微分几何第二章曲面论第三节复习2
微分几何课件
3、向量函数 r (t )的微商 r (t )仍为 t 的一个向量函数,如果函数 r (t ) 也是连续和可微的,则 r (t )的微商r (t ) 称为 r (t )的二阶微商。
( n) 类似可定义三阶、四阶微商。如r (t ), r (t ).
4、在区间 [t1,t2]上有直到 k 阶连续微商的函数称为这区间上的 k次
微分几何
第一节
向量函数
向量函数的概念:给出一点集 G ,如果对于G 中的每一个 点 x ,有一 个确定的向量 r 和它对应,则说在 G上给定了一个向 量函数,记作 r r ( x), x G, 例如 设G是实数轴上一区间 [t0 , t ] ,则得一元向量函数 r r (t ). 设G是一平面域, (u, v) G,则得二元向量函数 r r (u, v). ( x, y, z ) G,得三元向量函数 r r ( x, y, z) 设G是空间一区域, 1、1 向量函数的极限
例书中的开圆和圆柱螺线。
z
3、曲线的参数方程
坐标式
M
x x(t ) y y (t ) z z (t )
at b
x
o
y
向量式 r (t ) x(t )e1 y(t )e2 z(t )e3
例1、 开圆弧
x a cos t y a sin t
t (0, 2 )
1、5 向量函数的积分
c b (1)当a<c<b时有 a r (t )dt a r (t )dt c r (t )dt b b (2)m 是常数时有 mr (t )dt m r (t )dt
a
b
a (3)如果 m 是常向量,则有
微分几何第二章
2.3 空间曲线-密切平面方程
设曲线 C: r = (x(t), y(t), z(t)) 是光滑的,P 是曲线上一点,其参数是 t0.设 R = (X, Y, Z) 是 P 点的密切平面上任意一点,则密切平面 方程为:
(R – r(t0), r'(t0), r''(t0)) = 0. 用坐标把密切平面方程表示为:
r'' (t) = (– cost, – sint, 0). 在给定点 P 处的参数 t = 0,所以有
r(0) = (1,0,0), r' (0) = (0,1,1), r'' (0) = (– 1,0,0). 代入密切平面方程并整理得
– Y + Z = 0.
返回章首
2.3 空间曲线-基本向量与伏雷内标架
返回章首
2.1 曲线的概念
一元向量函数 r(t) 所描绘的图形 C 叫曲线, r(t)叫曲线 C 的参数化,或者叫曲线的向量函 数,t 叫曲线的参数.曲线 C 连同它的参数化 r(t) 一起叫参数曲线.
参数曲线用 C : r = r(t) 表示.如果对某个 t0 使得 r'(t0) ≠ 0,就称 r(t0)(或者简称 t0)是曲 线的正则点.如果曲线上处处是正则点,就称 该曲线是正则曲线,相应的参数叫正则参数.
p /2
L 0 | r(t) | dt
3a
p
/2
sint
costdt
3a.
0
2
因此,星形线的弧长为 6a.
返回章首
练习题 1.求旋轮线 x = a(t – sint), y = a(1 – cost) 在0
≤ t ≤ 2p 一段的弧长. 2.求圆柱螺线 x = 3acost, y = 3asint, z = 4at
微分几何答案(第二章)
第二章 曲面论§1曲面的概念1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线.解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线.2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。
证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线;v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。
3.求球面r =}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面和法线方程。
解 ϑr =}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr=}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ;法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。
微分几何--第二章1曲面的概念1.2光滑曲面 曲面的切平面和法线
3、切平面的方程 设曲面上一点为 P0( u0 ,v0 ),R (X,Y,Z)为切平面上任一点, 则
( R r (u0 , v0 ), ru (u0 , v0 ), rv (u0 , v0 )) 0
或写成坐标表示式
X x(u0 , v0 ) Y y (u0 , v0 ) Z z (u0 , v0 ) xu (u0 , v0 ) xv (u0 , v0 ) yu (u0 , v0 ) yv (u0 , v0 ) zu (u0 , v0 ) 0 zv (u0 , v0 )
(3)如果交换参数,则正向改变为负向,曲面为双侧。
du dv rv dt dt
(u0 ,v0 )
ru
可以看出,切向量 r (t ) 与 ru , rv 共面,但过( u0 ,v0 )点有 无数条曲面曲线,因此在正常点处有无数切方向,且有 命题2:曲面上正常点处的所有切方向都在过该点的坐标曲线的 切向量 ru , rv 所确定的平面上。 这个平面我们称作曲面在该点的切平面。
r , rv (u0 , v0 ) (u0 , v0 ) v
如果它们不平行,即 面的正常点。
ru× rv 在该点不为零,则称该点为曲
3、正规坐标网 由ru, rv 的连续性,若 ru× rv在( u0 ,v0 )点不为零, 则总存在该点的一 个邻域U,使在这个邻域内有ru× rv不为零,
于是在这片曲面上,有一族 u 线和一族 v 线,它们不 相切,构成一正规坐标网。
6、曲面上的测地线(测地曲率、测地线、高斯—波涅
公式、曲面上向量的平行移动)
7、常高斯曲率曲面(常高斯曲率的曲面、伪球面、罗
氏几何)
1.2
光滑曲面、曲面的切平面和法线
一、光滑曲面、正常点、正规坐标网 1、若曲面 x = x(u,v) , y = y(u,v) , z = z(u,v) 或 r = r (u,v) 中的函
微分几何
微分几何几何学是数学的一个重要分支,它采用不同方法对几何图形及其数量关系进行研究。
微分几何是高师数学专业(本)的专业基础课之一,其出发点是微分几何。
本课程重点讲授微分几何中最基础的部分——二维欧氏空间中的曲线和曲面的局部理论,在方法上给以更新,这样使学生能够从较浅的内容去学习近代的处理方法,对新方法接受起来阻力比较小一些;另一发面,对微分几何有兴趣的学生,在掌握新方法之后,可运用这些方法去学习微分几何的近代内容。
本课程教学时数为60小时。
第一章曲线论目的要求:在中学教材中,对于曲线的概念,平面曲线的参数方程中参数的个数问题,都只初步涉及,进一步理解有赖于对曲线的精确定义。
1)掌握曲线的概念,空间曲线的基本三棱形,曲面挠率和Frenet公式。
2)掌握特殊曲线:平面曲线、一般螺线3)理解Bertrand曲线4)了解曲线上一点邻近的结构和空间曲线论的基本定理。
计划课时数:24学时教学内容:第一节向量代数复习(2学时)向量的基本概念、运算及有关定理第二节向量函数(2学时)向量函数的极限、连续、微分、Taylor展式及积分、向量函数具有固定长的充要条件等第三节曲线的概念(4学时)曲线的基本概念、切线和法面的求法,曲线的弧长,自然参数的引进第四节空间曲线(10学时)曲线的密切面、基本三棱形,曲率、挠率、Frenet公式,曲线的局部结构和基本定理第五节特殊曲线(6学时)平面曲线论、一般螺线,Bertrand曲线第二章曲面论目的要求:1)曲面的局部概念是建立整体概念和过渡到微分流行研究的基础,简单曲面的向量参数表示要与中学所讲曲线、曲面的参数方程对照,从理论上理解中学教材内容中遗留的问题。
掌握:(1)曲面的概念及其参数表示(2)曲面的第一基本形式(3)曲面的第二基本形式,曲面上曲线的曲率,主方向与曲率线网(4)主曲率、Gauss曲率和平均曲率2)直纹面和可展曲面是常见的特殊曲面,联系解析几何中的直纹面,理解直纹面的构成,掌握曲面可展的含义和可展的条件。
微分几何--第二章1曲面的概念1.3曲面上的曲线族和曲线网
A(u, v)du B(u, v)dv 0
表示曲面上的一簇曲线——曲线族. 设 A 0 ,则有 du B(u, v) 解之得
(2.14)
dv A(u, v) u (v, c)
F (u, v)
其中,c为待定常数; 每一个c对应曲面上一条曲线,所以(2.14)表示一族曲线。 特别地, 当B = 0或 A = 0 时,有 d u = 0或 d v = 0 , 此时为坐标曲线(P60) u = c 或 v = c。 此时(2.14)表示坐标曲线的方程。
2、二阶微分方程
A(u, v)du2 2B(u, v)dudv C(u, v)dv2 0
若 [ B(u, v)]2 A(u, v)C (u, v) 0
方程表示曲面上的两簇曲线 —— 曲线网。 设
du 2 du A 0 , 则 A( ) 2 B( ) C 0 dv dv 得 du B B 2 AC F1 (u, v)或F2 (u, v) dv A
消去 t ,可得曲面上曲线的方程为
u (v) ,或 v (u) ,或 f (u, v) 0
1、一阶线性微分方程
A(u, v)du B(u, v)dv 0
表示曲面上的一簇曲线——曲线族.
消去 t ,可得曲面上曲线的方程为
u (v) ,或 v (u) ,或 f (u, v) 0
分别解这两个一阶微分方程,可得两簇曲线,它们构成曲 面上的曲线网。
特别有 A C 0 时, dudv 0 , 它们表示坐标曲线,从而构成曲纹坐标网(P60)。
微分几何
主讲人:郭路军
第二章 曲面论
1、曲面的概念(简单曲面、光滑曲面、切平面和法线)
《微分几何》教学大纲
《微分几何》课程教学大纲课程名称:《微分几何》课程编码:074112303适用专业及层次:数学与应用数学(本科)课程总学时:72学时课程总学分:4一、课程的性质、目的与任务等。
1、微分几何简介及性质微分几何是高等院校数学和数学教育各专业主要专业课程之一,是运用微积分的理论研究空间的几何性质的数学分支学科。
古典微分几何研究三维空间中的曲线和曲面,而现代微分几何开始研究更一般的空间--流--形。
微分几何与拓扑学等其他数学分支有紧密的联系,对物理学的发展也有重要影响,爱因斯坦的广义相对论就以微分几何中的黎曼几何作为其重要的数学基础。
本课程的前导课程为解析几何、高等代数、数学分析和常微分方程。
2、教学目的:通过本课程的教学,使学生掌握三维欧氏空间中的曲线和曲面的局部微分理论和方法,分析和解决初等微分几何问题,并为进一步学习微分几何的近代内容打下良好的基础。
3、教学内容与任务:本课程主要应用向量分析的方法,研究一般曲线和曲面的局部理论,同时还采用了张量的符号讨论曲面论的基本定理和曲面的内蕴几何内容,并且讨论了属于整体微分几何的高斯崩尼(B公式。
重点让学生把握理解本教材的前二章。
二、教学内容、讲授大纲与各章的基本要求第一章曲线论教学要点:本章主要研究内容为向量分析,曲线的切线,法平面,曲线的弧长参数表示,空间曲线的基本三棱形,曲率和挠率的概念和计算,曲线论的基本公式和基本定理,从而对空间曲线在一点邻近的形状进行研究,同时对特殊曲线特别是一般螺线和贝特朗曲线进行研究。
通过本章的教学,使学生理解和熟记有关概念,掌握理论体系和思想方法,能够证明和计算有关问题教学时数:22学时。
教学内容:第一节向量函数1.1向量函数的极限1.2向量函数的连续性1.3向量函数的微商向量函数的泰勒()公式1.5向量函数的积分第二节曲线的概念2.1曲线的概念2.2光滑曲线、曲线的正常点2.3曲线的切线和法面2.4曲线的弧长、自然参数第三节空间曲线3.1空间曲线的密切平面3.2空间曲线的基本三棱形空间曲线的曲率、挠率和伏雷内公式3.4空间曲线在一点邻近的结构3.5空间曲线论的基本定理3.一6般螺线考核要求:i理解向量函数的极限、连续性、微商、泰勒(L公式和积分等概念,能推导和熟记有关公式,并能使用它们熟练地进行运算。
微分几何第二章曲面论2.1曲面的概念
2、二阶微分方程
2 2 A ( u , v ) du 2 B ( u , v ) dudv C ( u , v ) dv 0
2 若 [ B ( u , v )] A ( u , v ) C ( u , v ) 0
则表示曲面上的两簇曲线 —— 曲线网。
du du 2 设 A 0, 则 A ( ) 2 B ( ) dudv C 0 dv dv
y z u u y z v v z x u u z x v v
设曲面上任一点 r (u,v) 的径矢为 R (u,v)
x ( u ,v ) Y y ( u ,v ) Z z ( u ,v ) 用坐标表示为 X x y u u x y v v
若用 z = z (x,y) 表示曲面,则有
{ x , y , z ( x , y )} 如果用显函数 z = z ( x , y ) 表示曲面时,有 r
z z r { 1 , 0 , } { 1 , 0 , p } , r { 0 , 1 , } { 0 , 1 , q } x y x y
X x0 Y y0 Z z0 1 0 0 1 p0 q0 0
以下切方向几种表示通用:du : dv , (d) 和 r (t ) 。
( 由r t)r u
du dv r v dt dt
可以看出,切向量 r (t ) 与 ru , rv 共面,但过( u0 ,v0 )点 有无数条曲面曲线,因此在正常点处有无数方向,且有 命题2:曲面上正常点处的所有切方向都在过该点的坐标 曲线的切向量 ru , rv 所确定的平面上。 这个平面我们称作曲面在该点的切平面。
6、曲面上的测地线(测地曲率、测地线、高斯—波涅
第二章 曲面论
第二章曲面论§1曲面的概念1. 求正螺面r⃗={ucosv,usinv,bv},−∞<u<+∞,−∞<v<+∞上的坐标曲线。
解:u_线的方程为:v=v0,其中v0为常数,将v=v0代入正螺面的方程中,得到r⃗={ucosv0,usinv0,bv0}={0,0,bv0}+{cosv0,sinv0,0}u,−∞<u<+∞,这是经过点(0,0,bv0),以{cosv0,sinv0,0}为方向的直线,显然它与z轴垂直相交,垂足为(0,0,bv0)。
v_线的方程为:u=u0,其中u0为常数,将u=u0代入正螺面的方程中,得到r⃗= {u0cosv,u0sinv,bv},−∞<v<+∞,这是圆柱螺线的方程。
2. 证明双曲抛物面r⃗={a(u+v),b(u−v),2uv}的坐标曲线就是它的直母线。
证:双曲抛物面在直角坐标系下的隐式方程为x2 a2−y2b2=2z上式可表示为:(xa−yb)(xa+yb)=2z由此可见曲面上有两族直母线Lα:{xa−yb=2αxa+yb=zα和 Lβ:{xa−yb=zβxa+yb=2β其中α,β为参数,且α≠0,β≠0。
曲面上的u_线C u,v的方程为:v=v0,其中v0为常数,将v=v0代入曲面的方程中,得C u,v的向量参数方程:r⃗={a(u+v0),b(u−v0),2uv0}将上式化为参数方程:C u,v:{xa =u+v0y b =u−v0z=2uv0当v0≠0时,在上面的方程中消去变量u得并整理得C u,v0:{xa−yb=2v0 xa+yb=zv0比较C u,v0和Lα的方程可知,C u,v是直线族Lα中α=v0的那条直线。
曲面上的v_线C u0,v 的方程为:u=u0,其中u0为常数,同理可得C u0,v是直线族Lβ中β=u0的那条直线。
证毕3. 求球面r⃗={acosu cosv,acosu sinv,asinu}上任意点的切平面和法线的方程。
《微分几何》教学大纲09
《微分几何》课程教学大纲一、教学大纲说明(一)课程的地位、作用和任务《微分几何》是本科数学与应用数学(教师教育)专业的专业选修课程之一。
通过本课程的学习,要求掌握三维空间的曲线和曲面的局部理论以及向量分析研究曲线与曲面的基本方法,培养学生的几何素养,为今后探索现代微分几何打下基础。
本课程要求掌握微分几何的基本内容和研究方法。
(二)课程教学的目的和要求:《微分几何》是本科数学与应用数学专业的专业必修课程之一。
学习及考试重点是空间曲线的基本三菱形、曲率、挠率和伏雷内(Frenet)公式;曲面的第一、第二基本形式及由他们所表示的曲面的内蕴性质、外蕴性质以及可展曲面和测地线。
本课程的主要目的是培养学生的几何素养,为今后探索现代微分几何打好基础,使之具备一定的科学研究能力,并独立攥写小论文。
要求学生掌握:曲线的概念,空间曲线,一般螺线,曲面的概念,曲面的第一基本形式,曲面的第二基本形式,直纹曲面和可展曲面,曲面论的基本定理。
理解:贝特朗曲线,曲面上的测地线了解:常高斯曲率的曲面。
(三)课程教学方法与手段采用理论与习题相结合的教学方法。
(四)课程与其它课程的联系本课程是后续专业课,它需要具备解析几何、数学分析、微分方程等课程的基本知识、基本理论,和与本课程平行开设拓扑学有一定联系。
本课程是学生将来进行专业学习时学习整体微分几何、微分流形等课程的基础;又是现代实、复分析的重要基础。
(五)教材与教学参考书教材:梅向明、黄敬之,《微分几何 (第三版)》,高等教育出版社,2003年12月参考书: 1、梅向明、黄敬之,《微分几何》,人民教育出版社2、吴大任,《微分几何讲义》3、陈维桓等,《微分几何讲义》2006年6月二、课程教学内容、重点和难点本课程主要讲授三维空间中经典的曲线和曲面的局部理论。
教学重点与难点:本课程的重点是空间曲线和曲面论的基本概念、技巧、方法和理论。
难点是抽象性及用微分方程解决几何问题。
第一章曲线论第一节向量函数1、教学内容向量函数的极限、连续、微分、Taylor展式及积分、向量函数具有固定长的充要条件等。
微分几何第2章曲面论第三节曲面的第二基本形式ppt课件
曲面论
.
1
§3 曲面的第二基本形式
主要内容
1.曲面的第二基本形式; 2.曲面上曲线的曲率; 3.Dupin指标线; 4.曲面的渐近方向和共轭方向; 5.曲面的主方向和曲率线; 6.曲面的主曲率、Gauss曲率和平均曲率; 7.曲面在一点邻近的结构; 8.Gauss曲率的几何意义.
.
2
02.05.2020
称为曲面的第二类基本 量.
注 第二基本形式的几何意 义:II2.但不是正定的 .
计算公式:
(1
)
用定义计算:
L r u n u ,M r u n v ,N r vn v
(2)n
ru rv
ru rv
ru rv EGF2
L (ruu,ru,rv) , M (ruv,ru,rv) ,N (rvv,ru,rv) .
的第二 . 基本形式
解:r r { { R R s cc s o in i , , R s o R c n so c s s i, o n 0 , s i R } c n s} os
E r 2R 2co 2 ,sFr r 0,Gr 2R2,
n r r
EGF2
R 2c 1o sR R s ce io 1 n c ssio ns R R cso e i2 c n s so in sR c e 0 3o s
LrnRco2s,
Mrn 0,
Nrn R,
球面的第二基本形式为:
I I (R co 2d s2R2 d ).
.
9
例2 计算抛物 z面 a(x2 y2)的第一和第二基 .
解:pz2ax,qz2a, y
x
y
r x 2z 22a, s x 2 zy0 , t y 2z 22a.
微分几何答案(第二章)
第二章 曲面论§1曲面的概念1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线.解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线.2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。
证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线;v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。
3.求球面r =}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面和法线方程。
解 ϑr =}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr=}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ;法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。
微分几何第二章曲面论第二节曲面的第一基本形式复习课
等距
A(t0 )
u, v ) (C ) r P(
B ( t1 ) ( S ) : r r (u, v )
r [u(t ), v(t )]
s AB
t0 t1
du dv du dv E 2F G dt dt dt dt dt
2.曲面上曲线的弧长
du dv du dv s E 2F G dt t0 dt dt dt dt 3.曲面上两方向的夹角
t1
2
2
cos
Eduu F (duv dvu) Gdvv Edu2 2Fdudv Gdv 2 Eu 2 2Fuv Gv 2
作业
P81:
1, 3, 4, 5, 9, 10
2.6 保角变换
定义 曲面( S )与( S )之间的一个变换, 则称这个变换 如果使曲面上对应曲线 的交角相等, 为保角变换 (或保形变换或共形变换 ). 定理 两个曲面之间的变换是 保角变换 它们第一基本形式成比 例. 2 “ ” 若第一基本形式成比例 , 证: 则 (u, v ) 0, I I .
又 x OP cosv 2 R tanu cosv y OP sinv 2 R tanu sinv
z
u
平面的参数表示为: . P ( x, y, z ) x 2 R tanu cosv y O y 2 R tan u sin v , 易计算出: . P ( x, y,0) v . P ( x , y,0) z0 x 球面的第一基本形式为 : I ds2 4R2 (du2 sin2 u cos2 udv2 ), 平面的第一基本形式为 : 2 4R 2 2 2 2 2 I ds ( du sin u cos udv ), 4 cos u 1 的一个保角变换. I I . 球极投影是球面到平面 4 cos u
微分几何答案解析(第二章)
第二章 曲面论§1曲面的概念1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线.解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线.2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。
证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线;v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。
3.求球面r =}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面和法线方程。
解 ϑr =}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr=}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ; 法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。
微分几何2-4
第二章 曲面:局部理论
定义: 定义:给定正则参数曲面 M ,向量函数
W :M →
(1) W ( P ) ∈ TP M ,
3
上一个( 向量场, 称为 M 上一个(切)向量场,如果它满足
∀P ∈ M ;
(2)对于曲面任意的正则参数表示 x : U → M 函数 W o x : U →
3
都是连续可微的。 都是连续可微的。
第二章 曲面:局部理论
定义 曲面 M 上的可微切向量场 W 关于切向 量 V ∈ TP M 的协变导数为 协变导数为
∇V W = ( DV W )T = DV W − ( DV W ⋅ n) n .
给定 M 上曲线 α : I → M ,如果
∇α ′(t )W = 0, ∀t ∈ I ,
平行。 则称向量场 W 沿参数曲线 α 平行。
du dv cos θ = E , sin θ = G . ds ds
Darboux标架中 Darboux标架中
n× T = − sin θ e1 + cos θ e2 .
第二章 曲面:局部理论
曲率向量 dT dθ de1 de2 κN = = (− sin θ e1 + cos θ e2 ) + cos θ + sin θ , ds ds ds ds
第二章 曲面:局部理论
将单位球面Christoffel Christoffel记号的计算结果带入 解:将单位球面Christoffel记号的计算结果带入 方程(eq 1)中得到 (eq方程(eq-1)中得到 a′(t ) = sin u0 cos u0b(t )
b′(t ) = − cot u0 a (t ).
第二章 曲面:局部理论
微分几何 2-1曲面的概念
xv
(u0
,
v0),
y v
(u0
,
v0)
例:求S r r(, v) v, , 在点(1,2)处的单
位法向量及切平面的方程。
解:r(1,2) 1,2,3
ru
(1,2)
1,1, (1,2)
1,1,2
rv (1,2)
1,1, (1,2)
1,1,1
n(1,2) ru rv =
r r u
命题2 曲面上正常点的所有切方向都在过该点的 坐标曲线的切向量所决定的切平面上
从上可以看出曲面上一点的一个切方向由du:dv 值完全确定,切方向也可表示成 dr rudu rvdv , 或
dr rudu rvdv :二者视为同一方向. 例如, du:dv = (-2):3表方向 dr 2du 3dv , 也表方向 dr 2du 3dv, 二者视为同一方向.
0
0
,R sin
}
0
曲线:
r
( , ) 0
{R cos
cos 0
,R cos
sin
,sin }
0
它是球面上过两极的半圆——经线(子午线)。
旋转面
把xz平面上一条曲线 :x =
,
绕z轴旋转,得旋转面
x=
,y=
,
1.2光滑曲面 曲面的切平面和法线
1定义:如果曲面 :r r(u,v) 有直到 k 阶
它是原柱面上的直母线。
球面的参数表示为:
r r( , ) {Rcos cos ,
Rcos sin , Rsin }
2
2
0
2.
( , ) G 是一个长方形区域:
坐标曲线是 u v
微分几何第二章曲面论曲面的概念
VS
高斯曲率
设曲面$S$在点$P$处的两个主曲率分别为 $k_1, k_2$,则称$K = k_1k_2$为曲面在 点$P$处的高斯曲率。高斯曲率是曲面内蕴 几何量的重要代表,反映了曲面在一点处 的弯曲程度。
法截线和法截线族
法截线
设曲面$S$在点$P$处的法向量为 $mathbf{n}$,过点$P$且与法向量 $mathbf{n}$垂直的平面称为法截面。 法截面与曲面交于一条曲线,该曲线 称为法截线。
曲面性质
曲面具有连续性、光滑性、可定向性等性质。其中连续性指 曲面上任意两点都可以用一条连续曲线连接;光滑性指曲面 上任意一点都存在切线平面;可定向性指曲面存在连续的单 位法向量场。
曲面分类与举例
曲面分类
根据曲面的形状和性质,可以将曲面分为闭曲面、开曲面、紧致曲面、非紧致曲面等类 型。
举例
球面、环面、柱面、锥面等都是常见的曲面类型。例如,球面可以表示为 $mathbf{r}(theta, varphi) = (Rcosthetasinvarphi, Rsinthetasinvarphi,
法截线族
过曲面上一点的所有法截线构成的集 合称为该点的法截线族。法截线族在 微分几何中具有重要的研究价值,与 曲面的形状和性质密切相关。
04
曲面局部理论:可 展曲面与极小曲面
可展曲面定义及性质
定义
可展曲面是一类特殊的曲面,它可以在不改 变距离的情况下完全展开到一个平面上。也 就是说,它的高斯曲率为零。
02
第一基本形式与度 量性质
第一基本形式定义及性质
第一基本形式定义
第一基本形式是微分几何中曲面论的基本概念,用于描述曲面上的度量性质。它是一个二次微分形式,记作$I = Edu^2 + 2Fdudv + Gdv^2$,其中$E, F, G$是曲面上的系数函数。
微分几何第二章曲面论第二节曲面的第一基本形式
2.4 曲面域的面积
D
v v ) P3 (u u, v v ) ru u
P1 (u u, v ) P ( u, v ) PP 1 r ( u u, v ) r ( u, v ) ( ru 1 )u ru u. ( u 0时) PP2 r (u, v v ) r (u, v ) (rv 2 )v rv v. (v 0时) PP 1 PP 2 d ru u rv v ru rv dudv
曲纹坐标方程有关,不 需要知道曲线的形状 .
2.2 曲面上两方向的交角
( S )在点P (u, v )处的两个切方向 定义 已给曲面 称相应的切向量 (d ) du : dv和( ) u : v, dr rudu rv dv和r ruu rvv 之间的夹角 为这两个切方向 (d )和( )之间的夹角 .(0 ) 计算公式 dr r dr r cos , dr r ( ru du rv dv) ( ruu rvv ) cos 2 dr r ( ru du rv dv) ( ruu rvv ) 2
则ds Edu 2Fdudv Gdv .
2 2 2
称为曲面的第一基本形 式. 记作I .
即
其中
I Edu 2Fdudv Gdv 2 2 E ru , F ru rv , G rv
2
2
称为曲面的第一类基本 量. 对于曲面S : z z( x, y ), 有r { x, y, z( x, y)} , z z 于是rx {1,0, p}, ry {0,1, q}, 其中p ,q , x y 2 2 2 2 E rx 1 p , F rx ry pq, G ry 1 q .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
满足L M N 0的脐点称为平点.
满足L, M, N不全为0的脐点称为圆点.
脐 点圆平点点
L M N 0, L, M , N不全为0
注 (1)在脐点处,
kn
II I
Ldu2 2Mdudv Ndv 2 Edu2 2Fdudv Gdv 2
(常 数),
在脐点沿任何方向法曲率都相等.
dvu) dvu)
Gdvv Ndvv
0 .
0
将以上两式改写为:
(Edu Fdv)u (Fdu Gdv)v 0 (Ldu Mdv )u (Mdu Ndv)v 0 u,v不全为零,
Edu Fdv Fdu Gdv
0
Ldu Mdv Mdu Ndv
dv 2 dudv du2
:dn
r
(dr
r)
(r)2
,
(r)2 0, 而r 0, 0,
dn dr.
“”若方向(d)满足dn dr, 取与(d)垂直的方向( ),
则drr 0,
dn
dr两边点乘r得:dn
r
(dr
r)
0,
(d)与( )既垂直又共轭, 故(d)是主方向.
下面计 由dn
算dr得 , kdnn.
dr
(u, v ) 1 A1 (u, v) 2 A2
1 B1 2 B2
12
A1 A2
B1 0. B2
只含抛物点的曲面上只有一组渐近曲线, 也无渐近曲线网; 只含平点的曲面上由,于L N M 0,
曲面上的任何曲线网都是渐近曲线网.
命题3 曲纹坐标网是渐近网 L N 0. 证: 渐近网的方程为:Ldu2 2Mdudv Ndv2 0.
曲纹坐标网的方程为:dudv 0. 即du 0或dv 0. “”若曲纹坐标网是渐近网,则du 0或dv 0.
)
du
:
dv是主方向
dn
dr
其中 kn(, kn是曲面沿方向(d )的法曲率). 证“ :”设(d)是主方向, ( )是垂直于(d)的另一个主方向,
则它们既垂直又共轭,
dr r dr n
0, 0
n是单位向量,dn
n,
又dr,r
n,
dn与dr,r都
在
切
平
面
上,
dn
dr
r,
两
边
点
乘r得
(2)如果LN M 2 0,则称点P为曲面的双曲点. 此 时 , 杜 邦 指 标 线 为 一对 共 轭 双 曲 线.
(3) 如 果LN M 2 0, 但L, N , M不 全为 零 , 则称点P为曲面的抛物点. 此 时 , 杜 邦 指 标 线 为 一对 平 行 直 线.
(4)如果L N M 0,则称点P为曲面的平点. 此 时 , 杜 邦 指 标 线 不 存在.
杜邦指标线的方程为Lx2 2Mxy Ny2 1.于是有
定理 两个方向(d) du : dv和( ) u :v共轭
Lduu M(duv dvu) Ndvv 0.
即dn
r
0或n
dr
0.
事实上,
dn
r
(nudu
Lduu M(duv
nv
ddvv)u ()ruNu dvrvvv)n
第二章
曲面论
§3 曲面的第二基本形式
主要内容
1.曲面的第二基本形式; 2.曲面上曲线的曲率; 3.Dupin指标线; 4.曲面的渐近方向和共轭方向; 5.曲面的主方向和曲率线; 6.曲面的主曲率、Gauss曲率和平均曲率; 7.曲面在一点邻近的结构; 8.Gauss曲率的几何意义.
3.2 曲面上曲线的曲率
展开整理得(:BL AM )u (BM AN )v 0.
特 别 地 ,u 曲线族dv 0的共轭曲线族的方程为:
Lu Mv 0.
u 曲线族的共轭曲线族为v 曲线族 M 0.
命题4 曲面的曲纹坐标网是共轭网 M 0.
3.5 曲面的主方向和曲率线
1.主方向
定义 曲面在一点P的两个方向如,果它们既正交又共轭,
代入渐近网的方程得:L N 0. “”若L N 0,则渐近网方程变为2:Mdudv 0.
M 0,dudv 0. 即渐近网是曲纹坐标网 .
2.共轭方向
定义 若曲面(S)在P点的两个方向(d )和( )是
( S )在P点的 杜邦 指标 线的 共轭方向 ,
则(d )和( )就称为曲面(S)在P点的共轭方向.
定义 曲面(S)上两族渐近曲线构成的曲线网
称 为 曲 面( S )的 渐 近 曲 线 网(简 称 渐 近 网). 注 只含椭圆点的曲面上无,渐近曲线也,无渐近曲线网
只含双曲点的曲面上由,于LN M 2 0, 经过每一点有两条渐近曲线, 即渐近曲线方程Ldu2 2Mdudv Ndv2 0有两组解: A1du B1dv 0,A2du B2dv 0,它们构成渐近曲线网 只含抛物点的曲面上由,于LN M 2 0, Ldu2 2Mdudv Ndv2 0可化为( Adu Bdv)2 0,
(2)在脐点处, 0,任何方向都是主方向.
在非脐点处, 0,只有两个主方向.
曲面在每一个点处至少有两个主方向.
例5 证明平面上每一个点都是平点.
证:平rrx面xx 方{{10程,,00,为 ,00}}: ,, rrrxyy{
x, y,0} {0,1,0} ryx {0,0,0},
ryy
{0,0,0},
则 称 为 曲 面 在 点P的 主 方 向. 问题:曲 面 在 一 点 处 的 主 方 向是 否 存 在 ?
若 存 在, 有 多 少 个 ?
设方它向们(d既) 正 d交u :又dv共是轭 主, 方向ddrr,(nr)
u :
0, 0
v是另一个主方向,
即
Eduu F (duv Lduu M (duv
证:设u :v是已知曲线族的共轭曲线族的切方向,
由共轭条件得:
Lduu M(duv dvu) Ndvv 0.
且 Adu Bdv 0
于是方
程 组( Lu
Adu
Mv)du
Bdv 0
(Mu Nv)dv
0
是关于du, dv的二元齐次线性方程组.
du, dv不全为零,
A
B
0
Lu Mv Mu Nv
S(C0 )
P. (d) R
上 同 一 点P的 曲 率 中 心C0在 曲 线(C )的 密 切 平 面 上 的 投 影.
(C ) n C C0 密切平面
即 kn k cos
法截面
梅尼埃定理
R Rn cos
3.3 杜邦(Dupin)指标线
rv
P.
N(x, y)
(d ) ru
(S)
定义 在P点沿切方向(d ) du : dv上取一点N,
dr2
,
dn dr dr2
II I
kn.
注 (1)由罗德里格定理可以看出,欲证(d )是主方向,
只需证dr// dn.
(2)dn dr叫罗德里格方程.
2.曲率线与曲率线网 定义 曲面上一曲线如,果它在每一点的切方向都是主方向,
则称该曲线为曲面上的曲率线, 由两族曲率线构成的曲线网称为曲率线网. 方程 dv 2 dudv du2
dr .
两个方向(d) du : dv和( ) u :v共轭
dn r
0或n
dr
0.
定义 曲面上两族曲线构成的曲线网,
如果不同族的曲线的切方向都共轭,
则称这个曲线网为共轭曲线网. 命题 曲线族A(u, v)du B(u, v)dv 0 ( A2 B2 0)
共轭曲线族的微分方程是
(BL AM )u (BM AN )v 0.
E F G 0
LMN 命题 在不含脐点的曲面片上,经过参数的选择,
可使曲率线网为曲纹坐标网. 证:曲率线网的微分方程为:dv2 dudv du2
E F G 0
LMN
即(EM FL)du2 (EN GL)dudv (FN GM)dv2 0
曲面上不含脐点,对任意一点都有 0, 故上式可通过因式分解得两族曲率线:
若LN M 2 0,即椭圆点,有两个虚渐近方向. 若LN M 2 0,即双曲点, 有两个实渐近方向. 若LN M 2 0,即抛物点, 有一个实渐近方向. 若L N M 0,即平点,任何方向都是渐近方向.
(2)
kn
II I
Ldu2 2Mdudv Ndv 2 , Edu2 2Fdudv Gdv 2
du : dv是渐近方向 kn 0. 定义 曲面上的曲线如 ,果它上面每一点的切方向都是
渐 近 方 向 ,则 称 为 渐 近 曲 线.
渐近曲线的方程为:Ldu2 2Mdudv Ndv2 0.
定理 曲面(S)上的曲线(C)是渐近曲线 或者(C)是直线
或 者 它 在 每 一 点 的 密 切平 面 与( S )的 切 平 面 重 合.
上式还能写成:E F G 0 (*)
LMN
反之,将上述过程逆推可知(d,)和( )为主方向.
方程(*)为主方向方程.
dv2 dudv du2
将E
F
G 0展开得:
LMN
(EM FL)du2 (EN GL)dudv (FN GM)dv2 0
这是关于du : dv的二次方程,
(EN GL)2 4(EM FL)(FN GM)
3.4 曲面的渐近方向和共轭方向
1.曲面的渐近方向
定义 曲 面(S)在 点P的 杜 邦 指标 线 的 渐 近 方向
叫 做 曲 面(S )在 点P的 渐 近 方 向.
曲面(S)在点P的方向du : dv是渐近方向 Ldu2 2Mdudv Ndv2 0. 渐近方向方程
注 (1) 渐近方向的个数