取点B′,使OB′=OP=,构造△BOP~△POB′,可得=PA﹣PB′≤AB',求出AB’即可求出最大值.【解答】解:(1)①∵DB⊥PB,∠ABO=90°,∴∠ADB=∠CDP,又∵AB=3,BO=4,DB:PB=3:4,即:,∴△ADB∽△OPB;②如解图(2),过D点作DH⊥BO交OB延长线于H点,∵AD∥OB,∠ABD=90°,∴∠DAB=90°,又∵△ADB∽△OPB,∴,∴AD=,∵四边形ADHB为矩形,∴HD=AB=3,HB=AD=,∴OH=OB+HB=在Rt△DHO中,OD===.③在△AOB中,∠ABO=90°,AB=3,BO=4,∴OA=5.由②得AD=,∴D在以A为圆心AD为半径的圆上运动,∴OD的最大值为OD过A点时最大,即OD的最大值为=OA+AD=5+=.(2)如解图(4),在OC上取点B′,使OB′=OP=,∵∠BOP=∠POB′,=,∴△BOP~△POB′,∴,∴=PA﹣PB′≤AB',∴∴有最大值为AB′,在Rt△ABB′中,AB=3,BB′==,∴AB′===,即:点P在运动过程中,PA﹣有最大值为,2020年中考数学压轴题一、选择题1.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.90°B.100°C.110°D.120°2.如图,P是半圆O上一点,Q是半径OA延长线上一点,AQ=OA=1,以PQ为斜边作等腰直角三角形PQR,连接OR.则线段OR的最大值为()A.B.3 C.D.1二、填空题3.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为.第3题第4题4.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题5.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.6.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.【答案与解析】一、选择题1.【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交ED于N,则A′A″即为△AMN的周长最小值.作EA延长线AH,∵∠BAE=120°,∴∠HAA′=60°,∴∠A′+∠A″=∠HAA′=60°,∵∠A′=∠MAA′,∠NAE=∠A″,且∠A′+∠MAA′=∠AMN,∠NAE+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAE+∠A″=2(∠A′+∠A″)=2×60°=120°,故选:D.2.【分析】将△RQO绕点R顺时针旋转90°,可得△RPE,可得ER=RO,∠ERO=90°,PE=OQ=2,由直角三角形的性质可得EO=RO,由三角形三边关系可得EO≤PO+EP=3,即可求解.【解答】解:将△RQO绕点R顺时针旋转90°,可得△RPE,∴ER=RO,∠ERO=90°,PE=OQ=2∴EO=RO,∵EO≤PO+EP=3∴RO≤3∴OR的最大值=故选:A.二、填空题3.【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.4.【分析】以AC为直径作圆O′,连接BO′、BC.在点P移动的过程中,点D在以AC为直径的圆上运动,当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D,利用勾股定理求出BO′即可解决问题.【解答】解:如图,以AC为直径作圆O′,连接BO′、BC,O'D,∵CD⊥AP,∴∠ADC=90°,∴在点P移动的过程中,点D在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AB=8,∠CAB=60°,∴BC=AB•sin60°=4,AC=AB•cos60°=4,∴AO'=CO'=2,∴BO'===2,∵O′D+BD≥O′B,∴当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D=2﹣2,故答案为2﹣2.三、解答题5.【分析】(1)根据角平分线的定义得到∠EDF=∠ADF,根据圆内接四边形的性质和圆周角定理结论得到结论;(2)根据圆周角定理得到AD⊥BF,推出△ACB是等边三角形,得到∠ADB=∠ACB=60°,根据等腰三角形的性质得到结论;(3)设CD=k,BC=2k,根据勾股定理得到BD==k=10,求得=2,BC=AC=4,根据相似三角形的性质即可得到结论【解答】(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.6.【分析】(1)过点E作EG⊥BC,垂足为点G.AE=x,则EC=2﹣x.根据BG=EG构建方程求出x 即可解决问题.(2)①证明△AEF∽△BEC,可得,由此构建关系式即可解决问题.②分两种情形:当∠CAD<120°时,当120°<∠CAD<180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.2020年中考数学压轴题一、选择题1.已知函数y =ax 2+bx +c 的图象的一部分如图所示,则a +b +c 取值范围是( )A .﹣2<a +b +c <0B .﹣2<a +b +c <2C .0<a +b +c <2D .a +b +c <22.如图所示,矩形OABC 中,OA =2OC ,D 是对角线OB 上的一点,OD =OB ,E 是边AB 上的一点.AE =AB ,反比例函数y =(x >0)的图象经过D ,E 两点,交BC 于点F ,AC 与OB 交于点M .EF与OB 交于点G ,且四边形BFDE 的面积为.下列结论:①EF ∥AC ;②k =2;③矩形OABC 的面积为;④点F 的坐标为(,)正确结论的个数为( )A .1个B .2个C .3个D .4个 二、填空题 3.如图,二次函数y =(x +2)2+m 的图象与y 轴交于点C ,与x 轴的一个交点为A (﹣1,0),点B 在抛物线上,且与点C 关于抛物线的对称轴对称.已知一次函数y =kx +b 的图象经过A ,B 两点,根据图象,则满足不等式(x +2)2+m ≤kx +b 的x 的取值范围是 .4.如图,AE=4,以AE 为直径作⊙O ,点B 是直径AE 上的一动点,以AB 为边在AE 的上方作正方形ABCD ,取CD 的中点M ,将△ADM 沿直线AM 对折,当点D 的对应点D ´落在⊙O 上时,BE 的长为 .三、解答题5.在平面直角坐标系xOy 中,有不重合的两个点Q (x 1,y 1)与P (x 2,y 2).若Q ,P 为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与x 轴或y 轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q 与点P 之间的“折距”,记做D PQ .特别地,当PQ 与某条坐标轴平EA OB D CM D´行(或重合)时,线段PQ的长即点Q与点P之间的“折距”.例如,在图1中,点P(1,﹣1),点Q(3,﹣2),此时点Q与点P之间的“折距”D PQ=3.(1)①已知O为坐标原点,点A(3,﹣2),B(﹣1,0),则D AO=,D BO=.②点C在直线y=﹣x+4上,请你求出D CO的最小值.(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线y=3x+6上以动点.请你直接写出点E与点F之间“折距”D EF的最小值.6.如图1,在矩形ABCD中,AB=4,BC=5,点E在AD上,ED=3.动点P从点B出发沿BC方向以每秒3个单位的速度向点C运动,过点P作PF∥CE,与边BA交于点F,过点F作FG∥BC,与CE交于点G,当点F与点A重合时,点P停止运动,设点P运动的时间为t秒.(1)用含t的代数式分别表示线段BF和PF的长度,则有BF=,PF=.(2)如图2,作点D关于CE的对称点D′,当FG恰好过点D′时,求t的值.(3)如图3,作△FGP的外接圆⊙O,当点P在运动过程中.①当外接圆⊙O与四边形ABCE的边BC或CE相切时,请求出符合要求的t的值;②当外接圆⊙O的圆心O落在△FGP的内部(不包括边上)时,直接写出t的取值范围.【答案与解析】一、选择题1.【分析】函数y=ax2+bx+c的图象开口向下可知a小于0,由于抛物线顶点在第一象限即抛物线对称轴在y轴右侧,当x=1时,抛物线的值必大于0由此可求出a的取值范围,将a+b+c用a表示出即可得出答案.【解答】解:由图象可知:a<0,图象过点(0,1),所以c=1,图象过点(﹣1,0),则a﹣b+1=0,当x=1时,应有y>0,则a+b+1>0,将a﹣b+1=0代入,可得a+(a+1)+1>0,解得a>﹣1,所以,实数a的取值范围为﹣1<a<0.又a+b+c=2a+2,∴0<a+b+c<2.故选:C.2.【分析】设E(a,b),F(m,n),则a=OA=BC,b=AE,CF=m,n=CO=AB,证明=即可判断①;表示出D和E的坐标,根据系数k的几何意义求得k的值即可判断②;求得B的坐标,求得矩形OABC的面积即可判断③;求得F的坐标即可判断④.【解答】解:设E(a,b),F(m,n),则a=OA=BC,b=AE,CF=m,n=CO=AB,∴B(a,n),∵E,F在反比例函数y=上,∴ab=mn,∴BC•AE=CF•AB,∴=,∴EF∥AC,故①正确;∵OD=OB,AE=AB,∴D(a,n),E(a,n),∵OA=2OC,∴a=2n,∴B(2n,n),D(n,n),E(2n,n),∵反比例函数y=经过点F,E,∴k=mn=2n•n,∴m=n,∴F(n,n),∴BF=2n﹣n=n,BE=n,∵四边形BFDE的面积=S△BDF+S△BDE=,∴×n×(n﹣n)+×n×(2n﹣n)=,解得n=,∴E(3,),F(,)∴k=3×=2,故②④正确;∵B(3,),∴矩形OABC的面积为,故③正确;故选:A.二、填空题3.【分析】将点A代入抛物线中可求m=﹣1,则可求抛物线的解析式为y=x2+4x+3,对称轴为x=﹣2,则满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1.【解答】解:抛物线y=(x+2)2+m经过点A(﹣1,0),∴m=﹣1,∴抛物线解析式为y=x2+4x+3,∴点C坐标(0,3),∴对称轴为x=﹣2,∵B与C关于对称轴对称,点B坐标(﹣4,3),∴满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1,故答案为﹣4≤x≤﹣1.4.三、解答题5.【分析】(1)①D AO=|3﹣0|+|﹣2﹣0|=5,即可求解;②设点C(m,4﹣m),则D CO=|m|+|m﹣4|,当0≤m≤4时,D CO最小,即可求解;(2)EF1是“折距”D EF的最小值,即求EF1的最小值即可,当点E在y轴左侧于平行于直线y=﹣x+4的直线相切时,EF1最小,即可求解.【解答】解:(1)①D AO=|3﹣0|+|﹣2﹣0|=5,同理D BO=1,故答案为:5,1;②设点C(m,4﹣m),则D CO=|m|+|m﹣4|,当0≤m≤4时,D CO最小,最小值为4;(2)如图2,过点E分别作x、y轴的平行线交直线y=﹣x+4于F1、F2,则EF1是“折距”D EF的最小值,即求EF1的最小值即可,当点E在y轴左侧于平行于直线y=﹣x+4的直线相切时,EF1最小,如图3,将直线y=﹣x+4向右平移与圆相切于点E,平移后的直线与x轴交于点G,连接OE,设原直线与x、y轴交于点M、N,则点M、N的坐标分别为(﹣2,0)、点N(0,6),则MN=2,则△MON∽△GEO,则,即,则GO=,EF1=MG=2﹣=.6.【分析】(1)由△PFB∽△ECD,得==,由此即可解决问题.(2)如图2中,由△D′MG∽△CDE,得=,求出MG,根据PF=CG=CM﹣MG,列出方程即可解决问题.(3)①存在.如图4中,当⊙O与BC相切时,连接OP延长PO交FG于M,连接OF、OG,由PB=MF=MG=FG=PC,得到3t=(5﹣3t),即可解决问题.如图5中,当⊙O与BC相切时,连接GO,延长GO交PF于M,连接OF、OP,由△FGM∽△PFB,得=,列出方程即可解决问题.②求出两种特殊位置t的值即可判断.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴AB=CD=4,BC=AD=5,∠B=∠D=90°,AD∥BC,在Rt△ECD中,∵∠D=90°,ED=3.CD=4,∴EC==5,∵PF∥CE,FG∥BC,∴四边形PFGC是平行四边形,∴∠FPB=∠ECB=∠DEC,∴△PFB∽△ECD,∴==,∴==,∴BF=4t,PF=5t,故答案为4t,5t.(2)如图2中,∴D、D′关于CE对称,∴DD′⊥CE,DM=MD′,∵•DE•DC=•EC•DM,∴DM=D′M=,CM==,由△D′MG∽△CDE,得=,∴=,∴MG=,∴PF=CG=CM﹣MG,∴5t=﹣,∴t=.∴t=时,D′落在FG上.(3)存在.①如图4中,当⊙O与BC相切时,连接OP延长PO交FG于M,连接OF、OG.∵OP⊥BC,BC∥FG,∴PO⊥FG,∴FM=MG由PB=MF=MG=FG=PC,得到3t=(5﹣3t),解得t=.如图5中,当⊙O与EC相切时,连接GO,延长GO交PF于M,连接OF、OP.∵OG⊥EC,BF∥EC,∴GO⊥PF,∴MF=MP=t,∵△FGM∽△PFB,∴=,∴=,解得t=.综上所述t=或时,⊙O与四边形ABCE的一边(AE边除外)相切.②如图6中,当∠FPG=90°时,由cos∠PCG=cos∠CED,∴=,∴t=,如图7中,当∠FGP=90°时,∴=,∴t=,观察图象可知:当<t<时,外接圆⊙O的圆心O落在△FGP的内部.2020年中考数学压轴题一、选择题1.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣82.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值二、填空题3.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF 最大时,S△ADE=.第3题第4题4.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.三、解答题5.如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D 运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.6.已知,如图,二次函数y=ax2+2ax﹣3a(a>0)图象的顶点为C与x轴交于A、B两点(点A在点B 左侧),点C、B关于过点A的直线l:y=kx﹣对称.(1)求A、B两点坐标及直线l的解析式;(2)求二次函数解析式;(3)如图2,过点B作直线BD∥AC交直线l于D点,M、N分别为直线AC和直线l上的两动点,连接CN,NM、MD,求D的坐标并直接写出CN+NM+MD的最小值.【答案与解析】一、选择题1.【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示出点D的纵坐标和点E的横坐标,由三角形相似和对称,可求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∴AF:EG=BD:BE,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.2.【分析】A、根据等边三角形ABC的内心的性质可知:AO平分∠BAC,根据角平分线的定理和逆定理得:FO平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF =∠EOG,可证明△DOF≌△GOF≌△GOE,△OAD≌△OCG,△OAF≌△OCE,可得AD=CG,AF=CE,从而得△ADF≌△CGE;B、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC﹣S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,可作判断.【解答】解:A、连接OA、OC,∵点O是等边三角形ABC的内心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+S△ADF=S四边形OFAD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC﹣S△OFG,过O作OH⊥AC于H,∴S△OFG=•FG•OH,由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确;故选:D.二、填空题3.【分析】作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出BF=3,接着证明△ADH ≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.【解答】解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.4.【分析】过点O作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径即可.【解答】解:过点O作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴AB•OE+BD•OF=CD•AC,即5×OE+2×OE=2×3,解得OE=,∴⊙O的半径是.故答案为:.三、解答题5.【分析】(1)根据两边成比例夹角相等即可证明两三角形相似;(2)如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.首先证明△GFN≌△FHM,想办法求出点H的坐标,构建方程即可解决问题;(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.推出点H在直线y=x+上运动,根据垂线段最短即可解决问题;【解答】(1)证明:如图1中,∵△ABE,△BGF都是等腰直角三角形,∴==,∵∠ABE=∠GBF=45°,∴∠ABG=∠EBF,∴△ABG∽△EBF.(2)解:如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.∵△GFH是等腰直角三角形,∴FG=FH,∠GNF=∠GFH=∠HMF=90°,∴∠GFN+∠HFM=90°,∠HFM+∠FHM=90°,∴∠GFN=∠FHM,∴△GFN≌△FHM,∴GN=FM,FN=HM,∵△ABG∽△EBF,∴==,∠AGB=∠EFB,∵∠AKG=∠BKF,∴∠GAN=∠KBF=45°,∵EF=t,∴AG=t,∴AN=GN=FM=t,∴AM=2+t,HM=FN=2+t,∴H(2+t,4+t),当点H在直线CD上时,2+t=10,解得t=.(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.∴点H在直线y=x+上运动,如图,作CH垂直直线y=x+垂足为H.根据垂线段最短可知,此时CH的长最小,易知直线CH的解析式为y=﹣3x+30,由,解得,∴H(8,6),∵C(10,0),∴CH==2,∴HC最小值是2.6.【分析】(1)令二次函数解析式y=0,解方程即求得点A、B坐标;把点A坐标代入直线l解析式即求得直线l.(2)把二次函数解析式配方得顶点C(﹣1,﹣4a),由B、C关于直线l对称可知AB=AC,用a表示AC的长即能列得关于的方程.求得a有两个互为相反数的解,由二次函数图象开口向上可知a>0,舍去负值.(3)①用待定系数法求直线AC解析式,由BD∥AC可知直线BD解析式的k与AC的k相同,再代入点B坐标即求得直线BD解析式.把直线l与直线BD解析式联立方程组,求得的解即为点D坐标.②由点B、C关于直线l对称,连接BN即有B、N、M在同一直线上时,CN+MN=BN+MN=BM最小;作点D关于直线AC的对称点Q,连接DQ交直线AC于点E,可证B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ最小,CN+NM+MD最小值=BM+MD最小值=BQ.由直线AC垂直平分DQ且AC∥BD可得BD⊥DQ,即∠BDQ=90°.由B、D坐标易求BD的长;由B、C关于直线l 对称可得l平分∠BAC,作DF⊥x轴于F则有DF=DE,所以DQ=2DE=2DF=4;利用勾股定理即求得BQ的长.【解答】解:(1)当y=0时,ax2+2ax﹣3a=0解得:x1=﹣3,x2=1∴点A坐标为(﹣3,0),点B坐标为(1,0)∵直线l:y=kx﹣经过点A∴﹣3k﹣=0 解得:k=﹣∴直线l的解析式为y=﹣x﹣(2)∵y=ax2+2ax﹣3a=a(x+1)2﹣4a∴点C坐标为(﹣1,﹣4a)∵C、B关于直线l对称,A在直线l上∴AC=AB,即AC2=AB2∴(﹣1+3)2+(﹣4a)2=(1+3)2解得:a=±(舍去负值),即a=∴二次函数解析式为:y=x2+x﹣(3)∵A(﹣3,0),C(﹣1,﹣2),设直线AC解析式为y=kx+b∴解得:∴直线AC解析式为y=﹣x﹣3∵BD∥AC∴设直线BD解析式为y=﹣x+c把点B(1,0)代入得:﹣+c=0 解得:c=∴直线BD解析式为y=﹣x+∵解得:∴点D坐标为(3,﹣2)如图,连接BN,过点D作DF⊥x轴于点F,作D关于直线AC的对称点点Q,连接DQ交AC于点E,连接BQ,MQ.∵点B、C关于直线l对称,点N在直线l上∴BN=CN∴当B、N、M在同一直线上时,CN+MN=BN+MN=BM,即CN+MN的最小值为BM∵点D、Q关于直线AC对称,点M在直线AC上∴MQ=MD,DQ⊥AC,DE=QE∴当B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ,即BM+MD的最小值为BQ∴此时,CN+NM+MD=BM+MD=BQ,即CN+NM+MD的最小值为BQ∵点B、C关于直线l对称∴AD平分∠BAC∵DF⊥AB,DE⊥AC∴DE=DF=|y D|=2∴DQ=2DE=4∵B(1,0),D(3,﹣2)∴BD2=(3﹣1)2+(﹣2)2=16∵BD∥AC∴∠BDQ=∠AEQ=90°∴BQ=∴CN+NM+MD的最小值为8.2020年中考数学压轴题一、选择题1.如图,在等腰△ABC中,AB=AC,把△ABC沿EF折叠,点C的对应点为O,连接AO,使AO平分∠BAC,若∠BAC=∠CFE=50°,则点O是()A.△ABC的内心B.△ABC的外心C.△ABF的内心D.△ABF的外心2.已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A.B.C.D.二、填空题3.如图,现将四根木条钉成的矩形框ABCD变形为平行四边形木框A'BCD′,且A′D′与CD相交于CD边的中点E,若AB=4,则△ECD′的面积是.4.如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是.三、解答题5.如图,把矩形ABCD沿AC折叠,使点D与点E重合,AE交BC于点F,过点E作EG∥CD交AC于点G,交CF于点H,连接DG.(1)求证:四边形ECDG是菱形;(2)若DG=6,AG=,求EH的值.6.如图,已知△BAC为圆O内接三角形,AB=AC,D为⊙O上一点,连接CD、BD,BD与AC交于点E,且BC2=AC•CE①求证:∠CDB=∠CBD;②若∠D=30°,且⊙O的半径为3+,I为△BCD内心,求OI的长.【答案与解析】一、选择题1.【分析】连接OB、OC,根据AB=AC,AO平分∠BAC,∠BAC=50°,可得AO是BC的垂直平分线,∠BAO=∠CAO=25°,得OB=OC,根据折叠可证明∠OAC=∠OCA=25°,得OA=OC,进而OA=OB=OC,可得点O是三角形ABC的外心.【解答】解:如图,连接OB、OC,∵AB=AC,AO平分∠BAC,∴AO是BC的垂直平分线,∴OB=OC,∵∠BAC=50°,AO平分∠BAC,∴∠BAO=∠CAO=25°,根据折叠可知:CF=OF,∠OFE=∠CFE=50°,∴∠OFC=100°,∴∠FCO=(180°﹣100°)=40°,∵AB=AC,∠BAC=50°,∴∠ACB=(180°﹣50°)=65°,∴∠OCA=∠ACB﹣∠FCO=65°﹣40°=25°,∴∠OAC=∠OCA=25°,∴OA=OC,∴OA=OB=OC,∴O是△ABC的外心.故选:B.2.【分析】过F作FN⊥BC,交BC延长线于N点,连接AC,构造直角△EFN,利用三角形相似的判定,得出Rt△FNE∽Rt△ECD,根据相似三角形的对应边成比例,求得NE=CD=,运用正方形性质,可得出△CNF是等腰直角三角形,从而求出CE.【解答】解:如图,过F作FN⊥BC,交BC延长线于N点,连接AC.∵DE的中点为G,EG绕E顺时针旋转90°得EF,∴DE:EF=2:1.∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN,∴Rt△FNE∽Rt△ECD,∴CE:FN=DE:EF=DC:NE=2:1,∴CE=2NF,NE=CD=.∵∠ACB=45°,∴当∠NCF=45°时,A、C、F在一条直线上.则△CNF是等腰直角三角形,∴CN=NF,∴CE=NE=×=,∴CE=时,A、C、F在一条直线上.故选:D.二、填空题3.【分析】作A'F⊥BC于F,则∠A'FB=90°,根据题意得:平行四边形A′BCD′的面积=BC•A'F=BC•AB,A'F=AB=2,得出∠D'=∠A'BC=30°,得出BF=A'F=2,由矩形和平行四边形的性质得出BC=AD=A'D',A'D'∥AD∥BC,CD⊥BC,得出CD⊥A'D',得出A'F∥CD,证出四边形A'ECF 是矩形,得出CE=A'F=2,A'E=CF,证出DE=BF=2,即可得出答案.【解答】解:作A'F⊥BC于F,如图所示:则∠A'FB=90°,根据题意得:平行四边形A′BCD′的面积=BC•A'F=BC•AB,∴A'F=AB=2,∴∠D'=∠A'BC=30°,∴BF=A'F=2,∵四边形ABCD是矩形,四边形A′BCD′是平行四边形,∴BC=AD=A'D',A'D'∥AD∥BC,CD⊥BC,∴CD⊥A'D',∴A'F∥CD,∴四边形A'ECF是矩形,∴CE=A'F=2,A'E=CF,∴DE=BF=2,∴△ECD的面积=DE×CE=×2×2=2;4.【分析】首先,需要证明线段B1B2就是点B运动的路径(或轨迹),如图1所示.利用相似三角形可以证明;其次,证明△APN∽△AB1B2,列比例式可得B1B2的长.【解答】解:如图1所示,当点P运动至ON上的任一点时,设其对应的点B为B i,连接AP,AB i,BB i,∵AO⊥AB1,AP⊥AB i,∴∠OAP=∠B1AB i,又∵AB1=AO•tan30°,AB i=AP•tan30°,∴AB1:AO=AB i:AP,∴△AB1B i∽△AOP,∴∠B1B i=∠AOP.同理得△AB1B2∽△AON,∴∠AB1B2=∠AOP,∴∠AB1B i=∠AB1B2,∴点B i在线段B1B2上,即线段B1B2就是点B运动的路径(或轨迹).由图形2可知:Rt△APB1中,∠APB1=30°,∴,Rt△AB2N中,∠ANB2=30°,∴=,∴,∵∠PAB1=∠NAB2=90°,∴∠PAN=∠B1AB2,∴△APN∽△AB1B2,∴==,∵ON:y=﹣x,∴△OMN是等腰直角三角形,∴OM=MN=,∴PN=,∴B1B2=,综上所述,点B运动的路径(或轨迹)是线段B1B2,其长度为.故答案为:.。

2020挑战压轴题中考数学强化训练第二部分_一、图形的平移

2020挑战压轴题中考数学强化训练第二部分_一、图形的平移

第二部分填空题、选择题中的动态图形训练题一、图形的平移1、在平面直角坐标系中,点A向右平移4个单位得到点B,点B向下平移3个单位得到点C·那么△ABC 的面积为2、直线y=2x-1向上平移3个单位后得到的直线不经过第象限3、抛物线y=-x2+2x+1向下平移4个单位后得到的抛物线的解析式是4、将抛物线y=x2-4x-4向左平移3个单位,再向上平移5个单位,得到新抛物线的表达式为5、平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n)、B(2,-1)、C(-m,-n),则点D的坐标是()6、如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A'B‘C'的位置时,A'B恰好经过AC的中点O,则△ABC平移的距离为7、如图,把三角板的斜边紧靠直尺平移,如果一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC’=8、如图,正六边形ABCDEF内接于半径为4的圆,则B、E两点间的距离为9、如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4m,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△BF的周长为10、如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为11、小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A、3个(B)4个(C)5个(D)无数12、如图,在平面直角坐标系中,点A、C在x轴上,点C的坐标为(-1,0),AC=2.将Rt△ABC先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点的坐标是()(A)(2,2)(B)(1,2)(C)(-1,2)(D)(2,-1)13、在平面直角坐标系中,将点A(-1,-2)向右平移3个单位得到点B,则点B关于x轴的对称点B的坐标为()(A)(-3,-2)(B)(2,2)C(-2,2)D(2,-2)14、已知抛物线y=x2+2x-3与x轴交于A、B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线与x轴交于C、D两点(点C在点D的左侧),若B、C是线段AD的三等分点,则m的值为15、将直线y=2x-3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为16、如图所示,在平面直角坐标系中,已知点A2),B(1,1)。

决胜2020年中考数学最难压轴题大挑战 专题2.3 二次函数综合题填空题 (解析版)

决胜2020年中考数学最难压轴题大挑战 专题2.3 二次函数综合题填空题 (解析版)

专题2-3二次函数综合题填空题决胜2020年中考数学最难压轴题大挑战点睛导航1、二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.2、二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.3、二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.挑战突破1.(2020•西湖区校级模拟)已知直线y =2x ﹣5与x 轴和y 轴分别交于点A 和点B ,抛物线y =﹣x 2+bx +c 的顶点M 在线AB 上,且抛物线与直线AB 的另一个交点为N .(1)如图,当点M 与点A 重合时,则抛物线的解析式为 y =﹣x 2+5x −254 ;(2)当抛物线y =﹣x 2+bx +c 的顶点M 在直线AB 上平移时,若△OMN 与△AOB 相似,则点M 的坐标为 (2,﹣1)、(4,3) .【点睛】(1)抛物线的顶点为:(52,0),则抛物线的表达式为:y =﹣(x −52)2,即可求解;(2)当∠OMN =90°时,则直线OM 表达式中的k 值为−12,即2m−5m =−12,即可求解;当∠ONM =90°时,同理可得:点M (4,3);当∠MON =90°时,证明tan ∠GMO =tan ∠HON ,即:2m−5m =m−29−2m ,即可求解.【解析】解:(1)直线y =2x ﹣5与x 轴和y 轴分别交于点A 和点B ,则点A 、B 的坐标分别为:(52,0)、(0,﹣5), 则抛物线的顶点为(52,0),则抛物线的表达式为:y =﹣(x −52)2, 则抛物线的表达式为:y =﹣x 2+5x −254, 故答案为:y =﹣x 2+5x −254; (2)设点M (m ,2m ﹣5),点N (x ,y ),将抛物线表达式与直线表达式联立并整理得:﹣(x ﹣m )2+2m ﹣5=2x ﹣5,x 2+(2﹣2m )x +m 2﹣2m =0,(x ﹣m )(x ﹣m +2)=0,则x =m 或m ﹣2,故点N (m ﹣2,2m ﹣9),则MN =2√5,则AB =5√52,①当∠OMN =90°时,则直线OM 表达式中的k 值为−12,即2m−5m =−12,解得:m =2, 故点M 、N 的坐标分别为:(2,﹣1)、(0,﹣5),则OM =√5,ON =5,经验证:AB ON =OM OA =MN OB ,满足△OMN 与△AOB 相似,故点M (2,﹣1);②当∠ONM =90°时,同理可得:点M (4,3);③当∠MON =90°时,过点M 、N 分别作y 轴的垂线交于点G 、H ,∵∠GMO +∠GOM =90°,∠GOM +∠HON =90°,∴∠GMO =∠HON =α,则tan ∠GMO =tan ∠HON ,即:2m−5m =m−29−2m ,解得:m =3,故点M (3,1)(△OMN 为等腰直角三角形,故舍去);综上,点M 的坐标为:(2,﹣1)、(4,3),故答案为:(2,﹣1)、(4,3).2.(2020•余杭区模拟)如图1,在平面直角坐标系中,将n 个边长为1的正方形并排组成矩形OABC ,相邻两边OA 和OC 分别落在x 轴和y 轴的正半轴上.现将矩形OABC 绕点O 顺时针旋转,使得点B 落到x 轴的正半轴上(如图2),设抛物线y =ax 2+bx +c (a <0),如果抛物线同时经过点O 、B 、C :①当n =3时a = −√103 ;②a 关于n 的关系式是 a =−√n 2+1n .【点睛】①当n =3时,OC =1,BC =3,设所求抛物线解析式为y =ax 2+bx ,过C 作CD ⊥OB 于点D ,则Rt △OCD ∽Rt △CBD ,得出OD :CD =OC :BC =1:3,设OD =t ,则CD =3t ,根据勾股定理OD 2+CD 2=OC 2,求出t ,得出C 的坐标,把B 、C 坐标代入抛物线解析式即可得到方程组,求出a 即可;②根据a =2、4和①总结规律,可以得到答案.【解析】解:①如图当n =3时,OC =1,BC =3,设所求抛物线解析式为y =ax 2+bx ,过C 作CD ⊥OB 于点D ,则Rt △OCD ∽Rt △OBC ,∴OD CD =OC BC =13, 设OD =t ,则CD =3t ,∵OD 2+CD 2=OC 2,∴(3t )2+t 2=12,∴t =√110=√1010∴C (√1010,310√10),又B (√10,0), ∴把B 、C 坐标代入抛物线解析式,得{0=10a +√10b 310√10=110a +√1010b 解得:a =−√103,故答案为:−√103.②当n =2时,OC =1,BC =2,∴OB =√5,∴1×2=√5CD ,B (√5,0)∴CD =2√55, ∴OD =√55,∴C (√55,2√55) 设所求抛物线解析式为y =ax 2+bx ,∴{0=5a +√5b 2√55=15a +√55b , 解得:a =−√52;同理当n =4时,a =−√174;∴可以得出a 关于n 的关系式是:a =−√n 2+1n .故答案为:−√103,a=−√n2+1n.3.(2020•衢州模拟)在直角坐标系中,抛物线y=ax2﹣4ax+2(a>0)交y轴于点A,点B是点A 关于对称轴的对称点,点C是抛物线的顶点,则:(1)抛物线的对称轴为直线x=2;(2)若△ABC的外接圆经过原点O,则a的值为√5+14.【点睛】(1)根据对称轴方程x=−b2a解答;(2)先求得顶点坐标,然后利用待定系数法确定函数关系式,即求得a的值.【解析】解:(1)抛物线y=ax2﹣4ax+2的对称轴为直线x=−−4a2a=2,即x=2.(2)连接OB交对称轴于点O′.∵抛物线的对称轴x=2,A(0,2),A,B关于对称轴对称,∴B(4,2),∵△ABC的外接圆经过原点O,∴外接圆的圆心是线段OB的中点O′,∴O′(2,1),∴OB=√22+42=2√5,∴O′C=√5,∴点C坐标为(2,1−√5),∴1−√5=4a﹣8a+2,∴a=√5+1 4.故答案是:2;√5+14.4.(2020•和平区模拟)已知抛物线y =ax 2﹣4ax +4a ﹣1.(Ⅰ)该抛物线的对称轴是x = 2 ;(Ⅱ)该抛物线与x 轴交于点A ,点B ,与y 轴交于点C ,点A 的坐标为(1,0),若此抛物线的对称轴上的点P 满足∠APB <∠ACB ,则点P 的纵坐标n 的取值范围是 n >2+√5或n <﹣2−√5 .【点睛】(Ⅰ)抛物线的对称轴为:x =−b 2a =2;(Ⅱ)当点P 在圆上时,∠APB =∠ACB ,点P 在圆外时,∠APB <∠ACB ,即可求解.【解析】解:(Ⅰ)抛物线的对称轴为:x =−b 2a =2, 故答案为:2;(Ⅱ)将点A 的坐标代入抛物线表达式并解得:a =1,故抛物线的表达式为:y =x 2﹣4x +3,则点A 、B 、C 的坐标分别为:(1,0)、(3,0)、(0,3),过点A 、B 、C 作△ABC 的外接圆M (2,m ),当点P 在圆上时,∠APB =∠ACB ,点P 在圆外时,∠APB <∠ACB ,则MA =MC ,即4+(m ﹣3)2=1+m 2,解得:m =2,则圆的半径为:√5,则点P 的坐标为:(2,2+√5),则点P 关于x 轴的对称点P ′(2,﹣2−√5),故答案为:n >2+√5或n <﹣2−√5.5.(2020•张店区模拟)已知抛物线y=ax2﹣2ax+c(a<0)的图象过点A(3,m).(1)当a=﹣1,m=0时,求抛物线的顶点坐标(1,4);(2)如图,直线l:y=kx+c(k<0)交抛物线于B,C两点,点Q(x,y)是抛物线上点B,C之间的一个动点,作QD⊥x轴交直线l于点D,作QE⊥y轴于点E,连接DE.设∠QED=β,当2≤x≤4时,β恰好满足30°≤β≤60°,a=−√33.【点睛】(1)利用待定系数法求得抛物线解析式,然后利用配方法将抛物线解析式转化为顶点式,可以直接得到答案;(2)将点Q(x,y)代入抛物线解析式得到:y=ax2﹣2ax+c.结合一次函数解析式推知:D(x,kx+c).则由两点间的距离公式知QD=ax2﹣2ax+c﹣(kx+c)=ax2﹣(2a+k)x.在Rt△QED中,由锐角三角函数的定义推知tanβ=QDQE=ax2−(2a+k)xx=ax﹣2a﹣k.所以tanβ随着x的增大而减小.结合已知条件列出方程组{2a−2aa−k=√34a−2a−k=√33,解该方程组即可求得a的值.【解析】解:(1)当a=﹣1,m=0时,y=﹣x2+2x+c,A点的坐标为(3,0),∴﹣9+6+c=0.解得c=3.∴抛物线的表达式为y=﹣x2+2x+3.即y=﹣(x﹣1)2+4.∴抛物线的顶点坐标为(1,4),故答案为:(1,4).(2)∵点Q(x,y)在抛物线上,∴y=ax2﹣2ax+c.又∵QD⊥x轴交直线l:y=kx+c(k<0)于点D,∴D点的坐标为(x,kx+c).又∵点Q是抛物线上点B,C之间的一个动点,∴QD =ax 2﹣2ax +c ﹣(kx +c )=ax 2﹣(2a +k )x .∵QE =x ,∴在Rt △QED 中,tan β=QD QE =ax 2−(2a+k)x x=ax ﹣2a ﹣k . ∴tan β是关于x 的一次函数,∵a <0,∴tan β随着x 的增大而减小.又∵当2≤x ≤4时,β恰好满足30°≤β≤60°,且tan β随着β的增大而增大,∴当x =2时,β=60°;当x =4时,β=30°.∴{2a −2a −k =√34a −2a −k =√33, 解得 {k =−√3a =−√33, 故答案为:−√33.6.(2020•柯桥区模拟)如图,在平面直角坐标系xOy 中,已知抛物线y =38x 2−34x −3与x 轴交于点A 、B (A 在B 左侧),与y 轴交于点C ,经过点A 的射线AF 与y 轴正半轴相交于点E ,与抛物线的另一个交点为F ,AE EF =13,点D 是点C 关于抛物线对称轴的对称点,点P 是y 轴上一点,且∠AFP =∠DAB ,则点P 的坐标是 (0,6)或P (0,−1027) .【点睛】过点F 作FM ⊥x 轴,垂足为M .设E (0,t ),则OE =t ,则F (6,4t ),将点F 的坐标代入抛物线的解析式可求得t 的值,最后,依据cot ∠F AB =OA OE 的值;然后求得cot ∠DAB =43,则∠F AB =∠DAB .当点P 在AF 的上方时可证明PF ∥AB ,从而可求得点P 的坐标;当点P 在AF 的下方时,设FP 与x 轴交点为G (m ,0),则∠PF A =∠F AB ,可得到FG =AG ,从而可求得m 的值,然后再求得PF 的解析式,从而可得到点P 的坐标.【解析】解:过点F作FM⊥x轴,垂足为M.设E(0,t),则OE=t.∵AEEF=13,∴AOAM=OEFM=14.∴F(6,4t).将点F(6,4t)代入y=38x2−34x﹣3得:38×62−343×6﹣3=0,解得t=32.∴cot∠F AB=OAOE=43.∵y=38x2−34x−3=38(x+2)(x﹣4).∴A(﹣2,0),B(4,0).易得抛物线的对称轴为x=1,C(0,﹣3).∵点D是点C关于抛物线对称轴的对称点,∴D(2,﹣3).∴cot∠DAB=4 3,∴∠F AB=∠DAB.如下图所示:当点P 在AF 的上方时,∠PF A =∠DAB =∠F AB ,∴PF ∥AB ,∴y P =y F =6.由(1)可知:F (6,4t ),t =32.∴F (6,6).∴点P 的坐标为(0,6).当点P 在AF 的下方时,如下图所示:设FP 与x 轴交点为G (m ,0),则∠PF A =∠F AB ,可得到FG =AG ,∴(6﹣m )2+62=(m +2)2,解得:m =174, ∴G (174,0).设PF 的解析式为y =kx +b ,将点F 和点G 的坐标代入得:{6k +b =6174k +b =0, 解得:k =247,b =−1027.∴P (0,−1027).综上所述,点P 的坐标为(0,6)或P (0,−1027).故答案是:(0,6)或P (0,−1027). 7.(2020•金堂模拟)如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y =a (x ﹣m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为﹣3,则点D 的横坐标最大值为 8 .【点睛】当C点横坐标最小时,抛物线顶点必为A(1,4),根据此时抛物线的对称轴,可判断出CD间的距离;当D点横坐标最大时,抛物线顶点为B(4,4),再根据此时抛物线的对称轴及CD的长,可判断出D点横坐标最大值.【解析】解:当点C横坐标为﹣3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,故C(0,0),D(8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8;故答案为:8.8.(2020•常州模拟)二次函数y=23x2的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2013在y轴的正半轴上,点B1,B2,B3,…,B2013在二次函数y=23x2位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2012B2013A2013都为等边三角形,则△A2012B2013A2013的边长=2013.【点睛】分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,设A0A1=a,A1A2=b,A2A3=c,则AB1=√32a,BB2=√32b,CB3=√32,再根据所求正三角形的边长,分别表示B1,B2,B3的纵坐标,逐步代入抛物线y=23x2中,求a、b、c的值,得出规律.【解析】解:分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,设A 0A 1=a ,A 1A 2=b ,A 2A 3=c ,则AB 1=√32a ,BB 2=√32b ,CB 3=√32c ,在正△A 0B 1A 1中,B 1(√32a ,a 2), 代入y =23x 2中,得a 2=23×34a 2,解得a =1,即A 0A 1=1,在正△A 1B 2A 2中,B 2(√32b ,1+b 2), 代入y =23x 2中,得1+b 2=23×34b 2,解得b =2,即A 1A 2=2, 在正△A 2B 3A 3中,B 3(√32c ,3+c 2), 代入y =23x 2中,得3+c 2=23×34c )2,解得c =3,即A 2A 3=3, … 依此类推由此可得△A 2012B 2013A 2013的边长=2013,故答案为:2013.9.(2020•成都模拟)如图,已知抛物线和x 轴交于两点A 、B ,和y 轴交于点C ,已知A 、B 两点的横坐标分别为﹣1,4,△ABC 是直角三角形,∠ACB =90°,则此抛物线顶点的坐标为 (32,258) .【点睛】根据点A 、B 的横坐标求出OA 、OB 的长,再根据△AOC 和△COB 相似,利用相似三角形对应边成比例列式求出OC 的长度,然后写出点C 的坐标,然后设抛物线解析式为y =a (x +1)(x ﹣4),把点C 的坐标代入求出a 的值,再整理成顶点式形式,然后写出顶点坐标即可.【解析】解:∵A 、B 两点的横坐标分别为﹣1,4,∴OA =1,OB =4,∵∠ACB =90°,∴∠CAB +∠ABC =90°,∵CO ⊥AB ,∴∠ABC +∠BCO =90°,∴∠CAB =∠BCO ,又∵∠AOC =∠BOC =90°,∴△AOC ∽△COB ,∴AO OC =OC OB , 即1OC =OC 4,解得OC =2,∴点C 的坐标为(0,2),∵A 、B 两点的横坐标分别为﹣1,4,∴设抛物线解析式为y =a (x +1)(x ﹣4),把点C 的坐标代入得,a (0+1)(0﹣4)=2,解得a =−12,∴y =−12(x +1)(x ﹣4)=−12(x 2﹣3x ﹣4)=−12(x −32)2+258,∴此抛物线顶点的坐标为(32,258).故答案为:(32,258).10.如图,二次函数y =√33x 2−4√33x +√3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C .(1)若在抛物线对称轴上存在一点P ,使△ACP 周长最小,则P 点坐标为 (2,√33) ; (2)现有一长为2的线段DE 在直线y =√32上移动,且在移动过程中,线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等.若线段DE 左端点D 的横坐标为t,则t的取值范围是−12≤t≤2.【点睛】(1)先求出点A,点B,点C坐标,当点C,点P,点B三点共线时,△ACP周长最小,由待定系数法可求BC解析式,即可求点P坐标;(2)分三种情况讨论,由两点距离公式和三角形三边关系可求解.【解析】解:(1)如图1,连接BP,∵y=√33x2−4√33x+√3的图象交x轴于点A,B,交y轴于点C.∴点A(1,0),点B(3,0),点C(0,√3),对称轴为x=2,∵点A,点B关于对称轴直线x=2对称,∴AP=PB,∵AP+CP+AC=PB+CP+AC,且AC是定值,∴当点C,点P,点B三点共线时,△ACP周长最小,设直线BC解析式为:y=kx+b,{b=√30=3k+b解得:{k=−√33b=√3∴直线BC解析式为:y=−√33x+√3,当x=2时,y=√3 3∴点P 坐标(2,√33), 故答案为:(2,√33); (2)如图2,∵线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等, ∴P A =PB ,或PB =PC ,或PC =P A ,∵DE 在直线y =√32上移动,∴点P 的纵坐标为√32, 设点P (x ,√32), 若P A =PC ,∴(x )2+(√3−√32)2=(x ﹣1)2+(√32)2, ∴x =12,∴点P (12,√32), ∴P A =PC =1,PC =√7,∵P A +PB <√7∴不合题意舍去;若PB =PC ,∴(x )2+(√3−√32)2=(x ﹣3)2+(√32)2, ∴x =32∴∴点P (32,√32), ∴PB =PC =√3,P A =1,∵P A +PB >PC∴P A ,PB ,PC 能组成三角形;若P A =PB ,∴(x ﹣1)2+(√32)2=(x ﹣3)2+(√32)2, ∴x =2,∴点P (2,√32), ∴P A =PB =√72,PC =√194,∵P A +PB >PC ,∴P A ,PB ,PC 能组成三角形;∵点P 在长为2的线段DE 上,∴线段DE 左端点D 的横坐标为t 的取值范围为:32−2≤t ≤2, ∴线段DE 左端点D 的横坐标为t 的取值范围为:−12≤t ≤2,故答案为:−12≤t ≤2.11.抛物线y =x 2﹣2x ﹣3与x 轴交于点A 、B (点A 在点B 的左边),点P 在抛物线上.(1)点C 是x 轴上一个动点,四边形ACPQ 是正方形,则满足条件的点Q 的坐标是 (﹣1,﹣3)或(﹣1,5)或(2,3)或(4,﹣5) ;(2)连结AP ,以AP 为一条对角线作平行四边形AMPN ,使点M 在以点(1,0),(0,1)为端点的线段上,则当点N 的纵坐标取最小值时,N 的坐标为 (0,﹣5) .【点睛】(1)先求出点A ,点B 坐标,设点C (x ,0),由正方形的性质CA =CP =AQ =QP ,可得|x +1|=x 2﹣2x ﹣3,可求点C 坐标,即可求点Q 坐标;(2)设点M (m ,﹣m +1),由平行四边形的性质可得AN =PM ,AN ∥MP ,当AN ⊥AB 时,且在x 轴下方上,点N 的纵坐标有最小值,由二次函数的性质可求解.【解析】解:(1)令y =0,则0=x 2﹣2x ﹣3,∴x 1=3,x 2=﹣1,∴点A (﹣1,0),点B (3,0),如图1,若AC 为边,设点C (x ,0),∴CA =|x +1|∵四边形ACPQ 是正方形,∴CA =CP =AQ =QP ,∠QAC =90°,∴|x +1|=|x 2﹣2x ﹣3|,∴x +1=x 2﹣2x ﹣3或﹣x ﹣1=x 2﹣2x ﹣3∴x 1=﹣1(不合题意舍去),x 2=2,x 3=4,∴点C (2,0)或(4,0)∴AC =AQ =3或5,∴点Q (﹣1,﹣3)或(﹣1,5);若AC 为对角线,则AC 的中点坐标为(x+12,0) ∴CA =|x +1|∵正方形的对角线互相垂直平分且相等,∴|x+1|2=|(x+12)2﹣2×x+12−3|, ∴x+12=(x+12)2﹣2×x+12−3或−x+12=(x+12)2﹣2×x+12−3 ∴x 1=﹣1(不合题意舍去),x 2=5,x 3=9,∴AC 的中点坐标为(2,0),(4,0),∴点Q 坐标为(2,3)或(4,﹣5)故答案为(﹣1,﹣3)或(﹣1,5)或(2,3)或(4,﹣5);(2)∵四边形ANPM 是平行四边形,∴对角线互相平分,∴y A +y P =y M +y N ,∴y N =0+x 2﹣2x ﹣3﹣y M ,∴当x 2﹣2x ﹣3取最小值,y M 取最大值时,y N 有最小值,∵x2﹣2x﹣3=(x﹣1)2﹣4,∴当x=1时,x2﹣2x﹣3最小值=﹣4,点P(1,﹣4)∵0≤y M≤1,∴y M最大值=1∴y N最小值=﹣4﹣1=﹣5.∴故答案为:(0,﹣5).12.在平面直角坐标系xOy中抛物线y=ax2﹣2ax﹣3a﹣1的顶点为点A(1)写出抛物线的对称轴为直线x=1;(2)若抛物线的顶点A在第一象限,直线y=﹣1与此抛物线交于B、C两点,当△ABC为等腰直角三角形,求出此抛物线的解析式;(3)设直线y=﹣1关于x轴对称的直线为直线m当抛物线与直线m交于两点,两点间距离不小于6时,求a的取值范围.【点睛】(1)由抛物线的解析式,利用二次函数的性质即可找出抛物线的对称轴;(2)利用配方法可找出顶点A的坐标,代入y=﹣1可求出点B,C的横坐标,由等腰直角三角形的性质可得出关于a的一元一次方程,解之即可得出a的值,再将其代入抛物线解析式中即可得出结论;(3)由(2)可得出BC=3,进而可得出a<0不符合题意,当a>0时,由抛物线与直线m两交点的距离不小于6,可得出点(4,1)在抛物线内或抛物线上,再利用二次函数图象上点的坐标特征即可得出关于a的一元一次不等式,解之即可得出结论.【解析】解:(1)抛物线的对称轴为直线x=−−2a2a=1.故答案为:x=1.(2)∵y=ax2﹣2ax﹣3a﹣1=a(x﹣1)2﹣4a﹣1,∴顶点A的坐标为(1,﹣4a﹣1).当y=﹣1时,有a(x﹣1)2﹣4a﹣1=﹣1,即(x﹣1)2=4,解得:x1=﹣1,x2=3,∴点B的坐标为(﹣1,﹣1),点C的坐标为(3,﹣1).∵△ABC为等腰直角三角形,∴﹣4a﹣1﹣(﹣1)=12[3﹣(﹣1)],∴a=−1 2,∴当△ABC为等腰直角三角形,此抛物线的解析式为y=−12x2+x+12.(3)由(2)可知BC=3,∴当a<0时,不符合题意.当a>0时,如图2所示.∵抛物线与直线m交于两点,两点间距离不小于6,∴a×42﹣2a×4﹣3a﹣1≤1,解得:a≤2 5,∴0<a≤2 5,∴当抛物线与直线m交于两点,两点间距离不小于6时,a的取值范围为0<a≤2 5.13.已知抛物线C1:y=﹣x2+2mx+1(m为常数,且m≠0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B.若点P是抛物线C1上的点,使得以A、B、C、P为顶点的四边形为菱形,则m的值为±√3.【点睛】抛物线C1、C2关于y轴对称,那么它们的顶点A、B也关于y轴对称,所以AB∥x轴;若以A、B、C、P为顶点的四边形为菱形,那么CP也必须与x轴平行,即点C、P的纵坐标相同,代入抛物线C1的解析式中,就能确定点P的坐标,此时能发现AB=CP,即四边形APCB中,AB、CP平行且相等,即该四边形APCB是平行四边形,只要再满足AP=CP(即一组邻边相等),就能判定该四边形是菱形,因此先用m表达出AP、CP的长,再列等式求出m的值.【解析】解:由抛物线C1:y=﹣x2+2mx+1知,点A(m,m2+1)、C(0,1);∵抛物线C1、C2关于y轴对称,∴点A、B关于y轴对称,则AB∥x轴,且B(﹣m,m2+1),AB=|﹣2m|;若以A、B、C、P为顶点的四边形为菱形,则AB∥CP;在抛物线C1:y=﹣x2+2mx+1中,当y=1时,﹣x2+2mx+1=1,解得x1=0、x2=2m,∴点P(2m,m2+1);∴AB=CP=|2m|,又AB∥CP,则四边形APCB是平行四边形;若四边形APCB是菱形,那么必须满足AP=CP,即:(2m)2=(m﹣0)2+(m2+1﹣1)2,即:m2=3,解得m=±√3.故答案为:±√3.14.(2020•碑林区校级模拟)如图,抛物线y=﹣x2+2x+3交x轴于A,B两点,交y轴于点C,点D为抛物线的顶点,点C关于抛物线的对称轴的对称点为E,点G,F分别在x轴和y轴上,则四边形EDFG周长的最小值为√2+√58.【点睛】根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D′(﹣1,4)、作点E关于x轴的对称点E′(2,﹣3),从而得四边形EDFG的周长=DE+DF+FG+GE =DE+D′F+FG+GE′,当点D′、F、G、E′四点共线时,周长最短,据此根据两点间的距离公式可得答案.【解析】解:如图,在y=﹣x2+2x+3中,当x=0时,y=3,即点C(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为x=1,顶点D(1,4),则点C关于对称轴的对称点E的坐标为(2,3),作点D 关于y 轴的对称点D ′(﹣1,4),作点E 关于x 轴的对称点E ′(2,﹣3),连接D ′、E ′,D ′E ′与x 轴的交点G 、与y 轴的交点F 即为使四边形EDFG 的周长最小的点, 四边形EDFG 的周长=DE +DF +FG +GE =DE +D ′F +FG +GE ′ =DE +D ′E ′=√(1−2)2+(4−3)2+√(−1−2)2+(4+3)2=√2+√58, ∴四边形EDFG 的周长的最小值为:√2+√58. 故答案是:√2+√58.15.(2020•江阴市模拟)如图,平行于x 轴的直线AC 分别交抛物线y 1=x 2(x ≥0)与y 2=x 23(x ≥0)于B 、C 两点,过点C 作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DE BC= √3 .【点睛】设A 点坐标为(0,a ),利用两个函数解析式求出点B 、C 的坐标,然后求出BC 的长度,再根据CD ∥y 轴,利用y 1的解析式求出D 点的坐标,然后利用y 2求出点E 的坐标,从而得到DE 的长度,然后求出比值即可得解.【解析】解:设A 点坐标为(0,a ),(a >0), 则x 2=a ,解得x =√a , ∴点B (√a ,a ),x 23=a ,则x =√3a , ∴点C (√3a ,a ), ∴BC =√3a −√a . ∵CD ∥y 轴,∴点D 的横坐标与点C 的横坐标相同,为√3a , ∴y 1=(√3a )2=3a ,∴点D 的坐标为(√3a ,3a ). ∵DE ∥AC ,∴点E 的纵坐标为3a ,∴x23=3a,∴x=3√a,∴点E的坐标为(3√a,3a),∴DE=3√a−√3a,∴DEBC=√a−√3a√3a−√a=√3.故答案是:√3.16.(2020•广南县校级模拟)如图(1),在平面直角坐标系中,梯形OABC如图放置,点B的坐标为(3,m),动点P从原点O出发,以1.2cm/s的速度沿OA运动到点A停止,同时动点Q从原点A出发,以1cm/s的速度沿AB→BC→CO运动到点O停止.设点P、Q出发t秒时,△OPQ 的面积为Scm2.已知S与t的函数关系的图象如图(2)(曲线OD为抛物线的一部分).则下列结论:①OA=AB=5cm;②梯形OABC的面积为18;③当0≤t≤5时,S=1225t2;④线段EF的解析式为S=﹣3t+36(8≤t≤12).其中,正确的结论有②③④.(把你认为正确的结论的序号都填上)【点睛】根据图(2)判断出5秒时点P到达点A,点Q到达点B,然后求出OA、AB即可判断出①错误;过点B作BF⊥OA于F,可得四边形OFBC是矩形,根据矩形的对边相等可得OF=BC=3,然后求出AP=3,利用勾股定理列式求出BF,从而得到点B的坐标,再利用梯形的面积公式列式计算即可判断出②正确;利用∠OAB的正弦表示出点Q到OA的距离,再根据三角形的面积公式列式整理即可得到S与t的关系式,从而判断出③正确;根据AB、BC、OC的长度写出点E、F的坐标,设线段EF的解析式为S=kt+b(k≠0),利用待定系数法求一次函数解析式解答即可判断出④正确.【解析】解:由图(2)可知,5秒时,点P 到达点A ,点Q 到达点B , ∵点P 的速度是1.2cm /s ,点Q 的速度是1cm /s , ∴OA =1.2×5=6cm ,AB =1×5=5cm , ∴OA ≠AB ,故①错误;过点B 作BF ⊥OA 于F ,则四边形OFBC 是矩形, 所以,OF =BC =cm 3,所以,AF =OA ﹣OF =6﹣3=3cm ,由勾股定理得,BF =√AB 2−AF 2=√52−32=4cm , 所以,点B 的坐标为(3,4), 梯形OABC 的面积=12(BC +OA )•BF =12×(3+6)×4=18,故②正确; 0≤t ≤5时,点P 在OA 上,OP =1.2t ,点Q 在AB 上,点Q 到OA 的距离=AQ •sin ∠OAB =45t , 所以,△OPQ 的面积=12•1.2t •45t =1225t 2,故③正确; ∵AB =5,BC =3,OC =4,∴点E 的坐标为(8,12),点F 的坐标为(12,0), 设线段EF 的解析式为S =kt +b (k ≠0), 把点E 、F 代入得,{8k +b =1212k +b =0,解得{k =−3b =36,所以,线段EF 的解析式为S =﹣3t +36(8≤t ≤12); 综上所述,正确的结论是②③④. 故答案为:②③④.17.(2020•成都模拟)在平面直角坐标系xOy 中,直线y =kx (k 为常数)与抛物线y =13x 2﹣2交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,﹣4),连接P A ,PB .有以下说法: ①PO 2=P A •PB ;②当k >0时,(P A +AO )(PB ﹣BO )的值随k 的增大而增大; ③当k =−√33时,BP 2=BO •BA ;④△P AB 面积的最小值为4√6.其中正确的是 ③④ .(写出所有正确说法的序号) 【点睛】首先得到两个基本结论:(Ⅰ)设A (m ,km ),B (n ,kn ),联立两个解析式,由根与系数关系得到:m +n =3k ,mn =﹣6;(Ⅱ)直线P A 、PB 关于y 轴对称. 利用以上结论,解决本题:(1)说法①错误.如答图1,设点A 关于y 轴的对称点为A ′,若结论①成立,则可以证明△POA ′∽△PBO ,得到∠AOP =∠PBO .而∠AOP 是△PBO 的外角,∠AOP >∠PBO ,由此产生矛盾,故说法①错误;(2)说法②错误.如答图2,可求得(P A +AO )(PB ﹣BO )=16为定值,故错误;(3)说法③正确.联立方程组,求得点A 、B 坐标,进而求得BP 、BO 、BA ,验证等式BP 2=BO •BA 成立,故正确;(4)说法④正确.由根与系数关系得到:S △P AB =2√9k 2+24,当k =0时,取得最小值为4√6,故正确.【解析】解:设A (m ,km ),B (n ,kn ),其中m <0,n >0. 联立y =13x 2﹣2与y =kx 得:13x 2﹣2=kx ,即x 2﹣3kx ﹣6=0,∴m +n =3k ,mn =﹣6.设直线P A 的解析式为y =ax +b ,将P (0,﹣4),A (m ,km )代入得:{b =−4ma +b =km,解得a =km+4m ,b =﹣4, ∴y =(km+4m)x ﹣4.令y =0,得x =4mkm+4, ∴直线P A 与x 轴的交点坐标为(4m km+4,0).同理可得,直线PB 的解析式为y =(kn+4n)x ﹣4,直线PB 与x 轴交点坐标为(4nkn+4,0).∵4m km+4+4n kn+4=8kmn+16(m+n)(km+4)(kn+4)=8k×(−6)+16×3k (km+4)(kn+4)=0,∴直线P A 、PB 与x 轴的交点关于y 轴对称,即直线P A 、PB 关于y 轴对称.(1)说法①错误.理由如下:如答图1所示,∵P A 、PB 关于y 轴对称, ∴点A 关于y 轴的对称点A ′落在PB 上. 连接OA ′,则OA =OA ′,∠POA =∠POA ′.假设结论:PO 2=P A •PB 成立,即PO 2=P A ′•PB , ∴PO PA′=PB PO,又∵∠BPO =∠BPO , ∴△POA ′∽△PBO , ∴∠POA ′=∠PBO , ∴∠AOP =∠PBO . 而∠AOP 是△PBO 的外角, ∴∠AOP >∠PBO ,矛盾, ∴说法①错误.(2)说法②错误.理由如下: 易知:OB OA=−n m,∴OB =−nm OA .由对称可知,PO 为△APB 的角平分线, ∴PB PA=OB OA ,∴PB =−nm P A .∴(P A +AO )(PB ﹣BO )=(P A +AO )[−nm P A ﹣(−nm OA )]=−nm (P A +AO )(P A ﹣OA )=−nm (P A 2﹣AO 2).如答图2所示,过点A 作AD ⊥y 轴于点D ,则OD =﹣km ,PD =4+km .∴P A 2﹣AO 2=(PD 2+AD 2)﹣(OD 2+AD 2)=PD 2﹣OD 2=(4+km )2﹣(﹣km )2=8km +16, ∵m +n =3k ,∴k =13(m +n ),∴P A 2﹣AO 2=8•13(m +n )•m +16=83m 2+83mn +16=83m 2+83×(﹣6)+16=83m 2.∴(P A +AO )(PB ﹣BO )=−nm (P A 2﹣AO 2)=−n m •83m 2=−83mn =−83×(﹣6)=16. 即:(P A +AO )(PB ﹣BO )为定值,所以说法②错误. (3)说法③正确.理由如下:当k =−√33时,联立方程组:{y =−√33xy =13x 2−2,得A (−2√3,2),B (√3,﹣1),∴BP 2=12,BO •BA =2×6=12, ∴BP 2=BO •BA ,故说法③正确. (4)说法④正确.理由如下:S △P AB =S △P AO +S △PBO =12OP •(﹣m )+12OP •n =12OP •(n ﹣m )=2(n ﹣m )=2√(m +n)2−4mn =2√9k 2+24,∴当k =0时,△P AB 面积有最小值,最小值为2√24=4√6. 故说法④正确.综上所述,正确的说法是:③④. 故答案为:③④.18.(2020绵阳模拟)连接抛物线y =ax 2(a ≠0)上任意四点所组成的四边形可能是 ②③ (填写所有正确选项的序号).①菱形;②有三条边相等的四边形;③梯形;④平行四边形.【点睛】注意观察选项,①和④基本要求满足平行四边形,②和③一组非平行四边形,平行四边形性质两边平行且相等,画出图形就知道了.【解析】解:抛物线y=ax2(a≠0)上任意四点组成四边形,由抛物线性质知道若两边平行则不会相等,构成梯形,若两边相等则不可能平行,此图可以看出可以作三边相等的四边形,满足不了为平行四边形的条件.19.(2020•义乌市模拟)如图,抛物线y=﹣x2+x+2与x轴交于点A和点B.(1)已知点D(m,m+1)在第一象限的抛物线上,则点D的坐标是D(1,2);(2)在(1)的条件下,连接BD,P为抛物线上一点,且∠DBP=135°,则点P的坐标是(﹣4,﹣18).【点睛】(1)根据函数解析式和点D(m,m+1)在第一象限的抛物线上,可以求得m的值,从而可以得到点D的坐标;(2)根据题意,画出图形,然后作出合适的辅助线,然后根据题目中的条件,可以表示出点P的坐标,再根据点P在抛物线上,即可求得点P的坐标,本题得以解决.【解析】解:(1)∵抛物线y=﹣x2+x+2,点D(m,m+1)在第一象限的抛物线上,∴{m+1=−m2+m+2m>0,得m=1,∴点D的坐标为(1,2),故答案为:(1,2);(2)过点P作PE⊥DB交DB的延长线于点E,作EF⊥x轴于点F,作PG⊥EF交EF的延长线于点G,∵∠DBP=135°,∴∠PBE=45°,∵∠BEP=90°,∴∠BPE=∠PBE=45°,∴BE=PE,∵∠BEP=90°,∠EFB=90°,∴∠PEG+∠BEF=90°,∠EBF+∠BEF=90°,∴∠PEG=∠EBF,又∵∠PGE=∠EFB=90°,PE=EB,∴△PGE≌△EFB(AAS),∴EG=BF,PG=EF,∵y=﹣x2+x+2=﹣(x﹣2)(x+1),∴当y=0时,x=2或x=﹣1,∴点B的坐标为(2,0)∵点D(1,2),点B(2,0),∴tan∠DBA=2,∴tan∠EBF=2,设BF=a,则EF=2a,EG=a,PG=2a,∴点P的坐标为(2﹣a,﹣3a),∴﹣3a=﹣(2﹣a)2+(2﹣a)+2解得,a1=6,a2=0(舍去),∴点P的坐标为(﹣4,﹣18),故答案为:(﹣4,﹣18).20.(2020•岳麓区校级模拟)如图,抛物线y =12x 2−x −32的图象与坐标轴交于点A ,B ,D ,顶点为E ,以AB 为直径画半圆交y 正半轴交于点C ,圆心为M ,P 是半圆上的一动点,连接EP . ①点E 在⊙M 的内部; ②CD 的长为32+√3;③若P 与C 重合,则∠DPE =15°;④在P 的运动过程中,若AP =√6,则PE =√5+√3⑤N 是PE 的中点,当P 沿半圆从点A 运动至点B 时,点N 运动的路径长是2π. 以上5个结论正确的是 ②③④ ;(填写序号)【点睛】①ME =2=AM ,∴E 应该在⊙M 上,即可求解; ②CD =2×32=3,故CD 的长为32+√3,即可求解;③过点D 作DH ⊥ME ,由DH =1,MD =R =2,故∠DME =30°,则∠DPE =15°,即可求解; ④AK =AE sin α=2√2×√64=√3,同理EK =√5,则PK =√3,即可求解;⑤点N 的运动轨迹为以R 为圆心的半圆,则N 运动的路径长=12×2πr =π,即可求解; 【解析】解:抛物线y =12x 2−x −32的图象与坐标轴交于点A ,B ,D ,则点A、B、D的坐标分别为:(﹣1,0)、(3,0)、(0,−32),则点M(1,0),顶点E的坐标为:(1,﹣2),AB=4,CO=√3,OD=32,故点D不在⊙M上;①ME=2=AM,∴E应该在⊙M上,故不符合题;②C是圆M与y轴交点,圆M半径为2,M(1,0)由勾股定理得OC=√3,CD=2×32=3,故CD的长为32+√3,符合题意;③如图1,连接PM、PE,点E(﹣1,2),故点E在圆上,CO=√3,OM=1,PM=2,故∠OPM=30°,EM∥y轴,则∠MEP=∠EPC,而∠MEP=∠MPE,∴∠DPE=12DOM=15°,符合题意;④如图2,连接PB、P A、AE,∵点B、E均在圆上,则∠ABP=∠AEP=α,sin∠AEP=sin∠ABP=APAB=√64=sinα,则cosα=√104,过点A作AK垂直于PE于K,则AK=AE sinα=2√2×√64=√3,EK=AE cosα═√5,则PK=AK=√3,故则PE=√5+√3,符合题意;⑤如图3,图中实点G 、N 、M 、F 是点N 运动中所处的位置,则GF 是等腰直角三角形的中位线,GF =12AB =2,ME 交AB 于点R ,则四边形GEFM 为正方形, 当点P 在半圆任意位置时,中点为N ,连接MN ,则MN ⊥PE ,连接NR ,则NR =12ME =MR =RE =RG =RF =12GF =1,则点N 的运动轨迹为以R 为圆心的半圆, 则N 运动的路径长=12×2πr =π,故不符合题意;故答案为:②③④.21.(2020•义乌市模拟)已知:直线y =ax +b 与抛物线y =ax 2﹣bx +c 的一个交点为(0,2),同时这条直线与x 轴相交于点A ,且相交所成的角为45°.(1)点A 的坐标为 (﹣2,0)或(2,0) ;(2)若抛物线y =ax 2﹣bx +c 与x 轴交于点M 、N (点M 在点N 左边),将此抛物线作关于y 轴对称,M 的对应点为E ,两抛物线相交于点F ,连接NF ,EF 得△NEF ,P 是轴对称后的抛物线上的点,使得△NEP 的面积与△NEF 的面积相等,则P 点坐标为 (﹣2,2)或(﹣1+√5,﹣2)或(﹣1−√5,﹣2) .【点睛】(1)根据等腰直角三角形的性质即可求得;(2)利用待定系数法即可求得抛物线解析式;利用b 2﹣4ac 确定抛物线有没有交点,因为轴反射后的像与原像相交于点F ,则F 点即为A 点,则OF =2,由于△NEP 的面积与△NEF 的面积相等且同底,所以P 点的纵坐标为2或﹣2,代入y =﹣x 2﹣2x +2即可求得.【解析】解:(1)设直线y =ax +b 与抛物线y =ax 2﹣bx +c 的一个交点为B (0,2),∵直线y =ax +b 过点(0,2),同时这条直线与x 轴相交于点A ,且相交所成的角为45°, ∴OA =OB ,∴当a >0时,A (﹣2,0),当a <0时,A (2,0);故答案是:(﹣2,0)或(2,0);(2)把B (0,2),A (﹣2,0)代入直线y =ax +b 得,{b =20=−2a +b ,解得:{a =1b =2, 把B (0,2),A (2,0)代入直线y =ax +b 得{b =20=2a +b, 解得:{a =−1b =2, ∵抛物线y =ax 2﹣bx +c 过B (0,2),∴c =2,故抛物线的解析式为:y =x 2﹣2x +2或y =﹣x 2﹣2x +2.存在.如图,抛物线为y =x 2﹣2x +2时,b 2﹣4ac =4﹣4×1×2<0,抛物线与x 轴没有交点,抛物线为y =﹣x 2﹣2x +2时,b 2﹣4ac =4﹣4×(﹣1)×2>0,抛物线与x 轴有两个交点;∵y 轴反射后的像与原像相交于点F ,则F 点即为B 点,∴F (0,2)∵△NEP 的面积与△NEF 的面积相等且同底,∴P 点的纵坐标为2或﹣2,当y =2时,﹣x 2﹣2x +2=2,解得:x =﹣2或x =0(与点F 重合,舍去);当y =﹣2时,﹣x 2﹣2x +2=﹣2,解得:x =﹣1+√5,x =﹣1−√5,故存在满足条件的点P ,点P 坐标为:(﹣2,2),(﹣1+√5,﹣2),(﹣1−√5,﹣2). 故答案是:(﹣2,2)或(﹣1+√5,﹣2)或(﹣1−√5,﹣2).22.(2020•诸城市校级模拟)如图,已知抛物线P :y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点(点A 在x 轴的正半轴上),与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在线段BC 、AC 上,抛物线P 上部分点的横坐标对应的纵坐标如下:x… ﹣3 ﹣2 1 2 … y … −52 ﹣4 −52 0 …(1)求A 、B 、C 三点的坐标;(2)若点D 的坐标为(m ,0),矩形DEFG 的面积为S ,求S 与m 的函数关系,并指出m 的取值范围.【点睛】(1)首先从表格中取抛物线P 上的任意三点的坐标,利用待定系数法求出抛物线的解析式,然后再求抛物线与坐标轴的交点坐标.(2)欲求矩形DEFG 的面积,需求出两条邻边的长,在相似三角形△ADG 和△AOC 中,OA 、OC 长已知,AD 、OD 可由m 表达出来,利用对应边成比例即可求出DG 的长;同理,在相似三角形△BEF 和△BOC 中可求出BE 的长,那么由AB ﹣BE ﹣AD 即可求出DE 的长,长×宽即可得到关于S 、m 的函数关系式,而m 的取值范围可由G 点的位置(G 在线段AC 上,即D 在线段OA 上,但不与O 、A 重合)得出.【解析】解:(1)抛物线P :y =ax 2+bx +c (a ≠0),任取x ,y 的三组值代入,得:{ 9a −3b +c =−524a −2b +c =−4a +b +c =−52, 解得{a =12b =1c =−4故抛物线P :y =12x 2+x ﹣4;令y =0,得:x 1=﹣4,x 2=2;令x =0,得:y =﹣4;则A 、B 、C 三点的坐标分别是A (2,0),B (﹣4,0),C (0,﹣4).(2)∵DG ∥OC ,∴△ADG ∽△AOC ,∴AD AO =DG OC其中,AO =2,OC =4,AD =2﹣m ,故DG =4﹣2m ;又∵BE BO =EF OC ,EF =DG ,得BE =4﹣2m ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题训练十二几何证明及通过几何计算进行说理问题
针对训练
1、已知AB⊥BC,DC⊥BC,垂足分别为B、C,已知AB=4,DC=9.点P是BC上的一个动点,设BP=x
(1)如图1,如果BC=13,∠APD=90°,求x的值;
(2)如图2,如果BC=12,∠APD=90°,求x的值;
(3)如图3,如果BC=11,是否存在∠APD=90°的可能?若存在,求x的值;若不存在,请说明理由
2、如图,已知直线y=-3
4
x+3与x轴交于点A,与y轴交于点B,点C在直线AB上,设以
C为顶点的抛物线y=(x+m)2+n与直线AB的另一个交点为D,抛物线的对称轴与x轴交于点P
(1)求CD的长;
(2)设△COD的OC边上的高为h,当h的值最大时,求点C的坐标
3、如图,在平面直角坐标系中,已知A(-2,0),B(0,4),求tan2∠ABO的值
4、如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(3,0)、B(-1,0)、C(0,-3),顶点为D.
(1)求这个二次函数的解析式及顶点坐标;
(2)在y轴上找一点P(点P与点C不重合),使得∠APD=90°,求点P的坐标
(3)在(2)的条件下,将△APD沿直线AD翻折,得到△AQD,求点Q的坐标
5、如图,在平面直角坐标系中,已知点A的坐标为(3,1),点B的坐标为(6,5),点C的坐标为(0,5),某二次函数的图象经过A、B、C三点
(1)求这个二次函数的解析式
(2)如果点P在(1)中求出的二次函数的图象上,且tan∠P CA=0.5,求∠P CB的正弦值
6、如图,在Rt△ABC中,∠A CB=90°,cosB=0.6,BC=3,P是射线AB上的一个动点,以P为圆心、PA为半径的⊙P与射线AC的另一个交点为D,直线PD交直线BC于点E.设线段BE的中点为Q射线PQ与⊙P相交于点F,点P在运动过程中,当PE∥CF时,求AP的长
真题演练
7、(19滨州26)如图1,抛物线y=-
1
8
x2+
1
2
x+4与y轴交于点A与x轴交于点B、C将
直线AB绕点A逆时针旋转90°,所得直线与x轴交于点D (1)求直线AD的函数解析式;
(2)如图2,若点P是直线AD上方抛物线上的一个动点
①当点P到直线AD的距离最大时,求点P的坐标和最大距离;
②当点P到直线AD的距离为
4
时,求sin∠PAD的值
8、(19淄博23)如图1,正方形ABDE和BCFG的边AB、BC在同一条直线上,且AB=2BC,取EF的中点M连结MD、MG、MB
(1)试证明DM⊥MG,并求M的值
(2)如图2,将图1中的正方形变为菱形,设∠EAB=2a(0<a<90°),其他条件不变,问(1)中n的值有变化吗?若有变化,求出该值(用含a的式子表示);若无变化,说明理由
9、(19衢州24)如图,在R△ABC中,∠C=9°,AC=6,∠BAC=60,AD平分∠BAC交BC 于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE、AC于点F、G
(1)求CD的长;
(2)若点M是线段AD的中点,求EF
DF
的值
(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使∠CPG=60°?
10、(19宁波25)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线
(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E、F分别是BD、AD上的点。

求证:四边形ABEF是邻余四边形
(2)如图2.在5×4的方格纸中,A、B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E、F在格点上;
(3)如图3,在(1)的条件下,取EF的中点M,连结DM并延长交AB于点Q,延长EF 交AC点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长
模拟训练
11、(2018年黄冈市中考模拟第24题)如图1,在平面直角坐标系中,点O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8.,6)、C(0.6),将四边形OABC绕点O按顺时针方向旋转a度得到四边形OABC',此时直线OA′、直线BC分别与直线BC相交于P、Q
(1)四边形OABC的形状是,当a=90°时,BP
PQ
的值是
(2)①如图2,当四边形OA‘B’C’的顶点B’落在y轴正半轴上时,求BP
PQ
的值;
②如图3,当四边形OA’B’C'的顶点B’落在直线BC上时,求△OPB’的面积
(3)在四边形OABC旋转过程中,当0°<a≤180°时,是否存在这样的点P和点Q,使得BP =0.5BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由
12\(2019年沈阳市大东区中考模拟第25题)如图,在平面直角坐标系中,抛物线y=ax2+bx+c 过点A(-1.0)、B(3,0)、C(0,3),点P是直线BC上方抛物线上的一动点,PE∥y轴,交直线BC于点E,连结AP,交直线BC于点D
(1)求抛物线的函数表达式
(2)当AD=2PD时,求点P的坐标;
(3)求线段PE的最大值
(4)当线段PE最大时,若点F在直线BC上且∠EFP=2∠ACO,请直接写出点F的坐标
专题预测
13、在平面直角坐标系中,O为坐标原点,已知点A的坐标为(0.-1),点C是x轴上的一个动点
(1)如图1,△AOB和△BCD都是等边三角形,当点C在x轴上运动时,请探求点D的运动轨迹;
(2)如图2,△ABO和△ACD都是等腰直角三角形,当点C在x轴上运动时,请探求点D 的运动轨迹;
(3)如图3,四边形OABE是正方形请你画出正方形BCDF(B、C、D、F按照逆时针顺序)并探求当点C在x轴上运动时,点D的运动轨迹
14、如图,已知抛物线y=a2+2x+1的对称轴是直线x=3,且与x轴交于A、B两点(点B在点A的右侧)。

与y轴交于点C
(1)求抛物线的解析式
(2)以BC为边作正方形CBDE,求对角线BE所在直线的解析式
(3)点P是抛物线上一点,若∠APB=45°,求点P的坐标.(辽宁省鞍山市赵丽梅老师供题)。

相关文档
最新文档