《空间向量与立体几何》全章复习与巩固
数学人教A版选择性必修第一册第一章空间向量与立体几何章末复习
以O为坐标原点, 建立如图所示
空间直角坐标系Oxyz .
设OD SO OA OB OC a ,
z
a a
则A(a , 0, 0), B(0, a , 0), C ( a , 0, 0), P 0, , ,
2 2
⊥ 1 . 1 ⊥ 平面
当 = 4, = 3, 1 = 5时, 求平面与平面1 1 的夹角的余弦值.
D
C
1
1
A1
B1
E
F
D
C
A
B
(2) 以A为原点建立如图所示空间直角坐标系, 则A(0,0,0), A1 (0,0,5),
B(4,0,0), B1 (4,0,5), D(0, 3,0), C (4, 3,0).
n AP ax y z 0
2
2
取z 1, 则x 0, y 1,
所以n (0, 1,1),
设直线BC 与平面PAC 所成的
则 sin cos CB, n
,
CB n 2
所以直线BC 与平面PAC 所成的角为30.
由(1)知 A1C (4, 3, 5)是平面AEF的一个
法向量.
设平面BDD1 B1的法向量为n ( x , y , z ),
n BB1 5 z 0
则
,
n BD 4 x 3 y 0
令x 3, 得y 4, n (3, 4, 0)
z
D
C
1
1
A1
B1
E
y
F
D
C
A
B
x
空间向量与立体几何知识点和习题(含答案)
空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a +b =b +a ;加法结合律:(a +b +c )=a +(b +c );分配律:(λ +μ )a =λ a +μ a ;λ (a +b )=λ a +λ b .(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ ,使得a ∥λ b .②共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是存在惟一一对实数λ ,μ ,使得c =λ a +μ b .③空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在惟一的有序实数组λ 1,λ 2,λ 3,使得p =λ 1a +λ 2b +λ 3c .(3)空间向量的数量积运算:①空间向量的数量积的定义:a ·b =|a ||b |c os 〈a ,b 〉;②空间向量的数量积的性质:a ·e =|a |c os <a ,e >;a ⊥b ⇔a ·b =0;|a |2=a ·a ;|a ·b |≤|a ||b |.③空间向量的数量积的运算律:(λ a )·b =λ (a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c .(4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示:设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);λ a =(λ a 1,λ a 2,λ a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =λ b ⇔a 1=λ b 1,a 2=λ b 2,a 3=λ b 3(λ ∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式:设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a b a b a 在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是 .)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ;②l ⊥m ⇔a ⊥b ⇔a ·b =0;③l ∥α ⇔a ⊥u ⇔a ·u =0;④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ;⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ;⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v ②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然 ]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l-β 在二面角的棱上任取一点O,在两个半平面内分别作射线OA⊥l,OB⊥l,则∠AOB 叫做二面角α -l-β 的平面角.利用向量求二面角的平面角有两种方法:方法一:如图,若AB,CD分别是二面角α -l-β 的两个面内与棱l垂直的异面直线,则二面角AB与的夹角的大小.α -l-β 的大小就是向量CD方法二:如图,m1,m2分别是二面角的两个半平面α ,β 的法向量,则〈m1,m2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系.6.能用向量方法解决线线、线面、面面的夹角的计算问题.【例题分析】例1如图,在长方体OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,点P在棱AA1上,且AP=2P A1,点S在棱BB1上,且B1S=2SB,点Q,R分别是O1B1,AE的中点,求证:PQ∥RS.【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S ,)32,2,3(RS PQ =-= ∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD ,∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1). 由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1). ∴),1,0,2(),2,1,0(==CN AM 设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CNAM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC .易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角.设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB ∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A ⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB a DC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a a AD a a a AC =-= 23||||cos 111==∴⋅AD AC ADAC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ .30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E .∵P A =AC =1,P A ⊥AC ,∴PC =BC =2,∴CD ⊥PB .∵EA ⊥PB , ∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<⋅33||||,cos DC EA DCEA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a 得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1). ∴⋅-=>=<⋅33||||,cos b a b a b a ∵二面角A -PB -C 为锐二面角,∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面P AC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面P AC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设P A =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP == ∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面P AC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面P AC ,∴DE ⊥平面P AC ,∴∠DAE 是直线AD 与平面P AC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠⋅AE AD AEAD DAE即直线AD 与平面P AC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面P AC ,∴DE ⊥AE ,DE ⊥PE ,∴∠AEP 是二面角A -DE -P 的平面角.∵P A ⊥底面ABC ,∴P A ⊥AC ,∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3.注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2 (B)2 (C)5 (D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( )(A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n(B)θ >ϕ,m <n (C)θ <ϕ,m <n (D)θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.习题1一、选择题:1.关于空间两条直线a 、b 和平面α ,下列命题正确的是( ) (A)若a ∥b ,b ⊂α ,则a ∥α (B)若a ∥α ,b ⊂α ,则a ∥b (C)若a ∥α ,b ∥α ,则a ∥b (D)若a ⊥α ,b ⊥α ,则a ∥b 2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38(C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000(B)3cm 38000(C)2000cm 3 (D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23 (D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______. 8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形;③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ;(Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P -ABC 中,P A ⊥AB ,P A ⊥AC ,AB ⊥AC ,P A =AC =2,AB =1,M 为PC 的中点.(Ⅰ)求证:平面PCB ⊥平面MAB ;(Ⅱ)求三棱锥P -ABC 的表面积.13.如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =AA 1=2,M 、N 分别是A 1C 1、BC 1的中点.(Ⅰ)求证:BC 1⊥平面A 1B 1C ; (Ⅱ)求证:MN ∥平面A 1ABB 1; (Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2=AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°. 不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量.设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55 习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9π 9.5 10.①、②、③ 三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE . ∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形,∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C .∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1).同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为θ ,∵,515||||cos 2121==⋅n n n n θ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵P A ⊥AB ,AB ⊥AC ,∴AB ⊥平面P AC ,故AB ⊥PC .∵P A =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB .(Ⅱ)Rt △P AB 的面积1211==⋅AB PA S .Rt △P AC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△P AB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH .∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||. BA BM BA BM = 即,)12()12()2(14222λλλ+++-+-=+解得λ =1. ∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos 〉MS ,GB 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==⋅MS GB MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。
《空间向量与立体几何》单元复习与巩固
《空间向量与立体几何》单元复习与巩固知识网络知识要点梳理知识点一:平面的法向量定义:已知平面,直线,取的方向向量,有,则称为为平面的法向量。
注意:一个平面的法向量不是唯一的,在应用时,可适当取平面的一个法向量。
已知一平面内两条相交直线的方向向量,可求出该平面的一个法向量。
知识点二:用向量方法判定空间中的平行关系空间中的平行关系主要是指:线线平行、线面平行、面面平行。
(1)线线平行设直线,的方向向量分别是,,则要证明,只需证明,即。
(2)线面平行①设直线的方向向量是,平面的向量是,则要证明,只需证明,即。
②根据线面平行的判定定理:“如果直线(平面外)与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量。
③根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线的向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可。
(3)面面平行①由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可。
②若能求出平面,的法向量,,则要证明,只需证明。
知识点三:用向量方法判定空间的垂直关系空间中的垂直关系主要是指:线线垂直、线面垂直、面面垂直。
(1)线线垂直设直线,的方向向量分别为,,则要证明,只需证明,即。
(2)线面垂直①设直线的方向向量是,平面的向量是,则要证明,只需证明。
②根据线面垂直的判定定理转化为直线与平面内的两条相交直线垂直。
(3)面面垂直①根据面面垂直的判定定理转化为证相应的线面垂直、线线垂直。
②证明两个平面的法向量互相垂直。
知识点四:利用向量求空间角(1)求异面直线所成的角已知a,b为两异面直线,A,C与B,D分别是a,b上的任意两点,a,b所成的角为,则。
注意:两异面直线所成的角的范围为(00,900]。
【高中数学】复习、巩固、模拟学案:第一章空间向量与立体几何知识点总结(详实、真题)
【高中数学】复习、巩固、模拟学案:选择必修1第一章空间向量与立体几何一、空间向量及运算:(一)空间向量的相关概念1. 空间向量的定义:在空间中,我们把具有大小和方向的量叫做向量。
方向和大小是向量的两要素。
2、空间向量的表示方法:(1)几何表示:用有向线段表示(2)代数表示:○1用带箭头的小写字母表示,如、○2用有向线段的起点和终点坐标表示,如3、向量的模:向量的大小叫做向量的长度或模,记作、4、特殊向量:零向量:长度为0的向量叫作零向量单位向量:模为1的向量叫作单位向量相等向量:长度相等方向相同的向量称为相等向量;相反向量:长度相等方向相反的向量称为相反向量。
(二)空间向量的加减、数乘运算:原理:向量为自由向量,具有平移不变性。
空间中任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量。
1、向量加法的三角形法则:=+=+OB OA AB a b首尾连,起点到终点(首尾相连,自始至终)2、向量加法的平行四边形法则:向量共起点,和为对角线。
3、向量减法的三角形法则:=-=-BA OA OB a b共起点,连终点,指向前。
4、空间向量三角形加法法则的推广:多边形折线法则首尾顺次相接的若干个空间向量的和等于起始向量的起点指向末尾向量终点的向量(首尾连,起点到终点);若首尾顺次相接的若干个空间向量构成一个封闭图形,则它们的和为零向量。
5、空间向量加法平行四边形法则的推广:平行六面体法则共起点且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.6、向量的数乘运算:实数与空间向量的乘积仍为一个向量,称为向量的数乘运算(1)当>0,与向量方向相同(同向伸缩)(2)当<0,与向量方向相反(反向伸缩)(3)当=0,为零向量的长度是的倍。
(三)空间向量的加减与数乘运算律空间向量的加法、减法、数乘运算统称为向量的线性运算: (1)加法交换律:+=+.(2)加法结合律:(+)+=+(+). (3)数乘分配律:λ(+)=λ+λ. (4)线性运算:=(四)共线向量(1)共线向量定义:如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,平行于,记作。
空间向量与立体几何复习
解:建立如图所示空间坐标系,
则B→CD→1=B=(-(22,2,0,0,1)),.D→D1=(0,0,1),
O
y
设平面 BD1 的法向量 n=(x,y,z). x
n·D→B=2x+2y=0,
令x=1得
∴n·D|c→Dos1〈 =zn=,0B,→C1〉|=||B∴B→→CCn11=|·|nn(||1=,-52·1,02)=.
②求cos = cos CD, AB
二、直线AB和平面所成的角:
CD | AB |
定义:平面的垂线为AO,斜线AB与射影BO所成的角.
求斜线AB和平面所成的角 :
A
①求 AB和平面法向量 n
②求cos AB, n AB n AB | n |
③求sin cos AB, n
n
B
o
线面角正弦=斜线与法向量夹角余弦绝对值
(4)解方程组,令其中一个量的值求另外两个,
即得法向量。
一、平行关系:
设直线 l, m 的方向向量分别为 AB,CD ,
B
l
a
m
D
平面 , 的法向量分别为
线线平行:
n1
, n2
,
l ∥ m AB ∥ CD AB kCD
;
x1 y1
=
A
x2
y2
=
b
C
x3 y3
线面平行
Aa B n
l ∥ AB n1 AB n1 0 ;
面面平行
∥ n1 ∥ n2 n1 kn2
n1
n2
二、垂直关系:
设直线 l, m 的方向向量分别为 AB,CD ,
B
l
a
平面 , 的法向量分别为 n1 , n2 ,
选修2-1 空间向量与立体几何 复习
绵阳市开元中学高2013级高二(下)数学期末复习选修2—1 第三章 空间向量与立体几何题卷设计:绵阳市开元中学 王小凤老师 学生姓名一.知识归纳1.空间向量及其运算(1)空间中的平行(共线)条件:()//0,a b b R a b λλ≠⇒∃∈=(2)空间中的共面条件:,,a b c 共面(,b c 不共线),,x y R a xb y c ⇔∃∈=+推论:对于空间任一点O 和不共线三点A 、B 、C ,若O P xO A yO B zO C =++()1x y z ++=,则四点O 、A 、B 、C 共面(3)空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p x a yb z c =++(4)空间向量的坐标运算若()()111222,,,,,a x y z b x y z ==,则:①()121212,,a b x x y y z z ±=±±± ②()111,,a x y zλλλλ=③a =④12121a b x x y y z z⋅=++⑤cos ,a ba b a b<>==2.空间向量在立体几何证明中的应用(1)//A B C D ⇔//AB CD(2)AB C D ⊥⇔0AB CD ⋅=(3)//A B α⇔AB 垂直于平面的法向量或证明AB与平面内的基底共面;(4)A B α⊥⇔AB 平行于平面的法向量或AB垂直于平面内的两条相交的直线所在的向量;(5)//αβ⇔两平面的法向量平行或一个面的法向量垂直于另一个平面; (6)αβ⊥⇔两平面的法向量垂直或一个面的垂线(或法向量)在另一个面内。
3.空间向量在立体几何求值中的应用二.考点训练考点一. 与向量相关的概念1.下列命题是真命题的是( )A .若表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量.B .若a b = ,则,a b的长度相等而方向相同或相反.C .若向量,A B C D满足C D AB > ,且AB C D 与同向,则AB CD > . D .若两个非零向量AB C D 与满足0AB CD +=,则AB‖CD .2.空间的一个基底{},,a b c 所确定平面的个数为( ) A.1个B.2个C.3个D.4个以上3.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是( ) A .OC OB OA OM ++= B .OC OB OA OM --=2 C .OC OB OA OM 3121++=D .OC OB OA OM 313131++=4.若a 、b 、c 为任意向量,下列命题是真命题的是 ( ) A.若=b a = B .若c a b a ⋅=⋅,则c b = C .()()()b ac a c b c b a ⋅⋅=⋅⋅=⋅⋅ D=,且a 与b 夹角为︒45,则b b a ⊥-)( 考点二. 向量的加减及数乘运算5.已知空间四边形ABCD 中,c OC ,b OB ,a OA ===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN =( ) A .cb a 213221+- B .c b a 212132++-C .c b a 212121-+D .c b a 213232-+6.直三棱柱ABC —A 1B 1C 1中,若====B A C CC b CB a CA 11,,,则( ) A .c b a -+ B .c b a +- C .c b a ++- D .c b a -+-7.设向量a b 与互相垂直,向量c 与它们构成的角都是060,且5,3,8a b c ===那么()()()2332________,23________a c b a a b c+⋅-=+-=.8.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( ) A.2B.4 C.6D.129.已知平行六面体''''ABCD A B C D -中,AB=4,AD=3,'5AA =,090BAD ∠=,''060BAA DAA ∠=∠=,则'AC 等于( )A .85 B. C. D .5010.设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=⋅=⋅=⋅AD AC AD AB AC AB , 则△BCD 是( ) A .钝角三角形B .直角三角形C .锐角三角形D .不确定考点三. 向量的坐标运算11.已知的值分别为与则若μλμλλ,//),2,12,6(),2,0,1(b a b a -=+=( )A .21,51 B .5,2 C .21,51--D .5,2--12. 已知向量)0,1,1(=a ,)2,0,1(-=b ,且b a k +与b a -2互相垂直,k 等于( )A.1B.51 C.57 D.5313.已知()()2,4,,2,,26a x b y a b ===⊥,若a 且,则x y +的值等于__________14.若直线l 的方向向量为(102)=,,a ,平面α的法向量为(204)u =--,,,则( ) A.α∥l B.lα⊥ C.lα⊂ D.l 与α斜交15.若平面αβ,的法向量分别为(122)=-,,u ,(366)v =--,,,则( ) A.αβ∥B.αβ⊥ C.αβ,相交但不垂直 D.以上均不正确16.已知()()()2,5,1,2,2,4,1,4,1A B C ---,则向量AB AC与的夹角为( )A. 030B.045C.060D.09017.若向量 ()()1,,2,2,1,2a b λ==- ,,a b 夹角的余弦值为89,则λ等于__________18. 若()()2,2,0,3,2,a x b x x ==-,且,a b 的夹角为钝角,则x 的取值范围是( )A. 4x <-B. 40x -<<C. 04x <<D. 4x >19.已知(11)(2)t t t t t =--=,,,,,a b ,则-b a 的最小值是 .20.已知()()3cos ,3sin ,12cos ,2sin ,1P ααββ==和Q ,则P Q 的取值范围是( ) A .[]0,5 B .[]0,25 C .[]1,5 D.()1,521.已知A (1,1,1)、B (2,2,2)、C (3,2,4),则∆ABC 的面积为( ) A .3B .32C .6D .2622.已知)2,1,2(-=a ,)1,2,2(=b ,则以a 、b 为邻边的平行四边形的面积为 ( ) A.65 B. 265 C.4 D. 8考点四. 向量的应用(一)证明平行、垂直问题;23. 如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 于点F 。
空间向量与立体几何知识点和知识题(含答案解析)
§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。
(完整)空间向量与立体几何知识点和习题(含答案),推荐文档
由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.,取直线l的方向向量a,则向量及一个向量a,那么经过点A以向量用空间向量刻画空间中平行与垂直的位置关系:的方向向量分别是a,b,平面α ,β 的法向量分别是,k∈R;0;0;,k∈R;k∈R;=0.用空间向量解决线线、线面、面面的夹角问题:,b是两条异面直线,过空间任意一点分别是二面角的两个半平面α ,β 的法向量,则〈根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分.掌握空间向量的线性运算及其坐标表示..掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂.理解直线的方向向量与平面的法向量..能用向量语言表述线线、线面、面面的垂直、平行关系..能用向量方法解决线线、线面、面面的夹角的计算问题.建立空间直角坐标系,设法证明存在实数k ,使得RS k PQ =如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,1(3,0,2),B 1(0,4,2),E (3,4,0).PA 1, ∴),34,0,0()2,00(32321===AA AP ⋅)同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(2要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0)N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,,2,0),=(2,2,0),=(-1,1,4),=(-1,EF AK OG 本文下载后请自行对内容编辑修改删除,:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0)C (0,2,0),N (2,2,1).),1,0,2(),2,1,0(=CN 所成的角为θ ,则CN ,52||||cos ==⋅CN AM CN AM θ∴异面直线AM 和CN 所成角的余弦值是⋅52取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC .B P ∥MA ,B Q ∥NC ,所成的角.6,522=+==QC PC PQ Q空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成ABC -A 1B 1C 1的底面边长为a ,侧棱长为利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),取A 1B 1的中点D ,则,连接AD ,C ⋅))2,2,0(a a D ),2,0,0(),0,,0(),0,0,231a AA a AB a ==,011=⋅AA DC 本文下载后请自行对内容编辑修改删除,PB的中点D,连接CD,作AE⊥PB于E.,PA⊥AC,2,∴CD⊥PB.DC夹角的大小就是二面角A-PB-C的大小.,0(),0,0,2(),0,-==CP CB =(a 1,a 2,a 3),(b 1,b 2,b 3).=1,得).0,2,1(-=a 得取b 3=1,得⎪⎩⎪⎨⎧=+-=,0,02321b b b 3如图建立空间直角坐标系.,由已知可得A (0,0,0),),0,23,0(),0,23,21(a C a a B -),0,0,21(),,0,0a BC a =∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .,0PAC .的中点,DE ∥BC ,∴E 为PC 的中点.⋅)21,43,0(),21,3a a E a a ⊥平面PAC ,(B)θ >ϕ(D)θ <ϕ中,E,F,G,H分别为所成角的大小是______.6,且对角线与底面所成角的余弦值为D1中,AA1=2AB,则异面直线1本文下载后请自行对内容编辑修改删除,的底面是直角梯形,∠BAD=90°,,PA⊥底面ABCD,PD所成的角为θ ,则cosθ =______.C1D1中,AA1=2AB=4,点平面角的余弦值.中,底面ABCD是边长为OA的中点,N为BC的中点.OCD;所成角的大小.平面角的余弦值.习题1和平面α ,下列命题正确的是( α (B)若a ∥α (B)38000(D)4000cm 2的正方形,另外两个侧面都是有一个内角为( )(C)223本文下载后请自行对内容编辑修改删除,C11;平面角的余弦值.PA⊥AB,PA⊥AC,AB⊥AC MAB;C ;ABB 1;的体积.中,底面ABCD 为矩形,SD ⊥底面SD =2.点M 在侧棱SC 上,∠的中点;的平面角的余弦值.练习1-3D .42本文下载后请自行对内容编辑修改删除,,0),E (0,2,1),A 1).4∴A 1C ⊥BD ,A 1C ,0=⊥平面DBE .是平面DA 1E 的法向量,则,得n =(4,1,-2).14,,22(),0,22,0(-D P =-=),2,22,0(OD OP n =(x ,y ,z ),则⋅OP n 本文下载后请自行对内容编辑修改删除,是CA 和平面α 所成的角,则∠,CO =1.3=AO ABO =∠BAO =45°,∴=AO BO ).1,0,0(),0,3,0(),C A ).1,3,0(-=AC 是平面ABC 的一个法向量,取x =1,得=+=-,03,033z y y x 1=n 是平面β 的一个法向量.AB 1=E ,连接DE .四边形A 1ABB 1是正方形,是BC 的中点,∴DE ∥A 平面A 1BD ,∴A 1C ∥平面⊄解:建立空间直角坐标系,设AB =AA 1=1,⋅-)1,0,21(),01B 是平面A 1BD 的一个法向量,,01=D B 取r =1,得n 1=(2,0,1).0=1234是直三棱柱,∴BB 1⊥平面A 1B 1C 1⊥平面BCC 1B 1,∴BC 1⊥A 1⊥B 1C ,∴BC 1⊥平面A 1B 1C 分别为A 1C 1、BC 1的中点,得MN 平面A 1ABB 1,∴MN ⊄MH .MH ∥A 1B 1,,∴MH ⊥平面BCC 1B 1,∴的体积==⋅⋅∆3111MH S V B BC A (,0,0),则B (22,),12,12,2(λλ++--=BM 故.60 >=BM |.BA BM =解得λ =,)12()1222λλ+++-的中点.,0,0)得AM 的中点22(G 本文下载后请自行对内容编辑修改删除,。
《空间向量与立体几何》章末复习
[例 3] 已知空间四边形 OABC,M段 MN 上,且MGNG=2,设O→G=
xO→A+yO→B+zO→C,则 x、y、z 的值分别是
()
A.x=13,y=13,z=13
B.x=13,y=13,z=16
C.x=13,y=16,z=13
D.x=16,y=13,z=13
从而F→E=(-a3,b3,3c),A→C1=(-a,b,c), ∴F→E=13A→C1. 又 FE 与 AC1 不共线,所以直线 EF∥AC1.
(2)∵D1(0,0,c),B1(a,b,c),A1(a,0,c),B(a,b,0), ∴D→1B1=(a,b,0),A→1B=(0,b,-c). ∵EF 是两异面直线 B1D1,A1B 的公垂线, ∴FF→ →EE··DA→→11BB=1=00,,
2 a·2 a
因此,二面角
M-BN-C
的大小为
π-arccos
3 3.
[例7] 如图所示,在长方体OABC-O1A1B1C1中,OA =2,AB=3,AA1=2,E是BC的中点.
(1)求直线AO1与B1E所成角的大小; (2)作O1D⊥AC于D,求点O1到点D的距离.
[解析] 如图所示,建立空间直角坐标系. (1)由题设知,A(2,0,0),O1(0,0,2), B1(2,3,2),E(1,3,0)
∴E→F与D→B成的角为3π ∴EF 与平面 ACC1A1 所成的角为6π.
[例6] 如图所示,已知ABCD是正方形,过A作AP⊥平 面ABCD,,且AP=AB=a,M,N分别为BP、AC的中点.
(1)求证MN⊥CD; (2)求二面角M-BN-C的大小.
[解析] (1)证明:建立如图所示的空间直角坐标系, 则 A(0,0,0),B(a,0,0),D(0,a,0),P(0,0,a),C(a,a,0), M(a2,0,a2),N(a2,a2,0)
54《立体几何初步》全章复习与巩固(基础)-知识讲解_《立体几何初步》全章复习与巩固 -基础
《立体几何初步》全章复习与巩固编稿:丁会敏审稿:王静伟【学习目标】1.了解柱,锥,台,球及简单组合体的结构特征.2.能画出简单空间图形的三视图,由三视图能够还原成空间立体图形,并会用斜二测法画出它们的直观图.3.通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式.4.理解柱,锥,台,球的表面积及体积公式.5.理解平面的基本性质及确定平面的条件.6.掌握空间直线与直线,直线与平面,平面与平面平行的判定及性质.7.掌握空间直线与平面,平面与平面垂直的判定及性质.【知识网络】【要点梳理】要点一:空间几何体的结构与特征本章出现的几何体有:①棱柱与圆柱统称为柱体;②棱锥与圆锥统称为锥体;③棱台与圆台统称为台体;④球体.柱体常以直三棱柱、正三棱柱、正四棱柱、正六棱柱、圆柱等为载体,锥体一般以正三棱锥、正四棱锥、正六棱锥、圆锥等为载体,计算高、斜高、边心距、底面半径、侧面积和体积等.在研究正棱锥和圆锥、正棱台和圆台时要充分利用其中的直角三角形:高线,边心距,斜高组成的直角三角形;高线,侧棱(母线),外接圆半径(底面半径)组成的直角三角形.空间几何体的三视图:主视图:它能反映物体的高度和长度;左视图:它能反映物体的高度和宽度;俯视图:它能反映物体的长度和宽度.先会读懂三视图,并还原为直观图,再研究其性质和进行计算.侧面展开图问题是经常出现的一个问题.平面图形的翻折与空间图形的展开问题,要对照翻折(或展开)前后两个图形,分清哪些元素的位置(或数量)关系改变了,哪些没有改变,哪些元素是同一个元素.与几何体的侧面积和体积有关的计算问题,基本概念和公式要熟练,计算要准确,重视方程的思想和割补法、等积转换法的运用,等积转换可使体积计算变得简单化.要点二:平面基本性质刻画平面的公理(或基本性质)是立体几何公理体系的基石,是研究空间图形问题、进行逻辑推理的基础.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.作用:是判定直线是否在平面内的依据.公理2:经过不在同一条直线上的三点,有且只有一个平面.作用:提供确定平面最基本的依据.公理3:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线.作用:是判定两个平面交线位置的依据.公理4:平行于同一条直线的两条直线互相平行.作用:是判定空间直线之间平行的依据.要点三:空间的平行与垂直关系理解和熟练应用空间中线面平行、垂直的有关性质与判定定理,是解决有关计算和证明的金钥匙.归纳出以下判定定理:(1)空间中的平行关系如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行.如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.如果两个平行平面同时与第三个平面相交,那么它们的交线平行.如果两条直线垂直于同一个平面,那么这两条直线平行.(2)空间中的垂直关系如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.如果一个平面过另一个平面的一条垂线,则两个平面互相垂直.如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.解决空间问题的重要思想方法:等价转化——化空间问题为平面问题.空间平行、垂直关系证明的基本思想方法——转化与联系,如图所示.【典型例题】类型一:空间几何体的三视图例1.某几何体的三视图如图1所示,它的体积为()A.12πB.45πC.57πD.81π【答案】C【解析】该几何体下部分是半径为3,高为5的圆柱,体积为23545V ππ=⨯⨯=,上部分是半径为3,高为4的圆锥,体积为2134123V ππ=⨯⨯⨯=,所以体积为57π.【总结升华】根据三视图判断空间几何体的形状,进而求几何体的表(侧/底)面积或体积,是高考必考内容,处理的关键是准确判断空间几何体的形状,一般规律是这样的:如果三视图均为三角形,则该几何体必为三棱锥;如果三视图中有两个三角形和一个多边形,则该几何体为N 棱锥(N 值由另外一个视图的边数确定);如果三视图中有两个为矩形和一个多边形,则该几何体为N 棱柱(N 值由另外一个视图的边数确定);如果三视图中有两个为梯形和一个多边形,则该几何体为N 棱柱(N 值由另外一个视图的边数确定);如果三视图中有两个三角形和一个圆,则几何体为圆锥.如果三视图中有两个矩形和一个圆,则几何体为圆柱.如果三视图中有两个梯形和一个圆,则几何体为圆台.举一反三:【变式1】某几何体的三视图如图所示,该几何体的表面积是_____.【答案】92【解析】由三视图可知,原几何体是一个底面是直角梯形,高为4的直四棱柱,其底面积为(25)42282+⨯=,侧面积为(4255)464+++⨯=,故表面积为92.例2.如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结'BC ,证明:'BC ∥面EFG.正视图【思路点拨】(1)按照三视图的要求直接在正视图下面,画出该多面体的俯视图;(2)按照给出的尺寸,利用转化思想V=V 长方体-V 正三棱锥,求该多面体的体积;(3)在长方体ABCD-A′B′C′D′中,连接AD′,在所给直观图中连接BC′,证明EG∥BC′,即可证明BC′∥面EFG.【解析】(1)如图4642224622(俯视图)(正视图)(侧视图)(2)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭2284(cm )3=.(3)证明:在长方体ABCD A B C D ''''-中,连结AD ',则AD BC ''∥.因为E G ,分别为AA ',A D ''中点,所以AD EG '∥,从而EG BC '∥.又BC '⊄平面EFG ,所以BC '∥面EFG .【总结升华】长方体的有关知识、体积计算及三视图的相关知识,对三视图的相关知识掌握不到位,求不出有关数据.三视图是新教材中的新内容,故应该是新高考的热点之一,要予以足够的重视.类型二:几何体的表面积和体积例3.一个几何体的三视图如图所示,该几何体的表面积为()ABC DE FGA 'B 'C 'D 'A .280B .292C .360D .372【答案】C 【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的侧面积S =2×(10×8+10×2+8×2)+2×(6×8+8×2)=360.【总结升华】把三视图转化为直观图是解决问题的关键.又根据三视图很容易知道是两个长方体的组合体,画出直观图,得出各条棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的侧面积.举一反三:【变式1】某三棱锥的三视图如图所示,该三棱锥的表面积是()A .285+B .305+C .565+D .60125+【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,本题所求表面积为三棱锥四个面的面积之和.利用垂直关系和三角形面积公式,可得:10,10,10,5S S S S ====后右左底,因此该几何体表面积305S =+,故选B.例4.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为()A .2aπB .273a πC .2113a πD .25aπ【答案】B【解析】设三棱柱底面所在圆的半径为r ,球的半径为R ,易知233323r a =⨯=,所以球的半径R 满足:22223173212R a a a ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以22743S R a ππ==球.【总结升华】这是一个球内接三棱柱,球心是三棱柱两底中心连线的中点,这是本题的关键之处.举一反三:【变式1】如图,在长方体1111ABCD A BC D -中,3cm AB AD ==,12cm AA=,则四棱锥11A BB D D -的体积为cm 3.【答案】6.【解析】∵长方体底面ABCD 是正方形,∴△ABD 中BD cm,BD cm(它也是11A BB D D -中11BB D D 上的高).∴四棱锥11A BB D D -的体积为123⨯⨯.类型三:直线、平面的平行与垂直例5.如图所示,直三棱柱ABC —A 1B 1C 1中,B 1C 1=A 1C 1,AC 1⊥A 1B ,M 、N 分别是A 1B 1、AB 的中点.(1)求证:C 1M⊥平面A 1ABB 1;(2)求证:A 1B⊥AM;(3)求证:平面AMC 1∥平面NB 1C;(1)【证明】方法一由直棱柱性质可得AA 1⊥平面A 1B 1C 1,又∵C 1M ⊂平面A 1B 1C 1,∴AA 1⊥MC 1.又∵C 1A 1=C 1B 1,M 为A 1B 1中点,∴C 1M⊥A 1B 1.又A 1B 1∩A 1A=A 1,∴C 1M⊥平面AA 1B 1B.方法二由直棱柱性质得:平面AA 1B 1B⊥平面A 1B 1C 1,交线为A 1B 1,又∵C 1A 1=C 1B 1,M 为A 1B 1的中点,∴C 1M⊥A 1B 1于M.由面面垂直的性质定理可得C 1M⊥平面AA 1B 1B.(2)【证明】由(1)知C 1M⊥平面A 1ABB 1,∴C 1A 在侧面AA 1B 1B 上的射影为MA.∵AC1⊥A 1B,MC 1⊥A 1B,MC 1∩AC 1=C 1,∴A 1B⊥平面AMC 1,又AM ⊂平面AMC 1,∴A 1B⊥AM.(3)【证明】方法一由棱柱性质知四边形AA 1B 1B 是矩形,M、N 分别是A 1B 1、AB 的中点,∴AN //B 1M.∴四边形AMB 1N 是平行四边形.∴AM∥B 1N.连接MN,在矩形AA 1B 1B 中有A 1B 1//AB.∴MB 1//BN,∴四边形BB 1MN 是平行四边形.∴BB 1MN.又由BB 1//CC 1,知MN //CC 1.∴四边形MNCC 1是平行四边形.∴C 1M //CN.又C 1M∩AM=M,CN∩NB 1=N,∴平面AMC 1∥平面NB 1C.方法二由(1)知C 1M⊥平面AA 1B 1B,A 1B ⊂平面AA 1B 1B,∴C 1M⊥A 1B.又∵A 1B⊥AC 1,而AC 1∩C 1M=C 1,∴A 1B⊥平面AMC 1.同理可证,A 1B⊥平面B 1NC.∴平面AMC 1∥平面B 1NC.【总结升华】证明线面之间的垂直关系,要注意在各个阶段以某一直线为主线进行推理,以使推理过程清晰、明朗.举一反三:【变式1】如图所示,PA ^平面ABC ,点C 在以AB 为直径的⊙O 上,30CBA Ð=°,2PA AB ==,点E 为线段PB 的中点,点M 在 AB 上,且OM ∥AC .(Ⅰ)求证:平面MOE ∥平面PAC ;(Ⅱ)求证:平面P AC ^平面PCB ;【解析】(Ⅰ)证明:因为点E 为线段PB 的中点,点O 为线段AB 的中点,所以OE ∥PA .因为PA Ì平面PAC ,OE Ë平面PAC ,所以OE ∥平面PAC .因为OM ∥AC ,因为AC Ì平面PAC ,OM Ë平面PAC ,所以OM ∥平面P AC .因为OE Ì平面MOE ,OM Ì平面MOE ,OE OM O = ,所以平面MOE ∥平面PAC .(Ⅱ)证明:因为点C 在以AB 为直径的⊙O 上,所以90ACB Ð=°,即BC AC ⊥.因为PA ^平面ABC ,BC Ì平面ABC ,所以PA BC ⊥.因为AC Ì平面PAC ,PA Ì平面PAC ,PA AC A = ,所以BC ^平面PAC .因为BC Ì平面PBC ,所以平面PAC ^平面PCB .【总结升华】(1)当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线.把面面垂直转化为线面垂直,进而可以证明线段线线垂直,构造二面角的平面角或得到点到面的距离相等.(2)已知面面垂直时,通过作辅助线可转化为线面垂直,从而有更多的线线垂直的条件可用,必要时可以通过平面几何的知识证明垂直关系,通过证线面垂直来证线线垂直是空间中两直线垂直证明的最常用方法.例6.如图所示,在五棱锥P -ABCDE ,PA ⊥平面ABCDE ,AB ∥CD ,AC ∥ED ,AE ∥BC ,∠ABC=45°,AB =,BC =2AE =4,三角形PAB 是等腰三角形.(1)求证:平面PCD ⊥平面PAC ;(2)求直线PB 与平面PCD 所成角的大小;(3)求四棱锥P -ACDE 的体积.【解析】(1)证明:因为∠ABC =45°,AB =BC =4,所以在△ABC 中,由余弦定理得:AC 2=22424cos 458+-⨯=°,解得AC =.所以AB 2+AC 2=8+8=16=BC 2,所以AB ⊥AC .又PA ⊥平面ABCDE ,所以PA ⊥AB .又PA∩AC =A ,所以AB ⊥平面PAC .又AB ∥CD ,所以CD ⊥平面PAC .又因为CDC 平面PCD ,所以平面PCD ⊥平面PAC .(2)由(1)知平面PCD ⊥平面PAC ,所以在平面PAC 内,过点A 作AH ⊥PC 于H ,则AH ⊥平面PCD .又AB ∥CD ,AB ⊄平面PCD ,所以AB ∥平面PCD ,所以点A 到平面PCD 的距离等于点B 到平面PCD 的距离.过点B 作BO ⊥平面PCD 于点O ,连接PO ,则∠BPO 为所求角,且AH =BO ,又容易求得AH =2,所以sin ∠BPO =12,即∠BPO =30°,所以直线PB 与平面PCD 所成角的大小为30°.(3)由(1)知CD ⊥平面PAC ,所以CD ⊥AC .又AC ∥ED ,所以四边形ACDE 是直角梯形.又容易求得DE ,所以四边形ACDE 的面积为132⨯+⨯=,所以四棱锥P -AC -DE 的体积为133⨯=【总结升华】本题考查了空间几何体的线面与面面垂直、线面角的求解以及几何体的体积,考查了同学们的空间想象能力.举一反三:【变式1】如图,在四棱锥P-ABCD 中,平面PAD⊥平面ABCD,AB//DC,ΔPAD 是等边三角形,已知BD=2AD=8,(1)设M 是PC 上的一点,证明:平面MBD⊥平面PAD;(2)求四棱锥P-ABCD 的体积.【证明】(1)在ΔABD 中,因为所以222AD BD AB +=,所以AD BD ⊥.又因为面PAD ⊥面ABCD,面PAD∩面ABCD=AD,BD ⊂面ABCD 所以BD⊥面PAD.又BD ⊂面BDM,所以面MBD⊥面PAD.(2)过P 作PO⊥AD,∵面PAD⊥面ABCD,∴PO⊥面ABCD,即PO 为四棱锥P-ABCD 的高.又ΔPAD 是边长为4的等边三角形,∴PO=在底面四边形ABCD 中,AB//DC,AB=2DC,∴四边形ABCD 为梯形.在Rt ADB ∆中,斜边AB855=,此即为梯形的高.∴S 四边形ABCD =2545852425+⨯=,∴1243P ABCD V -=⨯⨯=类型四:折叠问题例7.在平面四边形ABCD 中,已知AB =BC =CD ,∠ABC =90°,∠BCD =135°,沿AC 将四边形折成直二面角B -C -D .求证:平面ABC ⊥平面BCD .证明:如下图,其中图(1)是平面四边形,图(2)是折后的立体图形.∵平面ABC ⊥平面ACD ,交线为AC ,又AB =BC ,∠ABC =90°,∠BCD =135°(在图(1)中),∴∠ACD =90°,CD ⊥AC .∴CD ABC CD BCD ⊥⎫⇒⎬⎭平面平面Þ平面ABC ⊥平面BCD .举一反三:【变式1】如图1,在边长为3的正三角形ABC 中,E ,F ,P 分别为AB ,AC ,BC 上的点,且满足1AE FC CP ===.将△AEF 沿EF 折起到△1A EF 的位置,使平面1A EF ⊥平面EFB ,连结1A B ,1A P .(如图2)(Ⅰ)若Q 为1A B 中点,求证:PQ ∥平面1A EF ;PP(Ⅱ)求证:1A E ⊥EP .图1图2【解析】证明:(Ⅰ)取1A E 中点M ,连结,QM MF .在△1A BE 中,,Q M 分别为11,A B A E 的中点,所以QM ∥BE ,且12QM BE =.因为12CF CP FA PB ==,所以PF ∥BE ,且12PF BE =,所以QM ∥PF ,且QM PF =.所以四边形PQMF 为平行四边形.所以PQ ∥FM .又因为FM ⊂平面1A EF ,且PQ ⊄平面1A EF ,所以PQ ∥平面1A EF .(Ⅱ)取BE 中点D ,连结DF .因为1AE CF ==,1DE =,所以2AF AD ==,而60A ∠=,即△ADF 是正三角形.又因为1AE ED ==,所以EF AD ⊥.所以在图2中有1A E EF ⊥.因为平面1A EF ⊥平面EFB ,平面1A EF 平面EFB EF =,所以1A E⊥平面BEF.又EP 平面BEF,所以1A E⊥EP.。
第一章空间向量与立体几何(单元复习课件)高二数学(人教A版2019选择性)
设平面 A1BD 的法向量为 n=(x,y,z),
- + 2 + 3 = 0,
·1 = 0,
则 n⊥1 ,n⊥,所以
即
-2 + = 0.
· = 0,
令 x=1,得 y=2,z=- 3,故 n=(1,2,- 3)为平面 A1BD 的一个法向量.
因为1 =(1,2,- 3),所以1 ∥n,
所以1 ·m=(a-c)·[ +
1
2
1
2
a+μb+λc,
a+μb+λc]=4 +
所以1 ⊥m,所以 AB1⊥平面 A1BD.
1
2
-2μ-4λ=0.
(方法 2)基向量的取法同方法 1.
因为1 ·1 =(a-c)·(c+a)=|a|2-|c|2=0,
1 ·=(a-c)· +
1
2
1 2
1
= |a| +a·b- a·c-b·c=0,
2
2
所以1 ⊥ 1 , 1 ⊥ ,即 AB1⊥BA1,AB1⊥BD.
又因为 BA1∩BD=B,
由直线和平面垂直的判定定理知 AB1⊥平面 A1BD.
(方法3)如图,取BC,B1C1的中点O,O1,连接AO,OO1.
因为△ABC为正三角形,所以AO⊥BC.
两点间的距离
→
则d=|AB|=
→ →
AB·
AB=
x2-x12+y2-y12+z2-z12
设平面α的法向量为n,B∉α,A∈α,则B点到平面α
点到平面的距离
→
|BA·
n|
的距离d=
空间向量及立体几何复习资料
空间向量及立体几何复习资料一、知识整合1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.2.判定两个平面平行的方法:(1)根据定义——证明两平面没有公共点;(2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。
⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”。
4.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π⎡⎤⎢⎥⎣⎦,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步培养运算能力、逻辑推理能力及空间想象能力.如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角α-l -β的平面角(记作θ)通常有以下几种方法:(1) 根据定义;(2) 过棱l 上任一点O 作棱l 的垂面γ,设γ∩α=OA ,γ∩β=OB ,则∠AOB =θ ; (3) 利用三垂线定理或逆定理,过一个半平面α内一点A ,分别作另一个平面β的垂线AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB =θ 或∠ACB =π-θ;(4) 设A 为平面α外任一点,AB ⊥α,垂足为B ,AC ⊥β,垂足为C ,则∠BAC =θ或∠BAC =π-θ;(5) 利用面积射影定理,设平面α内的平面图形F 的面积为S ,F 在平面β内的射影图形的面积为S ',则cos θ=SS '.5.空间的距离问题,主要是求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线段的)、平面和它的平行直线、以及两个平行平面之间的距离.求距离的一般方法和步骤是:一作——作出表示距离的线段;二证——证明它就是所要求的距离;三算——计算其值.此外,我们还常用体积法求点到平面的距离.6.棱柱的概念和性质⑴理解并掌握棱柱的定义及相关概念是学好这部分知识的关键,要明确“棱柱 直棱柱 正棱柱”这一系列中各类几何体的内在联系和区别。
(完整word版)高考数学空间向量与立体几何总复习
空间向量与立体几何总复习一、知识网络构建二、课标及考纲要求2三、知识要点及考点精析(一)空间向量及其运算 1.空间向量的概念在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模. 还需要掌握的几个相关的概念包括相等向量、零向量、共线向量等. 2.空间向量的线性运算(1)空间向量的加法、减法和数乘运算平面向量中的三角形法则和平行四边形法则同样适用于空间向量的加(减)法运算.加法运算对于有限个向量求和,交换相加向量的顺序其和不变.三个不共面的向量的和等于以这三个向量为邻边的平行六面体的对角线所表示的向量.加法和数乘运算满足运算律: ①交换律,即a +b =b+a ;②结合律,即()()+=+a +b c a b+c ;③分配律,即()λμλμ+a =a +a 及()λλλ=+a +b a b (其中λμ,均为实数). (2)空间向量的基本定理① 共线向量定理:对空间向量,a b (0)≠,b a b ∥的充要条件是存在实数λ,使λa =b .② 共面向量定理:如果空间向量,a b 不共线,则向量c 与向量a,b 共面的充要条件是,存在惟一的一对实数x y ,,使c =x y a +b .③ 空间向量基本定理:如果三个向量a , b , c 不共面,那么对空间任一向量p ,存在有序实数组x ,y ,z ,使x y z p =a +b +c .其中{},,a b c 是空间的一个基底,a , b , c 都叫做基向量,该定理可简述为:空间任一向量p 都可以用一个基底{},,a b c 惟一线性表示(线性组合). (3)两个向量的数量积两个向量的数量积是a •b= |a||b|cos<a , b >,数量积有如下性质: a , b , c ① a •e= |a|cos<a , e >(e 为单位向量); ② a ⊥a ⇔a •b=0; ③ a •a=|a|2;④ |a •b|≤| a||b|. 数量积运算满足运算律: ①交换律,即a •b= b •a ;②与数乘的结合律,即(λa )•b=λ(a •b ); ③分配律,即(a+b )•c =a •c +b •c . 3.空间向量的坐标运算(1)给定空间直角坐标系xyz O -和向量a ,存在惟一的有序实数组使123a a a a =i +j +k ,则123()a a a ,,叫作向量a 在空间的坐标,记作123()a a a ,,a =. (2)空间向量的直角坐标运算律①若123123()()a a a b b b ,,,,,a =b =,则a +b 112233()a b a b a b =+++,,,-a b 112233()a b a b a b =---,,,123()a a a λλλλ=,,a ,a •b ),,(332211b a b a b a =.112233()a b a b a b λλλλ⇔===∈R ,,a b ∥,1122330a b a b a b ⇔++=a b ⊥.②若111222()()A x y z B x y z ,,,,,,则212121()AB x x y y z z =---u u u r,,.即一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标. 4.直线的方向向量与向量方程(1)位置向量:已知向量a ,在空间固定一个基点O ,作向量OA =u u u ra ,则点A 在空间的位置被a 所惟一确定,a 称为位置向量.(2)方向向量与向量方程:给定一个定点A 和一个向量a ,再任给一个实数t ,以A 为起点作向量t AP =a ,则此向量方程称为动点P 对应直线l 的参数方程,向量a 称为直线l 的方向向量. 典型例题分析:例1.若=(x 2,1,3),=(1,-y 2,9),如果与为共线向量,则( )4A .1=x ,1=yB .21=x ,21-=y C .61=x ,23-=y D .61-=x ,23=y答案: C例2.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2 a -b 互相垂直,则k 的值是( )A . 1B . 51C . 53D . 57 答案: D例3.已知=(2,2,1),=(4,5,3),求平面ABC 的单位法向量.解:设平面ABC 的法向量n =(x,y,1),则n ⊥AB 且n ⊥,即n ·AB =0,且n ·=0,即⎩⎨⎧=++=++,0354,0122y x y x 即⎪⎩⎪⎨⎧-==,1,21y x ∴n =(21,-1,1),单位法向量n =±(31,-32,32).(二)立体几何中的向量方法1.利用向量法确定直线、平面间的平行、垂直等位置关系设直线1l 的方向向量是1u 111()=,,a b c ,直线2l 的方向向量是2u 222()a b c =,,,平面α的法向量是1v 111()x y z =,,,平面β的法向量是2v 222()x y z =,,,则有如下结论成立: (1)12∥l l ⇔u 1∥u 2⇔u 1=k 2u 212121,,kc c kb b ka a ===⇔; (2)12l l ⊥⇔12120⊥⇔=·u u u u 1212120⇔++=a a b b c c ; (3)1l ∥⇔α11110⊥⇔=·u v u v 1111110⇔++=a x b y c z ;(4)1l ⊥⇔α111⇔=∥u v u k 1v 111111,,kz c ky b kx a ===⇔; (5)121αβ⇔⇔=∥∥v v v k 2v 121212⇔===,,x kx y ky z kz ; (6)12120αβ⊥⇔⊥⇔=·v v v v 1212120x x y y z z ⇔++=. 第一部分:平行问题① 利用空间向量解决线线平行问题(06山东模拟)已知直线OA ⊥平面α,直线BD ⊥平面α,O B ,为垂足.求证:OA BD ∥.证明:以点O 为原点,以射线OA 为非负z 轴,如图1,建立空间直角坐标系O xyz -,,,i j k 为沿,,x y z 轴的单位向量,且设BD u u u r()x y z =,,.BD α⊥u u u r ∵,BD ⊥u u u r∴i ,BD ⊥u u u r j ,()(100)0BD x y z x ===u u u r ,,,,i ∴··, BD u u u rj ·()(010)0x y z y ===,,,,·.(00)BD z =u u u r ,,∴,BD z =u u u r k ∴·.BD u u u r k ∴∥,即OA BD ∥.点评:由向量的共线的充要条件知,只要证明OA BD λ=u u u r u u u r即可.② 利用空间向量解决线面平行问题(06山西模拟)已知111ABC A B C -是正三棱柱,D 是AC 的中点,求证:1AB ∥平面1DBC . 证法1:建立如图2的空间直角坐标系A xyz -.设正三棱柱的底面边长为a ,侧棱长为b , 则1133(000)0(0)00222a a a A B a C a b B a b D ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,,,. 设平面1DBC 的法向量为()x y z =,,n ,则113300022a a AB a b BD a DC b ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭u u u u r u u u r u u u u r ,,,,,,,,. 由BD ⊥u u u r n ,1DC ⊥u u u u r n ,得13002BD ax a DC y bz ⎧=-=⎪⎪⎨⎪=+=⎪⎩u u u r u u u u r ,,n n ··02x a z y b =⎧⎪⎨=-⎪⎩,.∴ 取得1y =,得012a b ⎛⎫=- ⎪⎝⎭,,n . 由1301022a a AB a b b ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭u u u u r ,,,,n ··, 得1AB ⊥u u u u rn ,即1AB ∥平面1DBC .证法2:如图3,记1AB AC AA ===u u u r u u u r u u u r,,a b c , 则1111122AB DB AB AD DC DC CC =+=-=-=+=u u u u r u u u r u u u r u u u r u u u ur u u u r u u u u r ,,b +c a c a b .11DB DC AB +=+=u u u r u u u u r u u u u r a c ∴,11DB DC AB u u u r u u u u r u u u u r ,,∴共面. 又1B ∉∵平面1C BD ,1AB ∴∥平面1DBC .点评:用向量证明线面平行问题通常有两种方法:①向量p 与两个不共线的向量,a b 共面6的充要条件是存在惟一的有序实数对(),x y ,使x y =+p a b .利用共面向量定理可证明线面平行问题,如证法2.②设n 为平面α的法向量,要证明α∥a ,只需证明0=a n ·,如证法1.③ 利用空间向量解决面面平行问题例题:已知正方体1AC 的棱长为1,E F G ,,分别为1AB AD AA ,,的中点,求证:平面EFG ∥平面11B CD .证明:建立空间直角坐标系D xyz -,则111(100)(110)(010)(000)(101)(111)(001)A B C D A B D ,,,,,,,,,,,,,,,,,,,,. 得111100010222E F G ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,.设1111()x y z =,,n 为平面EFG 的法向量,设2222()x y z =,,n 为平面11B CD 的法向量. 空间计算:12(111)(111)=----,,,,,n n . 由12=n n ,得平面EFG ∥平面11B CD .点评:设12,n n 分别为平面αβ,的法向量,要证αβ∥,只需证明:存在一个非零常数λ,满足12n n λ=,则αβ∥.其实本题也可转化为线线平行,则面面平行.即用向量先证明1u u u u r u u u r ∥D C GE ,11D B EF u u u u r u u u r∥,则有线面平行,从而平面EFG ∥平面11B CD .第二部分:垂直问题① 利用空间向量解决线线垂直问题(2003年高考题)已知正四棱1111ABCD A B C D -,112AB AA ==,,点E 为1CC 中点,点F 为1BD 中点.证明:EF 为1BD 与1CC 的公垂线. 证明:如图1,在以C 为的原点的空间直角坐标系中, 1111(010)(102)(002)(001)122B D C E F ⎛⎫ ⎪⎝⎭,,,,,,,,,,,,,,.由11022EF ⎛⎫= ⎪⎝⎭u u u r ,,,11(002)(112)CC BD ==-u u u ur u u u u r ,,,,,, 得111100EFBD EF CC EF BD EF CC ==⇒⊥⊥u u u r u u u u r u u u r u u u u r ,,··. EF ∴为1BD 与1CC 的公垂线.点评:把推理论证(1EF CC ⊥)用向量运算(10EFCC =u u u r u u u u r·)来代替,减少了构造辅助图形,降低了思维量.② 利用空间向量解决线面垂直问题(2005年高考题)如图2,在四棱锥P ABCD -中,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,312AB BC PA E ===,,,为PD 的中点,在侧面PAB 内找一点N ,使NE ⊥面PAC解:如图2,在以A 为原点的空间直角坐标系中, 1(310)(010)(002)012C D P E ⎛⎫ ⎪⎝⎭,,,,,,,,,,,.设11(310)(002)2NE x z AC AP ⎛⎫=--== ⎪⎝⎭u u u r u u u r u u u r ,,,,,,,,.由NE ⊥面PAC ,得00NE AC NE AP ⎧=⎪⎨=⎪⎩u u u r u u u r u u u r u u u r,,·· 即13302101x x z z ⎧⎧-+==⎪⎪⇒⎨⎨⎪⎪-==⎩⎩,,. 301N ⎛⎫ ⎪ ⎪⎝⎭,,∴. 点评:按照传统方法,要构造三条辅助线,多解两个三角形,画图、看图以及计算都增加了难度.用空间向量的观点处理立体几何中的线面关系,把几何问题代数化,降低了难度. ③ 利用空间向量解决面面垂直问题(07北京海淀)如图3,在正方体1111ABCD A B C D -中,O 为AC 与BD 的交点,G 为1CC 的中点,求证:平面1A BD ⊥平面GBD . 分析:要证明平面1A BD ⊥平面GBD ,只要证明平面内的一条直线1A O 垂直于平面GBD 中的两条相交直线即可,而从图中观察,证11AO BD AO OG ⊥⊥,较容易成功. 证明:设11111A B A D A A ===u u u u r u u u u r u u u r,,a b c . 则000a b b c a c ===,,···.而11111()()22c a b =+=++=++u u u u r u u u r u u u r u u u r u u u r u u u r AO A A AO A A AB AD , b a =-=-u u u r u u u r u u u rBD AD AB ,11111()()2222a b c =+=++=+-u u u r u u u r u u u r u u u r u u u r u u u u r OG OC CG AB AD CC ,1=u u u u r u u u r A O BD ∴·221()02c b c a b a -+-=··,1u u u u r u u u r A O OG ∴·22211()042=+-=a b c .1AO BD ⊥∴,1AO OG ⊥. 又BD OG O =I ∵,1AO ⊥∴平面BDG . 又1AO ⊂平面1A BD ,8∴平面1A BD ⊥平面GBD .点评:向量a 垂直于向量b 的充要条件是a •b 0=,据此可以证明直线与直线垂直,进而还可证明直线与平面垂直及两个平面垂直.在证明一对向量垂直时,往往用一组基底先表示这一对向量,再考虑它们的数量积是否为零. 2.利用空间向量解决空间距离问题 (1)利用空间向量求线线距离如图1,若CD 是异面直线a b ,的公垂线段,A B ,分别为a b ,上的任意两点. 则两异面直线a b ,间的距离为AB d =u u u rn n·(其中n 与a b ,垂直,A B ,分别为两异面直线上的任意两点). 例题:如图2,在正方体1111ABCD A B C D -中,E 为11A B 的中点.求异面直线1D E 和1BC 间的距离?解析:设正方体棱长为2,以1D 为原点,建立如图2所示的空间直角坐标系, 则11(210)(202)D E C B ==u u u u r u u u u r,,,,,. 设1D E 和1BC 公垂线段上的向量为(1)λμ=,,n , 则1100D E C B ⎧=⎪⎨=⎪⎩u u u u ru u u u r,,··nn 即20220λμ+=⎧⎨+=⎩,,21λμ=-⎧⎨=-⎩,.∴ (121)=--,,∴n .又11(020)D C =u u u u u r ,,,11266D C ==u u u u u r n n ·∴, 所以异面直线1D E 和1BC 间的距离为26. (2)利用空间向量求点面距离如图3,已知AB 为平面α的一条斜线段,n 为平面α的法向量. 则点A 到平面α的距离AB AC =u u u r u u u rn n·.例题:如图4,已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.求 点C 到平面1AB D 的距离.解析:11ABB A ∵为正方形,11A B AB ⊥∴.易得平面1AB D ⊥平面11ABB A , 1A B ⊥∴面1AB D ,1A B u u u r∴是平面1AB D 的一个法向量.设点C 是平面1AB D 的距离为d ,则111()0cos60222AC A B AC A A AB a a d a a a A B ++⨯⨯====u u u r u u u r u u u r u u u r u u u r u u u r ··° (3)利用空间向量求线面、面面距离注意:利用空间向量求线面、面面距离的问题显然可以转换成利用空间向量求点面距离的问题例题:如图5,已知边长为42的正三角形ABC 中,E F ,分别为BC 和AC 的中点,PA ⊥面ABC ,且2PA =,设平面α为PF 且与AE 平行.求AE 与平面α间的距离?解析:设APAE EC u u u r u u u r u u u r,,的单位向量分别为123,,e e e ,选取{}123e e e ,,作为空间向量的一个基底.易知1213230e e e e e e ===···,123123122622()2622e e e e e e ====++=-++u u u r u u u r u u u r u u u r u u u r u u u r u u u r,,,AP AE EC PF PA AE EC .设123n e e e =++x y 是平面α的一个法向量, 则n n ⊥⊥u u u r u u u r ,AE PF .00n n⎧=⎪⎨=⎪⎩u u u ru u u r,.·∴·AE PF 即222221232602620y e x e y e e ⎧=⎪⎨-++=⎪⎩,02y x =⎧⎪⇒⎨=⎪⎩,,132n e e =+∴. ∴直线AE 与平面α间的距离11322132222322e e e AP n ne e ⎛⎫+ ⎪⎝⎭===+u u u rd ··. 例题:如图6,在棱长为1的正方体1111-ABCD A B C D 中.求平面1AB C 与平面11AC D 间的距离.解析:建立如图所示的空间直角坐标系,易知平面1AB C 与平面11AC D 平行. 设平面11AC D 的一个法向量(1)xy =,,n ,10 则1100DA DC ⎧=⎪⎨=⎪⎩u u u u r u u u u r ,,··n n ,即(1)(101)01(1)(011)01x y x x y y ==-⎧⎧⇒⎨⎨==-⎩⎩,,,,,,,,,,,·· (111)=--,,∴n .∴平面1AB C 与平面11AC D 间的距离2223(1)(1)1AD d ===-+-+u u u r,,,,··n n. 3.利用空间向量解决空间角问题 (1)利用空间向量求线线角设两异面直线a b ,所成的角为θ,,a b 分别是a b ,的方向向量,注意到异面直线所成角的范围是(]090,°°,则有cos cos θ==,a b a b a b·.(2006广东模拟)已知正方形ABCD 和矩形ACEF 所在平面互相垂直,21AB AF ==,.试在线段AC上确定一点P ,使得PF 与CD 所成的角是60°.如图1,建立空间直角坐标系C xyz -,则(200)(221)CD F =u u u r,,,,,. 设(0)(02)P t t t ,,≤≤,得(221)PF t t =--u u u r,,. 又PF ∵和CD 所成的角是60°, 22(2)2cos60(2)(2)12t t t -=-+-+··.解得2t =或32t =(舍去),即点P 是AC 的中点. 点评:采用传统的平移法求异面直线所成角的大小,免不了要作辅助线和几何推理.这里运用向量法,没有了这些手续,显得便当快捷. (2)利用空间向量求线面角如图2,点P 在平面α外,M 为α内一点,斜线MP 和平面α所成的角为θ,n 为α的一个法向量,注意到斜线和平面所成角的范围是(090),°°,则有π2MP θ=-u u u r ,n ,结合向量的夹角公式便可求θ. (05山东模拟)在正三棱柱111ABC A B C -中,已知1AB D =,在棱1BB 上, 且1BD =,若AD 与平面11AAC C 所成的角为α,则sin α=( )A.23 B.22 C. 410 D. 46 解:取AC 中点E ,连结BE ,则BE AC ⊥,如图3,建立空间直角坐标系B xyz -,则310(001)2A D ⎛⎫ ⎪ ⎪⎝⎭,,,,,,则3112AD ⎛⎫=-- ⎪ ⎪⎝⎭u u u r ,,. ∵平面ABC ⊥平面11AAC C ,BE AC ⊥,BE ⊥∴平面11AAC C .300BE ⎛⎫= ⎪ ⎪⎝⎭u u u r ,,∴为平面11AACC 的一个法向量. 6cos AD BE =-u u u r u u u r ,∴. π6sin sin 2AD BE α⎛⎫=-= ⎪⎝⎭u u u r u u u r ,∴,选(D). 点评:利用向量法求空间角,其操作只须按步骤进行,数值计算十分简单,对空间想象力和几何的逻辑推理能力要求不高,显得简洁明了.(3)利用空间向量求面面角注意:求面面角的问题关键还是转化成求线线角,一般来说求二面角有两种方法: 如图4,OA O B ',分别在二面角l αβ--的两个面内且垂直于棱,,m n 分别是αβ,的一个法向量,则可利用向量的夹角公式结合以下角度关系之一求二面角的大小:方法一:'u u u r u u u u r ,OAO B 等于二面角的平面角;方法二:,m n 与二面角的平面角相等或互补.(05云南一模)如图5,在三棱锥-S ABC 中,ABC △是边长为4的正三角形,平面SAC ⊥平面ABC ,23SA SC ==,M N ,分别为AB SB ,的中点,求二面角N CM B --的余弦值. 解:取AC 中点O ,连结OS OB ,.SA SC AB BC ==,∵,AC SO ⊥∴,且AC BO ⊥.又∵平面SAC ⊥平面ABC ,SO ⊥∴平面ABC ,SO BO ⊥∴.12 如图5所示,建立空间直角坐标系O xyz -.则(200)(0(200)(00A B C S -,,,,,,,,(0M N CM =u u u u r,(10MN =-u u u u r ,设()x y z =,,n 为平面CMN 的一个法向量,则300CM x MNx ⎧==⎪⎨=-=⎪⎩u u u u r u u u u r ,,··n n 取1z =,则x ==则=n .又(00OS =u u u r ,为平面ABC 的一个法向量, 1cos 3n OS OS OS ==u u u r u u u r u u u r ,n n ·∴. ∴二面角N CM B --的余弦值为31. 点评:利用向量法求空间角的大小,经常用到平面的法向量.求法向量的方法主要有两种: ① 求平面的垂线的方向向量;② 利用法向量与平面内两个不共线向量数量积为零列方程组求.4.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中涉及的点、线、面,从而把立体几何问题转化为向量问题(几何问题向量化);(2)通过向量运算,研究点、线、面之间的位置关系以及它们之间的距离和夹角等问题(进行向量运算);(3)把向量的运算结果“翻译”成相应的几何意义(回归几何问题).四、易错点分析1.类比平面向量,是掌握空间向量的最好方法,平面向量的加、减、数乘等坐标运算公式及运算律对空间向量仍然成立.虽然共面向量定理由两个约束条件变为三个约束条件,坐标由两个有序实数推广到三个有序实数,但其运算规律实质上是一样的.例如线段的定比分点坐标公式(包括中点坐标公式、重心坐标公式)在空间直角坐标系中依然适用,有向线段表示向量的坐标仍然是终点减去始点坐标,平行、垂直的充要条件,夹角、距离公式等仍然适用.2.用向量知识证明立体几何问题,仍然离不开立体几何定理.如要证明线面平行,只需要证明平面外一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需要证明λ=(R ∈λ)即可.90的角,因此,如果按照公式求出来的向量的数量3.空间两条直线之间的夹角是不超过ο积是一个负数,则应当取其绝对值,使之变为正值,这样求得的角为锐角.4.利用法向量求二面角时,要注意法向量的方向问题,结合二面角的大小,这样最后确定所求得的角到底是二面角还是二面角的补角.5.在具体应用空间向量解决立体几何问题时要注意以下几点:(1)平行问题⇒向量共线,注意重合(2)垂直问题⇒向量的数量积为零,注意零向量(3)距离问题⇒向量的模,注意向量的垂直(4)求角问题⇒向量的夹角,注意角范围的统一6.解决立体几何问题的三种方法的比较解决立体几何中的问题,可用综合法、向量法和坐标法.一般我们遵循的原则是:以综合法为基础、以向量法为主导、以坐标法为中心.(1)综合法是以逻辑推理为工具,利用立体几何的知识,运用空间观念解决问题的方法,其显著特点是在证题时经常需要构造辅助线、辅助面、逻辑思维量大,要求具有比较强的空间想象能力.(2)向量法是根据空间向量的基本定理,运用向量的几何意义及向量数量积的概念解决立体几何的方法,是几何问题代数化的重要体现.其显著特点是可以避开纷繁复杂的逻辑推理,使解题过程变的明快、简捷.(3)坐标法是通过建立空间直角坐标系,设出点的坐标,利用向量的坐标运算来解决立体几何问题的方法.坐标法关键是在于构建合适的空间直角坐标系.注:构建空间直角坐标系主要有四种途径:①利用共顶点的两两垂直的三条不共面的直线构建直角坐标系;②利用线面垂直的位置关系构建直角坐标系;③利用面面垂直的位置关系构建直角坐标系;④利用正多边形的中心与几何体高所在直线构建直角坐标系.五、作者寄语用向量研究立体几何问题是立体几何研究思路的一场革命.由于向量兼俱数和形的双重特征,使得立体图形中的位置关系转化为代数中的数量关系如同探囊取物,特别是据题目条件可以建立空间直角坐标系时,这种优越性便发挥的淋漓尽致,求解思路也将有效地避开立体几何中繁琐的位置关系的演化,而变得直截了当,变得清晰、自然和流畅.可以毫不客气地说:“只要建立了空间直角坐标系,剩下的便是纯属运算的问题了.”14。
第一章 空间向量与立体几何(单元复习课件)
三、本章考点分析
类型 18:求平面的法向量解题技巧
利用待定系数法求平面法向量的步骤
(1)设向量:设平面的法向量为 n=(x,y,z).
(2)选向量:在平面内选取两个不共线向量A→B,A→C.
n·A→B=0, (3)列方程组:由 n·A→C=0
面.首先应考虑三个向量是否是零向量,其次判断三个非零向量是否共面.如果从 正面难以入手判断三个向量是否共面,可假设三个向量共面,利用向量共面的充要 条件建立方程组.若方程组有解,则三个向量共面;若方程组无解,则三个向量不 共面.
● 类型7:用基底表示空间向量答题模板
● 用基底表示空间向量的步骤
● (1)定基底:根据已知条件,确定三个不共面的向量构成空间的一个基底.
(3)利用|a | a2 ,通过计算求出 a ,即得所求距离.
类型 11:求两直线的夹角问题解题技巧 (1)求几何体中两个向量的夹角,可以把其中一个向量平移到与另一个向量的起点重合,转化为求 平面中的角的大小.
(2)由两个向量的数量积定义得 cosa,b a b ,求 a,b 的大小,转化为求两个向量的数量积及两个 | a || b |
三、本章考点分析
类型 16:坐标形式下向量的平行与垂直问题答题模板 判断空间向量垂直或平行的步骤 (1)向量化:将空间中的垂直与平行转化为向量的垂直与平行; (2)向量关系代数化:写出向量的坐标; (3)对于 a (x1, y1, z1),b (x2 , y2 , z2 ) ,根据 x1x 2 y1 y2 z1z2 是否等于 0,判断两向量是否垂直;根据
三、本章考点分析
类型 2:向量的共面问题规律总结 (1)证明向量共面,可以利用共面向量的充要条件,也可以直接利用定义,通过线面平行或直线在 平面内进行证明. (2)向量共面时向量所在的直线不一定共面,只有这些向量都过同一点时向量所在的直线才共面(向 量的起点、终点共面). 类型 3:数量积的计算规律总结 (1)已知 a,b 的模及 a 与 b 的夹角,直接代入数量积公式计算. (2)如果要求的是关于 a 与 b 的多项式形式的数量积,可以先利用数量积的运算律将多项式展开, 再利用 a a a2 及数量积公式进行计算.
高中数学第三章空间向量与立体几何章末复习课件新人教B版选修2_1
α⊥β⇔μ⊥v⇔_μ_·_v_=__0_
l,m的夹角为θ
0≤θ≤π2,cos
|a·b| θ=_|_a_||_b_| _
l,α的夹角为θ
0≤θ≤π2, sin
|a·μ| θ=_|_a_||_μ_| _
|μ·v| α,β的夹角为θ 0≤θ≤π2, cos θ=__|μ__||v_|__
2.用坐标法解决立体几何问题 步骤如下: (1)建立适当的空间直角坐标系; (2)写出相关点的坐标及向量的坐标; (3)进行相关坐标的运算; (4)写出几何意义下的结论.
题型二 利用空间向量解决位置关系问题
例2 在四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中 点,求证: (1)PC∥平面EBD;
(2)平面PBC⊥平面PCD.
反思感悟 (1)证明两条直线平行,只需证明这两条直线的方向向量是共线 向量. (2)证明线面平行的方法 ①证明直线的方向向量与平面的法向量垂直. ②能够在平面内找到一个向量与已知直线的方向向量共线. ③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量 是共面向量.
线线平行 线面平行 面面平行 线线垂直 线面垂直
l∥m⇔a∥b⇔a=kb,k∈R l∥α⇔_a_⊥__μ_⇔_a_·_μ_=__0_
α∥β⇔μ∥v⇔_μ_=__k_v_,__k_∈__R_ l⊥m⇔_a_⊥__b__⇔_a_·_b_=__0_
l⊥α⇔a∥μ⇔a=kμ,k∈R
面面垂直 线线夹角 线面夹角 面面夹角
跟踪训练2 正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证: 平面AED⊥平面A1FD1.
题型三 利用空间向量求角
例3 如图,在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D为AB的中点. (1)求点C到平面A1ABB1的距离;
高考数学复习 巩固练习_《空间向量与立体几何》全章复习与巩固_基础
高考数学复习 【巩固练习】 一、选择题 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面; ③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量、、,则空间任意一个向量p 总可以唯一表示为c z b y a x p ++=. 其中正确命题的个数为 ( ) A .0 B .1 C .2 D .32.(2015秋 武威校级期末)向量(1,2,2)a =-,(2,4,4)b =--,则a 与b ( ) A .相交 B .垂直 C .平行 D .以上都不对3.(2015春 济南校级期中改编)下列各组向量中不平行的是( )A .(1,2,2)a =-,(2,4,4)b =--B .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g4.已知A (-4,6,-1)、B (4,3,2),则下列各向量中是平面AOB 的一个法向量的是 ( ) A .(0,1,6) B .(-1,2,-1) C .(-15,4,36) D .(15,4,-36) 5.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则D 的坐标为( )A.7412⎛⎫- ⎪⎝⎭,, B.(241),,C.(2141)-,,D.(5133)-,,6. 如图所示,ABCD -EFGH 是边长为1的正方体,若P 在正方体内部且满足312423AP AB AD AE =++,则P 到AB 的距离为( )A .56B C D 7.已知A B C 、、三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A B C 、、一定共面的是( )A .OM OA OB OC =++B .2OM OA OB OC =--C .1123OM OA OB OC =++D .111333OM OA OB OC =++二、填空题8.若向量)2,3,6(),4,2,4(-=-=b a,则(23)(2)=a b a b -+________.9.设(331)(105)(010)A B C ,,,,,,,,,则AB 的中点M 到点C 的距离CM =________.10.若(3)a b +⊥)57(b a -,且(4)a b -⊥)57(b a-,则a 与b 的夹角为________.11.在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,=3BE ED ,以{AB ,AC ,AD }为基底,则GE = .EM GDCBA三、解答题12. (2015 福建)如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE ⊥EC ,AB=BE=EC=2,G ,F 分别是线段BE ,DC 的中点. (Ⅰ)求证:GF ∥平面ADE ;(Ⅱ)求平面AEF 与平面BEC 所成锐二面角的余弦值.13. 如图,四面体ABCD 中,BO OD =,BE CE =,2CA CB CD BD ====,AB AD = (Ⅰ)求证:AO ⊥平面BCD ;(Ⅱ)求异面直线AB 与CD 所成角的余弦值; (Ⅲ)求点E 到平面ACD 的距离.14. 已知1111ABCD A B C D -是底面边长为1的正四棱柱,1O 是11A C 和11B D 的交点.(1)设1AB 与底面1111A B C D 所成的角的大小为α,平面11AB D 与平面111A B D 的夹角为β.求证:tan βα; (2)若点C 到平面11AB D 的距离为43,求正四棱柱1111ABCD A B C D -的高.15. 如图,四棱锥S ABCD -倍,P 为侧棱SD 上的点. (Ⅰ)求证:AC SD ⊥;(Ⅱ)若SD ⊥平面PAC ,求平面PAC 与平面ACD 的夹角大小;(Ⅲ)在(Ⅱ)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC .若存在,求SE ∶EC 的值;若不存在,试说明理由.【答案与解析】 1.【答案】A【解析】①错,若、共线,则、所在的直线平行或共线;②错,空间中任意两个向量都是共面向量;③错,若a 、b 、c 三向量两两共面,则a 、b 、c 三向量不一定共面,如正方体1111ABCD A B C D -中,向量AB ,AD ,1AA 不共面; ④错,这是共面向量的推论,必须满足条件=1x y z ++. 故选项为A.2.【答案】C 【解析】解:∵向量(1,2,2)a =-,(2,4,4)2(1,2,2)2b a =--=--=-,则a 与b 平面,故选:C 。
高中数学第1章空间向量与立体几何章末复习课件新人教B版选择性必修第一册
证明
共面向量定理的应用之一是证明四点共面.本题考查利用共面向量定 理证四点共面及利用共线向量定理证线线平行,从而证明面面平行,使问 题变得更简单.
二、立体几何中的向量方法 空间向量要解决的问题主要是用空间向量的方法解决立体几何中的基 本问题,根据问题的特点,以适当的方式(如构建向量,建立空间直角坐标 系)利用空间向量表示空间图形中的点、线、面等元素,建立起空间图形与 空间向量的联系,然后通过空间向量的运算,研究相应元素之间的关系(平 行、垂直、角和距离),最后对运算结果的几何意义作出解释,从而解决立 体几何问题.
1 向量的线性运算 选定空间不共面的三个向量作基向量,并用它们表示出指定的向量, 是用向量解决立体几何问题的基本要求.解题时应结合已知和所求观察图 形,联想相关的运算法则和公式等,就近表示所需向量,再对照目标,将 不符合目标要求的向量作新的调整,如此反复,直到所有向量都符合目标 要求.
[典例 1] 如图所示,在空间四边形 OABC 中,点 E 为 BC 的中点,点 F 在 OA 上,且O→F=2F→A,则E→F等于( )
3.求二面角
用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在
两个半平面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两
个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二
第一章空间向量与立体几何章末复习课课件(人教版)
内容索引
知识网络 一、空间向量的概念及运算 二、利用空间向量证明位置关系 三、利用空间向量计算距离 四、利用空间向量求空间角 随堂演练
知识网络
一、空间向量的概念及运算
1.空间向量可以看作是平面向量的推广,有许多概念和运算与平面向量 是相同的,如模、零向量、单位向量、相等向量、相反向量等概念,加 法的三角形法则和平行四边形法则,减法的几何意义,数乘运算与向量 共线的判断、数量积运算、夹角公式、求模公式等等;向量的基底表示 和坐标表示是向量运算的基础. 2.向量的运算过程较为纷杂,要注意培养学生的数学运算能力.
则 n·B→C=-2x=0,n·B→E=-x-y+ 2z=0,
∴x=0,取 z=1,则 y= 2,
∴平面 BEC 的一个法向量为 n=(0, 2,1).
∴cos〈A→F,n〉=|A→A→FF|··n|n|=
52 2
222×
=5 3333. 3
设直线 AF 和平面 BEC 所成的角为 θ,则 sin θ=53333,
方法二 如图,取AB的点M,连接MG,MF. 由G是BE的中点,可知GM∥AE. 又AE⊂平面ADE,GM⊄平面ADE, 所以GM∥平面ADE. 在矩形ABCD中,由M,F分别是AB,CD的中点得MF∥AD. 又AD⊂平面ADE,MF⊄平面ADE. 所以MF∥平面ADE. 又因为GM∩MF=M,GM⊂平面GMF,MF⊂平面GMF, 所以平面GMF∥平面ADE. 因为GF⊂平面GMF,所以GF∥平面ADE.
(2)请说明在AB上是否存在点E,使得AC1∥平面CEB1.
解 假设在AB上存在点E,使得AC1∥平面CEB1, 设A→E=tA→B=(-3t,4t,0),其中 0≤t≤1. 则 E(3-3t,4t,0),—B1→E =(3-3t,4t-4,-4), —B1→C =(0,-4,-4). 又因为A→C1=m—B1→E +n—B1→C 成立,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《空间向量与立体几何》全章复习与巩固编稿:李霞审稿:张林娟【学习目标】1.了解空间向量的概念,空间向量的基本定理及其意义,掌握空间向量的正交分解、线性运算、数量积及其坐标表示;2.运用向量的数量积判断向量的共线与垂直,理解直线的方向向量与平面的法向量;3.能用向量方法证明有关线、面位置关系的一些定理及问题;4.能用向量方法解决线线、线面、面面的夹角的计算问题及一些简单的距离问题.【知识网络】【要点梳理】要点一:空间向量的有关概念空间向量:空间中,既有大小又有方向的量;空间向量的表示:一种是用有向线段AB 表示,A 叫作起点,B 叫作终点;一种是用小写字母a (印刷体)表示,也可以用a (而手写体)表示.向量的长度(模):表示空间向量的有向线段的长度叫做向量的长度或模,记作||AB 或||a .向量的夹角:过空间任意一点O 作向量a b ,的相等向量OA 和OB ,则∠AOB 叫作向量a b ,的夹角,记作〈〉,a b ,规定0π≤〈〉≤,a b .如图:零向量:长度为0或者说起点和终点重合的向量,记为0.规定:0与任意向量平行. 单位向量:长度为1的空间向量,即||1a =. 相等向量:方向相同且模相等的向量. 相反向量:方向相反但模相等的向量.共线向量(平行向量):如果表示空间向量的有向线段所在的直线互相平行或重合.a 平行于b 记作b a//,此时.a b 〈〉,=0或a b 〈〉,=π. 共面向量:平行于同一个平面的向量,叫做共面向量. 要点诠释:(1)数学中讨论的向量是自由向量,即与向量的起点无关,只与大小和方向有关. 只要不改变大小和方向,空间向量可在空间内任意平移;(2)当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线.(3)对于任意一个非零向量a,我们把a a叫作向量a 的单位向量,记作0a .0a 与a同向.(4)当a b 〈〉,=0或π时,向量a 平行于b ,记作b a //;当 a b 〈〉,=2π时,向量a b ,垂直,记作a b ⊥. 要点二:空间向量的基本运算 空间向量的基本运算: 运算类型几何方法运算性质向 量 的 加 法1平行四边形法则:OC OA ABa b=+=+加法交换率:.a b b a +=+加法结合率: ()()a b c a b c ++=++()a b a b -=+-AB BC=AC + 0AB BA=+2三角形法则:OB OA AB a b=+=+向 量 的 减 法 三角形法则: BA OA OB a b=-=-AB OA OB =-向 量 的 乘 法 a λ是一个向量,满足:λ>0时,a λ与a 同向; λ<0时,a λ与a 异向;λ=0时, a λ=0()()a a λμλμ=()a a a λμλμ+=+()a b a b λλλ+=+a ∥b a b λ⇔=向 量 的 数 量 积1.a b 是一个数:||||cos()a b a b a b =,;2.0a =,0b=或a b ⊥ ⇔b a •=0.a b b a =()()()a b a b a b λλλ==()a b c a c b c +=+22||a a =||||||a b a b ≤要点三:空间向量基本定理共线定理:两个空间向量a 、b (b ≠0 ),a //b 的充要条件是存在唯一的实数λ,使b aλ=.共面向量定理:如果两个向量,a b 不共线,则向量p 与向量,a b 共面的充要条件是存在唯一的一对实数,x y ,使p xa yb =+.要点诠释:(1)可以用共线定理来判定两条直线平行(进而证线面平行)或证明三点共线. (2)可以用共面向量定理证明线面平行(进而证面面平行)或证明四点共面. 空间向量分解定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++.要点诠释:(1)空间任意三个不共面的向量都可以作为空间向量的一个基底;(2)由于零向量可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是零向量0.(3)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念. 要点四:空间向量的直角坐标运算 空间两点的距离公式若111(,,)A x y z ,222(,,)B x y z ,则①222111212121(,,)(,,)(,,)AB OB OA x y z x y z x x y y z z =-=-=---; ②2||(AB AB ==;③ AB 的中点坐标为121212222x +x y +y z +z ⎛⎫⎪⎝⎭,,.空间向量运算的的坐标运算设111(,,)a x y z =,222(,,)b x y z =,则 ① 121212(,,)a b x x y y z z +=+++; ② 121212(,,)a b x x y y z z -=---; ③ 111(,,)()a x y z R λλλλλ=∈; ④ 121212a b x x y y z z ⋅=++;⑤ 222111a a a x y z ==++,222222b b b x y z ==++; ⑥ ()121212222222111222cos 00x x y y z z a b a b a b a bx y zx y z++==≠≠++++,,.空间向量平行和垂直的条件若111(,,)a x y z =,222(,,)b x y z =,则①12//a b a b x x λλ⇔=⇔=,12y y λ=,12()z z R λλ=∈⇔111222x y z x y z ==222(0)x y z ≠; ②12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. 要点诠释:(1)空间任一点P 的坐标的确定:过P 作面xOy 的垂线,垂足为'P ,在面xOy 中,过'P 分别作x 轴、y 轴的垂线,垂足分别为A C 、,则|'|||||x P C y AP z PP ===,,''.如图: (2)夹角公式可以根据数量积的定义推出:a ba b |a ||b|cos a b cos a b |a ||b|⋅⋅=<⋅>⇒<⋅>=⋅,其中θ的范围是[0,]π.(3)0与任意空间向量平行或垂直. 要点五:用向量方法讨论垂直与平行图示向量证明方法线线平行 (a //b )a //b(a b ,分别为直线a b ,的方向向量)线线垂直 (a b ⊥)⊥a b(a b ,分别为直线a b ,的方向向量)线面平行 (l //α)⊥a n ,即0=⋅a n(a 是直线l 的方向向量,n 是平面α的法向量).线面垂直 (l α⊥)a //n(a 是直线l 的方向向量,n 是平面α的法向量) 面面平行 (α//β)//u v(u v ,分别是平面α,β的法向量)面面垂直 (αβ⊥)⊥u v ,即0=u v(u ,v 分别是平面α,β的法向量)要点诠释:(1)直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量:已知平面α,直线l α⊥,取l 的方向向量a ,有α⊥a ,则称为a 为平面α的法向量. 一个平面的法向量不是唯一的.要点六:用向量方法求角图示向量证明方法异面直线所成的角||cos ||||AC BD AC BD θ⋅=⋅(A ,C 是直线a 上不同的两点,B ,D 是直线b 上不同的两点)直线和平面的夹角||sin |cos |||||θϕ⋅==⋅a u a u(其中直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的角为ϕ)二面角cos θ(平面α与β的法向量分别为1n 和2n ,平面α与β的夹角为θ)要点诠释:①当法向量1n 与2n 的方向分别指向二面角的内侧与外侧时,二面角θ的大小等于1n ,2n 的夹角12,〈〉n n 的大小。
②当法向量1n ,2n 的方向同时指向二面角的内侧或外侧时,二面角θ的大小等于1n ,2n 的夹角的补角12,π-〈〉n n 的大小。
要点七:用向量方法求距离图示向量证明方法点到平面的距离PAd=AA'=nn(n为平面π的法向量)与平面平行的直线到平面的距离PAd=AA'=nn(n是平面π的公共法向量)两平行平面间的距离PAd=AA'=nn(n是平面α,β的一个公共法向量)要点诠释:(1)在直线上选取点时,应遵循“便于计算”的原则,可视情况灵活选择.(2)空间距离不只有向量法一种方法,比如点面距还有一种重要的求法为等积转化法.(3)各种距离之间有密切联系,有些可以相互转化,如两条平行线的距离可转化为求点到直线的距离,平行线面间的距离或平行平面间的距离都可转化成点到平面的距离.而且我们在求解时往往又转化为空间向量的处理方法.要点八:立体几何中的向量方法用空间向量解决立体几何问题的“三步曲”1.建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)2.通过向量运算研究点、线、面之间的位置关系及它们之间的距离和夹角等问题;(进行向量运算)3.把向量的运算结果“翻译”成相应的几何意义.(回到图形问题)用坐标法解决立体几何中问题的一般步骤1.建立适当的空间直角坐标系;2.写出相关点的坐标及向量的坐标;3.进行相关的计算;4.写出几何意义下的结论. 【典型例题】类型一:空间向量的概念及运算例1.在四面体O ABC 中,=OA a ,=OB b ,OC =c ,D 为BC 的中点,E 为AD 的中点,则OE =________(用a ,b ,c 表示).【思路点拨】将a ,b ,c 看作已知条件,不断的应用向量加法的三角形法则和平行四边形法则、减法的三角形法则、向量的数乘法则,层层推进,最终得到OE 的向量表示. 【答案】111++244a b c【解析】【总结升华】1. 类比平面向量表达平面位置关系过程,掌握好空间向量的用途. 用向量的方法处理立体几何问题,使复杂的线面空间关系代数化.2. 由于A B C E ,,,四点共线,故最后的结果可以用共面向量定理检查,即若OE =++x y z a b c ,则=1x y z ++. 举一反三:【变式1】如图,在三棱柱111ABC A B C -中,M 是1BB 的中点,化简下列各式: (1)1CB BA +; (2)112AC CB AA ++; (3)1AA AC CB --. 【答案】(1)11CB BA CA +=;(2)112AC CB AA AM ++=;(3)11AA AC CB BA --=.【变式2】如图,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点. 若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( )A . 1122a b c -++ B .1122a b c ++ C . 1122a b c --+ D . 1122a b c -+ 【答案】A 【解析】法一:1111()2BM BB B M AD AB AA =+=-+=1122a b c -++.法二:()11111111111=++=++=D+=+=222222a b c AB AD AA BA AD AA B AA B M BB BM -++-; ()11111111111=++=++=+=+=222222a b c AB AD AA AB AD AA AC AA A M AA AM ++; ()11111111=++=+==2222a b c AB AD AA AC AA C M CC CM ++ ; ()11111111=+==+2222a b c AB AD AA DB AA D M DD DM -+-=+=. 故选A .类型二:空间向量的直角坐标运算例2. 设a =(1,5,-1),b =(-2,3,5). (1)当(λ+a b )∥(3-a b )时,求λ的值;(2)当(a -3b )⊥(λa +b )时,求λ的值.【思路点拨】根据空间向量平行与垂直条件及直角坐标的相关公式进行运算. 【解析】(1)∵ =a (1,5,-1),=b (-2,3,5),∴ 3-=a b (1,5,-1)-3(-2,3,5)=(1,5,-1)-(-6,9,15)=(7,-4,-16).λ+=a b (1,5,-1)+(-2,3,5)=(λ,5λ,λ-)+(-2,3,5)=(2λ-,53λ+,5λ-+).∵ ()λ+a b ∥(3-a b ), ∴25357416λλλ-+-+==--,解得13λ=-. (2)由(3-a b )⊥(λ+a b )⇔(7,-4,-16)·(2λ-,53λ+,5λ-+)=07(2)4(53)16(5)0λλλ⇔--+--+=,解得1063λ=. 举一反三:【变式1】已知12(253)(325)M M ,,-,,-,-,设在线段12M M 上的一点M 满足122=4M M MM ,则向量OM 的坐标为________. 【答案】1119442⎛⎫ ⎪⎝⎭,,【变式2】(2015秋 齐齐哈尔校级期中)已知(221)(101)(314)A B C ,-,,,,,,-,,则向量AB 与AC 夹角的余弦值为________.【变式3】空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =60°,则cos OABC 〈〉,等于( )A .12 B C .12- D .0【答案】D设OA =a ,OB =b ,OC =c ,则||||=b c , 所以()OABC =-a c b 11||||||||022=-=a c a b . 所以OA ⊥BC .所以cos 0OABC 〈〉=,. 类型三:共线和共面向量定理的应用例3.已知平行四边形ABCD ,从平面AC 外一点O 引向量OE kOA =,OF kOB =,OG kOC =,OH kOD =. 求证:(1)四点E F G H 、、、共面; (2)平面AC //平面EG .【思路点拨】(1)利用共面向量定理证明四点E F G H 、、、共面; (2)由向量共线得到线线平行,利用平面平行的判定定理证明. 【解析】(1)()()()===OE kOA k OB BA k OB CD k OB OD OC kOB kOD kOC OF OH OG =+=+=+++ ,∵1111+-=,由共线向量定理可知,点E F G H 、、、共面. (2)()EF OF OE kOB kOA k OB OA k AB ==== ,∴EF //AB又∵EF ⊄平面AC ,AB ⊂平面AC , ∴EF ∥平面AC . 同理FG ∥平面AC , ∵=EFFG F ,∴平面AC //平面EG .【总结升华】在求一个向量由其他向量来表示的时候,通常是利用向量的三角形法则、平行四边形法则和共线向量的特点,把要求的向量逐步分解,向已知向量靠近,进行求解. 若要证明两直线平行,只需判断两直线所在的向量是否满足线性关系a b λ=即可.在本题第(1)题的解析中运用了共面向量定理的推论,其实利用共面向量定理也可以给予证明,同学们试一试. 举一反三:【变式1】与向量()=1,1,0a 平行的单位向量的坐标为( )A. (1,1,0)B. (0,1,0)C. (1,1,1)D. 22(,,0)22或22(,,0)22--. 【答案】D【变式2】已知A B C ,,三点不共线,O 为平面ABC 外一点,若由向量1253OP OA OB OC λ=++确定的点P 与A B C ,,共面,那么λ=【答案】215类型四:空间向量在立体几何中的应用例4.如图所示,四棱锥P -ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,AD =PD ,E ,F 分别为CD 、PB 的中点.(1)求证:EF ⊥平面PAB ;(2)设AB=2BC,求AC与平面AEF所成角的正弦值.【思路点拨】证明线面垂直,求线面所成角的问题,题设中的垂直关系易考虑建立空间直角坐标系,(1)转化为求0,0EF AB EF PB==;(2)先求平面AEF的法向量,再利用公式求解.【解析】(1)建立空间直角坐标系(如图).设AD=PD=1,AB=2a(a>0),则E(a,0,0),C(2a,0,0),A(0,1,0),B (2a,1,0),P(0,0,1),1122F a⎛⎫⎪⎝⎭,,.∴1122EF⎛⎫= ⎪⎝⎭,,,(211)PB a=-,,,(200)AB a=,,.∵110(200)022EF AB a⎛⎫==⎪⎝⎭,,,,,∴EF AB⊥,即EF⊥AB.同理EF⊥PB,又AB∩PB=B,∴EF⊥平面PAB.(2)由AB2,得22a=22a=,得2002E⎛⎫⎪⎪⎝⎭,211222F⎛⎫⎪⎪⎝⎭,,,200)C,,,有(210)AC=-,,,210AE⎛⎫=-⎪⎪⎝⎭,,1122EF⎛⎫= ⎪⎝⎭,,.设平面AEF的法向量为n=(x,y,1),由EFAE⎧=⎪⎨=⎪⎩,,nn得11(1)00222(1)1002x yx y⎧⎛⎫=⎪⎪⎝⎭⎪⎨⎛⎫⎪-=⎪⎪⎪⎝⎭⎩,,,,,,,,,11222yx y⎧+=⎪⎪⇒-=,,解得12yx=-⎧⎪⎨=⎪⎩,,于是(211)=--,,n . 设AC 与平面AEF 所成的角为θ,AC 与n 的夹角为AC 〈〉,n , 则||sin |cos |||||AC AC AC θ=〈〉=,,n nn |(210)(211)|321021---==++++,,,,. 【总结升华】在空间图形中,如果线段较多,关系较为复杂(如平行、垂直、角和距离等均有涉及),常常需要多种方法灵活使用,合理结合,才能达到较为理想的效果,在建立坐标后,应根据条件确定相应点的坐标,然后通过向量的坐标计算解决相应问题. 举一反三:【变式1】(2015 上海)如图,在长方体中1111ABCD A B C D -,11AA =,2AB AD ==,E 、F 分别是棱AB 、BC 的中点,证明1A 、1C 、F 、E 四点共面,并求直线1CD 与平面11A C FE 所成的角的大小.【答案】如图,以为原点建立空间直角坐标系,可得有关点的坐标为 ,,,,,.因为 ,, 所以 ,因此直线 与直线共面,即,,, 四点共面.设平面 的法向量为 ,则 ,,又,,故ABCDF1A 1B 1C 1D解得取 ,得平面的一个法向量.又,故因此直线与平面所成角的正弦值为.【变式2】如图所示,在四棱锥P -ABCD 中,底面为直角梯形,AD ∥BC ,∠BAD =90°,PA ⊥底面ABCD ,且PA =AD =AB =2BC ,M 、N 分别为PC 、PB 的中点.(1)求证:PB ⊥DM ;(2)求CD 与平面ADMN 所成的角的正弦值.【答案】如图,以A 为坐标原点建立空间直角坐标系A -xyz ,设BC =1,则A (0,0,0),P (0,0,2),B (2,0,0),C (2,1,0),M 1112⎛⎫ ⎪⎝⎭,,,D (0,2,0).(1)因为3(202)1102PBDM ⎛⎫=--= ⎪⎝⎭,,,,,所以PB ⊥DM .(2)因为(202)(020)0PBAD =-=,,,,,所以PB ⊥AD .又因为PB ⊥DM ,所以PB ⊥平面ADMN .因此PB DC 〈〉,的余角即是CD 与平面ADMN 所成的角.因为10cos5||||PB DCPB DCPB DC〈〉==,,所以CD与平面ADMN所成的角的正弦值为105.例5.如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA ⊥AB,M是EC的中点.(1)求证:DM⊥EB;(2)求二面角M-BD-A 的余弦值.【解析】建立如图所示的空间直角坐标系,并设EA=DA=AB=2CB=2,则(1)3112DM⎛⎫=-⎪⎝⎭,,,(220)EB=-,,,所以0DM EB=,从而得DM⊥EB .(2)设1()x y z=,,n是平面BDM的法向量,则由1DM⊥n,1DB⊥n及3112DM⎛⎫=-⎪⎝⎭,,,(022)DB=-,,,得1132220DM x y zDB y x⎧=+-=⎪⎨⎪=-=⎩,,nn可以取1(122)=,,n.显然,2=n(1,0,0)为平面ABD的一个法向量.设二面角M-BD-A的平面角为θ,则此二面角的余弦值121212||1cos|cos|||||3θ=〈〉==,n nn nn n.【总结升华】本题主要考查空间想象能力及坐标运算能力,若用立体几何逻辑推理的方法也可以证明计算,但适当建系后解题较直观.举一反三:【变式1】过正方形ABCD的顶点A作线段PA⊥平面ABCD,如果PA=AB,那么平面ABP与平面CDP所成的二面角的大小为()A.30°B.45°C.60°D.90°【答案】B设PA=AB=a,则PD=2a,设二面角为θ,则2cos2ABPCDPSθ==△△S.故选B.【变式2】如图所示,四棱锥P-ABCD中,底面ABCD是边长为a的正方形,且PD=a,PA=PC=2a,求平面APB与平面PBD夹角的大小.【答案】在△PAD中,PD=AD=a,PA=2a,∴PD⊥AD,同理在△PCD中PD⊥CD.如图分别以DA、DC、DP所在直线为x、y、z轴,建立空间直角坐标系.则A (a ,0,0),B (a ,a ,0),P (0,0,a ).∴ AP = (-a ,0,a ),AB =(0,a ,0),DB =(a ,a ,0),DP =(0,0,a ). 设平面PAB 的法向量为m =(x ,y ,z ).由00AB AP ⎧=⎪⎨=⎪⎩,,m m 得00ay ax az =⎧⎨-+=⎩,.令z =1,得=m (1,0,1).同理设平面PDB 的法向量为()x y z '''=,,n .由00DB DP ⎧=⎪⎨=⎪⎩,,n n 得n =(-1,1,0), ∴ ||1|cos |||||222〈〉===,m n m n m n .∴ 平面PAB 与平面PDB 的夹角为60°.【变式3】如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =,1C H ⊥平面11AA B B ,且1 5.C H =设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面11A B C ,求线段BM 的长.10 【解析】以B 为原点,1BA BB 、分别为x 轴、y 轴建立空间直角坐标系,由MN ⊥平面111A B C ,得111100MN AC MN A B ⎧⋅=⎪⎨⋅=⎪⎩ 即2325()(2)()(2)50232()(22)0a b a ⎧-+-=⎪⎪⎨⎪--=⎪⎩解得24a b ⎧=⎪⎪⎨⎪=⎪⎩故M ,所以线段BM 的长为10||BM =。