815《传热学》考研大纲

合集下载

传热学复习提纲

传热学复习提纲

CH1 绪论1 热能传递的三种方式是、和,各自的物理机理是什么?2 换热方式分析:图1-3,习题4、7。

3 区别概念:热流量与热流密度,热对流与对流传热,热辐射与辐射传热,传热过程,传热过程热阻与面积热阻。

4 表1-3 热量传递的速率方程。

5 习题10、12、18、21、31、32。

CH2 稳态热传导1 概念:温度场、等温面(线)与其特点。

2 傅立叶定律的文字表述、一般形式的数学表达式。

3 导热系数的定义,其数值大小取决于,一般来讲λ金属λ非金属,λ金属λ液体λ气体。

4 保温材料的定义是。

5 了解三维非稳态导热微分方程式的一般形式,在稳态、一维稳态无内热源、一维稳态有内热源、二维稳态、非稳态、集中参数法(零维非稳态)、一维非稳态等条件下的具体方程形式。

6 定解条件包括初始条件和边界条件,常见的三类边界条件分别是。

7 热扩散率又叫,其表达式是。

8 理解肋片温度场数学描写的导出方法:导热微分方程+折算内热源法和能量守恒法(重点)。

9 肋效率的定义。

10 接触热阻的定义与减小接触热阻的方法。

11 表2-3 一维稳态导热部分分析解汇总(重点热阻表达式)12 例题2-4、2-6(重点分析和讨论);13使用串连热阻叠加的原则和在换热计算中的应用:习题3、4、6、9、14、16、18、34、51。

14需要在蒸汽管道上加装1根温度计测温套管,可供选作套管材料的有外径×厚度为φ10×1和φ10×2(单位:mm)的铜管、铝管和钢管,其中引起测温误差最小的材料应是规格为的管,如下图所示;在管道中套管的位置以种布置为好。

见下列a)、b)两图。

(λ钢<λ铝<λ铜)CH3 非稳态热传导1 非稳态导热的两个阶段与各自的特点是什么?图3-22 Bi数的定义式与物理意义,不同情况特征长度选取,Bi的大小对平板中温度分布有何影响(图3-4)?与Nu数的区别是。

3 Fo数的物理意义和表达式分别是。

4 时间常数的表达式。

华北电力大学(保定)2021年硕士研究生入学考试初试811工程热力学自命题科目考试大纲

华北电力大学(保定)2021年硕士研究生入学考试初试811工程热力学自命题科目考试大纲

华北电力大学(保定)2021年硕士研究生入学考试初试811工程热力学自命题科目考试大纲----10ba448b-6eac-11ec-9164-7cb59b590d7d学府考研为大家整理了华北电力大学(保定)2021年硕士研究生入学考试初试811工程热力学自命题科目考试大纲,希望能够对大家复习有所帮助。

一、检查范围:1、基本概念:热力系。

工质。

状态及平衡状态。

状态参数及其特性。

基本状态参数。

参数坐标图。

热力过程。

准静态过程和可逆过程。

热力循环及其经济指标。

2.基本定律:热力学第一定律和热力学能、焓、体积变功、技术功、轴向功和能量方程。

热力学第二定律和熵,火用,无火,卡诺循环和卡诺定理,孤立系统的熵增原理。

火用损失。

3、基本工质:理想气体的性质及其混合物、比热、湿空气。

水蒸汽的性质及其图、表。

4、热力过程:四个典型过程。

多变过程。

压缩过程。

稳定流动过程及喷管。

5.热循环及其热经济性指标分析:燃气动力循环及其热效率、蒸汽动力循环及其热效率、制冷循环及其性能系数、热泵循环及其性能系数。

6、实际气体的性质及热力学一般关系式:实际气体的状态方程。

对比态方程。

对比态定律。

压缩因子。

特征函数。

热力学微分关系式。

二、检查要点:1、热力学基本知识的掌握情况:包括基本概念、基本理论、基本工质、基本过程和基本分析方法。

2.两定律的掌握和运用:包括对两定律的理解和对能量的理解。

根据系统建立并求解能量方程,正确使用熵判别法,计算火用损失。

3、综合运用所学知识分析具体问题的能力:在掌握基本知识的基础上运用热力学的分析方法、沿正大学研究生入学考试确的途径、采用正确的手段、得到正确的结果。

三、需要携带计算器(是或否):是《810传热学一》一、考试范围:1.传热的基本模式和传热过程的基本概念导热、对流和热辐射的概念和所传递热量的计算公式;传热过程和传热系数的概念及其基本公式;热阻的概念。

2.热传导和稳态热传导的基本规律傅里叶定律的意义和应用方法;常见材料导热系数的大致范围;导热微分方程及导热问题的初始条件和三类边界条件;常物性、无内热源的一维稳态导热问题(平壁、圆筒壁和球壳等)温度场及导热量的计算;具有内热源的一维稳态导热问题分析;变导热系数的处理方法;通过肋片的导热问题分析。

818传热学

818传热学

Word-可编辑2023年年硕士研究生入学考试《传热学》考试大纲第一部分考试说明1. 考试性质全国硕士研究生入学考试是为高等小学招收硕士研究生而设置的。

其中,传热学是为油气储运类考生而设置的专业课程考试科目,属招生小学自行命题的性质。

它的评价标准是高等小学本科毕业生能达到及格或及格以上水平,以保证被录取者具有基本的传热理论知识并有利于招生小学在专业上择优选拔。

2. 考试的学科范围应考范围包含热传导、对流换热、辐射换热三大部分。

3. 考试要求传热学考试的目标在于考查考生对传热学基本概念、基本理论的控制,分析工程传热问题的基本能力。

考生应具备:①确切地控制物理量的定义及它们的量纲;②准确理解基本概念和基本逻辑;③准确应用基本理论知识分析和处理实际传热问题;④控制基本计算主意,确切完成容易问题的定量计算。

4. 试卷结构①答卷方式:闭卷,笔试;②考试时光:180分钟;③题型结构(题型按如实际需要可能会作适当变化):a 简答题(56分)b 分析题(40分)c 计算题(54分)总分:150分。

第二部分考察要点1. 传热学的基本概念、导热基本定律①热能传递的三种基本方式的概念、热流量及热流密度概念及其计算公式。

②基本导热计算:假设(1)一维导热问题;(2)稳态过程;(3)导热系数为常数的情千里之行,始于足下况下计算导热量。

③ 容易模型的热辐射散热量计算。

④ 传热过程概念;传热过程中传热系数k 的推导。

2. 稳态热传导① 傅里叶导热定律内容、表达式及适用范围。

② 温度场特点及等温面、等温线、热流线等各相关名词。

③ 三维非稳态导热微分方程的普通形式及针对一系列详细情形导出的相应简化形似及适用范围。

④ 热蔓延率。

⑤ 典型一维稳态下,单层、多层平壁;单层、多层圆筒壁导热相关问题的分析及计算。

⑥ 第二、三类边界条件一维物体稳态导热问题的容易模型导热分析计算。

⑦ 一维稳态导热下肋片(矩形或环形肋片)散热、肋效率及肋面总效率的分析计算。

传热学考研大纲

传热学考研大纲

《传热学》考研复习大纲(考试时间:180 分钟,成绩:150 分)传热学》(第五版),章熙民、任泽霈、梅飞鸣编著,中国建筑工业出版社,2007一、复习要求∶1.了解传热学的工程应用背景,熟练掌握传热传质的基本概念。

2.熟练掌握导热基本定律及导热问题的基本分析方法,对简单几何形状的常物性、无内热源稳态与非稳态导热问题能进行熟练的分析及计算;较深刻地了解周期性变化边界条件下非稳态导热问题的温度场及热流密度随时间的变化规律;初步掌握导热问题数值计算的基本方法。

3.较深刻地了解对流换热的各种影响因素,熟悉对流换热所遵循的基本原理及相应准则的物理含义;对强迫对流换热和自然对流换热能定性做出正确判断,并能熟练运用准则方程式进行对流换热问题的计算。

4.掌握热辐射的基本定律;熟悉角系数及利用辐射换热网络进行黑体与灰体表面间的辐射换热计算;初步了解吸收性介质的热辐射特点及计算。

5.掌握传热过程及复合换热所遵循的基本规律,了解强化传热及削弱传热的基本途径;掌握换热器的两种基本计算方法:平均温压法和传热单元数法。

6.初步掌握温度、热量及流量等参数的基本测量方法,了解用实验方法测定导热系数和对流换热系数的基本方法。

二、考试内容∶绪论1.传热学的研究对象及研究内容2.热量传递的三种基本方式3.传热过程及热阻第一章导热理论基础1.基本概念------温度场、温度梯度、导热系数2.导热基本定律------傅立叶定律3.导热微分方程式及定解条件第二章稳态导热1.通过无限大平壁、无限长圆筒壁、复合壁及肋壁的导热2.热阻分析及接触热阻3.二维稳态导热及复杂情况的稳态导热第三章非稳态导热1.基本概念------周期性与非周期性非稳态导热过程的特点及温度分布2.对流换热边界条件下非稳态导热------诺谟图与集总参数法3.常热流通量边界条件下非稳态导热------半无限大物体(一维)的分析解4.周期性变化边界条件下非稳态导热------半无限大物体(一维)的分析解第四章导热问题数值解法基础1.有限差分法------有限差分的基本原理、求解区域及控制方程的离散2.稳态导热问题的数值计算------节点方程的建立、节点方程组的求解3.非稳态导热问题的数值计算------节点方程的建立和稳定性、节点方程组的求解第五章对流换热原理1.对流换热概述------研究内容、影响因素分析、理论求解思路2.对流换热微分方程组3.边界层分析------流动边界层及热边界层4.边界层换热微分方程组5.边界层积分方程组的建立和求解6.动量传递和热量传递的类比7.相似理论基础------基本概念、物理现象相似条件及相似原理、对流换热的几个主要准则第六章单相流体对流换热及实验关联式1.强迫对流换热及其实验关联式------管内强迫流动换热、外掠单管及管束强迫流动换热2.自然对流换热及其实验关联式------大空间及有限空间自由流动换热3.强迫流动与自由流动换热并存时的综合流动换热第七章凝结与沸腾换热1.凝结换热现象概述2.膜状凝结换热计算及其影响因素分析3.沸腾换热现象概述------大容器饱和沸腾曲线分析、泡态沸腾换热机理简介4.大空间泡态沸腾计算第八章辐射换热1.辐射换热的基本概念与基本定律2.角系数及其确定3.黑体间及灰体间的辐射换热计算------空间热阻、表面热阻、辐射换热的网络求解4.气体辐射------特点、气体吸收定律、气体的黑度和吸收率、气体与外壳间的辐射换热第九章传热过程与换热器1.复合换热及传热的强化与削弱2.换热器的型式与构造3.换热器的计算------平均温差法,效能—传热单元数法实验内容:1、颗粒状物质导热系数的测定(球体法)2、空气横掠单管时平均换热系数的测定3、空气沿横管表面自然对流换热时换热系数的测定三、考核方式:闭卷笔试。

安徽工业大学819传热学2020年考研专业课考试范围

安徽工业大学819传热学2020年考研专业课考试范围

819传热学(建工)
参考书目:《传热学》(第四版)杨世铭、陶文铨编著,高等教育出版社, 2006。

考试范围:导热基本定律(傅里叶定律应用,导热系数的意义);稳态导热(导热微分方程的物理意义,多层导热的热阻,接触热阻,有内热源的导热问题)、非稳态导热(集总参数法的意义和应用,一维非稳态导热问题解的形式,半无限
大物体导热问题)、导热问题的数值解法(根据能量守恒原则列出不同类型节点
的离散方程)、对流换热(对流换热的影响因素及分类方法,相似原理的应用,
准数的物理意义,准数方程的使用条件,边界层的概念及意义,对流换热问题
的数学描述,沸腾曲线及沸腾影响因素,凝结的分类及努赛尔简化求解的基本
思想)、热辐射基本定律及物体的辐射特性、黑体辐射定律、多表面辐射换热的
计算、传热过程分析与换热器计算(临界直径,加肋表面传热强化,换热器的能
效分析方法,对数平均温差)。

北京科技大学研究生考试初试-811传热学大纲

北京科技大学研究生考试初试-811传热学大纲

考试科目名称: 811传热学考查要点:1. 热传导的基本概念和方程导热的基本概念,热导率,热扩散率,傅立叶定律,导热微分方程,求解导热微分方程的定解条件。

三类边界条件。

要求掌握温度场、温度梯度、热流密度、热流和热量等基本概念。

掌握傅立叶定律的基本条件、物理意义及计算方法,了解影响热导率的主要因素。

能以导热微分方程和定解条件描述导热过程。

2. 稳态导热平壁的导热,单层平壁、多层平壁及复合平壁导热;圆筒壁的导热,单层圆壁、多层圆壁的导热;球壳的导热,单层球壳、多层球壳的导热。

肋壁的导热(等截面直肋的导热)、肋片效率,其它肋片的导热。

具有内热源的稳态导热(一维平板的导热、一维圆柱体的导热)、接触热阻。

热阻网络图、临界绝热半径。

要求能通过求解导热微分方程或应用热阻概念对常物性的一维稳态导热问题进行温度场及导热量的计算。

能应用公式或图表计算肋片导热问题了解接触导热。

3. 不稳态导热不稳态导热的基本概念,恒温介质中无限薄材加热(集总参数法)。

无限大平板、无限长圆柱体、球体和半无限大物体不稳态导热问题的求解。

二维、三维不稳态导热的计算。

要求了解非稳态导热过程的特点。

能以集总参数法计算无限薄材的加热(冷却)问题,能以非稳态导热微分方程和定解条件描述不稳态导热过程,了解几类典型的不稳态导热过程的特点。

能根据公式或图表求解不稳态导热过程的温度分布。

能对简单物体的二维、三维导热问题用乘积法求解。

4. 导热的数值解法稳态和非稳态导热的数值解法(有限差分原理和节点方程的求解)。

要求掌握导热问题数值求解的基本步骤。

能对导热问题建立有限差分方程,并能用迭代法求解。

对不稳态导热的数值计算,还需掌握显式、隐式两种差分格式及稳定性条件。

5. 强制对流换热对流换热概述,对流换热的数学描述:换热微分方程、能量微分方程、动量微分方程、连续性微分方程及定解条件。

边界层对流换热微分方程组(边界层动量微分方程、边界层能量微分方程)的建立和求解。

传热学考研复习纲要

传热学考研复习纲要

传热学考研复习纲要第一章1、傅里叶导热定律的概念、公式、单位、物理意义2、导热、对流、辐射的概念;3、传热学的分析方法;4、传热方式的相关分析;5、传热过程以及引入传热过程这一概念的目的;第二章1、导热系数的物理意义(导热图中斜率)、计算公式、影响因素、比较;2、平壁、圆柱、球的导热热阻公式;平壁和圆柱的导热量计算公式;3、导热微分方程的两大定律、各种情况下的公式及各项的物理意义;4、等截面直肋的导热量等系列计算(重点)、测量气体温度的误差及降低方式;5、肋效率的计算公式、物理意义、影响因素(提高肋效率的方法)、是不是肋效率越高越好、肋面总效率的公式及各符号的意义、什么形状的肋效率最高;6、保温材料的概念、利用空气导热系数小这一特点制造保温材料的工程实例及原理;7、导热模型及导热机理;8、定解条件可分为:边界条件和初始条件、三类边界条件的公式及意义;9、热扩散率的公式、物理意义、影响因素、与导热系数的区别和联系;第三章1、集中参数法的概念、物理意义、使用条件(使用这个判据的理由)、两种可以使用集中参数法的特殊情况(无限大平板、表面换热系数趋于零);2、毕渥数的公式、物理意义、毕渥数不同的平壁温度分布图及特点;3、傅里叶数的公式、物理意义;4、集中参数法的计算:时间常数、变温所需时间、特征长度、判断依据、无限大平板(Bi趋于无穷)的计算方法;5、时间常数的公式、影响因素、物理意义,与时间常数大小相关的分析题;第四章1、泰勒公式展开;2、向前差分、向后差分、中心差分;3、公式第五章1、对流换热的概念、影响因素(……四个流体物性)、强制对流以及自然对流的概念;2、对流换热的分析方法(四个);3、流动边界层和温度边界层的概念、厚度、特点(四个)、引入边界层的目的;4、边界层流动状态的判据(为什么用这个判据);5、雷诺数的公式、物理意义、临界值;6、边界层根据雷诺数可分为三个区域;7、雷诺比拟、j因子;8、努赛尔数的公式、物理意义、与毕渥数的区别;9、边界层换热微分方程与第三类边界条件的区别;10、对流换热微分方程、动量微分方程、能量微分方程的公式及利用边界层的条件进行量纲分析后的简化公式、各项的物理意义;11、边界层内对流控制方程的三大定律;12、普朗特数的公式、物理意义、边界层厚度的比较(图)(什么物质大什么小)13、流体强制外掠平板的对流换热准则方程;第六章1、同类现象;2、特征长度、定性温度、特征流速的概念;3、各相似准则数的推导来源(雷诺数、格拉晓夫数、努赛尔数、贝克莱数、普朗特数)4、管内流动与管外流动的区别;5、入口段效应的概念、作用、充分发展段的概念、两个段的换热系数比较(图)6、管内流动层流湍流的临界值;7、管内强制对流的准则方程;8、温差效应修正(温度对流速的影响)、螺旋管效应修正、为什么螺旋管效应修正系数和入口段效应修正系数都大于1而温差效应修正系数小于1?;9、提高对流换热换热系数的方法;10、外掠管束中管子的两种排列方式、叉排与顺排的特点比较、管排修正系数;11、大空间自然对流边界层的温度和速度分布特点(图);12、大空间自然对流与有限空间自然对流的特点;13、温度越低密度越高而自然对流依靠重力实现;14、圆柱和竖壁自然对流的特征长度与横放竖放的区别;15、圆柱和竖壁自然对流准则方程:Nu=C(GrPr)n,n的取值与层湍流的关系;16、瑞利数的公式、自然对流与强制对流的层流湍流的判据的区别;17、有关空气对流换热系数小于水的对流换热系数的分析题;18、横掠单管和纵掠单管的比较、绕流脱体的形成机理(图);第七章1、凝结换热的概念、膜状凝结与珠状凝结的概念、形成机理;2、提高凝结换热换热系数的原则、凝结换热中的主要热阻;3、现代工程中常采用哪种凝结模式?(原因);4、膜状凝结过程管子横放与竖放的区别;5、膜状凝结的换热准则方程(记住公式中的因子含义和正反比关系即可,尤其是与凝结动力(过冷度)的几次方成正比);6、伽利略数的公式;7、凝结换热中的汽化潜热的相关计算、膜状凝结的层湍流判据;8、影响凝结换热的因素(六个),其中不凝结气体的影响机理;9、沸腾换热、大容器沸腾(池沸腾)、管内沸腾、饱和沸腾、过冷沸腾的概念;10、大容器沸腾各个区域的换热特点(图)、核态沸腾比膜态沸腾换热系数大的相关分析题;11、临界热流密度(CHF)(沸腾危机)的概念、工程中引入临界热流密度的意义(控制热流与控制壁温)、控制壁温条件下不会引起设备烧毁的相关分析题;12、大容器沸腾换热的准则方程各物理量的意义;13、沸腾换热主要受哪两个因素的影响、汽化核心的形成、凹坑处已形成汽化核心的原因相关分析题、汽化核心相关推导(最小半径);14、影响沸腾换热的因素(四个)(其中不凝结气体反而会促进换热);15、提高沸腾换热换热系数的原则;第八章1、黑体概念、性质、小孔形成黑体的原因;2、可见光、太阳光、工业温度下、红外线的波长范围;3、斯忒藩-波尔兹曼定律(公式)、普朗克定律、兰贝特定律(公式及推导)的概念;4、辐射力、光谱辐射力、定向辐射强度的概念;5、维恩位移定律的公式、概念(图);6、立体角、纬度角、辐射量的概念及计算;7、发射率(黑度)、光谱发射率、定向辐射率的概念公式(图);8、物体表面发射率的影响因素;9、灰体的概念、漫射体的概念、漫灰体的概念以及引入这些概念的原因;10、气体辐射的特点、气体辐射分为两种气体的辐射;11、贝尔定律公式、公式各物理量的含义;12、光谱吸收比的概念;13、温室效应的原因及各类相关分析题;14、吸收比与波长有关的相关分析题;15、实际物体的吸收比的影响因素;16、基尔霍夫定律的推导过程、两种表述、适用于灰体的情况、可得出黑体的一种性质;17、吸收比、反射比、穿透比的概念及计算公式、什么物体的反射比为0、什么物体的穿透比为0;第九章1、角系数的概念、计算方法、三个特性(公式);2、有效辐射、投入辐射的概念及物理意义;3、封闭腔内两灰体的辐射换热量的计算公式及三种特殊情况的处理;4、空间辐射热阻、表面辐射热阻的概念及计算;5、封闭腔内三灰体的辐射换热量的计算及网络图、重辐射面的概念、网络法的概念、引入网络图的理由;6、遮热板的概念及降低辐射换热量的原理、材料选择、工程应用;7、抽气遮热罩式测量高温气体温度可降低测温误差的原因及相关分析题;8、通过控制表面辐射热阻和空间辐射热阻来提高或降低辐射换热量的工程应用及相关分析题;第十章1、通过平壁的传热、通过圆管的传热传热量的计算公式、圆管的传热的传热系数、加肋后的传热系数、肋化系数的概念;2、临界热绝缘直径的概念、引入该概念的原因、为什么平壁传热不需要引入、临界热绝缘直径的计算公式、各物理量的意义;3、对数平均温差的概念、计算公式、物理意义、引入对数平均温差的原因、其它流动型式的对数平均温差的计算公式;4、换热器顺流布置和逆流布置的概念、各自的特点、各自优缺点、如何获得最大平均温差、一侧发生相变换热时的情况分析、顺流逆流布置的温度变化图;5、换热器的效能的概念、公式及物理意义;6、换热器的热计算的两种方法、两种类型、传热单元数的概念;7、强化传热的原则、措施、隔热保温技术、保温效率;8、污垢热阻的公式、有污垢热阻时的传热系数;。

硕士研究生入学考试大纲- 857 传热学

硕士研究生入学考试大纲-  857 传热学

全国硕士研究生入学统一考试传热学考试大纲I 考查目标测试学生对传热学基本概念、基本理论、传热问题的计算方法、重要热工参数的测量方法、强化或削弱传热的基本方法等的掌握程度、注重考查学生对于工程实际传热问题的综合分析和解决的能力。

II 考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间180分钟。

二、答题方式闭卷、笔试。

允许使用计算器,但不得使用带有公式和文本存储功能的计算器。

三、试卷内容与题型结构填空题(8-10个,约30分)分析简答题(5-6小题,约60分)综合计算题(3-4小题,约60分)假如每题分数有变化,变化范围亦不大,难度与历年试题相当,全部均在考试大纲以内。

III 考查内容一、稳态导热温度分布基本概念;导热基本定律;导热问题的数学描述;典型一维稳态导热问题的分析解;通过肋片的导热;具有内热源的一维导热问题。

二、非稳态导热非稳态导热的基本概念;集中参数法;典型一维物体非稳态导热的分析解。

三、导热问题的数值解法导热问题数值求解的基本思想;节点温度离散方程的建立;节点代数方程组的求解;导热问题数值计算的稳定性判据。

四、对流换热的理论基础对流换热的影响因素;对流换热的分类;边界层理论;对流换热问题的数学描述;量纲分析与相似原理。

五、对流换热的计算管道内强制对流的特点;管道内强制对流的计算;外掠物体强制对流的特点;外掠物体强制对流的计算;自然对流。

六、相变换热凝结换热的模式及特点;膜状凝结换热的简化和求解;凝结换热的影响因素;大空间沸腾曲线;汽化核心;沸腾换热的强化方法;热管工作原理及特点。

七、热辐射基本理论热辐射基本概念;黑体辐射基本定律;实际物体辐射和吸收的特点;基尔霍夫定律。

八、辐射换热的计算角系数的性质和计算;黑体辐射的计算;组成封闭空腔的灰体间的辐射换热计算;辐射换热的强化和削弱。

九、传热过程和换热器传热过程的分析;换热器的分类方法;换热器的热计算;换热器的强化。

IV. 题型示例及参考答案一、填空(每空3分,共36分)1.采用平板导热仪测量液体的导热系数时,通常要使在上(填“热面”或者“冷面”),其目的是。

《传热学》考试大纲

《传热学》考试大纲

《传热学》考试大纲张岩-能动学院-2013考试题型(1)选择题(2)简答题(3)计算题复习要点第1章绪论(1)熟练掌握热量传递的三种基本方式及其特点,并能用传热学的原理解释生活中与传热有关的现象。

(2)熟练掌握傅立叶导热定律、牛顿冷却公式和Stefan-Boltzmann定律的公式及其中每个符号的单位和意义(参阅表1-3)。

(3)能够正确分析实际热量传递过程的各个串联环节。

(4)理解热阻的概念并掌握传热过程的热阻分析方法。

第2章稳态热传导(1)理解稳态导热及稳态温度场的特点;导热基本定律一般形式的物理意义;等温线(面)的定义及其与热流线的关系;(2)熟练掌握导热系数的单位及其物理意义;常见固体、液体及气体导热系数值的相对大小;变导热系数材料的导热系数线性近似计算方法。

(3)了解导热微分方程推导的理论基础、推导方法及其适用范围;(4)熟练掌握常见的三类边界条件下典型一维稳态导热微分方程的分析解,包括温度分布、热流量计算、及热阻表达式(参阅表2-3);(5)熟悉、理解复杂导热问题的简化处理方法(如肋片问题物理模型简化的依据、内热源的处理等);肋片的作用及选用的基本原则;接触热阻对传热的影响及改善措施第3章非稳态热传导(1)理解非稳态导热的基本概念、类型及特点;瞬态非稳态导热过程的非正规状况阶段和正规状况阶段;(2)了解第三类边界条件下Bi数对平板中温度分布的影响。

(3)熟练掌握集总参数法的基本思想、适用范围、两个不同毕渥数的物理意义及其应用。

(4)熟练掌握时间常数的表达式及其物理意义(5)掌握傅里叶数及热扩散率(导温系数)的表达式及其物理意义;导热系数与导温系数的关联与区别。

第4章热传导问题的数值解法(1)理解导热问题数值求解的思想及其基本步骤(2)熟练掌握利用热平衡法建立内部和边界节点离散方程的方法(3)掌握利用高斯-赛德尔迭代法构造迭代方程的方法以及迭代过程能否收敛的判据第5章对流传热的理论基础(1)了解对流传热的影响因素以及对流传热现象的分类;建立运动流体能量方程的方法及理论依据(2)掌握流动边界层与热边界层的含义及其对解决对流传热问题的作用;流动边界层在壁面上的发展过程;(3)了解利用数量级分析法简化边界层型对流传热问题的思路和步骤(4)掌握雷诺数、努赛尔数的表达式及其物理意义;利用雷诺数判断流体外掠等温平板时流态的变化;(5)了解比拟理论的基本思想及其应用;流体外掠等温平板传热的层流分析解(6)掌握流体外掠等温平板时流动边界层和热边界层的相对大小及关联式;确定特征数方程中流体物性的定性温度及计算Re数特征流速的规则。

传热学一和传热学二

传热学一和传热学二
第11页 共19页
轮机装置的实际循环、绝热膨胀过程的相对内效率、循环的内部 热效率、提高燃气轮机装置循环热效率的热力学措施;
回热和回热度。 活塞式热气机*、喷气发动机*。 学习难点: 循环分析的一般方法、循环抽象与简化、标准空气假设、 活塞式内燃机循环抽象与简化、志向循环分析。 第十一章 蒸汽动力装置循环 学习重点: 卡诺循环的限制;朗肯循环及考虑膨胀不行逆时朗肯循环的 热效率、耗汽率,蒸汽初参数对循环热效率的影响; 再热循环分析;抽汽回热循环、抽汽量;热电合供循环; 蒸汽—燃气联合循环*;蒸汽动力装置循环的火用分析**。 学习难点:循环原理的驾驭;回热循环效率提高的机理和屡次 回热循环的机理和计算。 第十二章 制冷循环 学习重点:逆向循环的经济性指标及循环进展的条件; 压缩气体制冷循环、制冷量和制冷系数及循环压力比的关系、 回热式压缩气体制冷循环;
第7页 共19页
学习难点: 志向气体的比热容理论,和志向气体的比热容在热力学能、 焓、熵的计算中的应用。 第四章 志向气体根本的热力过程 学习重点:定温过程、定压过程、定容过程、可逆绝热〔定熵〕 过程和多变过程的过程方程、参数改变和过程中功及热量的计算 及过程的 p-v 图和 T-s 图; 学习难点:各类热力过程的综合分析及过程的 p-v 图和 T-s 图 的绘制。 第五章 热力学其次定律 学习重点: 热过程的方向性、热力学其次定律的表述;卡诺循环和卡诺 定理、克劳修斯积分不等式、熵流和熵产、熵方程、孤立系统的 熵增原理; 作功实力、作功实力损失与熵产和火用平衡方程。 学习难点: 热力学其次定律实质的驾驭; 孤立系统的熵增原理的理解和应用; 作功实力损失〔火用损失〕确实定。
第8页 共19页
第六章 实际气体的性质及热力学一般关系式 学习重点: 实际气体的性质与志向气体的偏差、代表性的状态方程如范 德瓦尔方程和 R-K 方程、比照参数、对应态原理、压缩因子和通 用压缩因子图; 自由能和自由焓、热系数、麦克斯伟关系,熵、焓、热力学 能和比热容的一般关系式; 克劳修斯—克拉贝隆蒸气压方程*、单元系相平衡方程*、通 用焓图和通用焓图和通用熵图**。 学习难点: 范德瓦尔方程和 R-K 方程的建立;比照参数、对应态原理、 压缩因子和通用压缩因子图; 自由能和自由焓、热系数、麦克斯伟关系,熵、焓、热力学 能和比热容的一般关系式。 第七章 水蒸气 学习重点:饱和状态、饱和温度、饱和压力、饱和湿蒸汽、干 度、三相点、水蒸气状态确实定、水的定压加热汽化过程及其在 p-v 图和 T-s 上的表示、水蒸气定压过程的热量、水蒸气绝热过 程的功;

传热学考试大纲

传热学考试大纲

传热学考试大纲
1.掌握热量传递的三种基本方式及传热过程所遵循的基本定律,学会对传热过程进行解剖处理和分析计算。

2.掌握导热的基本定律,能对无内热源的简单几何形状物体在常物性条件下的导热进行熟练的分析计算,并对较复杂导热问题的数值求解途径有所了解。

3.较深刻地了解各种因素对对流换热的影响,对强制对流换热、自然对流换热的有关准则有正确的理解,并能熟练地运用各种实验关联式进行计算。

了解凝结和沸腾换热现象的分类、特点及影响因素。

4.理解有关热辐射的基本概念,掌握热辐射的基本定律,能熟练地对被透明介质隔开的两固体表面间的辐射换热进行计算。

了解气体辐射的特点。

5.会利用平均温差法和效能—单元数法对换热器进行热计算,了解强化传热的原则、手段和常用的隔热保温技术。

6.初步掌握温度测量、热量测量、流量测量等的基本方法和技能,初步具备安排实验、选择测量仪表、正确进行测量、处理实验数据、分析实验结果的能力。

传热学复习提纲标准版

传热学复习提纲标准版

1 •傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。

2.临界热绝缘直径:临界热绝缘直径de是指对应于总热阻RL为极小值时的保温层外径,只有当管道外径d2大鱼临界热绝缘直径de时,覆盖保温层才肯定有效地起到减少热损失的作用。

3.速度边界层:在流场中壁面附近流速发生急剧变化的薄层。

4.温度边界层:在流体温度场中壁面附近温度发生急剧变化的薄层。

5.定性温度:确定换热过程中流体物性的温度。

6.特征尺度:对于对流传热起决定作用的几何尺寸。

7.相似准则:(如Nu,Re,Pr,Gr,Ra)由几个变量组成的无量纲的组合量。

8.珠状凝结:当凝结液不能润湿壁面(9 >90?时,凝结液在壁面上形成许多液滴,而不形成连续的液膜。

9.膜状凝结:当液体能润湿壁面时,凝结液和壁面的润湿角(液体与壁面交界处的切面经液体到壁面的交角)9 <90?,凝结液在壁面上形成一层完整的液膜。

10.核态沸腾:在加热面上产生汽泡,换热温差小,且产生汽泡的速度小于汽泡脱离加热表面的速度,汽泡的剧烈扰动使表面传热系数和热流密度都急剧增加。

11.膜态沸腾:在加热表面上形成稳定的汽膜层,相变过程不是发生在壁面上,而是汽液界面上,但由于蒸汽的导热系数远小于液体的导热系数,因此表面传热系数大大下降。

12.热辐射:由于物体内部微观粒子的热运动状态改变,而将部分内能转换成电磁波的能量发射出去的过程。

13.吸收比:投射到物体表面的热辐射中被物体所吸收的比例。

14.反射比:投射到物体表面的热辐射中被物体表面所反射的比例。

15.穿透比:投射到物体表面的热辐射中穿透物体的比例。

16.黑体:吸收比a = 1的物体。

17.白体:反射比p =1的物体(漫射表面)18•透明体:透射比T = 1的物体19•灰体:光谱吸收比与波长无关的理想物体。

20.黑度:实际物体的辐射力与同温度下黑体辐射力的比值,即物体发射能力接近黑体的程度。

816传热学

816传热学

《传热学》考试大纲一、考试范围:绪论一、传热的基本方式二、传热过程学习要求:掌握三种基本的传热方式,了解增强传热和削弱传热的途径,掌握热阻的概念。

重点掌握:热量传递的三种基本方式、传热过程及热阻。

第一章导热理论基础一、基本概念及傅里叶定律二、导热系数三、导热微分方程四、导热过程的单值性条件学习要求:掌握温度场、温度梯度、等温面和等温线等概念,掌握傅里叶定律、固体导热微分方程及其单值性条件,导热系数的测量。

重点掌握:导热问题的数学描述,包括导热微分方程及定解条件,稳态平板法导热系数测量。

第二章稳态导热一、通过平壁的导热二、通过复合平壁的导热三、通过圆筒壁的导热四、具有内热源的平壁导热五、通过肋壁的导热六、通过接触面的导热学习要求:掌握单层、多层和复合平壁的导热及传热热阻;掌握单层、多层圆筒壁的导热及圆筒壁的传热;了解肋壁的导热特点、肋片效率;掌握接触热阻,了解二维稳态导热简化计算方法。

重点掌握:无限大平板和无限长圆筒壁的导热及计算。

第三章非稳态导热一、非稳态导热的基本概念二、无限大平壁的瞬态导热三、半无限大物体的瞬态导热四、其他形状物体的瞬态导热学习要求:掌握非稳态导热过程的基本概念;掌握对流边界条件下一维不稳态导热的分析解、准则函数式和诺谟图;了解对流边界条件下二维和三维不稳定导热计算;掌握恒热流边界条件下半无限大物体的不稳定导热。

重点掌握:非稳定导热过程的特点,集总参数法。

第四章导热数值解法基础一、建立离散方程的方法二、稳态导热的数值计算三、非稳态导热的数值计算学习要求:了解用泰勒级数方法求解二维稳态导热问题,掌握用热平衡法列出二维导热问题的内部节点与边界节点的离散方程,了解导热问题的离散方程求解方法。

重点掌握:热平衡法列二维稳态导热问题的内部节点与边界节点的离散方程第五章对流换热分析一、对流换热概述二、对流换热微分方程组三、边界层换热微分方程组四、边界层换热积分方程五、动量传递与热量传递的类比六、相似理论基础学习要求:掌握对流换热的影响因素,掌握边界层换热微分方程组的建立过程,了解动量传递和热量传递的类比方法,掌握常用的相似准则(如Nu ,Re)。

《传热学》总复习提纲[1]

《传热学》总复习提纲[1]

《传热学》总复习提纲[1]《传热学》提纲绪论1.导热、对流及对流换热、热辐射及辐射换热、复合换热及传热过程的概念。

2.三种基本传热方式的联系与区别。

导热基本定律及稳态导热一、导热基本定律1.温度场稳态温度场、非稳态温度场、一维温度场、二维温度场、均匀温度场等概念及数学式。

等温线、等温面概念及特点。

2.导热基本定律(傅里叶定律)1)温度梯度定义式、方向、单位。

2)热流密度、热流量定义、单位。

3)傅里叶定律定义式、各量符号、单位、适用条件及意义。

3.导热系数1)导热系数定义、符号、单位、物理意义。

2)影响导热系数数值的主要因素;保温材料。

二、导热微分方程及定解条件1.导热系数为常数、无内热源、稳态导热的导热微分方程;建立方程时依据的定律。

2.导热问题三类边界条件的语言叙述及数学表达式。

3.导温系数定义、物理意义、与导热系数的异同。

三、通过平壁、圆筒壁、球壳和肋片的一维稳态导热1.平壁的导热单层平壁温度分布、热阻、热流密度、热流量计算及温度分布特点;多层平壁热阻、热流密度、热流量、界面温度计算;串联热阻叠加原则及使用条件。

2.圆筒壁的导热单层圆筒壁温度分布、热阻、热流量、单位管长的导热热流量计算;多层圆筒壁热阻、热流量、单位管长的导热热流量、界面温度计算。

3.球壳的导热球壳温度分布、热阻、热流量计算。

4.肋片的导热肋片的作用、肋片导热的特点;过余温度概念;肋效率定义;温度分布、肋片散热量的计算;套管温度计测温误差原因及降低测温误差措施。

对流换热一、对流换热概说1.研究对流换热的目的、牛顿冷却公式的定义式、符号、意义;表面传热系数与何因素有关。

2.影响对流换热的因素。

3.对流换热的分类。

4.对流换热微分方程与导热问题第三类边界条件的区别。

二、对流换热问题的数学描写(对流换热微分方程组)建立对流换热能量微分方程、质量方程、动量守恒方程的意义。

三、对流换热的边界层1.粘性流体、层流与湍流、层流底层等概念;临界雷诺数及其作用;流体流过平板时的临界雷诺数数值、流体流过圆管时的临界雷诺数数值。

同济考研815传热学复习大纲(知识点总结)

同济考研815传热学复习大纲(知识点总结)
每m长管道的总的表面传热系数
4) 散热量
5)管内流体流过100米温度降为多少?如何求呢?
• 管内流体流过100米温度降为多少?
根据热力学第一定律:管内流体内能(焓)的变化量等于 管壁内外流体之间的换热量。
4、 分 析 (1)影响对流换热系数的因素及其物理机理, (2)根据边界层画出各类对流换热局部对流换热系
数曲线, (3)管内强制对流进行管长、弯管及其温度修正的
物理原因, (4)影响膜状凝结换热的因素, (5)珠状凝结换热为何强于膜态凝结, (6)大容器饱和沸腾曲线, (7)对流换热系数的大概数量级,
备注:管内流动的对流换热实验关联式 管外横掠的对流换热实验关联式 管外自然对流换热实验关联式 以上三式定性温度均取流体已知温度。
解: 1) 定性条件已知,由题意知
2)定性条件已知,由题意知
3) 1m长管道的热阻 总的传热阻共有四部分组成:
管道内流体与管道内壁的对流换热热阻, 管道内壁到外壁间的导热热阻, 管道外壁与保温层外层的导热热阻 和和空气对流换热的热阻.
)

1

2sin 1 sin 1 cos
1
cos(1
e x ) 12F0
Q cV [t0 t(x, )]dV 1
Q0
cV (t0 t )
0
e
1 v
dv
v

0
1

2sin 1 sin 1 cos 1
(

12
F0
)
sin 1 1
其中:
(9)、导热问题的数值解法和差分方程建立: 1)、差分替代微分 2)、泰勒级数法和控制容积法(热平衡法) 3)、稳态一维导热问题的数值解法

同济大学暖通考研传热学大纲

同济大学暖通考研传热学大纲

科目 815 传热学命题单位:机械工程学院考试大纲基本要求1.掌握热量传递的三种基本方式及传热过程所遵循的基本规律,学会对传热过程进行分析和计算的基本方法。

2.掌握导热的基本规律。

能对无内热源的简单几何形状物体,在常物性条件下的稳态导热和传热过程进行熟练的分析计算。

较深刻地了解物体在被持续加热或冷却时的温度场及热流随时间而变化的规律。

能应用集总参数法和诺模图来计算在对流边界条件下的非稳态导热问题。

3.较深刻地了解各种因素对对流换热的影响。

对受迫对流换热、自然对流换热现象的物理特征及有关准则有正确的理解。

对相变换热现象特征有所了解,并能运用准则方程进行计算。

4.掌握热辐射的基本定律。

熟悉由透明介质所隔开的物体表面辐射换热的基本计算方法。

对气体辐射换热的特性和特征有所了解。

5.掌握换热器的两种基本计算方法:对数平均温度差法和传热效率-单元数法。

基本内容绪论1.传热学的研究对象及其应用介绍。

2.热量传递的三种基本方式:导热、对流和辐射。

3.传热过程与传热系数。

第一章导热理论基础1.导热基本概念。

温度场。

温度梯度。

傅里叶定律。

2.导热系数。

3.导热微分方程。

4.导热过程的单值性条件。

第二章稳态导热1.通过单平壁和复合平壁的导热。

2.通过单圆筒壁和复合圆筒壁的导热。

临界热绝缘直径。

3.通过肋壁的导热,肋片效率。

4.通过接触面的导热。

5.二维稳态导热问题。

第三章非稳态导热1.非稳态导热过程的特点。

2.对流换热边界条件下非稳态导热,诺模图,集总参数法。

3.常热流通量边界条件下非稳态导热。

第四章导热问题数值解1.泰勒级数法和热平衡法。

2.导热问题的数值计算,节点方程的建立及求解。

3.非稳态导热问题的数值计算,显式差分格式及其稳定性,隐式差分格式。

第五章对流换热分析1.对流换热过程和影响对流换热的因素。

对流换热过程微分方程式。

2.对流换热微分方程组。

3.流动边界层,热边界层,边界层换热微分方程组及其求解。

4.边界层换热积分方程组及其求解。

北京化工大学851传热学Ⅱ2019年考研专业课初试大纲

北京化工大学851传热学Ⅱ2019年考研专业课初试大纲

2019年北京化工大学考研专业课初试大纲2019 年硕士研究生招生考试大纲考试科目名称:传热学Ⅱ考试科目代码:851一、考试要求传热学Ⅱ考试大纲适用于北京工业大学环境与能源工程学院(0807) 动力工程及工程热物理学科、(085206)动力工程(专业学位)领域的硕士研 究生招生考试。

传热学是本学科的重要技术基础理论课。

本课程的主要考试内 容包括导热、对流换热、辐射换热和传热过程与换热器四个部分。

考试将主要 考察考生对传热学的基本概念、基本定律、基本方法理解与掌握程度,特别是 要考察考生综合运用所学知识分析问题和解决问题的能力。

二、考试内容(一)导热(1)熟练掌握导热的一般概念、导热 Fourier 定律、导热系数(热导率)。

(2)能够利用能量守恒原理推导二维导热微分方程式,并准确理解方程中各项的物理含义。

(3)能够给出具体问题的数学描述(模型),包括导热微分方程和定解条件。

(4)掌握简单典型导热问题的求解步骤和方法。

(5)熟练掌握通过无限大平壁、无限长圆筒壁的导热与传热。

(6)掌握热阻的概念和导热(传热)过程的热路图法。

(7)掌握临界绝热半径的概念及其应用。

(8)掌握肋片导热的分析过程和方法。

(9)了解非稳态导热的基本概念与特征,掌握非稳态导热的集总参数分析法。

(10)了解求解导热问题的有限差分法。

(二)对流换热(1)掌握对流换热的一般概念、分类及主要影响因素分析。

(2)熟练掌握牛顿冷却定律、对流换热表面传热系数、对流换热热阻的概念。

(3)熟练掌握对流换热微分方程式(根据温度分布计算对流换热表面传热系数的微分表达式)。

精都考研网(专业课精编资料、一对一辅导、视频网课)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉工程大学硕士研究生入学考试
《传热学》考试大纲
一.参考教材:
1、《传热学》杨世铭、陶文铨,第4版,高等教育出版社,2006。

2、《传热学》赵镇南主编,高等教育出版社,2008。

(备注:以1为主,2为辅。


二.考试方法、考试时间
闭卷考试,试卷满分150分。

考试时间180分钟
三.试题形式
基本概念约占20%
理论理解分析约占30%
应用约占50%
试题一般由选择题、简答题、应用计算题组成。

四.考试内容及要求
考试要求:考试范围包括热传导、对流换热、辐射换热、传热过程与换热器等四大部分。

传热学考试的目标在于考查考生对传热学的基本概念、基本理论的掌握和分析求解传热学基本问题的能力。

五. 考查要点:
(一)、导热
1导热理论基础;温度场、温度梯度,导热热流方程(傅立叶定律);导热系数,导热微分方程的分析与应用,单值性条件的内容与数学表达式;
2稳态导热分析与计算:一维稳态导热问题的分析与计算,有内热源的简单问题的分析、计算;接触热阻的概念。

扩展表面(肋片)导热的理论分析与计算,肋效率。

导热问题数值解基本概念。

3非稳态导热:与稳态导热的基本区别;集总参数分析法,热扩散率,傅立叶数,毕渥数,冷却率与正规状况阶段概念;非稳态导热数值解概念,显式格式,稳定性条件,隐式格式的概念。

(二)、对流换热
1对流换热理论基础:对流换热的基本含义及主要影响因素;牛顿冷却定律;流动边界层与温度边界层的概念与应用;类比关系及应用;相似原理,相似准则及
其物理意义。

雷诺数,努谢尔特数,普朗特数,格拉晓夫数。

2单相对流换热
(1)受迫对流:①外部流动,沿平板的流动与换热;外掠单管与管束的流动与换热,临界雷诺数。

②内部流动;入口段与充分发展段,临界雷诺数,截面平均速度与温度;影响管内流动换热的各种因素,不同流态下的换热计算。

(2)自然对流:大空间自然对流换热计算,边界层特点。

混合对流换热的概念。

3相变换热
(1)凝结换热的基本概念,珠状凝结、膜状凝结。

凝结换热的影响因素。

(2)沸腾换热的基本概念,饱和沸腾,大空间沸腾,过热度(沸腾温差),沸腾曲线。

(三)、辐射换热
1热辐射理论基础:热辐射基本概念。

黑体辐射的普朗克定律,维恩位移定律,斯蒂芬-波尔兹曼定律(四次方定律),兰贝特定律,黑体的波段辐射力计算。

黑度(发射率),基尔霍夫定律,漫-灰表面。

太阳与环境辐射。

2辐射换热计算:角系数;网络方法;空间热阻与表面热阻,灰表面(立体)封闭空腔的辐射换热计算,遮热板。

(四)、传热过程与换热器
1传热过程,强化与削弱传热,总传热系数,改变传热系数的各种方式。

2换热器计算的基本方程,对数平均温差,设计与校核计算,污垢热阻。

相关文档
最新文档