实验三-模拟一阶系统频率特性测试实验

合集下载

实验三 典型环节的频率特性测量

实验三  典型环节的频率特性测量

姓名,班级学号 ; 姓名,班级学号姓名,班级学号 ; 姓名,班级学号姓名,班级学号 ; 姓名,班级学号实验三典型环节(系统)的频率特性测量一.实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。

2.学习根据所测得频率特性,作出伯德图。

二.实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。

2.用实验方法完成比例环节、积分环节、惯性环节及二阶系统的频率特性曲线测试。

三.实验步骤1.熟悉实验设备上的信号源,掌握改变正弦波信号幅值和频率的方法。

2.利用实验设备完成比例环节、积分环节、惯性环节和二阶系统开环频率特性曲线的测试。

3.根据测得的频率特性曲线(或数据)求取各自的传递函数。

4.分析实验结果,完成实验报告。

四.实验线路及原理(一)实验原理对于稳定的线性定常系统或环节,当输入端加入一正弦信号时,它的稳态输出时一与输入信号同频率的正弦信号,但其幅值和相位将随输入信号频率的改变而改变,即:即相频特性即幅频特性,)()()(,)()()(sin )(])(sin[)()(ωωωωωφωωωωωωωj G t j G t j G Aj G A A tA t r j G t j G A t c ∠=-∠+====∠+=只要改变输入信号的频率,就可以测出输出信号与输入信号的幅值比)(ωj G 和它的相位差)(ωφ,不断改变输入信号的频率,就可测得被测环节的幅频特性和相频特性。

(二)实验线路1.比例(P)环节的模拟电路 比例环节的传递函数为:K s U s U i O =)()(,取ωj s =代入,得G(jw)=k, A(w)=k, Φ(w)=0°其模拟电路和阶跃响应,分别如图1.1.2,实验参数取R 0=100k ,R 1=200k ,R=10k 。

2.积分(I)环节的模拟电路 积分环节的传递函数为:Tss U s U i O 1)()(=其模拟电路,如图1.2.2所示,实验参数取R 0=100k ,C =1uF ,R=10k 。

实验三 系统频率特性曲线的绘制及系统分析

实验三  系统频率特性曲线的绘制及系统分析

《自动控制原理》实践报告实验三系统频率特性曲线的绘制及系统分析熟悉利用计算机绘制系统伯德图、乃奎斯特曲线的方法,并利用所绘制图形分析系统性能。

一、实验目的1.熟练掌握使用MATLAB软件绘制Bode图及Nyquist曲线的方法;2.进一步加深对Bode图及Nyquist曲线的了解;3.利用所绘制Bode图及Nyquist曲线分析系统性能。

二、主要实验设备及仪器实验设备:每人一台计算机奔腾系列以上计算机,配置硬盘≥2G,内存≥64M。

实验软件:WINDOWS操作系统(WINDOWS XP 或WINDOWS 2000),并安装MATLAB 语言编程环境。

三、实验内容已知系统开环传递函数分别为如下形式, (1))2)(5(50)(++=s s s G (2))15)(5(250)(++=s s s s G(3)210()(21)s G s s s s +=++ (4))12.0)(12(8)(++=s s s s G (5)23221()0.21s s G s s s s ++=+++ (6))]105.0)125.0)[(12()15.0(4)(2++++=s s s s s s G 1.绘制其Nyquist 曲线和Bode 图,记录或拷贝所绘制系统的各种图形; 1、 程序代码: num=[50];den=conv([1 5],[1 2]); bode(num,den)num=[50];den=conv([1 5],[1 2]); nyquist(num,den)-80-60-40-20020M a g n i t u d e (d B)10-210-110101102103-180-135-90-450P h a s e (d e g )Bode DiagramFrequency (rad/sec)-1012345-4-3-2-11234Nyquist DiagramReal AxisI m a g i n a r y A x i s2、 程序代码: num=[250];den=conv(conv([1 0],[1 5]),[1 15]); bode(num,den)num=[250];den=conv(conv([1 0],[1 5]),[1 15]);-150-100-5050M a g n i t u d e (d B )10-110101102103-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)nyquist(num,den)3、 程序代码: num=[1 10];den=conv([1 0],[2 1 1]); bode(num,den)-150-100-50050100M a g n i t u d e (d B)10-210-110101102103-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)-1-0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.10-15-10-551015System: sys Real: -0.132Imag: -0.0124Frequency (rad/sec): -10.3Nyquist DiagramReal AxisI m a g i n a r y A x i snum=[1 10];den=conv([1 0],[2 1 1]); nyquist(num,den)-25-20-15-10-5-200-150-100-5050100150200Nyquist DiagramReal AxisI m a g i n a r y A x i s-100-5050100M a g n i t u d e (d B )10-210-110101102-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)4、 程序代码: num=[8];den=conv(conv([1 0],[2 1]),[0.2 1]); bode(num,den)-18-16-14-12-10-8-6-4-20-250-200-150-100-50050100150200250Nyquist DiagramReal AxisI m a g i n a r y A x i snum=[8];den=conv(conv([1 0],[2 1]),[0.2 1]); nyquist(num,den)5、 程序代码: num=[1 2 1]; den=[1 0.2 1 1]; bode(num,den)num=[1 2 1];den=[1 0.2 1 1]; nyquist(num,den)-40-30-20-10010M a g n i t u d e (d B )10-210-110101102-360-270-180-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)-2.5-2-1.5-1-0.500.51 1.5-3-2-1123Nyquist DiagramReal AxisI m a g i n a r y A x i s-100-5050100M a g n i t u d e (d B )10-210-110101102-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)6、 num=[2 4];den=conv(conv([1 0],[2 1]),[0.015625 0.05 1]); bode(num,den)num=[2 4];den=conv(conv([1 0],[2 1]),[0.015625 0.05 1]); nyquist(num,den)2.利用所绘制出的Nyquist 曲线及Bode 图对系统的性能进行分析:(1)利用以上任意一种方法绘制的图形判断系统的稳定性; 由Nyquist 曲线判断系统的稳定性,Z=P-2N 。

自控实验典型环节频率特性的测试

自控实验典型环节频率特性的测试

实验三 典型环节频率特性的测试一、实验目的1. 掌握典型环节频率特性曲线的测试方法。

2. 根据实验求得的频率特性曲线求取传递函数。

二、实验设备:TKKL-1实验箱一台,超低频示波器一台。

三、实验内容1. 惯性环节的频率特性测试。

2. 由实验测得的频率特性曲线求传递函数。

四、实验原理1. 系统的频率特性一个稳定的线性系统,在正弦信号作用下,它的稳态输出是与输入信号同频率的正弦信号,振幅与相位一般与输入信号不同。

测取不同频率下系统的输出、输入信号的幅值比和相位差,即可求得这个系统的幅频特性和相频特性。

设输入信号t X t x m ωωsin )(=,那么输出信号为)sin()()sin()(ϕωωϕωω+=+=t j G Xm t Y t y m 。

幅频特性 XmYm j G =)(ω, 相频特性)()(ωϕω=∠j G2. 频率特性测试——李沙育图形法将)(t x ω、)(t y ω分别输入示波器的X 、Y 轴,可得如下李沙育图形如图5-1。

①幅频特性测试:由 mm m m X Y X Y j G 22)(==ω,有 m mX Y A L 22lg 20)(lg 20)(==ωω〔dB 〕改变输入信号的频率,即可测出相应的幅值比,测试原理示意图如图5-2。

. 图5-1 李沙育图形 图5-2 幅频特性测试图②相频特性测试:⎩⎨⎧+==)sin()(sin )(ϕωωωωt Y t y t X t x m m , 当0=t ω时,⎩⎨⎧==ϕsin )0(0)0(m Y y xf(Hz) 1234567891011121214152Ym 〔V 〕 2Xm 〔V 〕 2Ym/2Xm20lg(2Ym/2Xm)ω有mm Y y Y y 2)0(2sin )0(sin )(11--==ωϕ 其中,)0(2y 为椭圆与Y 轴相交点间的长度, 上式适用于椭圆的长轴在一、三象限;当椭圆的 长轴在二、四象限时相位ϕ的计算公式变为图5-3相频特性测试图(李沙育法)相频特性记录表3. 惯性环节:电路如图5-4,传递函数为102.011)()()(+=+==s Ts K s u s u s G i o 假设取C=0.1uF ,R 1=100K ,R 2=200K ,那么系统的转折频率为T f T π2/1==7.96Hz 。

系统频率测试实验报告(3篇)

系统频率测试实验报告(3篇)

第1篇一、实验目的1. 了解系统频率特性的基本概念和测试方法。

2. 掌握使用示波器、频谱分析仪等设备进行系统频率测试的操作技巧。

3. 分析测试结果,确定系统的主要频率成分和频率响应特性。

二、实验原理系统频率特性是指系统对正弦输入信号的响应,通常用幅频特性(A(f))和相频特性(φ(f))来描述。

幅频特性表示系统输出信号幅度与输入信号幅度之比,相频特性表示系统输出信号相位与输入信号相位之差。

频率测试实验通常包括以下步骤:1. 使用正弦信号发生器产生正弦输入信号;2. 将输入信号输入被测系统,并测量输出信号;3. 使用示波器或频谱分析仪观察和分析输出信号的频率特性。

三、实验设备1. 正弦信号发生器2. 示波器3. 频谱分析仪4. 被测系统(如放大器、滤波器等)5. 连接线四、实验步骤1. 准备实验设备,将正弦信号发生器输出端与被测系统输入端相连;2. 打开正弦信号发生器,设置合适的频率和幅度;3. 使用示波器观察输入信号和输出信号的波形,确保信号正常传输;4. 使用频谱分析仪分析输出信号的频率特性,记录幅频特性和相频特性;5. 改变输入信号的频率,重复步骤4,得到一系列频率特性曲线;6. 分析频率特性曲线,确定系统的主要频率成分和频率响应特性。

五、实验结果与分析1. 幅频特性曲线:观察幅频特性曲线,可以发现系统存在一定频率范围内的增益峰值和谷值。

这些峰值和谷值可能对应系统中的谐振频率或截止频率。

通过分析峰值和谷值的位置,可以了解系统的带宽和选择性。

2. 相频特性曲线:观察相频特性曲线,可以发现系统在不同频率下存在相位滞后或超前。

相位滞后表示系统对输入信号的相位延迟,相位超前表示系统对输入信号的相位提前。

通过分析相位特性,可以了解系统的相位稳定性。

六、实验总结1. 通过本次实验,我们掌握了系统频率特性的基本概念和测试方法。

2. 使用示波器和频谱分析仪等设备,我们成功地分析了被测系统的频率特性。

3. 通过分析频率特性曲线,我们了解了系统的主要频率成分和频率响应特性。

控制系统的频率特性分析实验报告

控制系统的频率特性分析实验报告

竭诚为您提供优质文档/双击可除控制系统的频率特性分析实验报告篇一:控制系统频率特性实验实验名称控制系统的频率特性实验序号3实验时间学生姓名学号专业班级年级指导教师实验成绩一、实验目的:研究控制系统的频率特性,及频率的变化对被控系统的影响。

二、实验条件:1、台式计算机2、控制理论&计算机控制技术实验箱ThKKL-4系列3、ThKKL仿真软件三、实验原理和内容:1.被测系统的方块图及原理被测系统的方块图及原理:图3—1被测系统方块图系统(或环节)的频率特性g(jω)是一个复变量,可以表示成以角频率ω为参数的幅值和相角。

本实验应用频率特性测试仪测量系统或环节的频率特性。

图4—1所示系统的开环频率特性为:采用对数幅频特性和相频特性表示,则式(3—2)表示为:将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输入端[r(t)],然后分别测量相应的反馈信号[b(t)]和误差信号[e(t)]的对数幅值和相位。

频率特性测试仪测试数据经相关器件运算后在显示器中显示。

根据式(3—3)和式(3—4)分别计算出各个频率下的开环对数幅值和相位,在半对数坐标纸上作出实验曲线:开环对数幅频曲线和相频曲线。

根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。

所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符。

如果测量所得的相位在高频(相对于转角频率)时不等于-90°(q-p)[式中p和q分别表示传递函数分子和分母的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。

2.被测系统的模拟电路图被测系统的模拟电路图:见图3-2注意:所测点-c(t)、-e(t)由于反相器的作用,输出均为负值,若要测其正的输出点,可分别在-c(t)、-e(t)之后串接一组1/1的比例环节,比例环节的输出即为c(t)、e(t)的正输出。

实验 自动控制原理实验指导书

实验  自动控制原理实验指导书

自动控制原理实验指导书吴鹏松编班级学号姓名2012 年 3 月前言自动控制原理实验是自动化类学科的重要理论课程实验。

本科自动控制原理分为经典控制理论和现代控制理论基础两部分,自动控制原理实验主要是针对经典控制理论的实验,采用的运算电路来进行的。

现代控制理论实验由于模型比较复杂,采用MATLAB软件进行数字仿真实验。

离散控制系统实验与计算机控制系统实验是有很大区别的,不能简单的认为在自动控制原理实验箱上就能进行计算机控制系统实验。

自动控制原理实验预习时需要对电路图进行理论分析和综合,可以借助MATLAB软件进行辅助分析和综合。

自动控制原理实验指导书不包括实验箱和实验软件的使用说明,相关的内容参考实验软件LABACT软件中的帮助文件。

由于作者水平有限,书中错误之处在所难免,恳请广大师生及读者提出宝贵意见及建议。

编者目录实验一典型环节的模拟研究实验二二阶系统特征参数对系统性能的影响实验三典型系统的动态特性与稳定性测试实验四开环增益与零极点对系统性能的影响实验五典型系统的频率特性测试实验六线性系统的串联校正实验七A/D与D/A 转换及零界阶保持器实验八离散控制系统动态性能和稳定性的混合仿真研究实验九非线性系统的相平面法分析实验十非线性系统的描述函数法分析附录1 教学考核方法附录2 实验课安排时间要求实验一 典型环节的模拟研究一.实验目的1.通过搭建典型环节模拟电路,熟悉并掌握自动控制综合实验台的使用方法。

2.熟悉各种典型环节的的阶跃响应。

3.研究参数变化对典型环节阶跃响应的影响。

4.掌握ACES 软件的使用方法。

二.实验仪器1.自动控制综合实验箱 2.计算机 3.LABACT 软件三.实验内容1.观察比例环节的阶跃响应曲线典型比例环节模拟电路如图1-1所示,比例环节的传递函数为: K s U s U i =)()(0图1-1 典型比例环节模拟电路(1) 比例系数(放大倍数)选取: A .当K=1、K=2、K=5时,分别观测阶跃响应曲线,并记录输入信号输出信号波形;B .比例放大倍数 K=R2/R1;(2) 阶跃信号设置:阶跃信号的幅值选择1伏(或5伏)(3) 连接虚拟示波器:A .将输入阶跃信号用排题线与示波器通道CH1相连接;B .将比例环节输出信号(实验电路A2的“OUT2”)与示波器通道CH2相连接。

实验三一阶网络频响特性测量,信号与系统,南京理工大学紫金学院实验报告

实验三一阶网络频响特性测量,信号与系统,南京理工大学紫金学院实验报告

信号与系统实验报告实验名称:一阶网络频响特性测量姓名:学号:班级:通信时间:2013.6南京理工大学紫金学院电光系一、 实验目的1、 掌握一阶网络的构成方法;2、 掌握一阶网络的系统响应特性;3、 了解一阶网络频响特性图的测量方法;二、实验基本原理系统响应特性是指系统在正弦信号激励下,稳态响应随信号频率变化而变化的特性,称为系统的频率响应特性(frequency response )简称频响特性。

一阶系统是构成复杂系统的基本单元。

学习一阶系统的特点有助于对一般系统特性的了解。

一阶系统的系统函数为H(s),表达式可以写成:γ+⋅=s k s H 1)( k 为一常数 (3-1) 激励信号x(t)为:(3-2)按照系统频响特性的定义可求得该一阶系统的稳态响应为:(3-3)其中⎣⎦00)()(|)(00ϕj j s ej H j H s H Ω=Ω=Ω=,⎣⎦)(00Ω=j H H 。

可见,当改变系统输入信号的频率时,稳态响应的幅度和相位也随之而改变。

因果系统是稳定的要求:0>γ,不失一般性可设τγ1==k 。

该系统的频响特性为:11)(+Ω=Ωτj j H (3-4)从其频响函数中可以看出系统响应呈低通方式,其3dB 带宽点τ1。

系统的频响特性图如下图:0()sin()m x t E t =Ω000()sin()ss m y t E H t ϕ=Ω+θ图1 一阶网络频响特性图一阶低通系统的单位冲击响应与单位阶跃响应如下图:图2 一阶网络单位冲击响应与单位阶跃响应图三、实验内容及结果一阶系统的幅度谱一阶系统相位谱3、用矢量作图法作出该一阶系统的幅度谱和相位谱。

一阶系统的幅度谱一阶系统的相位谱4、作出一阶网络的单位阶跃响应波形,标注在阶跃响应最大值的(1-e-1)倍处的时间t的值,与理论值R1C1是否相符。

四、实验分析1、实验所得一阶网络的频响特性图和用矢量作图法所得的频响特性图有何异同?说明原因。

信号与系统实验报告实验三 连续时间LTI系统的频域分析报告

信号与系统实验报告实验三   连续时间LTI系统的频域分析报告

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt e t h j H tj ωω)()(3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

实验三模拟一阶系统频率特性测试实验

实验三模拟一阶系统频率特性测试实验

实验三模拟一阶系统频率特性测试实验一、 实验目的学习频率特性的测试方法,根据所测量的数据,绘制一阶惯性环节的开环伯德图, 并求取系统的开环传递函数。

二、 实验内容利用频域法的理论,从一阶系统的开关频率特性分析闭环系统的特性。

根据给定的一阶频域测试电路,使用所给的元器件搭建实验电路。

利用信号发生器所产生的正弦波作为输入信号,用数字存储示波器观察并测量系统在不同频率输入信号的作用下, 输出信号的幅值和相位变化情况。

1. 频域分析法原理频率特性的频域分析方法是一种图解分析方法,它根据系统的开环频率特性去判断闭环系统的性能,能够方便地分析系统中的参数对系统暂态响应的影响, 从而找到改善系统性能的途径。

实验表明,对于稳定的线性定常系统,输入正弦信号所产生系统输出的稳态分量仍然 是与输入信号同频率的信号,而幅值和相位的变化则是频率3的函数。

因此,定义正弦信号输入下,系统的稳态输出与系统的输入之比为系统的频率特性, 并记为式中,G( j )—系统的频率特性; Y( j •)—系统的稳态输出; U (jj —系统的正弦输入对一个线性系统来说,在正弦信号的作用下,系统的稳态输出仍然是一个正弦函数, 其频率与输入信号的频率相同,一般情况下,输出的幅值小于输入幅值,输出的相位滞后于输入相位。

当输入信号的幅值不改变而频率发生变化时, 输出信号的幅值一般会随输入正弦信号频率增加而减小;相位滞后角度一般都会随输入正弦信号频率的增加而增加。

将元器件参数 R i =R 4=R 6=10k Q ,R 8=51k Q 和C I =1卩F 代入之后,可得G(j )Y(j )U(j )G(s)二R/R 乂(R 4C S +1R 6R 4R 8Rl^ R 4G S 1其中,K=5.1为放大倍数,T=0.01s 为时间常数。

开环传递函数的频率特性为:幅频特性为:相频特性为:(■) = _arctan(,T)2. 频率特性的测试方法频率特性除了用计算的方法求出外,还可以用实验的方法测得, 本次实验所用线路如上图。

自动控制原理实验报告 (频率特性测试)

自动控制原理实验报告 (频率特性测试)

自动控制原理实验报告(三)
频率特性测试
一.实验目的
1.了解线性系统频率特性的基本概念。

2.了解和掌握对数幅频曲线和相频曲线(波德图)的构造及绘制方法。

二.实验内容及步骤
被测系统是一阶惯性的模拟电路图见图3-2-1,观测被测系统的幅频特性和相频特性,填入实验报告。

本实验将正弦波发生器(B4)单元的正弦波加于被测系统的输入端,用虚拟示波器观测被测系统的幅频特性和相频特性,了解各种正弦波输入频率的被测系统的幅频特性和相频特性。

图3-2-1 被测系统的模拟电路图
实验步骤:
(1)将函数发生器(B5)单元的正弦波输出作为系统输入。

(2)构造模拟电路。

三.实验记录:
ω
ω=1
ω=1.6
ω=3.2
ω=4.5
ω=6.4
ω=8
ω=9.6
ω=16
实验分析:
实验中,一阶惯性环节的幅频特性)(ωL ,相频特性)(ωϕ随着输入频率的变化而变化。

惯性环节的时间常数T 是表征响应特性的唯一参数,系统时间常数越小,输出相应上升的越快,同时系统的调节时间越小。

实验三 频率特性曲线测试

实验三  频率特性曲线测试

1364957203实验三 频率特性曲线测试3.2.3 二阶闭环系统的频率特性曲线一.实验目的1. 了解和掌握二阶闭环系统中的对数幅频特性)(ωL 和相频特性)(ωϕ,实频特性)Re(ω和虚频特性)Im(ω的计算。

2. 了解和掌握欠阻尼二阶闭环系统中的自然频率ωn 、阻尼比ξ对谐振频率ωr 和谐振峰值L(ωr )的影响及ωr 和L(ωr ) 的计算。

3. 观察和分析欠阻尼二阶开环系统的谐振频率ωr 、谐振峰值L(ωr ),并与理论计算值作比对。

4. 改变被测系统的电路参数,画出闭环频率特性曲线,观测谐振频率和谐振峰值,填入实验报告。

二.实验内容及步骤1.被测系统模拟电路图的构成如图3-2-3所示,观测二阶闭环系统的频率特性曲线,测试其谐振频率r ω、谐振峰值)(r L ω。

2.改变被测系统的各项电路参数,画出其系统模拟电路图,及闭环频率特性曲线,並计算和测量系统的谐振频率r ω及谐振峰值)(r L ω,填入实验报告。

图3-2-3 二阶闭环系统频率特性测试电路实验步骤:(1)将数/模转换器(B2)输出OUT2作为被测系统的输入。

(2)构造模拟电路:按图3-2-3安置短路套及测孔联线,表如下。

(a )安置短路套 (b )测孔联线(3)运行、观察、记录:①将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT程序,在界面的自动控制菜单下的线性控制系统的频率响应分析实验项目,选择二阶系统,就会弹出‘频率特性扫描点设置’表。

在该表中用户可根据自己的需要填入各个扫描点频率(本实验机选取的频率值f,以0.1Hz 为分辨率),如需在特性曲线上标注显示某个扫描点的角频率ω、幅频特性L(ω)或相频特性φ(ω),则可在该表的扫描点上方小框内点击一下(打√)。

设置完后,点击确认后将弹出虚拟示波器的频率特性界面,点击开始,即可按‘频率特性扫描点设置’表规定的频率值,实现频率特性测试。

②测试结束后(约十分钟),可点击界面下方的“频率特性”选择框中的任意一项进行切换,将显示被测系统的闭环对数幅频、相频特性曲线(伯德图)和幅相曲线(奈奎斯特图)。

频率特性的测量实验报告

频率特性的测量实验报告

课程名称: 控制理论乙 指导成绩:实验名称: 频率特性的测量 实验类型:同组学生__ 一、实验目的和要求〔必填〕二、实验内容和原理〔必填〕 三、主要仪器设备〔必填〕四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析〔必填〕 七、讨论、心得 一、实验目的和要求1.掌握用李沙育图形法,测量各典型环节的频率特性;2.根据所测得的频率特性,作出伯德图,据此求得环节的传递函数. 二、实验内容和原理1.实验内容〔1〕R-C 网络的频率特性.图5-2为滞后--超前校正网络的接线图,分别测试其幅频特性和相频特性. 〔2〕闭环频率特性的测试被测的二阶系统如图5-3所示,图5-4为它的模拟电路图. 取参考值051R K =,1R 接470K 的电位器,2510R K =,3200R K =2.实验原理对于稳定的线性定常系统或环节,当其输入端加入一正弦信号()sin m X t X t ω=,它的稳态输出是一与输入信号同频率的正弦信号,但其幅值和相位随着输入信号频率ω的改变而改变.输出信号为其中()mmY G j X ω=,()arg ()G j ϕωω= 只要改变输入信号的频率,就可以测得输出信号与输入信号的幅值比()G j ω和它们的相位差()ϕω.不断改变()x t 的频率,就可测得被测环节〔系统〕的幅频特性和相频特性. 本实验采用李沙育图形法,图5-1为测试的方框图在表〔1〕中列出了超前于滞后时相位的计算公式和光点的转向.表中 02Y 为椭圆与Y 轴交点之间的长度,02X 为椭圆与X 轴交点之间的距离,m X 和m Y 分别为()X t 和()Y t 的幅值.三、主要仪器设备1.控制理论电子模拟实验箱一台; 2.慢扫描示波器一台;3. 任意函数信号发生器一台; 4.万用表一只. 四、操作方法和实验步骤 1.实验一〔1〕根据连接图,将导线连接好〔2〕由于示波器的CH1已经与函数发生器的正极相连,所以接下来就要将CH2接在串联电阻电容上,将函数发生器的正极接入总电路两端,并且示波器和函数发生器的黑表笔连接在一起接地.〔3〕调整适当的扫描时间,将函数发生器的幅值定为5V 不变,然后摁下扫描时间框中的menu,点击从Y-t变为X-Y显示.〔4〕改变函数发生器的频率,记录数据与波形.2.实验二:基本与实验一的实验步骤相同.五、实验数据记录和处理1.实验结果分析〔1〕实验一根据测得的数据,并经过一系列计算之后,得到的实验一幅频相频特性曲线如图所示:实验一幅频特性曲线〔实验〕实验一相频特性曲线〔实验〕通过运用公式理论计算得到的曲线如下图所示:实验一幅频特性曲线〔计算〕实验一相频特性曲线〔计算〕通过matlab仿真所得实验一中的幅频相频特性曲线如下图所示:由此可以看出,所测并计算之后得到的幅频特性曲线与相频特性曲线和公式计算结果所得到的曲线非常相近,并且与通过matlab仿真得到的波特图之间的差距很小,但仍然存在一定误差.(2)实验二根据测得的实验结果,在matlab上绘制幅频特性曲线图如下图所示:实验二幅频特性曲线〔实验〕实验二相频特性曲线〔实验〕根据计算结果,在matlab上绘制幅频曲线如下图所示实验二幅频特性曲线〔计算〕实验二相频特性曲线〔计算〕通过matlab程序仿真得到的幅频与相频曲线如下图所示:由上图分析可以得到,实验所测得到的幅频特性曲线与计算结果得到的曲线几乎一样,并且与matlab仿真的波特图非常相近.但是实验所测得到的相频特性曲线虽然和计算结果得到的曲线较为温和,但是却与matlab 仿真得到的相频曲线有着非常大的差别.这一点的主要原因为:...2.实验误差分析本次实验的误差相对于其他实验的误差而言比较大,主要原因有以下几点:(1)示波器读取幅值的时候,由于是用光标测量,观测到的误差相对来说非常大,尤其是当李萨如图像与x 轴的交点接近于零的时候,示波器的光标测量读数就非常困难了.(2)在调整函数发生器的频率过程中,由于示波器的李萨如图像模型对于横坐标扫描时间的要求,导致当频率增加的时候,可观测的点寥寥无几.只能用display里面的连续记录显示功能来记录波形.这样记录下来的波形,由于本身点走动的时候带有一定厚度,导致记录波形的宽度非常大,并且亮度基本一致,无法判断曲线边界的具体值,造成的误差也是非常大的.(3)在绘制曲线过程中,由于测量数据点有限,而造成绘制曲线与计算值存在一定误差.(4)本次实验的计算量非常繁琐且冗杂,对于实验误差的影响也是非常大的.(5)电阻和电容等非理想元件造成的误差3.思考题(1)在实验中如何选择输入的正弦信号的幅值?解:先将频率调到很大,再是信号幅值应该调节信号发生器的信号增益按钮,令示波器显示方式为信号-时间模式,然后观测输出信号,调节频率,观察在各个频段是否失真.(2)测试频率特性时,示波器Y轴输入开关为什么选择直流?便于读取数据,使测量结果更加准确.(3)测试相频特性时,若把信号发生器的正弦信号送入Y轴,被测系统的输出信号送入X轴,则根据椭圆光点的转动方向,如何确定相位的超前和迟后?若将输入和输出信号所在的坐标轴变换,则判断超前和滞后的办法也要反过来,即顺时针为滞后,逆时针为超前.七、讨论、心得1.在实验过程中,一定要耐心仔细,因为可能会出现李萨如图像与光轴的两个交点非常接近于原点,由于曲线本身的宽度,造成的视觉误差会非常大.所以在用光标测量数据的时候,一定要非常仔细耐心,尽可能让误差降到最小.2.在实验过程中,随着频率的增加,李萨如图像的显示光点也会随之减少,这个时候一定要适当调节扫描时间,尽量往小调,让扫描光点增加,形成比较完整的曲线,以便于测量与观察.3.在做第二个实验的时候,即使扫描时间已经调到了最小,仍然无法看见完整的曲线,这时,需要摁下示波器上display按钮,然后点击是否记录轨迹,然后就可以让点完整清晰地将曲线还原回来,从而减小误差.4.在计算过程中,注意认真仔细.计算量繁杂,容易导致计算错误,可以多设几个变量来解决.5.在绘制曲线过程中,如果直接用角速度w的话,有可能会出现小频率的点比较密集,大频率的点比较疏松,得到的曲线误差比较大,并且并不美观.当数据相差较大时,我采用了将横坐标求对数之后,再将新得到的数据作为横坐标绘制图像,则实验图像变得非常美观和清晰,并且具有说服力.6.通过本次实验,我了解到了频率特性测量的方法以与怎样求幅频特性|G<w>|和相频特性φ<w>的值,并且通过将自己实验所得曲线、实际计算曲线与matlab仿真之间的对比,将理论、实践、仿真融为一体,使我更加加深了频率响应曲线的认识.这样的方法,在以后的学习过程中,会应用的更加广泛,并且具有非常深远的意义.。

自动控制原理实验指导书(五个实验)

自动控制原理实验指导书(五个实验)

自动控制原理实验指导书电力学院自动控制原理实验室二○○八年三月目录实验一典型环节的电路模拟与软件仿真 (2)实验二线性定常系统的瞬态响应 (6)实验三线性系统稳态误差的研究 (8)实验四系统频率特性的测量 (11)实验五线性定常系统的串联校正 (13)附: THBDC-1控制理论.计算机控制技术实验平台简介 (16)实验一典型环节的电路模拟与软件仿真一、实验目的1.熟悉并掌握THBDC-1型控制理论·计算机控制技术实验平台及上位机软件的使用方法。

2.熟悉各典型环节的电路传递函数及其特性,掌握典型环节的电路模拟与软件仿真研究。

3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备1.THBDC-1型控制理论·计算机控制技术实验平台2.PC机1台(含上位机软件) USB数据采集卡37针通信线1根16芯数据排线USB接口线3.双踪慢扫描示波器1台(可选)4.万用表1只三、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.在上位机界面上,填入各典型环节数学模型的实际参数,据此完成它们对阶跃响应的软件仿真,并与模拟电路测试的结果相比较。

四、实验原理自控系统是由比例、积分、微分、惯性等典型环节按一定的关系连接而成。

熟悉这些环节对阶跃输入的响应,对分析线性系统将是十分有益的。

在附录中介绍了典型环节的传递函数、理论的阶跃响应曲线和环节的模拟电路图。

五、实验步骤1.熟悉实验台,利用实验台上的各电路单元,构建所设计比例环节(可参考本实验附录)的模拟电路并连接好实验电路;待检查电路接线无误后,接通实验台的电源总开关,并开启±5V,±15V直流稳压电源。

2.把采集卡接口单元的输出端DA1、输入端AD2与电路的输入端U i相连,电路的输出端U o则与采集卡接口单元中的输入端AD1相连。

连接好采集卡接口单元与PC上位机的通信线。

实验三频率特性曲线测试

实验三频率特性曲线测试

03实验三 频率特性曲线测试3.2.3 二阶闭环系统的频率特性曲线一.实验目的1. 了解和把握二阶闭环系统中的对数幅频特性)(ωL 和相频特性)(ωϕ,实频特性)Re(ω和虚频特性)Im(ω的计算。

2. 了解和把握欠阻尼二阶闭环系统中的自然频率ωn 、阻尼比ξ对谐振频率ωr 和谐振峰值L(ωr )的阻碍及ωr 和L(ωr ) 的计算。

3. 观看和分析欠阻尼二阶开环系统的谐振频率ωr 、谐振峰值L(ωr ),并与理论计算值作比对。

4. 改变被测系统的电路参数,画出闭环频率特性曲线,观测谐振频率和谐振峰值,填入实验报告。

二.实验内容及步骤1.被测系统模拟电路图的组成如图3-2-3所示,观测二阶闭环系统的频率特性曲线,测试其谐振频率r ω、谐振峰值)(r L ω。

2.改变被测系统的各项电路参数,画出其系统模拟电路图,及闭环频率特性曲线,並计算和测量系统的谐振频率r ω及谐振峰值)(r L ω,填入实验报告。

图3-2-3 二阶闭环系统频率特性测试电路实验步骤:(1)将数/模转换器(B2)输出OUT2作为被测系统的输入。

(2)构造模拟电路:按图3-2-3安置短路套及测孔联线,表如下。

(a )安置短路套 (b )测孔联线 模块号 跨接座号 1 A1 S4,S8 2 A2 S2,S11,S12 3 A3 S8,S9 5A6S2,S61 信号输入 B2(OUT2) →A1(H1)2 运放级联 A1(OUT )→A2(H1)3 运放级联 A3(OUT )→A6(H1)4 负反馈 A3(OUT )→A1(H2) 6 相位测量A6(OUT )→ A8(CIN1) 7A8(COUT1)→ B8(IRQ6)(3)运行、观看、记录:①将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT程序,在界面的自动操纵菜单下的线性操纵系统的频率响应分析实验项目,选择二阶系统,就会弹出‘频率特性扫描点设置’表。

在该表顶用户可依照自己的需要填入各个扫描点频率(本实验机选取的频率值f,以为分辨率),如需在特性曲线上标注显示某个扫描点的角频率ω、幅频特性L(ω)或相频特性φ(ω),那么可在该表的扫描点上方小框内点击一下(打√)。

《自动控制原理》实验指导书

《自动控制原理》实验指导书

《自动控制原理》实验指导书山西农业大学工程技术学院目录自动控制理论电子模拟实验指导书实验一、控制系统典型环节的模拟实验二、一阶系统的时域响应及参数测定实验三、二阶系统的瞬态响应分析实验四、PID控制器的动态特性实验五、典型环节频率特性的测试附录:扫频电源操作使用说明实验一 控制系统典型环节的模拟一、 实验目的1)、熟悉超低频扫描示波器的使用方法2)、掌握用运放组成控制系统典型环节的电子电路 3)、测量典型环节的阶跃响应曲线4)、通过实验了解典型环节中参数的变化对输出动态性能的影响二、 实验仪器1)、控制理论电子模拟实验箱一台 2)、超低频慢扫描示波器一台 3)、万用表一只三、 实验原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。

图中Z 1和Z 2为复数阻抗,它们都是由R 、C 构成。

基于图中A 点的电位为虚地,略去流入运放的电流,则由图1-1得:由上式可求得由下列模拟电 路组成的典型环节的传递函数及 其单位阶跃响应。

1)、比例环节比例环节的模拟电路如图1-2所示: 图1-1、运放的反馈连接(1) )(12Z Z u u S G i o =-=2=410820==12KKZ Z )S (G)(2 1+=1+1•=R 1+==21212212TS KCS R R R CS /R CS/R Z Z )S (G图1-2 比例环节2)、惯性环节取参考值R 1=100K ,R 2=100K ,C=1uF图1-3、惯性环节3)、积分环节取参考值R =200K ,C =1uF图1-4、积分环节)(3 11/1)(12TSRCS R CSZ Z S G ==== RC =T 积分时间常数式中4)、比例微分环节(PD ),其接线图如图及阶跃响应如图1-5所示。

参考值R 1=200K ,R 2=410K ,C =0.1uF图1-5 比例微分环节5)、比例积分环节,其接线图单位阶跃响应如图1-6所示。

实验三 典型环节(或系统)的频率特性测量

实验三  典型环节(或系统)的频率特性测量

实验三 典型环节(或系统)的频率特性测量一.实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。

2.学习根据实验所得频率特性曲线求取传递函数的方法。

二.实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。

2.用实验方法完成典型二阶系统开环频率特性曲线的测试。

3.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。

三、实验原理及说明1.实验用一阶惯性环节传递函数参数、电路设计及其幅相频率特性曲线:对于1)(+=Ts Ks G 的一阶惯性环节,其幅相频率特性曲线是一个半圆,见图3.1。

取ωj s =代入,得)()(1)(ωϕωωωj e r T j Kj G =+=(3-2-1)在实验所得特性曲线上,从半园的直径(0)r ,可得到环节的放大倍数K ,K =(0)r 。

在特性曲线上取一点k ω,可以确定环节的时间常数T ,kk tg T ωωϕ)(-=。

(3-2-2)实验用一阶惯性环节传递函数为12.01)(+=s s G ,其中参数为R 0=200K Ω,R 1=200K Ω,C=1uF ,参数根据实验要求可以自行搭配,其模拟电路设计参阅下图3.2。

在进行实验连线之前,先将U13单元输入端的100K 可调电阻顺时针旋转到底(即调至最大),使输入电阻R 0的总阻值为200K;其中,R1、C1在U13单元模块上。

U8单元为反相器单元,将U8单元输入端的10K 可调电阻逆时针旋转到底(即调至最小),使输入电阻R 的总值为10K;注明:所有运放单元的+端所接的100K 、10K 电阻均已经内部接好,实验时不需外接。

图3.22.实验用典型二阶系统开环传递函数参数、电路设计及其幅相频率特性曲线:对于由两个惯性环节组成的二阶系统,其开环传递函数为12)1)(1()(2221++=++=Ts s T Ks T s T K s G ξ )1(≥ξ 令上式中 s j ω=,可以得到对应的频率特性 )(22)(12)(ωϕωωξωωj e r T j T Kj G =++-=二阶系统开环传递函数的幅相频率特性曲线,如图所示。

频率特性 实验报告

频率特性 实验报告

频率特性实验报告频率特性实验报告引言:频率特性是指某个系统或信号在不同频率下的响应情况。

在电子工程领域中,频率特性的研究对于设计和分析电路、滤波器以及信号处理系统至关重要。

本实验旨在通过实际测量和分析来探究不同电路元件的频率特性,并深入理解频率对于电路性能的影响。

实验目的:1. 理解频率特性的概念和重要性;2. 掌握频率特性的测量方法和分析技巧;3. 研究不同电路元件的频率响应特性。

实验器材和方法:1. 实验器材:信号发生器、示波器、电阻、电容、电感等;2. 实验方法:通过改变信号发生器的频率,测量电路中的电压响应,并记录数据。

实验过程与结果:1. 实验一:RC低通滤波器的频率特性测量在实验中,我们搭建了一个RC低通滤波器电路,并通过改变信号发生器的频率,测量了电路中的电压响应。

实验结果显示,随着频率的增加,电压响应逐渐减小,且在截止频率附近有明显的衰减。

这说明RC低通滤波器对高频信号有较好的抑制作用。

2. 实验二:RL高通滤波器的频率特性测量在实验中,我们搭建了一个RL高通滤波器电路,并通过改变信号发生器的频率,测量了电路中的电压响应。

实验结果显示,随着频率的增加,电压响应逐渐增大,且在截止频率附近有明显的增益。

这说明RL高通滤波器对低频信号有较好的传递作用。

3. 实验三:LC并联谐振电路的频率特性测量在实验中,我们搭建了一个LC并联谐振电路,并通过改变信号发生器的频率,测量了电路中的电压响应。

实验结果显示,在谐振频率附近,电压响应达到最大值,且有明显的共振现象。

这说明LC并联谐振电路在谐振频率处具有较大的电压增益。

讨论与分析:通过以上实验,我们可以得出一些结论和发现:1. 不同类型的滤波器具有不同的频率特性,可以用于特定频率范围的信号处理;2. 截止频率是滤波器性能的重要参数,决定了滤波器对信号的抑制或传递能力;3. 谐振频率是共振电路的重要特性,具有较大的电压增益。

结论:频率特性是电子工程中重要的研究内容,对于电路设计和信号处理具有重要意义。

自动控制原理实验四_系统频率特性的测试

自动控制原理实验四_系统频率特性的测试

东南大学自动控制实验室实验报告课程名称:自动控制原理实验实验名称:系统频率特性的测试院〔系〕:自动化学院专业:自动化**:**:实验室:实验组别:同组人员:实验时间:2021/11/24评定成绩:审阅教师:目录一.实验目的和要求2二.实验原理2三.实验方案与实验步骤3四.实验设备与器材配置4五.实验记录4六.实验分析4七.预习与答复5八.实验结论5一.实验目的和要求实验目的:〔1〕明确测量幅频和相频特性曲线的意义〔2〕掌握幅频曲线和相频特性曲线的测量方法〔3〕利用幅频曲线求出系统的传递函数报告要求:〔1〕画出系统的实际幅度频率特性曲线、相位频率特性曲线,并将实际幅度频率特性曲线转换成折线式Bode图,并利用拐点在Bode图上求出系统的传递函数。

〔2〕用文字简洁表达利用频率特性曲线求取系统传递函数的步骤方法。

〔3〕利用上表作出Nyquist图。

〔4〕实验求出的系统模型和电路理论值有误差,为什么.如何减小误差.〔5〕实验数据借助Matlab作图,求系统参数。

二.实验原理在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的前提和难点。

建模一般有机理建模和辨识建模两种方法。

机理建模就是根据系统的物理关系式,推导出系统的数学模型。

辨识建模主要是人工或计算机通过实验来建立系统数学模型。

两种方法在实际的控制系统设计中,常常是互补运用的。

辨识建模又有多种方法。

本实验采用开环频率特性测试方法,确定系统传递函数,俗称频域法。

还有时域法等。

准确的系统建模是很困难的,要用反复屡次,模型还不一定建准。

模型只取主要局部,而不是全部参数。

另外,利用系统的频率特性可用来分析和设计控制系统,用Bode图设计控制系统就是其中一种。

幅频特性就是输出幅度随频率的变化与输入幅度之比,即,测幅频特性时,改变正弦信号源的频率测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值测相频有两种方法:〔1〕双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T和相位差Δt,则相位差。

实验三模拟信号光纤通信系统模拟光纤传输系统,即通过光纤信道...

实验三模拟信号光纤通信系统模拟光纤传输系统,即通过光纤信道...

实验三模拟信号光纤通信系统模拟光纤传输系统,即通过光纤信道传输模拟信号的通信系统,目前主要用于模拟电视传输。

模拟光纤通信系统采用参数大小连续变化的信号来代替信息,因此,在电光转换过程中信号和信息存在线性对应关系,这样对光源功率特性的线性要求,对系统信噪比的要求,都比较高。

由于噪声的累积,和数字光纤通信系统相比,模拟光纤通信系统的传输距离较短。

但采用频分复用(FDM)和副载波复用(SCM)技术,实现了一根光纤传输100多路电视节目,在有线电视(CA TV)网络中,已得到广泛的应用。

本实验主要是语音信号的传输,分两部分:首先了解各种模拟信号的光纤传输,其次进行模拟电话信号的传输。

第一部分、模拟信号光纤传输系统实验一、实验目的1、了解模拟信号光纤系统的通信原理2、学习并掌握完整的模拟信号光纤通信系统的基本结构3、学习并掌握系统频率特性的测试二、实验仪器1、ZYE4301F(1310)型光纤通信原理实验箱2、20MHz双踪模拟示波器3、麦克风和耳机(最好自备)三、实验原理本实验通过完成各种不同模拟信号的光纤传输,以了解和熟悉光纤传输模拟信号系统的组成。

用双踪示波器观察光发送模块与光接收模块各点的信号波形,并进行比较。

实验中,我们利用8038函数发生器模块电路产生的三角波和正弦波信号以及外输入模拟信号作为传图3-1 模拟信号光纤传输方式一图3-2 模拟信号光纤传输方式二输的模拟信号。

模拟信号的传输,可以有两种方式。

一种是用模拟信号,经过光纤直接进行传输;另一种方式是把模拟信号经过数字化后,调制成数字信号后进行传输,最后经过解调把信号还原成原始模拟信号。

本实验中只考虑模拟信号光纤传输方式中的第一种方法,而第二种方法在后续实验中有详述。

图3-1和图3-2分别是模拟信号光纤传输的两种方式。

本实验中的三角波、正弦波采用8038函数发生器模块电路,信号的幅度0 ~12V连续可调,频率在14Hz~300KHz连续可调。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三-模拟一阶系统频率特性测试实验
实验三模拟一阶系统频率特性测试实验
一、实验目的
学习频率特性的测试方法,根据所测量的数据,绘制一阶惯性环节的开环伯德图,并求取系统的开环传递函数。

二、实验内容
利用频域法的理论,从一阶系统的开关频率特性分析闭环系统的特性。

根据给定的一阶频域测试电路,使用所给的元器件搭建实验电路。

利用信号发生器所产生的正弦波作为输入信号,用数字存储示波器观察并测量系统在不同频率输入信号的作用下,输出信号的幅值和相位变化情况。

1.频域分析法原理
频率特性的频域分析方法是一种图解分析方法,它根据系统的开环频率特性去判断闭环系统的性能,能够方便地分析系统中的参数对系统暂态响应的影响,从而找到改善系统性能的途径。

实验表明,对于稳定的线性定常系统,输入正弦信号所产生系统输出的稳态分量仍然是与输入信号同频率的信号,而幅值和相位的变化则是频率ω的函数。

因此,定义正弦信号输入下,系统的稳态输出与系统的输入之比为系统的频率特性,并记为
)
()()(ωωωj U j Y j G =
式中,)(ωj G —系统的频率特性;)(ωj Y —系统的稳态输出;)(ωj U —系统的正弦输入
对一个线性系统来说,在正弦信号的作用下,系统的稳态输出仍然是一个正弦函数,其频率与输入信号的频率相同,一般情况下,输出的幅值小于输入幅值,输出的相位滞后于输入相位。

当输入信号的幅值不改变而频率发生变化时,输出信号的幅值一般会随输入正弦信号频率增加而减小;相位滞后角度一般都会随输入正弦信号频率的增加而增加。

一阶模拟环节电路图如下图所示
R610k
R710k
R3
10k
10k R815k
R110k R2
10k
C1
1uF
U c(t)
U r(t)
其中F 1为惯性环节;F 2为放大环节(放大倍数K=5.1)。

这个系统的传递函数为:
11/)(146
18
468414+-=⎪⎪⎭
⎫ ⎝
⎛-
⨯⎪⎪⎭⎫ ⎝⎛+=s C R R R R R R R Cs R R R s G
将元器件参数R 1=R 4=R 6=10k Ω,R 8=51k Ω和C 1=1μF 代入之后,可得
1
)(+=
Ts K s G
其中,K=5.1为放大倍数,T=0.01s 为时间常数。

开环传递函数的频率特性为:
T
j K
j G ωω+=
1)(
幅频特性为:
()
2
1)(T K A ωω+=
相频特性为:
)arctan()(T ωωϕ-=
2.频率特性的测试方法
频率特性除了用计算的方法求出外,还可以用实验的方法测得,
本次实验所用线路如上图。

在实验中采用信号发生器产生的频率可调、幅值不变的正弦波作为输入信号,那么在系统的输出端就会得到一个相应的正弦输出,其波形如下图所示:
具体做法:
①测量数据时断开反馈R 2线,使系统成开环状态;
②输入信号幅值:2×U r =2V (峰-峰值); ③输入正弦信号频率(Hz ):20、40、50、60、70、80、90、100、110、150;
④测量幅频特性时,可以读取输入、输出信号的峰-峰值之比,
r
c
r c U U U U A =⨯⨯=
22;
⑤测量相频特性时,从示波器中量取输入、输出峰值之间的距离α和曲线的周期T (可以用横纵坐标的格数div 来表示),根据下面的计算
x
y
O
公式,可以得到对应于某一特定频率的相位滞后数值。

o
360⨯=
T α
ϕ
3.系统与测试仪器的联接方式
实验时,CH1和CH2两个通道都要与所搭测试电路相连接;其中,CH1接信号发生器的输出信号(此信号也作为输入信号,同时接入实验电路),CH2接实验电路的输出信号。

两个通道都要设置在交流耦合方式,同时调出测量菜单“频率”和“峰-峰值”。

按照设定的频率值进行测量,将实测频率值、输入输出的峰-峰值以及周期和相移等数据填入表1,并计算对应于各实验频率处的理论频率特性与实测频率特性,
三、实验仪器
双路输出稳压电源×1 2×1.5V 干电池×1 运算放大器741×3 钮子开关×1 色环电阻×6 电容×1
数字万用表×1
面包板×1
泰克示波器×1
信号发生器×1
尖嘴镊子×1
四、数据分析
1.频率特性测量
表1 频率特性测量数据记录表
设定频率值(Hz)20 40 50 60 70 80 90 100 110 150 实测频率值(Hz)19.2 39.8 50.0 60.7 71.0 81.0 91.0 102.0 113.0 151.0
输入峰-峰值(V) 1.92 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 周期T(ms) 47.5 24.5 19.5 16.0 14.0 12.0 10.5 9.5 8.5 6.5
输出
峰-峰值 6.32 4 3.28 2.8 2.4 2.1 1.9 1.7 1.56 1.2 相移α(ms) 8 5 4 3.5 3.3 3 2.5 2.5 2 1.5
频率特性幅频A 3.14 2 1.64 1.4 1.2 1.05 0.95 0.85 0.78 0.6 相频ϕ-56.69 -72.29 -71.64 -75.98 -83.66 -86.40 -81.08 -82.80 -79.12 -81.82
元件实测参数
R1=9.8(kΩ) R3=9.7(kΩ) R4=8.6(kΩ) R6=9.7(kΩ)
R7=9.8(kΩ) R8=50(kΩ) C=1.00(μF)
理论计算幅频A 3.18 1.89 1.55 1.31 1.13 1.00 0.89 0.80 0.73 0.54 相频ϕ-51.47 -68.29 -72.33 -75.14 -77.18 -78.74 -79.97 -80.85 -81.76 -83.94
数据分析:
五、实验思考
1. 根据元件实测参数,计算并绘制系统幅频特性与相频特性的理论曲线:
2. 在所绘制的幅频、相频特性理论曲线上,找出给定的频率点所对应的幅频、相频值,并与实测的幅频、相频值进行比较,观察二者的差别:
说明误差产生的原因:
1)实验测量数据的误差,包括读数误差,图中实测的相频特性上下轻微波动就极有可能是这个原因;
2)系统本身电子元器件的误差,例如电容的标称值与实际值不同,有微小误差;
3)实际作图的误差;
4)每一个频率转折点会受到其它转折点的影响,使误差增大。

相关文档
最新文档