数列—递推公式运用(难度大)

合集下载

专题由递推关系求数列的通项公式(含答案)

专题由递推关系求数列的通项公式(含答案)

专题 由递推关系求数列的通项公式一、目标要求通过具体的例题,掌握由递推关系求数列通项的常用方法:二、知识梳理求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。

三、典例精析1、公式法:利用熟知的公式求通项公式的方法称为公式法。

常用的公式有⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 及等差数列和等比数列的通项公式。

例1 已知数列{n a }中12a =,2+2n s n =,求数列{n a }的通项公式评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。

2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。

它是求型如()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。

例2 已知数列{n a }中112a =,121++32n n a a n n +=+,求数列{n a }的通项公式评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a3、.累乘法:利用恒等式321121n n n a a a a a a a a -=⋅⋅⋅⋅⋅⋅⋅⋅()0n a ≠求通项公式的方法叫累乘法。

它是求型如()1n n a g n a +=的递推数列的方法(){}()g n n 数列可求前项积例3 已知数列{n a }中1n n s na =- ,求数列{n a }的通项公式评注 此类问题关键是化()1nn a g n a -=,且式子右边累乘时可求积,而左边中间项可消。

4、转化法:通过变换递推关系,将非等差(等比)数列转化为等差或等比有关的数列而求得通项公式的方法称为转化法。

数列的递推公式及通项公式

数列的递推公式及通项公式

数列的递推公式及通项公式数列是由一系列按照一定规律排列的数字组成的序列。

数列中的每个数字称为项,而这些项之间的关系可以通过递推公式和通项公式来描述。

本文将介绍数列的递推公式和通项公式,并通过具体的例子来解释其应用。

一、递推公式递推公式是指通过前一项或多项来确定后一项的公式。

递推公式可以分为线性递推和非线性递推两种类型。

1.1 线性递推线性递推是指数列的每一项都可以通过前一项乘以某个常数再加上某个常数得到。

其一般形式如下:an = a(n-1) * r + d其中,an代表数列中的第n项,a(n-1)代表数列中的第n-1项,r为公比,d为公差。

例如,给定数列1,3,5,7,9,...,其中第一项a1为1,公差d 为2。

根据数列的特点可以确定递推公式为:an = a(n-1) + 2通过递推公式,可以依次计算出数列的每一项。

1.2 非线性递推非线性递推是指数列的每一项不能用前一项的线性组合表示,而是通过其他的方式来确定。

例如,斐波那契数列就是一个常见的非线性递推数列。

斐波那契数列的递推公式为:an = a(n-1) + a(n-2)其中,a1 = 1,a2 = 1。

根据递推公式,可以计算出斐波那契数列的每一项。

二、通项公式通项公式是指通过数列的位置n来直接计算数列中的第n项的公式。

通项公式可以分为线性通项和非线性通项两种类型。

2.1 线性通项线性通项是指数列的每一项可以通过位置n的线性关系来计算。

其一般形式如下:an = a1 + (n-1) * d其中,an代表数列中的第n项,a1为数列首项,d为公差。

以等差数列为例,假设已知数列首项a1为2,公差d为3,可以通过线性通项公式an = 2 + (n-1) * 3计算出数列的任意一项。

2.2 非线性通项非线性通项是指数列的每一项不能用位置n的线性关系来计算,而是通过其他的方式来确定。

例如,等比数列就是一个常见的非线性通项数列。

等比数列的通项公式为:an = a1 * r^(n-1)其中,an代表数列中的第n项,a1为数列首项,r为公比。

使用数列的递推公式求解数列问题

使用数列的递推公式求解数列问题

使用数列的递推公式求解数列问题数列问题是数学中常见的一类问题,通过递推公式可以求解。

递推公式表示数列中的每个元素与前一或多个元素之间的关系,从而可以依次计算出数列的每个元素。

本文将介绍使用递推公式求解数列问题的方法和步骤。

首先,我们来定义一个数列。

数列是由一系列数字按照一定顺序排列而成的集合,可以用如下形式表示:a1, a2, a3, ..., an其中ai表示数列中的第i个元素。

数列中的元素之间可能存在一定的关系,这种关系可以通过递推公式来表示。

递推公式是数列中相邻元素之间的关系式,用来计算第n个元素。

递推公式通常可以分为两类:线性递推公式和非线性递推公式。

线性递推公式的形式如下:an = c1 * an-1 + c2 * an-2 + ... + ck * an-k其中c1, c2, ..., ck是常数。

这种公式表示第n个元素是前k个元素的线性组合。

要求使用这种公式求解数列问题,我们需要确定递推公式中的常数c1, c2, ..., ck。

通常可以通过已知条件来确定这些常数。

非线性递推公式的形式比较灵活,可以根据具体问题来确定。

例如,斐波那契数列的递推公式为:an = an-1 + an-2这个公式表示数列中的第n个元素等于前两个元素之和。

类似地,我们可以根据不同的数列问题确定递推公式的形式。

接下来,我们来看一个具体的例子。

假设有一个数列,前四个元素依次为1,3,5,7。

现在我们需要求解数列中的第n个元素。

根据已知条件,我们可以设定数列的递推公式为:an = an-1 + 2其中a1 = 1是已知条件。

通过这个递推公式,我们可以计算出数列中的任意一个元素。

下面是根据递推公式计算数列中的一些元素的结果:a2 = a1 + 2 = 1 + 2 = 3a3 = a2 + 2 = 3 + 2 = 5a4 = a3 + 2 = 5 + 2 = 7a5 = a4 + 2 = 7 + 2 = 9通过不断代入递推公式,我们可以计算出数列中任意一个元素的值。

递推数列求通项公式-高考数学一题多解

递推数列求通项公式-高考数学一题多解

递推数列求通项公式-高考数学一题多解一、攻关方略数列学习中难度较高的一个内容是递推数列,由递推关系求通项公式是一种十分重要的题型,解题方法丰富多彩,注重分析递推式的结构特点,合理构造得到等差或等比等常见数列是解题的重要策略.下面对一些常见的由递推关系求通项公式的求法做一些归纳.第一类:型如()1n n a a f n +=+的一阶递推式,可改写为()1n n a a f n +-=的形式,左端通过“累加”可以消项;右端()f n 是关于n 的函数,可以求和.故运用“累加法”必定可行,即()()()112132111()n n n n k a a a a a a a a a f k --==+-+-+⋅⋅⋅+-=+∑.第二类:型如1()n n a g n a +=的递推式,可改写为1()n na g n a +=的形式.左端通过“迭乘”可以消项;右端通常也可以化简,故运用“迭乘法”必定可行,即3211121(1)(2)(1)(2)n n n a a a a a a n n g g a a a -=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅-≥.第三类:型如1n n a pa q +=+(1p ≠,0q ≠)的递推式,可由下面两种构造法求通项公式.构造法一:由1n n a pa q +=+及1n n a pa q -=+,两式相减得()11n n n n a a p a a +--=-,得{}1n n a a +-是首项为21a a -,公比为p 的等比数列,先求{}1n n a a +-的通项公式,再利用“累加法”求{}n a 的通项公式.构造法二:若1p =,则显然是以1a 为首项、q 为公差的等差数列;若1p ≠,0p ≠,0q ≠,则构造数列{}n a λ+,满足()1n n a p a λλ++=+.运用待定系数法,解得1q p λ=-,则1n q a p ⎧⎫+⎨⎬-⎩⎭是首项为11q a p +-,公比为p 的等比数列.第四类:型如1nn n pa a a q+=+(0p ≠,0q ≠,0n a ≠)的递推式,运用取倒数,构造数列1n a ⎧⎫⎨⎬⎩⎭,满足111n n q a pa p +=+,运用换元法,即令1n n b a =,得11n n q b b p p +=+,从而转换为第三类.第五类:型如1rn n a pa +=(0p >,0r ≠,1r ≠)的递推式,运用两边取对数法得1lg lg lg n n a r a p +=+,令lg n n b a =,转化为1lg n n b rb p +=+型,即第三类,再运用待定系数法.第六类:型如1n n a pa qn r +=++(1p ≠,0p ≠,0q ≠)的递推式,可构造数列{}n a n λμ++,满足()1(1)n n a n p a n λμλμ++++=++,运用待定系数法解得1q p λ=-,21(1)r qp p μ=+--,从而由等比数列求通项公式;进一步推广,若递推式中包含n 的二次项、三次项,则构造的数列中也同样包含对应次数项.第七类:型如1()n n a pa f n +=+(1p ≠,0p ≠)的递推式,可在等式两边同除以1n p +,构造数列nn a p ⎧⎫⎨⎬⎩⎭,满足111()n n n n n a a f n p p p +++=+,令n n n a b p =,则转化为11()n n n f n b b p ++=+,即第一类,再利用“累加法”求通项公式.第八类:型如满足:11a m =,22a m =,21n n n a pa qa ++=+(p 、q 是常数)的递推式,则称数列{}n a 为二阶线性递推数列,可构造数列{}1n n a a λ+-,满足()11n n n n a a a a λμλ+--=-,则,,p q λμλμ+=⎧⎨=-⎩即λ,μ为方程20x px q --=的两个根,此方程称之为特征方程,则数列{}n a 的通项公式n a 均可用特征根求得(即转化为第七类进一步求解).第九类:型如1n n n ra sa pa q++=+(0p ≠,0q ≠,0r ≠,0s ≠)的递推式,利用不动点法,其中rx sx px q +=+的根为该数列的不动点,若该数列有两个相异的不动点μ,则n n a a v μ⎧⎫-⎨⎬-⎩⎭为等比数列;若该数列有唯一的不动点μ,即方程等根时,1n a μ⎧⎫⎨⎬-⎩⎭为等差数列,这就是不动点求递推数列通项公式的方法.除上述9种类型之外还有换元法、数学归纳法(归纳一猜想一论证)等.给出相类似的递推式必有相应的破解之道,这是模型思想的运用,对所给的递推式借助于变形、代换、运算等方法转化为等差数列、等比数列这两类基本数列(模型)而求解.切变形、代换、运算的手段都是构造法的体现,真可谓:递推数列变化无穷,变形、代换方法众多.模型思想是根主线,合理构造顿显坦途.【典例】(2021·全国甲卷T17)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a是等差数列:②数列是等差数列;③213a a =.注:若选择不同的组合分别解答,则按第一个解答计分.选①②作条件证明③:(一)待定系数法解法一:【解析】待定系数法+n a 与n S 关系式(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.解法二:【解析】待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d =-,将1(1)2n n n S na d -=+1(1)n d -,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨=,解得112d d a ==.所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n +-=所以是等差数列.选②③作条件证明①:(二)定义法解法一:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43ab =-;当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a =-<不合题意,舍去.综上可知{}n a 为等差数列.解法二:求解通项公式因为213a a ===也为等差数列,所以公差1d =()11n d =-=,故21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意.【点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n 的一次函数,直接(0)an b a =+>,平方后得到n S 的关系式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S进而由等差数列定义进行证明;选②③时,法一:利用等差数列的通项公式是关于n 的一次函数,(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a1d =11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.【针对训练】(2022年全国高考乙卷)1.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <2.设数列{an }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{an }的通项公式并加以证明;(2)求数列{2nan }的前n 项和Sn .3.已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.4.已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .(2022全国甲卷)5.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.6.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.7.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.8.对负整数a ,数43a +、77a +、283a a ++依次成等差数列.(1)求a 的值;(2)若数列{}n a 满足()112n n n a aa n *++=-∈N ,1a m =,求{}n a 的通项公式;(3)在(2)的条件下,若对任意n *∈N ,有2121n n a a +-<,求m 的取值范围.9.设0b >,数列{}n a 满足1a b =,()1121n n n nba a n a n --=≥+-(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,121n n a b +≤+.10.设数列{}n a 满足:11a =,12n n n a a -=-+(2n ≥),数列{}n b 满足:1(1)3n n n b a +=-⋅.求数列{}n b 的通项公式.参考答案:1.D【分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误;178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,47b b <故D 正确.2.(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可.【详解】(1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立;[方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+.[方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=.由134n n a a n +=-得1114333n n n n n a a n +++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯,……1114(1)(2)333n n nn n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯+-⨯⎢⎥⎣⎦ ,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n n S a a a a =++++ ()()()()2132431n n b b b b b b b b +=-+-+-++- 11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122n n n pn q p S S ----=+,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n nx x f x x x x x x x-=++++=≠- ,()121211(1)()1231(1)n n nn x x nx n x f x x x nxx x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦' ,所以12n b b b +++L 21122322n n -=+⋅+⋅++⋅ 1(2)12(1)2n n f n n +==+-+'⋅.故234(2)2222nn S f =++'+++ ()1212412(1)212n n n n n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解;方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式;方法三:由134n n a a n +=-化简得1114333n n n n n a a n +++-=-,根据累加法即可求出数列{}n a 的通项公式;方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式.(2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法;方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n nx x f x x x x x x x-=++++=≠- 的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.3.(1)122,5,31n b b b n ===-;(2)300.【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可;(2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和.【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+,所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===,所以{}n b 是以2为首项,3为公差的等差数列,于是122,5,31n b b b n ===-.[方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=.由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知,数列从第一项起,若n 为奇数,则其后一项减去该项的差为1,若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N .所以11213(1)11222b a a -==++=+=,322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-.(2)[方法一]:奇偶分类讨论20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++ 1231012310(1111)b b b b b b b b =-+-+-++-+++++ 110()102103002b b +⨯=⨯-=.[方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+,所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列.从而数列{}n a 的前20项和为:201351924260()()S a a a a a a a a =+++++++++ 1091091013102330022⨯⨯=⨯++⨯+⨯=.【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质;方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.4.(1)2n n a =;(2)100480S =.【分析】(1)利用基本元的思想,将已知条件转化为1,a q 的形式,求解出1,a q ,由此求得数列{}n a 的通项公式.(2)方法一:通过分析数列{}m b 的规律,由此求得数列{}m b 的前100项和100S .【详解】(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍),所以2n n a =,所以数列{}n a 的通项公式为2n n a =.(2)[方法一]:规律探索由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为(0,1],则10b =;23,b b 对应的区间分别为(0,2],(0,3],则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为(0,4],(0,5],(0,6],(0,7],则45672b b b b ====,即有22个2;8915,,,b b b 对应的区间分别为(0,8],(0,9],,(0,15] ,则89153b b b ==== ,即有32个3;161731,,,b b b 对应的区间分别为(0,16],(0,17],,(0,31] ,则1617314b b b ==== ,即有42个4;323363,,,b b b 对应的区间分别为(0,32],(0,33],,(0,63] ,则3233635b b b ====L ,即有52个5;6465100,,,b b b L 对应的区间分别为(0,64],(0,65],,(0,100] ,则64651006b b b ====L ,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.[方法二]【最优解】:由题意,2n m ≤,即2log n m ≤,当1m =时,10b =.当)12,21k k m +⎡∈-⎣时,,m b k k *=∈N ,则()()()()1001234573233636465100S b b b b b b b b b b b b =++++++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.[方法三]:由题意知)1,2,2k k m b k m +⎡=∈⎣,因此,当1m =时,10b =;[2,4)m ∈时,1m b =;[4,8)m ∈时,2m b =;[8,16)m ∈时,3m b =;[16,32)m ∈时,4m b =;[32,64)m ∈时,5m b =;[64,128)m ∈时,6m b =.所以1001234100S b b b b b =+++++ 0(11)(222)(666)=++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.所以数列{}n b 的前100项和100480S =.【整体点评】(2)方法一:通过数列{}n a 的前几项以及数列{}m b 的规律可以得到12100,,,b b b 的值,从而求出数列{}m b 的前100项和,这是本题的通性通法;方法二:通过解指数不等式可得数列{}m b 的通项公式,从而求出数列{}m b 的前100项和,是本题的最优解;方法三,是方法一的简化版.5.(1)证明见解析;(2)78-.【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)法一:由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以,当12n =或13n =时,()min 78n S =-.[方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,即有1123210,0a a a a <<<<= .则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.6.(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【分析】(1)由已知212n nS b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n n b b b b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【详解】(1)[方法一]:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb b b b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n ∈N 所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;[方法二]【最优解】:由已知条件知1231-⋅=⋅⋅⋅⋅ n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥ n n b S S S S n .②由①②得1nn n b S b -=.③又212n nS b +=,④由③④得112n n b b --=.令1n =,由11S b =,得132b =.所以数列{}n b 是以32为首项,12为公差的等差数列.[方法三]:由212n nS b +=,得22=-n n n S b S ,且0n S ≠,0n b ≠,1n S ≠.又因为111--=⋅⋅=⋅ n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S .故数列{}n b 是以32为首项,12为公差的等差数列.[方法四]:数学归纳法由已知212n n S b +=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+.下面用数学归纳法证明.当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S 331(1)1222k k k k ++⋅==+++.综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b n S b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【整体点评】(1)方法一从212n nS b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论;方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解;方法三由212n nS b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论.(2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;7.(1)11()3n n a -=,3n nn b =;(2)证明见解析.【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==.(2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++ ,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S ,230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++=⎪ ⎪⎝⎭⎝⎭ 012111012222333---++++ 111233---+n n n n .设0121111101212222Γ3333------=++++ n n n ,⑧则1231111012112222Γ33333-----=++++ n n n .⑨由⑧-⑨得1121113312111113322Γ132********--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭- n n n n nn n .所以211312Γ432323----=--=-⨯⨯⨯n n n n n n .因此10232323--=-=-<⨯⨯n n n n nS n n nT .故2nn S T <.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++ ,①231112133333n n n n nT +-=++++ ,②①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(14323n n nn T =--⋅,所以2n n S T -=3131(1)(1043234323n nn n n n ----=-<⋅⋅,所以2nn S T <.[方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法设()231()1-=++++=- n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦,则12121(1)()123(1)+-+-+=++++='- n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.8.(1)2a =-(2)()()()1212n nn a m n -=⋅-+-⋅-(3)163m <【分析】(1)根据等差中项的性质可出关于a 的等式,结合a 为负整数可得出a 的值;(2)推导出数列()2n n a ⎧⎫⎪⎪⎨-⎪⎪⎩⎭为等差数列,确定该数列的首项和公差,即可求得数列{}n a 的通项公式;(3)由2121n n a a +-<对*n ∈N 恒成立结合参变量分离法可得出1243n m +<,求出1243n +的最小值,可得出实数m 的取值范围.【详解】(1)解:由题意可得()21414383a a a a +=++++,整理可得2280a a --=,a 为负整数,解得2a =-.(2)解:因为()1122n n n a a ++=-+-,等式两边同时除以()12n +-可得()()11122n nn n a a ++-=--,所以,数列()2n n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭是首项为2m -,公差为1的等差数列,故()()122n n a m n =-+--,因此,()()()1212n n n a m n -=⋅-+-⋅-.(3)解:由2121n n a a +-<对*n ∈N 恒成立得()()()()()()22122212222222n n n n m n m n +--⋅-+-<⋅--⋅⋅+-对n *∈N 均成立.()2220n --> ,不等式两边同除()222n --,得()()()482222m n m n +-⋅<+-⋅-,得1243n m +<对n *∈N 恒成立,当1n =时,1243n +取最小值163,163m ∴<.9.(1)11(1)011n n n b a nb b b b b =⎧⎪=⎨->≠⎪-⎩且(2)证明见解析【分析】(1)由题设形式可以看出,题设中给出了关于数列a n 的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的.【详解】(1)()1121n n n nba a n a n --=≥+- 1111(2)n n n n n a b b a --∴=+⨯≥当1b =时,11(2)1n n n n n a a -=+≥-,∴数列n n a ⎧⎫⎨⎬⎩⎭是以11a 为首项,以1为公差的等差数列,1(1)1n n n n a ∴=+-⨯=,即1n a =,当0b >,且1b ≠时,11111(2)11n n n n n a b b b a -⎛⎫-+=+≥ --⎝⎭即数列11n n a b ⎧⎫+⎨⎬-⎩⎭是以11111(1)a b b b +=--为首项,公比为1b 的等比数列,111111(1)(1)n n n n a b b b b b b -⎛⎫∴+=⨯= ⎪---⎝⎭即(1)1n n nnb b a b -=-,∴数列{}n a 的通项公式是()111011n n n b a nb b b b b =⎧⎪=⎨->≠⎪-⎩且(2)证明:当1b =时,不等式显然成立当0b >,且1b ≠时,(1)1n n nnb b a b -=-,要证对于一切正整数n ,121n n a b +≤+,只需证1(1)211n n n nb b b b+-⨯≤+-,即证()11121011n nn n b b nb b b b +--≤+⨯>--)()1111n n b bb +-+⨯- ()1111n n b b b +-=+⨯-()()11211n n n b b b b +--=+⨯++⋯++()()22121121n n n n n n b b b b b b b -++--=++⋯+++++⋯++()12211111n n n n n b b b b b b bb b --⎡⎤⎛⎫=++⋯+++++⋯++ ⎪⎢⎥⎝⎭⎣⎦(222)2n n b nb ≥++⋯+=∴不等式成立,综上所述,对于一切正整数n ,有121n n a b +≤+,【点睛】本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.10.223n n b =-⋅.【分析】利用辅助法,对于数列{}n a 的递推公式,两边同时除以2n ,根据数列构造法,可得答案.【详解】∵12n n n a a -+=,两边同时除以2n 得1111222n n n n a a --+⋅=.令2n n n a c =,则1112n n c c -=-+.两边同时加上23-得1212323n n c c -⎛⎫-=-⋅- ⎪⎝⎭.∴数列23n c ⎧⎫-⎨⎬⎩⎭是以123c -为首项,12-为公比的等比数列.∴112211133232n n n c c -⎛⎫⎛⎫⎛⎫-=-⋅-=⋅- ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴211332n n c ⎛⎫=+⋅- ⎪⎝⎭.∴2122(1)33n n n n n a c ==⋅+⋅-⋅.又∵1(1)3n n n b a +=-⋅,∴12(1)233n n n n b a =⋅--=-⋅,。

利用数列递推公式解决递推数列问题

利用数列递推公式解决递推数列问题

利用数列递推公式解决递推数列问题数列是数学中重要的概念之一,它由一系列有规律的数字组成,常常在各个学科和实际问题中使用。

解决递推数列问题是数学中的一项重要任务,而利用数列递推公式可以有效地解决这类问题。

本文将介绍数列递推公式的概念及其应用,并通过实例来解析其中的具体步骤。

一、数列递推公式的概念数列递推公式是指通过前几项数值和数列的规律来确定后面项数值的一种数学表达式。

在解决递推数列问题时,我们通常需要先分析给定的前几项数值,找到其中的规律,然后根据这个规律构建递推公式。

数列递推公式使得我们能够通过已知的数值计算出后续的数值,从而解决诸如求和、求递推数列第n项等问题。

二、数列递推公式的应用数列递推公式在各个学科中都有广泛的应用。

在数学中,递推数列是数列中的一种特殊形式,通过数列递推公式我们可以解决求递推数列的第n项、等差数列、等比数列等问题。

在物理学中,数列递推公式可以帮助我们求解加速度、速度等物理量随时间变化的规律。

在经济学中,数列递推公式则可以用来分析经济增长模型、利率变化规律等。

三、数列递推公式的解题步骤解决递推数列问题时,我们通常需要遵循以下几个步骤:1. 观察数列的前几项,寻找其中的规律。

可以通过计算相邻数值的差或者比值来发现规律。

例如,对于等差数列,相邻项之间的差是一个常数;对于等比数列,相邻项之间的比值是一个常数。

2. 基于观察到的规律,构建数列递推公式。

递推公式通常包含递推关系和初始项。

递推关系描述了当前项与前几项之间的关系,而初始项则是已知的数列中第一个或几个数值。

3. 利用递推公式计算出数列中的后续项。

通过不断代入递推关系,我们可以计算出数列中的任意项。

4. 验证数列递推公式的正确性。

可以通过计算递推数列的前几项,并与已知的数值进行比较验证公式的正确性。

通过以上步骤,我们可以解决各种递推数列问题,从简单的等差数列到复杂的非线性递推数列都可以应用数列递推公式进行求解。

四、实例分析以求解一个等差数列的第n项为例,说明数列递推公式的具体应用过程。

如何总结高一数学的数列递推关系与应用

如何总结高一数学的数列递推关系与应用

如何总结高一数学的数列递推关系与应用在高一数学的学习中,数列递推关系及其应用是一个重要且具有一定难度的知识点。

要想学好这部分内容,我们需要深入理解其概念,掌握常见的递推关系类型,并能够灵活运用它们解决各种实际问题。

首先,我们来明确一下什么是数列递推关系。

简单来说,数列递推关系就是通过已知的项,按照一定的规则推出后续的项。

比如,对于数列{aₙ},如果给出了 a₁的值,以及一个关于 aₙ和 aₙ₋₁(或者其他前面的项)的关系式,那么就可以依次求出后面的项。

常见的数列递推关系类型有很多。

等差数列的递推关系是 aₙ =aₙ₋₁+ d(d 为公差),等比数列的递推关系是 aₙ = aₙ₋₁ × q(q为公比)。

除了这两种基本的数列,还有一些更复杂的递推关系,比如线性递推关系(形如 aₙ = paₙ₋₁+ q,其中 p、q 为常数)、非线性递推关系(如 aₙ = aₙ₋₁²+ 1 等)。

在学习数列递推关系时,理解其通项公式的推导过程是非常关键的。

以等差数列为例,我们知道 a₁的值,公差为 d,那么 a₂= a₁+ d,a₃= a₂+ d = a₁+ 2d,以此类推,可以得到 aₙ = a₁+(n 1)d。

这个通项公式就是通过对递推关系的不断累加得到的。

对于等比数列,同样可以通过类似的方法推导出通项公式 aₙ = a₁ × qⁿ⁻¹。

掌握了数列递推关系的类型和通项公式的推导,接下来就是要学会应用它们解决实际问题。

在数学竞赛或者高考中,经常会出现与数列递推关系相关的题目。

比如,让我们求数列的某一项的值,或者判断一个数列是否满足某种递推关系。

这时候,我们就需要根据已知条件,选择合适的递推关系类型,然后运用相应的方法进行求解。

例如,有这样一道题目:已知数列{aₙ}满足 a₁= 1,aₙ =2aₙ₋₁+ 1(n ≥ 2),求 a₅的值。

首先,我们可以根据递推关系依次求出 a₂、a₃、a₄,最后求出 a₅。

数列—递推公式运用

数列—递推公式运用

数列—递推公式运用数列是数学中一个重要的概念,它是一些按照一定规律排列的数的集合。

数列可以用递推公式来描述,这种公式指出了数列中每个元素与前面的元素之间的关系。

递推公式可以用来求解数列的任意一项,此外,根据递推公式还可以研究数列的性质,并推导出一般的规律。

本文将探讨数列的递推公式的运用,分析其中的难点。

首先,让我们来了解一下数列的概念。

数列是由一系列按照一定规律排列的数组成的集合,其中每个数称为数列的项。

数列的项按照一定的顺序排列,可以用下标来表示。

例如,数列的第一项用a1表示,第二项用a2表示,依此类推。

数列的递推公式指出了数列中每个项与前面的项之间的关系,一般可以用an = f(an-1)表示,其中an表示数列的第n项,f表示关系函数。

数列的递推公式在数学中应用广泛。

例如,斐波那契数列就是用递推公式来定义的。

斐波那契数列的递推公式是an = an-1 + an-2,其中a1 = 1,a2 = 1、通过这个递推公式,可以依次求解出斐波那契数列的每一项。

斐波那契数列是一个著名的数列,它有许多特殊的性质,可以在许多不同的领域中应用。

数列的递推公式运用的难点在于找到递推公式。

有时候,递推公式可以由数列的性质直接得到,例如,斐波那契数列的递推公式可以通过对数列进行分析得到。

但是,并不是所有的数列都能轻易地得到递推公式。

有时候,需要观察数列中的规律,进行一定的变形和推导,才能找到递推公式。

这需要数学家具备较强的数学思维和分析能力。

另外,数列的递推公式还可以有多种解法。

有时候,数列的递推公式可以用递推方程的形式来表示,例如,斐波那契数列的递推公式就可以表示为Fn=Fn-1+Fn-2、递推方程可以用来解决递推公式的求解问题,例如,可以通过求解递推方程来求解斐波那契数列的任意一项。

此外,递推公式还可以用其他的算法来求解,例如,可以使用矩阵的乘法来计算数列的任意一项。

数列的递推公式运用不仅可以帮助我们求解数列的任意一项,还可以帮助我们研究数列的性质。

利用递推数列解题的技巧

利用递推数列解题的技巧

利用递推数列解题的技巧递推数列是指由前面的数推导出后面的数的数列,通过递推关系式能够方便地计算出数列中的每个数。

递推数列在数学中起到了非常重要的作用,因为它不仅仅可以用于解决简单的数学问题,还可以帮助解决一些复杂的实际问题。

本文将详细介绍如何利用递推数列解题。

一、了解递推数列在解决递推数列问题之前,我们需要对递推数列有一个清晰的认识。

递归数列是指通过前面的项和某些规则来定义后面的项的数列。

例如,斐波那契数列就是一个递归数列,它的第n个项等于其前两个项的和,即f(n) = f(n-1) + f(n-2)。

二、处理递推数列问题的方法1. 找出递归关系式在解决递推数列问题时,第一步是找出递归关系式。

递推数列的定义方式很容易推导出他们的递归关系,因为每个后续项都是由前面的项推导而来的。

例如,斐波那契数列的递归关系式是:f(n) = f(n-1) + f(n-2)。

2. 利用递归关系求解一旦我们找到了递归关系式,我们可以通过迭代来计算递推数列中的每个数字。

在递归式中,我们知道了前面的数,我们便可以计算出后面的数。

例如,在斐波那契数列中,如果我们知道f(n-1)和f(n-2),我们就可以计算出f(n)。

3. 处理初始值在进行迭代之前,我们必须确定数列的初始值。

在斐波那契数列的情况下,我们知道f(0) = 0,f(1) = 1。

这些初始值对于递推数列迭代方程式的计算至关重要。

4. 选择适当的算法在实际操作中,选择正确的算法是非常重要的。

在许多情况下,递推数列可以使用简单的迭代程序来计算,但在其他情况下,它们可能需要使用更复杂的算法。

对于具有大量项和复杂递归关系的递归数列,可以考虑使用递归或动态规划算法。

5. 求解完整的问题在处理递推数列问题时,我们必须要理解问题的完整性。

在斐波那契数列的情况下,我们可能需要找到特定的项,例如第30项或第100项。

三、实例解析以下是几个使用递归数列解决实际问题的实例:1. 若一个人每天可以吃掉前一天总数量的一半的葡萄,第十天还剩下2个葡萄。

数列的递推公式

数列的递推公式

数列的递推公式数列的递推公式是指通过已知的数列前几项来推导出数列中后一项与前一项之间的关系的公式。

递推公式在数学和计算机科学中应用广泛,可以用于解决各种数值计算问题。

一、定义数列数列是按一定规律排列的一系列数的有序集合。

数列中的每个数称为该数列的项,项之间的序号称为项号。

通常用字母{n}表示数列中的第n项。

二、等差数列的递推公式等差数列是指数列中的每一项与前一项之差都相等的数列。

等差数列的递推公式可以用来计算数列中的任意项。

设等差数列的首项为a₁,公差为d,第n项为aₙ,则等差数列的递推公式为:aₙ = a₁ + (n-1)d例如,对于等差数列 2, 5, 8, 11, 14,首项a₁=2,公差d=3,第n项aₙ可以通过递推公式计算:aₙ = 2 + (n-1)3三、等比数列的递推公式等比数列是指数列中的每一项与前一项之比都相等的数列。

等比数列的递推公式可以用来计算数列中的任意项。

设等比数列的首项为a₁,公比为r,第n项为aₙ,则等比数列的递推公式为:aₙ = a₁ * r^(n-1)例如,对于等比数列 2, 4, 8, 16, 32,首项a₁=2,公比r=2,第n项aₙ可以通过递推公式计算:aₙ = 2 * 2^(n-1)四、斐波那契数列的递推公式斐波那契数列是指数列中的每一项都是前两项之和的数列。

斐波那契数列的递推公式可以用来计算数列中的任意项。

设斐波那契数列的首项为a₁,第二项为a₂,第n项为aₙ,则斐波那契数列的递推公式为:aₙ = aₙ₋₂ + aₙ₋₁例如,斐波那契数列的前几项为 0, 1, 1, 2, 3, 5,可以通过递推公式计算出后续的项。

五、其他数列的递推公式除了等差数列、等比数列和斐波那契数列,还存在其他类型的数列,它们各自具有特定的递推公式。

例如,如下所示的数列为自然数的平方数列:1, 4, 9, 16, 25该数列的递推公式为:aₙ = n^2再例如,如下所示的数列为自然数的阶乘数列:1, 2, 6, 24, 120该数列的递推公式为:aₙ = n!在解决具体问题时,需要根据数列的规律来确定递推公式,从而计算出数列中任意一项的值。

数列的递推公式

数列的递推公式

数列的递推公式
如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。

例如斐波纳契数列的递推公式为an=an-1+an-2
由递推公式写出数列的方法:
1、根据递推公式写出数列的前几项,依次代入计算即可;
2、若知道的是末项,通常将所给公式整理成用后面的项表示前面的项的形式。

扩展资料
常见的递推公式,如等差数列。

等差数列从第二项开始每一项是前项和后项的算术平均数。

如果等差数列的公差是正数,则该等差数列是递增数列;如果等差数列的公差是负数,则该数列是递减数列;如果等差数列的公差等于零,则该数列是常数列。

对于一个数列al,a2,…,an,…,如果它的相邻两项之差a2-a1,a3-a2,…,an+1-an,…构成公差不为零的等差数列,则称数列{an}为二阶等差数列。

运用递归的方法可以依次定义各阶等差数列:对于数列{an},如果{an+1-an}是r 阶等差数列,则称数列{an}是r+1阶等差数列.二阶或二阶以上的等差数列称为高阶等差数列。

数学(文)由递推公式求通项的7种方法及破解数列中的3类探索性问题

数学(文)由递推公式求通项的7种方法及破解数列中的3类探索性问题

由递推公式求通项的7种方法及破解数列中的3类探索性问题一、由递推公式求通项的7种方法1.a n +1=a n +f (n )型把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1).[例1] 已知数列{a n }满足a 1=12,a n +1=a n +1n 2+n,求a n . [解] 由条件,知a n +1-a n =1n 2+n =1n (n +1)=1n -1n +1,则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1-1n , 所以a n -a 1=1-1n. 因为a 1=12,所以a n =12+1-1n =32-1n. 2.a n +1=f (n )a n 型把原递推公式转化为a n +1a n =f (n ),再利用累乘法(逐商相乘法)求解,即由a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1=f (n -1),累乘可得a n a 1=f (1)f (2)…f (n -1). [例2] 已知数列{a n }满足a 1=23,a n +1=n n +1·a n,求a n . [解] 由a n +1=n n +1·a n ,得a n +1a n =n n +1, 故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ×n -2n -1×…×12×23=23n .即a n =23n . 3.a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型对于此类问题,通常采用换元法进行转化,假设将递推公式改写为a n +1+t =p (a n +t ),比较系数可知t =q p -1,可令a n +1+t =b n +1换元即可转化为等比数列来解决. [例3] 已知数列{a n }中,a 1=1,a n +1=2a n +3,求a n .[解] 设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故递推公式为a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以b 1=4为首项,2为公比的等比数列.所以b n =4×2n -1=2n +1,即a n =2n +1-3. 4.a n +1=pa n +q n (其中p ,q 均为常数,pq (p -1)≠0)型(1)一般地,要先在递推公式两边同除以q n +1,得a n +1q n +1=p q ·a n q n +1q ,引入辅助数列{b n }⎝⎛⎭⎫其中b n =a n q n ,得b n +1=p q ·b n +1q,再用待定系数法解决; (2)也可以在原递推公式两边同除以p n +1,得a n +1p n +1=a n p n +1p ·⎝⎛⎭⎫q p n ,引入辅助数列{b n }⎝⎛⎭⎫其中b n =a n p n ,得b n +1-b n =1p ⎝⎛⎭⎫q p n ,再利用叠加法(逐差相加法)求解. [例4] 已知数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1,求a n . [解] 法一:在a n +1=13a n +⎝⎛⎭⎫12n +1两边乘以2n +1,得2n +1·a n +1=23(2n ·a n )+1. 令b n =2n ·a n ,则b n +1=23b n +1, 根据待定系数法,得b n +1-3=23(b n -3). 所以数列{b n -3}是以b 1-3=2×56-3=-43为首项, 以23为公比的等比数列. 所以b n -3=-43·⎝⎛⎭⎫23n -1,即b n =3-2⎝⎛⎭⎫23n . 于是,a n =b n 2n =3⎝⎛⎭⎫12n -2⎝⎛⎭⎫13n . 法二:在a n +1=13a n +⎝⎛⎭⎫12n +1两边乘以3n +1,得 3n +1a n +1=3n a n +⎝⎛⎭⎫32n +1.令b n =3n ·a n ,则b n +1=b n +⎝⎛⎭⎫32n +1.所以b n -b n -1=⎝⎛⎭⎫32n ,b n -1-b n -2=⎝⎛⎭⎫32n -1,…,b 2-b 1=⎝⎛⎭⎫322.将以上各式叠加,得b n -b 1=⎝⎛⎭⎫322+…+⎝⎛⎭⎫32n -1+⎝⎛⎭⎫32n . 又b 1=3a 1=3×56=52=1+32,所以b n =1+32+⎝⎛⎭⎫322+…+⎝⎛⎭⎫32n -1+⎝⎛⎭⎫32n =1·⎣⎡⎦⎤1-⎝⎛⎭⎫32n +11-32=2⎝⎛⎭⎫32n +1-2, 即b n =2⎝⎛⎭⎫32n +1-2.故a n =b n 3n =3⎝⎛⎭⎫12n -2⎝⎛⎭⎫13n . 5.a n +1=pa n +an +b (p ≠1,p ≠0,a ≠0)型这种类型一般利用待定系数法构造等比数列,即令a n +1+x (n +1)+y =p (a n +xn +y ),与已知递推式比较,解出x ,y ,从而转化为{a n +xn +y }是公比为p 的等比数列.[例5] 设数列{a n }满足a 1=4,a n =3a n -1+2n -1(n ≥2),求a n .[解] 设递推公式可以转化为a n +An +B =3[a n -1+A (n -1)+B ],化简后与原递推式比较,得⎩⎪⎨⎪⎧ 2A =2,2B -3A =-1, 解得⎩⎪⎨⎪⎧A =1,B =1. 令b n =a n +n +1.(*)则b n =3b n -1,又b 1=6,故b n =6·3n -1=2·3n , 代入(*)式,得a n =2·3n -n -1.6.a n +1=pa r n (p >0,a n >0)型这种类型一般是等式两边取对数后转化为a n +1=pa n +q 型数列,再利用待定系数法求解.[例6] 已知数列{a n }中,a 1=1,a n +1=1a ·a 2n(a >0),求数列{a n }的通项公式. [解] 对a n +1=1a ·a 2n的两边取对数, 得lg a n +1=2lg a n +lg 1a. 令b n =lg a n ,则b n +1=2b n +lg 1a. 由此得b n +1+lg 1a =2⎝⎛⎭⎫b n +lg 1a ,记c n =b n +lg 1a,则c n +1=2c n , 所以数列{c n }是以c 1=b 1+lg 1a =lg 1a为首项,2为公比的等比数列. 所以c n =2n -1·lg 1a. 所以b n =c n -lg 1a =2n -1·lg 1a -lg 1a=lg ⎣⎡⎦⎤a ·⎝⎛⎭⎫1a 2n -1=lg a 1-2 n -1, 即lg a n =lg a 1-2 n -1,所以a n =a 1-2 n -1.7.a n +1=Aa n Ba n +C(A ,B ,C 为常数)型 对于此类递推数列,可通过两边同时取倒数的方法得出关系式[例7] 已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n =1,2,3,…,求{a n }的通项公式. [解] ∵a n +1=3a n 2a n +1,∴1a n +1=23+13a n, ∴1a n +1-1=13⎝⎛⎭⎫1a n -1. 又1a 1-1=23, ∴⎩⎨⎧⎭⎬⎫1a n -1是以23为首项,13为公比的等比数列, ∴1a n -1=23·13n -1=23n , ∴a n =3n3n +2. 二、破解数列中的4类探索性问题1.条件探索性问题此类问题的基本特征是:针对一个结论,条件未知需探求,或条件增删需确定,或条件正误需判定,解决此类问题的基本策略是:执果索因,先寻找结论成立的必要条件,再通过检验或认证找到结论成立的充分条件,在“执果索因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要条件当作充分条件,应引起注意.[例1] 已知数列{a n }中,a 1=2,a 2=3,其前n 项和S n 满足S n +2+S n =2S n +1+1(n ∈N *);数列{b n }中,b 1=a 1,b n +1=4b n +6(n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)设c n =b n +2+(-1)n -1λ·2a n (λ为非零整数,n ∈N *),试确定λ的值,使得对任意n ∈N *,都有c n +1>c n 成立.[解] (1)由已知得S n +2-S n +1-(S n +1-S n )=1,所以a n +2-a n +1=1(n ≥1).又a 2-a 1=1,所以数列{a n }是以a 1=2为首项,1为公差的等差数列.所以a n =n +1.因为b n +1=4b n +6,即b n +1+2=4(b n +2),又b 1+2=a 1+2=4,所以数列{b2+2}是以4为公比,4为首项的等比数列.所以b n=4n-2.(2)因为a n=n+1,b n=4n-2,所以c n=4n+(-1)n-1λ·2n+1.要使c n+1>c n成立,需c n+1-c n=4n+1-4n+(-1)nλ·2n+2-(-1)n-1λ·2n+1>0恒成立,化简得3·4n-3λ(-1)n-12n+1>0恒成立,即(-1)n-1λ<2n-1恒成立,①当n为奇数时,即λ<2n-1恒成立,当且仅当n=1时,2n-1有最小值1,所以λ<1;②当n为偶数时,即λ>-2n-1恒成立,当且仅当n=2时,-2n-1有最大值-2,所以λ>-2,即-2<λ<1.又λ为非零整数,则λ=-1.综上所述,存在λ=-1,使得对任意n∈N*,都有c n+1>c n成立.[点评]对于数列问题,一般要先求出数列的通项,不是等差数列和等比数列的要转化为等差数列或等比数列.遇到S n要注意利用S n与a n的关系将其转化为a n,再研究其具体性质.遇到(-1)n型的问题要注意分n为奇数与偶数两种情况进行讨论,本题易忘掉对n的奇偶性的讨论而致误.2.结论探索性问题此类问题的基本特征是:有条件而无结论或结论的正确与否需要确定.解决此类问题的策略是:先探索结论而后去论证结论,在探索过程中常可先从特殊情形入手,通过观察、分析、归纳、判断来作一番猜测,得出结论,再就一般情形去认证结论.[例2]已知各项均为正数的数列{a n}满足:a2n+1=2a2n+a n a n+1,且a2+a4=2a3+4,其中n∈N*.(1)求数列{a n}的通项公式;(2)设数列{b n}满足:b n=na n(2n+1)2n,是否存在正整数m,n(1<m<n),使得b1,b m,b n成等比数列?若存在,求出所有的m,n的值,若不存在,请说明理由;(3)令c n=1+na n,记数列{c n}的前n项积为T n,其中n∈N *,试比较Tn与9的大小,并加以证明.[解](1)因为a2n+1=2a2n+a n a n+1,即(a n+a n+1)(2a n-a n+1)=0.又a n>0,所以2a n-a n+1=0,即2a n=a n+1.所以数列{a n}是公比为2的等比数列.由a2+a4=2a3+4,得2a1+8a1=8a1+4,解得a1=2.故数列{a n}的通项公式为a n=2n(n∈N*).(2)因为b n =na nn +n =n 2n +1, 所以b 1=13,b m =m 2m +1,b n =n 2n +1. 若b 1,b m ,b n 成等比数列,则⎝⎛⎭⎫m 2m +12=13⎝⎛⎭⎫n 2n +1, 即m 24m 2+4m +1=n 6n +3. 由m 24m 2+4m +1=n 6n +3,可得3n =-2m 2+4m +1m 2, 所以-2m 2+4m +1>0,从而1-62<m <1+62. 又n ∈N *,且m >1,所以m =2,此时n =12.故当且仅当m =2,n =12时,b 1,b m ,b n 成等比数列.(3)构造函数f (x )=ln(1+x )-x (x ≥0),则f ′(x )=11+x -1=-x 1+x. 当x >0时,f ′(x )<0,即f (x )在[0,+∞)上单调递减,所以f (x )<f (0)=0.所以ln(1+x )-x <0.所以ln c n =ln ⎝⎛⎭⎫1+n a n =ln ⎝⎛⎭⎫1+n 2n <n 2n . 所以ln T n <12+222+323+…+n 2n . 记A n =12+222+323+…+n 2n ,则12A n =122+223+324+…+n -12n +n 2n +1, 所以A n -12A n =12+122+123+124+…+12n -n 2n +1=1-n +22n +1<1,即A n <2. 所以ln T n <2.所以T n <e 2<9,即T n <9.[点评] 对于结论探索性问题,需要先得出一个结论,再进行证明.注意含有两个变量的问题,变量归一是常用的解题思想,一般把其中的一个变量转化为另一个变量,根据题目条件,确定变量的值.遇到数列中的比较大小问题可以采用构造函数,根据函数的单调性进行证明,这是解决复杂问题常用的方法.3.存在探索性问题此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形、函数等)是否存在或某一结论是否成立.解决此类问题的一般方法是:假定题中的数学对象存在或结论成立或暂且认可其中的一部分结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设,否则,给出肯定结论,其中反证法在解题中起着重要的作用.[例3] 已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列; (2)记S n =1a 1+1a 2+…+1a n,若S n <100,求最大正整数n ; (3)是否存在互不相等的正整数m ,s ,n ,使m ,s ,n 成等差数列,且a m -1,a s -1,a n -1成等比数列?如果存在,请给以证明;如果不存在,请说明理由.[解] (1)因为1a n +1=23+13a n, 所以1 a n +1-1=13a n -13. 又因为1a 1-1≠0,所以1a n-1≠0(n ∈N *). 所以数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列. (2)由(1)可得1a n -1=23·⎝⎛⎭⎫13n -1, 所以1a n=2·⎝⎛⎭⎫13n +1. S n =1a 1+1a 2+…+1a n=n +2⎝⎛⎭⎫13+132+…+13n =n +2×13-13n +11-13=n +1-13n , 若S n <100,则n +1-13n <100, 所以最大正整数n 的值为99.(3)假设存在,则m +n =2s ,(a m -1)(a n -1)=(a s -1)2,因为a n =3n3n +2, 所以⎝⎛⎭⎫3n 3n +2-1⎝⎛⎭⎫3m 3m +2-1=⎝⎛⎭⎫3s3s +2-12, 化简得3m +3n =2×3s .因为3m +3n ≥2×3m +n =2×3s ,当且仅当m =n 时等号成立,又m ,s ,n 互不相等,所以不存在.[点评] 数列问题是以分式形式给出条件的,一般采用取倒数,再转化为等差数列或等比数列,通过等差数列与等比数列的桥梁作用求出通项.遇到多个变量的存在性问题,一般假设存在,求出满足的关系,再寻找满足的条件,一般可以利用重要不等式、值域或范围等判断是否存在.。

数列递推公式求解

数列递推公式求解

数列递推公式求解数列递推公式求解是数学中的重要概念,广泛应用于各个领域。

在这篇文章中,我们将探讨数列递推公式的求解方法,以及它们在实际问题中的应用。

首先,让我们明确什么是数列递推公式。

数列是一组按照特定规律排列的数字的集合。

递推公式则用来描述数列中每一项与前一项之间的关系。

最简单的数列递推公式是等差数列,它的一般形式为an = an-1 + d,其中an表示第n项,an-1表示前一项,d表示公差。

等差数列的递推公式可以用来求解各种问题,例如计算等差数列的求和、求特定项等。

接下来,我们介绍一下数列递推公式的求解方法。

求解数列递推公式的关键是找到数列中的规律。

一种常用的方法是观察数列的前几项,然后尝试找到它们之间的关系。

举个例子,假设我们有一个数列:1, 2, 4, 7, 11, ...。

我们可以观察到,第二项(2)减去第一项(1)得到1,第三项(4)减去第二项(2)得到2,第四项(7)减去第三项(4)得到3,以此类推。

根据观察结果,我们可以得出数列的递推公式:an = an-1 + (n-1)。

这个递推公式可以用来计算数列的任意一项。

除了等差数列,还有其他类型的数列,例如等比数列、斐波那契数列等。

对于这些数列,我们也可以通过类似的方法来求解它们的递推公式。

递推公式的求解不仅仅是一种数学问题,它在实际中也有广泛的应用。

例如在计算机科学中,递推公式被用来描述算法的时间复杂度。

通过求解递推公式,我们可以评估算法的效率,并选择合适的算法来解决问题。

此外,递推公式还被用于生物学、物理学等领域中,用来描述自然现象的变化规律。

通过求解递推公式,我们可以预测未来的发展趋势,从而做出相应的决策。

总结起来,数列递推公式求解是一项重要的数学技能,广泛应用于各个领域。

通过观察数列的规律,我们可以找到数列的递推公式,从而计算数列中的任意一项。

递推公式的求解不仅仅是一种数学问题,它还有实际中的广泛应用。

希望这篇文章能够帮助你更好地理解数列递推公式的求解方法及其应用。

数列递推公式的九种方法

数列递推公式的九种方法

数列递推公式的九种方法1.等差数列递推公式:在等差数列中,相邻两项之间存在相同的差。

如果已知等差数列的首项为a1,公差为d,可以求得递推公式为an = a1 + (n-1)d,其中n为第n项。

2.等比数列递推公式:在等比数列中,相邻两项之间的比值相同。

如果已知等比数列的首项为a1,公比为r,可以求得递推公式为an = a1 * r^(n-1),其中n为第n项。

3. 几何数列递推公式:几何数列是一种特殊的等比数列,其公比是常数项。

如果已知几何数列的首项为a1,公比为r,可以求得递推公式为an = a1 * r^(n-1),其中n为第n项。

4. 斐波那契数列递推公式:斐波那契数列是一种特殊的数列,每一项都是前两项的和。

斐波那契数列的递推公式为an = an-1 + an-2,其中n为第n项,a1和a2为前两项。

5. 回型数列递推公式:回型数列是一种特殊的数列,它的每一项都是由周围的四个数字决定的。

回型数列的递推公式为an = an-1 + 8 * (n-1),其中n为第n项,a1为第一项。

6. 斯特恩-布洛特数列递推公式:斯特恩-布洛特数列是一种特殊的数列,它的每一项都是由前一项和当前项之和的约数个数决定的。

斯特恩-布洛特数列的递推公式为an = 2 * an-1 - an-2,其中n为第n项,a1和a2为前两项。

7. 阶乘数列递推公式:阶乘数列是一种特殊的数列,它的每一项都是前一项的阶乘。

阶乘数列的递推公式为an = n * (n-1) * ... * 3 * 2 * 1,其中n为第n项,a1为第一项。

8. 斯特林数列递推公式:斯特林数列是一种特殊的数列,它的每一项都是由前一项和当前项之积的和决定的。

斯特林数列的递推公式为an = an-1 * n + 1,其中n为第n项,a1为第一项。

9. 卡特兰数列递推公式:卡特兰数列是一种特殊的数列,它的每一项都是由前一项和当前项之和的乘积决定的。

卡特兰数列的递推公式为an = (4*n - 2) / (n + 1) * an-1,其中n为第n项,a1为第一项。

利用数列递推公式解题的技巧

利用数列递推公式解题的技巧

利用数列递推公式解题的技巧数列是数学中一个重要且常见的概念,它在各个领域都有着广泛的应用。

数列递推公式是指数列中每一项与前几项之间的关系式,通过递推公式,我们可以推导出数列中任意一项的数值。

在解题过程中,利用数列递推公式可以简化繁杂的计算,提高解题效率。

下面我们就来探讨一下利用数列递推公式解题的一些技巧。

一、理解数列递推公式的含义在利用数列递推公式解题之前,首先我们需要理解数列递推公式的含义。

数列递推公式是描述数列中每一项与前几项之间的关系式,通常表示为an = f(an-1, an-2, …),其中an表示第n项,f表示关系函数。

理解递推公式的含义对于解题至关重要,可以帮助我们找准解题方向。

二、寻找规律,列出递推公式在实际解题中,对于给定的数列,我们需要寻找其中的规律,列出数列的递推公式。

通常可以通过观察前几项的数值,寻找它们之间的数学关系,从而推导出递推公式。

在列出递推公式的过程中,我们需要注意变量的选取,确保递推公式的表达准确、简洁。

四、注意递推公式中的边界条件在利用递推公式解题的过程中,我们需要特别注意递推公式中的边界条件。

因为递推公式是通过前几项的数值来计算下一项的数值,所以边界条件的选择会直接影响计算结果的准确性。

在列出递推公式时,需要特别关注边界条件,确保递推公式能够适用于数列中的每一项。

五、灵活运用递推公式解题在实际解题中,我们需要灵活运用递推公式来解决不同类型的题目。

有时候递推公式可以直接给出,我们只需要根据公式计算出数列中的任意一项即可;有时候需要我们根据数列的规律自行列出递推公式。

无论是哪种情况,我们都需要综合运用数学知识,灵活应用递推公式来解决实际问题。

六、举一反三,多练习利用数列递推公式解题是一个需要反复练习的过程。

通过不断练习,我们可以熟练掌握数列递推公式的使用技巧,提高解题的效率和准确度。

通过练习还可以锻炼我们的数学思维,提高解决实际问题的能力。

我们需要在日常学习中多加练习,举一反三,不断提升自己的解题能力。

谈谈三类递推数列通项公式的求法

谈谈三类递推数列通项公式的求法

思路探寻求递推数列的通项公式问题是一类难度系数较大的问题,侧重于考查同学们的运算和推理能力.求递推数列的通项公式问题中的递推式多种多样,解答这类问题的关键是合理整合递推式,将问题转化为简单的、易于求解的数列问题.本文主要分析三类递推数列通项公式的求法.一、a n +1=qa n -1+d 型递推数列对于形如a n +1=qa n -1+d (q ≠1,d ≠0)的递推数列问题,我们一般采用待定系数法进行求解.在解题时,要先设出待定系数m ,使a n +1+m =q (a n −1+m ),然后将其与原递推式中对应项的系数相比较,建立含有待定系数的方程或方程组,解方程或方程组,求出待定系数的值,就能构造出一个等比数列{}a n +m ,再根据等比数列的通项公式就可以求出数列{}a n 的通项公式.例1.在若数列{}a n 中,a 1=1,a n +1=12a n +1()n ∈N +,求a n .解:令a n +1+m =12()a n+m ,则m =-2,所以{}a n -2是首项为-1,公比为12的等比数列,所以a n -2=-æèöø12n -1,即a n =-æèöø12n -1+2.该递推式属于a n +1=qa n -1+d 型,因此我们需从a n +1=12a n +1入手,运用待定系数法进行求解.二、a n +1=ca n +f ()n 型递推数列当遇到形如a n +1=ca n +f ()n (c ≠0)型的数列递推式时,一般要先将递推式变形为a n +1f ()n =ca nf ()n +1的形式,然后令a n f ()n =b n ,得到b n +1=c q b n +1q ,这样便将问题转化求a n +1=qa n −1+d 型递推数列的通项公式.运用待定系数法构造出等比数列便可解答出来.例2.在数列{}a n 中,a 1=1,a n +1=3a n +2n ()n ∈N +,求a n .解:由a n +1=3a n +2n得2∙a n +12n +1=3∙a n 2n +1,令b n =a n 2n ,则b n +1=32b n +12.由待定系数法得b n +1+1=32(b n +12),令c n =b n +1,则c n +1=32c n ,所以{}c n 是首项为c 1=b 1+1=32,公比为32的等比数列,所以c n =æèöø32n,b n =æèöø32n-1,即a n =2n ∙b n =32-2n .我们先通过换元,把分散的条件联系起来,让隐含的条件显露出来,将问题转化为求a n +1=qa n −1+d 型递推数列的通项公式.再运用待定系数法便可求出数列的通项公式.三、a n +1∙a n =ca n +1+da n 型递推数列对于形如a n +1∙a n =ca n +1+da n (c ≠0,d ≠0)递推数列,在求其通项公式时,我们先要在递推式的两边同时除以a n +1·a n ,得到c a n +da n +1=1,将问题转化为a n +1=qa n −1+d 型递推数列问题,再运用待定系数法求解即可.例3.已知数列{}a n 满足:a n ≠0,且a n =3a n -1a n -1+3()n ≥2,a 1=12,求数列的通项公式.解:在递推式a n =3a n -1a n -1+3的两边取倒数得1a n =1a n -1+13,所以数列{}a n 是首项为1a 1=2、公差为13的等差数列,所以1a n=2+()n -1∙13=13()n +5,所以a n =3n +5.我们先在递推式的两边取倒数,便可构造出首项为1a 1=2、公差为13的等差数列,再根据等差数列的通项公式求得数列的通项公式.虽然求递推式数列的通项公式问题的难度较大,但是我们只要掌握方法,善于整合数列的递推式,将问题转化为等比、等差数列问题进行求解,问题便能迎刃而解.在解题时,要抓住关键,重点分析数列的递推式,将其合理进行变形,如引入待定系数、取倒数、换元等,构造出等差、等比数列,根据等差、等比数列的通项公式进行求解.(作者单位:湖北省襄阳市南漳县第一中学)谈谈三类递推数列通项公式的求法石磊53Copyright©博看网 . All Rights Reserved.。

高中数学竞赛辅导-数列(二)由数列的递推公式求通项公式

高中数学竞赛辅导-数列(二)由数列的递推公式求通项公式
2
转化法:这里需要恰当的变形……
思考
1.已知数列{an}中,a1=
3 5
,an+1=
an 2an
1

求{an}的通项公式.
解:(倒数变形) 1 2an 1 1 2
an1
an
an



1 an

是以
5 3
为首项,公差为
2
的等差数列,
即1 an

5 3
+2(n-1)=
一般地, 可仿第122 页例5的处 理方法试 试看.
∴an=tan

(n
1)
4
atc tan 2 .
思考 5.设 a0 1 , an
1

a2 n1

1
an1
n N*
,求通项公式 an .
7
思考5
练习4
思考 5.设 a0 1 , an 1
山重水尽疑无路……
4

110…an…( n
3

N
*
),求通项公式
an
.
思考
3. 已 知 函 数
f (x)
( x 1)4 ( x 1)4
( x 1)4 ( x 1)4
( x 0 ),在数列
{an } 中, a1 2 , an1 f (an )( n N ),求数列 {an } 的通项公式.
求通项公式 an . 法一:取对数变形
102

1 2n1
法二:作商用迭加法也很好!
练习 3.(教程 P127 9 )各项为正数的数列an 中,
a1 1, a2 10 , an2an13an2 1 ( n≥ 3 , n N * ),

利用递推关系式求数列的通项公式(精品-绝对好)

利用递推关系式求数列的通项公式(精品-绝对好)

利用递推关系式求数列的通项公式数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。

而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。

本文给出了求数列通项公式的常用方法。

◆一、直接法根据数列的特征,使用作差法等直接写出通项公式。

例1.根据下列数列的前几项,说出数列的通项公式:1、1,3,7,15,31,………2、2,6,12,20,30,………3、21212,1,,,,3253……… 4、1,-1,1,-1……… 5、1、0、1、0………◆二、公式法①利用等差数列或等比数列的定义求通项②若已知数列的前n 项和n S 及n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解.(注意:求完后一定要考虑合并通项)例2.①已知数列{}n a 的前n 项和n S 满足21n S n n =+-,求数列{}n a 的通项公式.②已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式。

◆三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。

也可以猜想出规律,然后正面证明。

例 3.(2002年北京春季高考)已知点的序列*),0,(N n x A n n ∈,其中01=x ,)0(2>=a a x ,3A 是线段21A A 的中点,4A 是线段32A A 的中点,…,n A 是线段12--n n A A 的中点,…(1) 写出n x 及21,--n n x x 之间的关系式(3≥n )。

(2)设n n nx x a -=+1,计算321,,a a a ,由此推测{}n a 的通项公式,并加以证明。

数列递推公式的九种方法

数列递推公式的九种方法

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载数列递推公式的九种方法地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法m w.w.w.k.s.5.u.c.o例1 在数列{}中,,,求通项公式.解:原递推式可化为:则,……,逐项相加得:.故.二、作商求和法例2 设数列{}是首项为1的正项数列,且(n=1,2,3…),则它的通项公式是=▁▁▁(2000年高考15题)解:原递推式可化为:=0 ∵ >0,则……,逐项相乘得:,即=.三、换元法例3 已知数列{},其中,且当n≥3时,,求通项公式(1986年高考文科第八题改编).解:设,原递推式可化为:是一个等比数列,,公比为.故.故.由逐差法可得:.例4已知数列{},其中,且当n≥3时,,求通项公式。

解由得:,令,则上式为,因此是一个等差数列,,公差为1.故.。

由于又所以,即四、积差相消法例5设正数列,,…,,…满足= 且,求的通项公式.解将递推式两边同除以整理得:设=,则=1,,故有⑴ ⑵… … … …()由⑴+ ⑵ +…+()得=,即=.逐项相乘得:=,考虑到,故 .五、取倒数法例6 已知数列{}中,其中,且当n≥2时,,求通项公式。

解将两边取倒数得:,这说明是一个等差数列,首项是,公差为2,所以,即.六、取对数法例7 若数列{}中,=3且(n是正整数),则它的通项公式是=▁▁▁(2002年上海高考题).解由题意知>0,将两边取对数得,即,所以数列是以=为首项,公比为2的等比数列,,即.七、平方(开方)法例8 若数列{}中,=2且(n),求它的通项公式是.解将两边平方整理得。

递推数列的通项公式难点突破

递推数列的通项公式难点突破

递推数列的通项公式难点突破递推数列是数学中常见的数列形式,其通项公式是指能够直接给出数列中任意一项的数学公式。

在推导递推数列的通项公式时,存在一些难点需要突破。

首先,理解递推数列的定义和性质是突破的基础。

递推数列是指数列中的每一项可以由前一项或前几项通过其中一种规律来确定的数列。

理解递推数列的定义,包括等差数列、等比数列和斐波那契数列等常见的递推数列,是推导通项公式的前提。

其次,突破递推数列通项公式的难点是寻找数列中的规律。

在有限项的数列中,可以通过直接列举每一项的值,对比观察其中的规律。

在无限项的数列中,可以通过找出相邻项之间的关系或者是找到第一项和下标之间的关系来建立递推关系。

有时候,可以使用列举假设的方法来发现数列中的规律,并进行验证。

接着,使用代数运算和数学知识来推导通项公式。

在突破第二个难点后,需要运用代数运算和已有的数学知识来进行推导。

通过归纳和推广来得到通项公式。

例如,对于等差数列,可以通过首项和公差的关系来推导通项公式;对于等比数列,可以通过首项和公比的关系来推导通项公式。

此外,在推导递推数列通项公式时,还可以运用数列的性质来进行辅助。

例如,对于等差数列,可以利用其性质之一即任意三项成等比数列来推导通项公式;对于等比数列,可以利用其性质之一即任意三项成等差数列来推导通项公式。

最后,需要进行验证和推广。

在得到一些递推数列的通项公式后,应该对其进行验证,即将公式代入数列中几个特定值进行计算,看是否能得到数列中对应的值。

若验证通过,则通项公式成立。

然后,可以通过类似的思路和方法,将所使用的方法和步骤进行推广,以求能够适用于更多类型的递推数列,并得到更一般的通项公式。

综上所述,递推数列的通项公式难点突破主要集中在理解数列的定义和性质、寻找数列中的规律、运用代数运算和已有的数学知识进行推导、运用数列的性质进行辅助、验证和推广等方面。

通过充分理解数列的性质和规律,并运用合适的方法和技巧,可以较好地突破递推数列通项公式的难点,从而得到更加一般化的解法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档