初中分段函数知识点总结
(完整版)分段函数及函数的性质知识梳理
分段函数及函数的性质分段函数概念 在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示的函数叫做分段表示的函数,简称分段函数.定义域 分段函数的定义域是自变量的各个不同取值范围的并集 函数值 求分段函数的函数值()0f x 时,应该首先判断0x 所属的取值范围,然后再把0x 代入到相应的解析式中进行计算.注意 分段函数在整个定义域上仍然是一个函数,而不是几个函数,只不过这个函数在定义域的不同范围内有不同的对应法则,需要用相应的解析式来表示.分段函数的作图 因为分段函数在自变量的不同取值范围内,有着不同的对应法则,所以作分段函数的图像时,需要在同一个直角坐标系中,要依次作出自变量的各个不同的取值范围内相应的图像,从而得到函数的图像. 例1 设函数()221,0,,0.x x y f x x x -⎧⎪==⎨>⎪⎩„(1)求函数的定义域; (2)求()()()2,0,1f f f -的值.(3)作出函数图像.1.设函数 ()221,20,1,0 3.x x y f x x x +-<⎧⎪==⎨-<<⎪⎩„(1)求函数的定义域; (2)求()()()2,0,1f f f -的值. (3)作出函数图像.2.设函数()41,20,1,0 3.x x f x x --<⎧=⎨-<<⎩„(1)求函数的定义域; (2)求()2(0)(1)f f f -,,; (3)作出函数图像.3 .()⎩⎨⎧>-≤+=,0,2,0,12x x x x x f 若()2f f ⎡⎤⎣⎦= . 4.已知⎩⎨⎧<+≥-=)6()2()6(5)(x x f x x x f ,则f(3)为( ) A 2 B 3 C 4 D 5函数的性质 1 单调性概念 函数值随着自变量的增大而增大(或减小)的性质叫做函数的单调性.1 即对于任意的()12,,x x a b ∈,当12x x <时,都有()()12f x f x <成立.这时把函数()f x叫做区间(),a b 内的增函数,区间(),a b 叫做函数()f x 的增区间.2 即对于任意的()12,,x x a b ∈,当12x x <时,都有()()12f x f x >成立.这时函数()f x 叫做区间(),a b 内的减函数,区间(),a b 叫做函数()f x 的减区间.3 如果函数()f x 在区间(),a b 内是增函数(或减函数),那么,就称函数()f x 在区间(),a b 内具有单调性,区间(),a b 叫做函数()f x 的单调区间.例 判断函数42y x =-的单调性1. 已知函数f ( x )=x 2+ax +b ,且对任意的实数x 都有f (1+x )=f (1-x ) 成立。
中考知识点分段函数
中考知识点分段函数一、定义域和值域分段函数的定义域和值域是由各个分段的定义域和值域确定的。
以函数f(x) = { x+3, x<0 2x, x>=0 } 为例,其定义域为整个实数集,值域为 (-∞, +∞)。
二、分段函数的图像对于分段函数,要根据每个分段的函数表达式来绘制图像。
以函数f(x) = { x+3, x<0 2x, x>=0} 为例,在x<0时,图像是一条斜率为1的直线,过原点,并且在x=0处有一个开口向上的拐点。
三、分段函数的连续性分段函数在分段点处可能不连续,需要通过计算极限来确定。
以函数f(x) = { x+3, x<0 2x, x>=0} 为例,分段点x=0处的左极限等于0,右极限等于0,与f(0)=0相符,因此该分段函数在x=0处连续。
四、分段函数的性质1. 分段函数的奇偶性由各个分段的奇偶性决定。
以函数f(x) = { x+3, x<0 2x, x>=0 } 为例,第一段函数x+3是奇函数,第二段函数2x是偶函数,所以整个分段函数为奇函数。
2. 分段函数的单调性由各个分段的单调性决定。
以函数f(x) = { x+3, x<0 2x, x>=0 } 为例,第一段函数x+3是递增函数,第二段函数2x也是递增函数,所以整个分段函数是递增函数。
3. 分段函数的最大值和最小值在每个分段函数的最大值和最小值中取得。
以函数f(x) = { x+3, x<0 2x, x>=0 } 为例,在第一段函数中,最小值为3,最大值不存在;在第二段函数中,最小值不存在,最大值也不存在。
四、分段函数的应用1. 分段函数可以描述现实生活中的一些问题,如电话费计费等。
以电话费计费为例,某通信公司的计费标准为:前50分钟,每分钟0.5元;超过50分钟,每分钟0.3元。
假设通话时长为x分钟,对应的通话费用为函数f(x) = { 0.5x,x<=50 0.3(x-50)+25, x>50 }。
分段函数知识点总结
分段函数知识点总结一、分段函数的定义分段函数是指在定义域上将函数分成若干段,每一段上使用不同的函数表达式来描述函数的行为。
它可以是由有限个函数组成的,也可以是由无限个函数组成的。
一般来说,分段函数的定义域可以被划分成有限个不相交的区域,每个区域内使用不同的函数表达式描述函数的行为。
例如,一个简单的分段函数可以是这样的:\[f(x) = \begin{cases}2x, & \text{ if } x < 0 \\x^2, & \text{ if } x \geq 0\end{cases}\]在这个例子中,定义域被分成两段:$x < 0$和$x \geq 0$,分别在这两个区域内使用不同的函数表达式来描述函数的行为。
二、分段函数的图像分段函数的图像通常是由多个部分组成的,每个部分对应于函数定义域中的一个区域。
因此,对于一个有限段的分段函数,其图像是由一些部分图像组成的;对于一个无限段的分段函数,则可能包含无限个部分图像。
以前面的例子$f(x) = \begin{cases}2x, & \text{ if } x < 0 \\x^2, & \text{ if } x \geq 0\end{cases}$为例,其图像可以通过分别画出$y = 2x$和$y = x^2$的图像来得到。
当然,我们也可以直接画出$f(x)$的图像,只需在$x = 0$处将两个部分对接起来即可。
对于无限段的分段函数,我们可能无法通过直接画出所有部分图像来得到完整的图像,但是我们可以通过分析函数表达式的性质来对函数的整体行为有所了解。
三、分段函数的性质分段函数可以具有各种不同的性质,这取决于定义域内不同区域上使用的函数表达式。
首先,在定义域的各个区域内,分段函数可以具有不同的函数性质。
在一个区域上,它可能是线性的;在另一个区域上,它可能是二次的,甚至是高次的多项式函数;在另一个区域上,它可能是指数函数、对数函数或者三角函数等。
初中分段函数知识点总结
初中分段函数知识点总结分段函数的定义对于同一函数关系,当自变量的取值范围不同,函数的关系式也不相同时,这样的函数称为分段函数. 如绝对值函数x y =就是分段函数,它可以写成()()⎩⎨⎧<-≥=00x x x x y 的形式,其图象如下图所示,为一条折线.注意:(1)分段函数是同一个函数,不是多个函数.(2)求分段函数的关系式时,应在每个关系式的后面注明相应的自变量的取值范围.(3)求分段函数的函数值时,应看自变量的值在哪个取值范围内,然后代入相应的关系式求值.求分段函数的函数值求分段函数的函数值的方法是:先确定自变量的值在哪一段自变量的取值范围内,然后代入该段的解析式求值.例1. 若函数()()⎩⎨⎧<≥+=04012x x x x y ,则当2=x 时,函数y 的值是 【 】 (A )5 (B )6 (C )7 (D )8分析:这是关于分段函数的问题.因为2=x 在x ≥0的范围之内,所以对应的函数图(1)绝对值函数的图象值应把2=x 代入函数关系式12+=x y 求得.解: ∵02>∴当2=x 时,5122=+⨯=y .故选【 A 】.已知分段函数的函数值,求自变量的值.方法是:先假设函数值在分段函数的各段上取得,解关于自变量的方程,求出各段上自变量的值.注意:所求出的自变量的值应在相应的各段函数自变量的取值范围内,不在的应舍去.例2. 若函数()()⎩⎨⎧>≤+=22222x x x x y ,则当8=y 时,自变量x 的值是 【 】 (A )6± (B )4 (C )6±或4 (D )4或6- 分析:注意分类讨论以及自变量相应的取值范围.解:当x ≤2时,822=+x ,解之得:6-=x (6=x 舍去);当2>x 时,82=x ,解之得:4=x .综上所述,自变量x 的值是4或6-,故选【 D 】.分段函数的应用票价问题例3. 某风景区集体门票的收费标准是20人以内(含20人),每人25元;超过20人,超过的部分每人10元.(1)写出应收门票费y (元)与游览人数x (人)之间的函数关系式;(2)利用(1)中的函数关系式,计算某班54名学生去该风景区游览时,购门票共花了多少元.分析:(1),这是分段函数,分两种情况讨论:x ≤20,20>x ;(2)求出函数关系式后,根据自变量的取值范围把54=x 代入相应的函数关系式求值即可.解:(1)()()()⎩⎨⎧>-+⨯≤=20201020252025x x x x y整理得:()()⎩⎨⎧>+≤=20300102025x x x x y ; (2)∵2054>=x8403005410=+⨯=y (元).答:购门票共花了840元.出租车计费问题习题1. 某市出租车的计费标准如下:行驶路程不超过3千米,收费8元;行驶路程超过3千米的部分按每千米1. 6元计算,则该市出租车收费y (元)与行驶路程x (千米)()3>x 之间的函数关系式为____________;若某人一次乘出租车时,付费14. 4元,则他这次乘坐了_________千米的路程.分析:本题中,若无条件3>x 的限制,则y 与x 之间的函数关系式为___________.邮资问题习题 2. 小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除了收取每次6元包装费外,樱桃不超过1 kg 收费22元;超过1 kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快寄樱桃的费用为y (元),所寄樱桃为x (kg ).(1)求y 与x 之间的函数关系式;(2)已知小李给外婆快寄了2. 5 kg 樱桃,请你求出这次快寄的费用是多少元.习题3. 某实验中学组织学生到距学校6 km 的光明科技馆去参观,学生王琳因有事没能乘上学校的校车,于是准备在学校门口改乘出租车去光明科技馆,出租车的收费标准如下:(1)写出出租车行驶的路程x (km )(x ≥3且x 为整数)与费用y (元)之间的函数关系式;(2)王琳身上仅有14元,乘出租车到光明科技馆的车费够不够?请说明理由.习题4. 如图,根据所示程序计算,若输入3=x ,则输出结果为_________.分析:根据自变量的值,读懂程序图,选择正确的函数关系式进行计算.习题5. 已知函数()()⎩⎨⎧>-≤+=02012x x x x y ,若10=y ,则=x _________.。
分段函数知识点及例题解析
分段函数常见题型例析所谓“分段函数”是指在定义域的不同部分,有不同对应关系的函数,因此分段函数不是几个函数而是一个函数,它在解题中有着广泛的应用,不少同学对此认识不深,解题时常出现错误.现就分段函数的常见题型例析如下:1.求分段函数的定义域、值域例1.求函数)(x f =⎪⎩⎪⎨⎧->-≤+)2(,2)2(,42x x x x x 的值域.解:当x ≤-2时,4)2(422-+=+=x x x y , ∴ y ≥-4.当x >-2时,y =2x , ∴y >22-=-1. ∴ 函数)(x f 的值域是{y ∣y ≥-4,或y >-1}={y ∣y ≥-4}. 评注:分段函数的定义域是各段函数解析式中自变量取值集合的并集;分段函数的值域是各段函数值集合的并集.2.作分段函数的图象例2 已知函数2(2)()3[22)3[2)x f x x x x -∈-∞-⎧⎪=+∈-⎨⎪∈+∞⎩,,,,,,,画函数(f x 解:函数图象如图1所示.评注:分段函数有几段,其图象就由几条曲线组成,作图的关键是根据定义域的不同,分别由表达式做出其图象.作图时,一要注意每段自变量的取值范围;二要注意间断函数的图象中每段的端点的虚实. 3.求分段函数的函数值例3.已知)(x f =⎪⎩⎪⎨⎧<=>+)0.(0)0(,)0(,1x x x x π 求(((3)))f f f -的值.解:∵ -3<0 ∴ f (-3)=0,∴ f (f (-3))=f (0)=π又π>0 ∴(((3)))f f f -=f (π)=π+1. 评注:求分段函数的函数值时,首先应确定自变量在定义域中所在的范围,然后按相应的对应关系求值.4.求分段函数的最值x 图1例4.已知函数)(x f =22(0)(0)x x x ⎧⎨<⎩,≥, 求出这个函数的最值.解:由于本分段函数有两段,所以这个函数的图象由两部分组成,其中一部分是一段抛物线,另一部分是一条射线,如图2所示.因此易得,函数最小值为0,没有最大值.5.表达式问题例5. 如图3,动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B C D ,,再回到A ,设x 表示P 点的行程,y 表示PA 的长度,求y 关于x 的表达式.解:如图3所示,当P 点在AB 上运动时,PA x =;当P 点在BC 上运动时,由PBA △Rt ,求得PA =;当P 点在CD 上运动时,由PDA Rt △求出PA =;当P 点在DA 上运动时,4PA x =-,所以y 关于x的表达式是01122343 4.x x x y x x x ⎧<=<-<⎩, ≤≤,≤, ≤,, ≤ 在此基础上,强调“分段”的意义,指出分段函数的各段合并成一个整体,必须用符号“{”来表示,以纠正同学们的错误认识. A BP 图3。
七年级数学分段知识点概括
七年级数学分段知识点概括数学一直是学生们较为头疼的科目之一。
而在学习数学的过程中,分段函数是一个非常重要的知识点,可以为学生提供更为广泛的数学思想和应用。
下面我们将从以下几个方面概括七年级数学中的分段函数知识点。
一、分段函数的定义分段函数是指定义在多个子区间上的函数,通常采用函数符号来表示。
在每个子区间中分别定义函数的表达式,形成一个整体的函数。
例如,整个定义域为[-∞,+∞],那么可以将函数分为以下三类:当x≤1时,f(x)=x+2;当1<x≤3时,f(x)=x^2+2;当x>3时,f(x)=x-2。
二、分段函数的图像分段函数的图像通常是由分段的部分连接而成的。
在定义域中的不同区间,连续地绘制相应的函数图像,连接成整体的图像。
以函数y=f(x)=|x-2|为例子,它可以被分成两部分:当x<2时,y=-(x-2);当x>2时,y=x-2;在x=2的位置处,y=0。
因此,可以将y=f(x)的图像分成两条直线,它们连接在(2,0)处。
三、分段函数的性质分段函数具有以下几种常见的性质:1. 奇偶性如果一个分段函数在每个子区间上都满足奇偶性,则分段函数为奇函数或偶函数。
2. 周期性在每个子区间中,函数可能存在周期性。
3. 连续性在每个子区间中,函数可能存在连续性。
4. 密闭性在每个子区间中,函数可能存在没有空缺的密闭性。
五、分段函数的应用分段函数在实际应用中具有广泛的应用。
它可以应用于投资收益率、车辆行驶里程和多种无线查询等方面。
举个例子,现在已知水果店的桔子价格:当购买5个或更少的桔子时,每个桔子的价格为2元;当购买6~9个桔子时,每个桔子的价格为1.5元;当购买10个或更多的桔子时,每个桔子的价格为1元。
因此,可以得出以下的分段函数:当x≤5时,y=2x;当5<x≤9时,y=1.5x+2.5;当x>9时,y=x-4。
通过分段函数,可以方便地计算出购买不同数量桔子的价格。
分段函数-初中数学知识点
分段函数
1.分段函数
(1)一次函数与常函数组合的分段函数.
分段函数是在不同区间有不同对应方式的函数.(注意:在解决分段函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.)
(2)由文字图象信息确定分段函数.
根据图象读取信息时,要把握住以下三个方面:
①横、纵轴的意义,以及横、纵轴分别表示的量.
②关于某个具体点,要求向横、纵轴作垂线来求得该点的坐标.
③在实际问题中,要注意图象与x轴、y轴交点坐标代表的具体意义.
【规律方法】用图象描述分段函数的实际问题需要注意的四点
1.自变量变化而函数值不变化的图象用水平线段表示.
2.当两个阶段的图象都是一次函数(或正比例函数)时,自变量变化量相同,而函数值变化越大的图象与x轴的夹角就越大.
3.各个分段中,准确确定函数关系.
4.确定函数图象的最低点和最高点.
1 / 1。
八年级数学分段函数知识点
八年级数学分段函数知识点数学是一门需要思维和逻辑能力的学科,而分段函数则是数学中一个比较抽象和难以理解的概念。
在八年级数学教学中,分段函数是一个非常重要的知识点,本文将详细介绍八年级数学分段函数知识点。
一、什么是分段函数分段函数是指一个函数根据自变量不同的取值范围,将一个函数分成不同的部分。
通俗地说,就是一个函数可以有不同的定义域上的表达式。
例如,当x<0时,f(x)=x+3;当x≥0时,f(x)=x-2。
这就是一个简单的分段函数。
二、表示方式分段函数可以用多种方式进行表示。
最常见的方式是用大括号将不同条件下的函数表达式括起来表示。
例如,如下函数就是一个分段函数。
-2x+1 (x>=0)f(x)=x+3 (x<0)另外,也可以用数学符号 Iverson括号表示分段函数,如下:f(x)=[x>=0](-2x+1)+[x<0](x+3)三、分段函数的应用分段函数是数学中十分重要的概念,它在很多领域里都有广泛的应用。
例如,在物理学、经济学、社会学等领域中,分段函数被广泛应用。
在数学中,分段函数常常和绝对值函数一起使用。
例如,对于一个函数f(x)=|x|,它在不同条件下的定义域可能不同。
当x≥0时,f(x)=x;当x<0时,f(x)=-x。
这就是一个分段函数。
四、常见的分段函数1. 常函数:当x属于一个给定的区间时,f(x)等于一个常数c。
例如,f(x)= 2,当x属于[-1,1]时。
2. 反比例函数:当x属于一个给定的区间时,f(x)等于1/x。
例如,f(x)=1/x,当x属于(0,∞)。
3. 绝对值函数:当x属于一个给定的区间时,f(x)等于|x|。
例如,f(x)=|x-1|,当x属于[1,3]。
4. 仿射函数:当x属于一个给定的区间时,f(x)等于ax+b,其中a和b为常数。
例如,f(x)=2x+1,当x属于[0,1]。
五、练习题1. 求下列函数f(x)的解析式:当x≤0时,f(x)=x+1;当0<x≤1时,f(x)=x+2;当x>1时,f(x)=2x-3。
考点04 分段函数(解析版)
考点4 分段函数以及应用一、 知识储备汇总与命题规律展望1.知识储备汇总:(1)分段函数概念:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数定义域与值域:分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.(3)分段函数的图像:分段函数有几段它的图像就由几条曲线组成,作图的关键就是根据每段函数的定义区间和表达式在同一坐标系中作出其图像,作图时要注意每段曲线端点的虚实,而且横坐标相同之处不可有两个以上的点。
(4)分段函数的求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(5)分段函数的奇偶性:先看定义域是否关于原点对称,不对称就不是奇(偶)函数,再由x >0,x -<0 ,分别代入各段函数式计算)(x f 与)(x f -的值,若有)(x f =)(x f --,当x =0有定义时0)0(=f ,则)(x f 是奇函数;若有f(x)=)(x f -,则)(x f 是偶函数.(6)分段函数的单调性:分别判断出各段函数在其定义区间的单调性结合图象处理分段函数的问题.(7)分段函数的周期性:对分段函数的周期性问题,利用周期函数定义、性质或图像进行判定或解决.(8)分段函数求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(9)分段函数的最值:先求出每段函数的最值,再求这几个最值的最值,或利用图像求最值.(10)求分段函数某条件下自变量的范围:先假设所求的解在分段函数定义域的各段上,然后相应求出在各段定义域上的范围,再求它们并集即可.(11)分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集.(12)分段函数的解析式:利用待定系数法,求出各段对应函数的解析式,写成分段函数形式,每个解析式后边标上对应的范围.2.命题规律展望:分段函数是高考考查的重点和热点,主要考查分段函数求值、分段函数值域与最值、分段函数的图像与性质、分段函数方程、分段函数不等式等,考查分类整合、转化与化归、函数与方程、数形结合等数学思想与方法,考题多为选择填空题,难度为容易或中档题.将本考点近五年内的命题规律从题型、考题类型、难度、分值等方面作以总结,对今后考题规律作以展望.二、题型与相关高考题解读 1.分段函数求值1.1考题展示与解读例1.(2017山东文9)设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A. 2 B. 4 C. 6 D. 8【命题意图探究】本题考查了分段函数求值及分类整合思想是中档试题. 【答案】C【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【解题能力要求】分析问题能力、分类整合思想【方法技巧归纳】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围. 1.2【典型考题变式】1.【变式1:改编条件】已知函数)(x f =⎩⎨⎧≥+-<<+2,8220,2x x x x x ,若)2()(+=a f a f ,则)1(a f =( )A.165 B. 2 C.6 D.217【答案】B【解析】由2x ≥时()28f x x =-+是减函数可知,若2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭,故选B.2. 【变式2:改编结论】设()()121,1x f x x x <<=-≥⎪⎩,若()12f a =,则a = ( )B.41 B. 45 C. 41或45D. 2【答案】C【解析】由题意知,⎪⎩⎪⎨⎧=<<2110a a 或⎪⎩⎪⎨⎧=-≥21)1(21a a ,解得14a =或45=a ,故选C【变式3:改编问法】已知f (x )是R 上的奇函数,且f (x )=,则f (﹣)=( )A .B .C .1D .﹣1【答案】C .【解析】∵f (x )是R 上的奇函数,且f (x )=,则f (﹣)=﹣f ()=﹣f ()=﹣log 2=1,故选C .【变式4:函数迭代】已知a ∈R ,函数()24,2,3, 2.x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则a = . 【答案】2【分析】由题意结合函数的解析式得到关于a 的方程,解方程可得a 的值.【解析】()()642233f ff f a ⎡⎤=-==-+=⎣⎦,故2a =,故答案为:2. 2.分段函数的最值与值域2.1考题展示与解读例2【2016年高考北京理数】设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值范围是________.【命题意图探究】本题主要考查分段函数的最值及分类整合思想、数形结合思想. 【答案】2,(,1)-∞-.【解析】如图作出函数3()3g x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33g x x =-,知1x =-是函数()g x 的极大值点,①当0a =时,33,0()2,0x x x f x x x ⎧-≤=⎨->⎩,因此()f x 的最大值是(1)2f -=;②由图象知当1a ≥-时,()f x 有最大值是(1)2f -=;只有当1a <-时,由332a a a -<-,因此()f x 无最大值,∴所求a 的范围是(,1)-∞-,故填:2,(,1)-∞-.【解题能力要求】分类整合思想、数形结合思想、运算求解能力.【方法技巧归纳】先根据各段函数的图象与性质求出各段函数在相应区段上的值域,这些值域的并集就是函数的值域. 2.2【典型考题变式】 【变式1:改编条件】设函数的最小值是1,则实数a 的取值范围是( )A .(﹣∞,4]B .[4,+∞)C .(﹣∞,5]D .[5,+∞) 【答案】B【解析】由题知,当x <1时,f (x )=x 2﹣4x+a=(x ﹣2)2+a ﹣4,且为减函数,可得f (x )>f (1)=a ﹣3,由x≥1时,f (x )递增,可得f (x )的最小值为f (1)=1,由题意可得a ﹣3≥1,即a≥4,故选B .【变式2:改编结论】设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩,讨论)(x f 的值域.【答案】当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.【解析】如图作出函数3()3h x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33h x x =-,知1x =-是函数()h x 的极大值点,1=x 是函数()h x 的极小值点,当1-<a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为)2(33a a a --- =0)1)(1(<-+a a a ,所以a a a 233-<-,所以函数)(x f 的值域为)2,(a --∞;当21≤≤-a 时,函数x x y 33-=在],(a -∞上的值域为]2,(-∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为22≤-a ,所以函数)(x f 的值域为]2,(-∞;当2>a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为a a a 323-<-,所以函数)(x f 的值域为]3,(3a a --∞;综上所述,当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.【变式3:改编问法】已知函数f (x )=,函数g (x )=asin (x )﹣2a+2(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值范围是( ) A .[﹣,1] B .[,] C .[,] D .[,2] 【答案】B【解析】当x ∈[0,]时,y=﹣x ,值域是[0,];x ∈(,1]时,y=,y′=>0恒成立,故为增函数,值域为(,1].则x ∈[0,1]时,f (x )的值域为[0,1],当x ∈[0,1]时,g (x )=asin (x )﹣2a+2(a >0),为增函数,值域是[2﹣2a ,2﹣],∵存在x 1、x 2∈[0,1]使得f (x 1)=g (x 2)成立,∴[0,1]∩[2﹣2a ,2﹣]≠∅,若[0,1]∩[2﹣2a ,2﹣]=∅,则2﹣2a >1或2﹣<0,即a <,或a >.∴a 的取值范围是[,],故选B .3.分段函数的解析式3.1考题展示与解读例3.(2021年高考天津卷9)设a ∈R ,函数()()()22cos 22,,215,x a x a f x x a x a x aπ-π<⎧⎪=⎨-+++≥⎪⎩,若函数()f x 在区间()0,+∞内恰有6个零点,则a 的取值范围是 ( )A .95112,,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦ B .7511,2,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦ C .9112,,344⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭ D .711,2,344⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭【解题能力要求】本题主要考查分段函数、函数零点、数形结合思想、转化与化归思想,是难题. 【答案】A【分析】由()222150x a x a -+++=最多有2个根,可得()cos 220x a π-π=至少有4个根,分别讨论当x a <和x a ≥时两个函数零点个数情况,再结合考虑即可得出. 【解析】()222150x a x a -+++=最多有2个根,()cos 220x a ∴π-π=至少有4个根,由22,2x a k k ππ-π=+π∈Z 可得1,24k x a k =++∈Z ,由1024k a a <++<可得11222a k --<<-. (1)x a <时,当15242a -≤--<-时,()f x 有4个零点,即7944a <≤;当16252a -≤--<-,()f x 有5个零点,即91144a <≤;当17262a -≤--<-,()f x 有6个零点,即111344a <≤.(2)当x a ≥时,()()22215f x x a x a =-+++,()()()22Δ414582a a a =+-+=-,当2a <时,∆<0,()f x 无零点;当2a =时,0∆=,()f x 有1个零点; 当2a >时,令()()22215250f a a a a a a =-+++=-+≥,则522a <≤,此时()f x 有2个零点;∴若52a >时,()f x 有1个零点.综上,要使()f x 在区间()0,+∞内恰有6个零点,则应满足7944522a a ⎧<≤⎪⎪⎨⎪<≤⎪⎩或91144522a a a ⎧<≤⎪⎪⎨⎪=>⎪⎩或或1113442a a ⎧<≤⎪⎨⎪<⎩,则可解得a 的取值范围是95112,,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦.【点睛】关键点睛:解决本题的关键是分x a <和x a ≥两种情况分别讨论两个函数的零点个数情况. 【方法技巧归纳】较复杂的函数零点个数问题,常转化为对应方程解得个数问题,再通过移项、局部分离等方法转化为两边都是熟悉函数的方程解得个数问题,再转化为这两个函数的交点个数问题,画出对应函数的函数的图象,利用数形结合思想求解. 3.2【典型考题变式】【变式1:改变条件】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( ) (A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭【答案】D【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<.【变式2:改编条件】已知函数f(x)=,函数g(x)=f(1﹣x)﹣kx+k恰有三个不同的零点,则k的取值范围是()A.(﹣2]∪{}B.(﹣2+,0]∪{}C.(﹣2]∪{}D.(﹣2+,0]∪{}【答案】D【解答】函数f(x)=,可得f(1﹣x)=,函数g(x)=f(1﹣x)﹣kx+k恰有三个不同的零点,即为f(1﹣x)=kx﹣k+有三个不同的实根,作出y=f(1﹣x)和y=kx﹣k+的图象,当直线y=kx﹣k+与曲线y=(x≤1)相切于原点时,即k=时,两图象恰有三个交点;当直线y=kx﹣k+与曲线y=(x﹣2)2(1<x<2)相切,设切点为(m,n),可得切线的斜率为k=2(m﹣2),且km﹣k+=(m﹣2)2,解得m=1+,k=﹣2,即﹣2<k≤0时,两图象恰有三个交点;综上可得,k的范围是(﹣2,0]∪{},故选D.【变式3:改编结论】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若方程()()=0f x g x - 恰有2个不同的解,则b 的取值范围是( ) (A )()72,{}4+∞⋃ (B )()2,+∞ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫ ⎪⎝⎭【答案】A【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()(2)0f x f x b +--=有2个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知2b >或47=b ,故选.A.【变式4:改编问法】已知)(x f 是定义在R 上的奇函数,当0≥x 时,)(x f =x x 42-,则方程2)(-=x x f 解的个数为 . 【答案】3【解析】当0<x 时,0>-x ,所以x x x f 4)()(2+-=-,因为)(x f 是定义在R 上的奇函数,所以)()(x f x f -=-=x x 42+,所以x x x f 4)(2--=,所以⎪⎩⎪⎨⎧≥-<--=0,404)(22x x x x x x x f ,,所以2)()(+-=x x f x g =⎪⎩⎪⎨⎧≥+-<+--0,250,2522x x x x x x ,由)(x g y =的图象知,)(x g y =有3个零点,所以方程2)(-=x x f 解的个数为3.4.分段函数图像4.1考题展示与解读例4.(2021高考上海卷14)已知参数方程[]334,1,12x t t t y ⎧=-⎪∈-⎨=⎪⎩,下列选项的图中,符合该方程的是 ( )【答案】B【解析】当0,0,0,t x y ===∴过原点,排除A ;当1t =时1,0x y =-=,排除C 和D ;当31230,340,0,,22x t t t t t =-===-=时,1230,,22y y y ==-=,故选B . 4.2【典型考题变式】【变式1:改编条件】已知函数f (x )=,g (x )=f (x )+x +a .若g (x )存在2个零点,则a的取值范围是( ) A .[﹣1,0)B .[0,+∞)C .[﹣1,+∞)D .[1,+∞)【命题意图探究】本题主要考查利用分段函数图像解含参数函数零点问题,是难题. 【答案】C【解析】由g (x )=0得f (x )=﹣x ﹣a ,作出函数f (x )和y =﹣x ﹣a 的图象如图,当直线y =﹣x ﹣a 的截距﹣a ≤1,即a ≥﹣1时,两个函数的图象都有2个交点,即函数g (x )存在2个零点,故实数a 的取值范围是[﹣1,+∞),故选C .【解题能力要求】数形结合思想、转化思想、分类整合思想、运算求解能力【方法技巧归纳】一般不等式恒成立求参数1.可以选择参变分离的方法,转化为求函数最值的问题;2.也可以画出两边的函数图象,根据临界值求参数取值范围;3.也可转化为()0F x >的问题,转化讨论求函数的最值求参数的取值范围.【变式2:改编条件】已知函数()22,0,{ ,0x x f x x x ≤=>,若函数()()()1g x f x k x =--恰有两个零点,则实数k 的取值范围是A. ()(),14,-∞-⋃+∞B. ][(),14,-∞-⋃+∞ C. [)()1,04,-⋃+∞ D. [)[)1,04,-⋃+∞【答案】C【解析】()()()1g x f x k x =--恰有两个零点,等价于()y f x =与()1y k x =-有两个交点,同一坐标系,画出()y f x =与()1y k x =-的图象,直线过()0,1时, 1k =-,直线与()20y xx =≥,相切时4k =,由图知, [)()1,04,k ∈-⋃+∞时,两图象有两交点,即k 的取值范围是[)()1,04,-⋃+∞,故选C.【变式3:改编结论】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩,则函数||)(x x f y -=零点个数为 ( ) (A )0 (B )1 (C )2 (D )3 【答案】A【解析】函数||)(x x f y -=零点个数,即为方程||)(x x f =解得个数,即为函数)(x f y =与函数||x y =交点个数,画出函数()f x 的图象与函数||x y =,由图像知,函数)(x f y =与函数||x y =交点个数0, 所以函数||)(x x f y -=零点个数为0,故选A.【变式4:改编问法】已知函数,则函数f (x )的图象是( )A .B .C .D .【答案】D 【解析】函数,当x <0时,函数是二次函数,开口向下,对称轴为x=﹣1,排除选项B ,C ;当x≥0时,是指数函数向下平移1单位,排除选项A ,故选D .5.分段函数性质5.1考题展示与解读例5【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )(A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34}【命题意图探究】本题主要考查分段函数的性质及函数方程解的个数问题,考查数形结合思想、运算求解能力,是中档题. 【答案】C【解析】由()f x 在R 上递减可知43020131a a a -⎧-≥⎪⎪<<⎨⎪≥⎪⎩,解得1334a ≤≤,由方程|()|2f x x =-恰好有两个不相等的实数解,可知132,12a a ≤-≤,1233a ≤≤,又∵34a =时,抛物线2(43)3y x a x a =+-+与直线2y x =-相切,也符合题意,∴实数a 的去范围是123[,]{}334,故选C.【解题能力要求】数形结合思想、分类整合思想、运算求解能力. 【方法技巧归纳】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 5.2【典型考题变式】【变式1:改编条件】已知函数f (x )=在定义域(﹣∞,+∞)上是单调增函数,则实数a 的取值范围是( ) A .(﹣∞,] B .[,+∞)C .[,]D .(,)【答案】C【解析】由于函数f (x )=在定义域(﹣∞,+∞)上是单调增函数,2a≥e ﹣a ,解得a≥.排除A ,D ,当a=2时,x=1可得e x ﹣2x 2=e ﹣2;2a+lnx=4>e ﹣2,显然不成立,排除B ,故选C .【变式2:改编结论】已知()2243,0,23,0,x x x f x x x x ⎧-+≤=⎨--+>⎩不等式()()2f x a f a x +>-在上恒成立,则实数的取值范围是( ) A. B.C.D.【答案】A【解析】二次函数243x x -+的对称轴是2x =,所以该函数在(],0-∞上单调递减; 2433x x ∴-+≥,同样可知函数223x x --+, 2233x x ∴--+<,在()0,+∞上单调递减, ()f x ∴在R 上单调递减,;,所以由()()2f x a f a x +>-得到2x a a x +<-,即2x a < , 2x a ∴<在[],1a a +上恒成立,()21;2a a a ∴+<∴<-,所以实数a 的取值范围是(),2-∞-,故选A.【变式3:改编问法】已知函数则下列结论错误的是( )A .f (x )不是周期函数B .f (x )在上是增函数C .f (x )的值域为[﹣1,+∞)D .f (x )的图象上存在不同的两点关于原点对称 【答案】D 【解析】函数的图象如图所示,则f (x )不为周期函数,A 正确;f (x )在[﹣,+∞)递增,B 正确;f (x )的最小值为﹣1,无最大值,则C 正确;由于x <0时,f (x )=sinx ,与原点对称的函数为y=sinx (x >0),而sinx=x 在x >0无交点,则D 不正确,故选D .6.分段函数的综合应用6.1考题展示与解读例2【2018全国卷Ⅰ】设函数2,0()1,0-⎧=⎨>⎩≤x x f x x ,则满足(1)(2)+<f x f x 的x 的取值范围是( )A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞【命题意图探究】本题主要考查分段函数不等式及分类整合思想,是中档题. 【答案】D【解析】当0x ≤时,函数()2xf x -=是减函数,则()(0)1f x f =≥,作出()f x 的大致图象如图所示,结合图象可知,要使(1)(2)+<f x f x ,则需102021x x x x +<⎧⎪<⎨⎪<+⎩或1020x x +⎧⎨<⎩≥,所以0x <,故选D .【解题能力要求】分类整合思想、运算求解能力.【方法技巧归纳】分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集.6.2【典型考题变式】【变式1:改编条件】已知函数f (x )=,则不等式f (x+2)<f (x 2+2x )的解集是( )A .(﹣2,1)B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)【答案】C【解析】函数f (x )=,可得x≥0,f (x )递增;x <0时,f (x )递增;且x=0时函数连续,则f (x )在R 上递增,不等式f (x+2)<f (x 2+2x ),可化为x+2<x 2+2x ,即x 2+x ﹣2>0,解得x >1或x <﹣2,则原不等式的解集为(﹣∞,﹣2)∪(1,+∞),故选C .【变式2:改编结论】.已知函数(),0{2,lnx x e f x lnx x e<≤=->,若正实数,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围为( )A. ()2,e eB. ()21,e C. 1,e e ⎛⎫ ⎪⎝⎭ D. 21,e e⎛⎫ ⎪⎝⎭【答案】A【解析】作出)(x f 的图像,不妨设c b a <<,由图知,201a b e c e <<<<<<,由题知,|ln ||ln |b a =,即b a ln ln =-,所以0)ln(ln ln ==+ab b a ,所以ab =1,则c abc =),(2e e ∈,故选A.【变式3:改编问法】已知函数f (x )=,函数y=f (x )﹣a 有四个不同的零点,从小到大依次为x 1,x 2,x 3,x 4,则x 1x 2+x 3x 4的取值范围为( ) A .[4,5) B .(4,5] C .[4,+∞) D .(﹣∞,4]【答案】A【解析】当x >0时,f (x )=x+﹣3≥2﹣3=1,可得f (x )在x >2递增,在0<x <2处递减,由f(x )=e,x≤0,当x <﹣1时,f (x )递减;﹣1<x <0时,f (x )递增,可得x=﹣1处取得极小值1,作出f (x )的图象,以及直线y=a ,可得e=e=x 3+﹣3=x 4+﹣3,即有x 1+1+x 2+1=0,可得x 1=﹣2﹣x 2,﹣1<x 2≤0,x 3﹣x 4=﹣=,可得x 3x 4=4,x 1x 2+x 3x 4=4﹣2x 2﹣x 22=﹣(x 2+1)2+5,在﹣1<x 2≤0递减,可得所求范围为[4,5),故选A .三、课本试题探源必修1 P39页习题1.3 A 第6题:已知函数)(x f 是定义域在R 上的奇函数,当0≥x 时,)(x f =)1(x x +.画出函数)(x f 的图象,并求出函数的解析式.【解析】当0<x 时,0>-x ,所以)1()(x x x f --=-, 因为函数)(x f 是定义域在R 上的奇函数, 所以)1()()(x x x f x f --=-=-, 所以)1()(x x x f -=, 所以函数的解析式⎩⎨⎧≥+<-=0),1(0),1()(x x x x x x x f ,函数图象如下图所示:四.典例高考试题演练一、单选题1.(2021·四川成都零模(文))已知函数2log (2),1()e ,1xx x f x x -<⎧=⎨≥⎩则(2)(ln 4)f f -+=( ) A .2 B .4C .6D .8【答案】C 【分析】分别求出()2f -和()ln 4f 的值再求它们的和,从而可得正确的选项. 【详解】()22log 42f -==,()ln4ln 44f e ==,故(2)(ln 4)6f f -+=,故选:C. 【点睛】易错点睛:本题考查分段函数的函数值的计算,注意根据自变量的大小选择合适的解析式来计算,本题属于基础题.2.(2021·四川射洪模拟(理))定义函数()[[]]f x x x =,其中[]x 表示不超过x 的最大整数,例如:[1.3]1=,[ 1.5]2-=-,[2]2=.当*[))0,(x n n N ∈∈时,()f x 的值域为n A .记集合n A 中元素的个数为n a ,则2020211i i a =-∑的值为( ) A .40402021B .20192021C .20192020D .20191010【答案】D【分析】先根据条件分析出当[)0,x n ∈时,集合n A 中的元素个数为222n n n a -+=,进而可得111211n a n n ⎛⎫=- ⎪--⎝⎭,再结合裂项相消法进行求和可得结果. 【详解】因为[][)[)[)[)0,0,11,1,22,2,3......1,1,x x x x n x n n ⎧∈⎪∈⎪⎪=∈⎨⎪⎪-∈-⎪⎩,所以[][)[)[)()[)0,0,1,1,22,2,3......1,1,x x x x x x x n x x n n ⎧∈⎪∈⎪⎪=∈⎨⎪⎪-∈-⎪⎩,所以[]x x 在各个区间中的元素个数分别为:1,1,2,3,4,......,1n -,所以当[)*0,,x n n N ∈∈时,()f x 的值域为n A ,集合n A 中元素个数为:()()2121123 (1122)n n n n n a n --+=+++++-=+=,所以()1112211n n a n n ⎛⎫=-≥ ⎪--⎝⎭, 所以2020211111112019212...22112232019202020201010i ia =⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭∑,故选:D. 3.(2021·山东高三其他模拟)已知函数1,(1)()(2)3,(1)x a x f x a x a x -⎧<=⎨-+≥⎩,满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立,则a 的取值范围是( )A .()0,1a ∈B .3,14a ⎡⎫∈⎪⎢⎣⎭C .30,4a ⎛⎤∈ ⎥⎝⎦D .3,24a ⎡⎫∈⎪⎢⎣⎭【答案】C 【分析】 将条件()()12120f x f x x x -<-等价于函数函数()f x 为定义域上的单调减函数,由分段函数的单调性要求,结合指数函数、一次函数的单调性得到关于a 的不等式组,求解即得. 【详解】由题意,函数()f x 对任意的12x x ≠都有()()12120f x f x x x -<-成立,即函数1,(1)()(2)3,(1)x a x f x a x a x -⎧<=⎨-+≥⎩为R 上的减函数,可得0120,123a a a a<<⎧⎪-<⎨⎪≥-+⎩解得304a <≤,故选:C.4.(2021·江苏南京模拟(理))我们知道,任何一个正实数N 都可以表示成10110,()n N a a n Z =⨯≤<∈.定义:(),00,0N n W N N n ≥⎧⎨<⎩的整数部分的位数=的非有效数字的个数,如()()()2211.2103,(1.2310)2,3102, 3.001101W W W W --⨯=⨯=⨯=⨯=,则下列说法错误的是( )A .当1,1M N >>时,()()()W M N W M W N ⋅=+B .当0n <时,()W N n =-C .当0,()1n W N n >=+D .若1002,lg 20.301N ≈=,则()31W N = 【答案】A【分析】A .理解()W N 的含义,举例分析即可;B .根据0n <分析所表示数的特点,由此可得()W N 的结果;C .根据0n >分析所表示数的特点,由此可得()W N 的结果;D .先将N 化为10110,()n N a a n Z =⨯≤<∈的形式,然后计算出()W N 的值.【详解】当[)0,100N ∈时,N 的整数部分位数为2,当[)100,1000N ∈,N 的整数部分位数为3,一般地,)()110,100,1,2,3,4,......n n N n +⎡∈=⎣时,N 的整数部分位数为1n +; 当[)0.1,1N ∈时,N 的非有效数字0的个数为1,当[)0.01,0.1N ∈时,N 的非有效数字0的个数为2,一般地,)()110,101,2,3,4,5,......n n N n +⎡∈=-----⎣时,N 的非有效数字0的个数为n -,A .取210,10M N ==,所以()()()()33,2,104W M W N W M N W ==⋅==,()()325W M W N +=+=,所以()()()W M N W M W N ⋅≠+,故错误;B .当0n <时,)11010,10n n n N a +⎡=⨯∈⎣,N 的非有效数字0的个数为n -,所以()W N n =-,故正确;C .当0n >时,)11010,10n n n N a +⎡=⨯∈⎣,N 整数部分位数为1n +,所以()1W N n =+,故正确; D .因为1002N =,所以lg =100lg230.1N ≈,所以30.110N ≈,所以)303110,10N ⎡∈⎣,所以()30131W N =+=,故正确,故选:A.【点睛】关键点点睛:解答本题的关键在于理解()W N 的含义以及计算的方法, 通过对10n N a =⨯的分析,首先判断n 与0的关系,然后决定采用哪一种计算方法(类似分段函数).5.(2021·安徽皖江名校联考)已知函数()()21log ,112,1a x x f x x a x ⎧+≤-⎪=⎨++>-⎪⎩,方程()10f x -=有两解,则a 的取值范围是( ) A .1(,1)2B .1(0,)2C .(0,1)D .()1,+∞【答案】B【分析】根据已知条件对a 进行分类讨论:01a <<、1a >,然后分别考虑每段函数的单调性以及取值范围,确定出方程()10f x -=有两解时a 所满足的不等式,由此求解出a 的取值范围. 【详解】因为()()21log ,112,1a x x f x x a x ⎧+≤-⎪=⎨++>-⎪⎩,所以0a >且1a ≠, 当01a <<时,()f x 在(,1]x ∈-∞-时单调递增,所以()()max 11f x f =-=; 又()f x 在()1,x ∈-+∞时单调递增,且()()12f x f a >-=, 因为方程()10f x -=有两解,所以21a <,所以102a <<; 当1a >时,()f x 在(,1]x ∈-∞-时单调递减,()()min 11f x f =-=; 又()f x 在()1,x ∈-+∞时单调递增,()()12f x f a >-=, 因为方程()10f x -=要有两解,所以21a <,此时不成立. 综上可得10,2a ⎛⎫∈ ⎪⎝⎭,故选:B.【点睛】方法点睛:根据方程解的个数求解参数范围的常见方法:方法(1):将方程解的个数问题转化为函数的图象的交点个数问题,通过图象直观解答问题;方法(2):若方程中有指、对数式且底数为未知数,则需要对底数进行分类讨论,然后分析()f x 的单调性并求解出其值域,由此列出关于参数的不等式,求解出参数范围.6.(2021·山东济南模拟)若函数()()()2,232ln 1,2ax x f x a x x -≤⎧=⎨-->⎩在R 上单调递增,则实数a 的取值范围是( ) A .(]0,1 B .(]0,2C .30,2⎛⎫ ⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭【答案】A 【分析】由分段函数单调递增的特性结合单调增函数的图象特征列出不等式组求解即得. 【详解】因函数()()()2,232ln 1,2ax x f x a x x -≤⎧=⎨-->⎩在R 上单调递增,则有2y ax =-在(,2]-∞上递增,()()32ln 1y a x =--在(2,)+∞上也递增, 根据增函数图象特征知,点(2,22)a -不能在点(2,0)上方,于是得0320220a a a >⎧⎪->⎨⎪-≤⎩ ,解得01a <≤,所以实数a 的取值范围是(]0,1. 故选:A7.(2021·山西名校联考)已知函数()cos ()ln f x x g x x ==,用max{,}a b 表示a ,b 中的最大值,则函数{}()max (),()(0)h x f x g x x =>的零点个数为( ) A .0 B .1C .2D .3【答案】C 【分析】分1x >,1x =,01x <<三种情况讨论可得结果. 【详解】 分三种情况讨论:① 当1x >时,()ln 0g x x =>,所以()()0h x g x ≥>,故()h x 无零点;② 当1x =时,(1)cos110f =-<,(1)0g =,所以(1)0h =,故1x =是()h x 的零点;③ 当01x <<时,()ln 0g x x =<,所以()f x 的零点就是()h x 的零点.显然,()cos f x x =(0,1)上单调递减,且(0)10=>f ,(1)cos110f =-<, 故()f x 在(0,1)内有唯一零点,即()g x 在(0,1)内有唯一零点. 综上可知,函数()h x 在0x >时有2个零点. 故选:C. 【点睛】关键点点睛:本题的关键点是:分1x >,1x =,01x <<三种情况讨论.8.(2021·北京市十一学校高三其他模拟)已知函数()22,0313,0x x f x x x ⎧≤⎪=⎨--+>⎪⎩,若存在唯一的整数x ,使得()10f x x a->-成立,则满足条件的整数a 的个数为( ) A .2 B .3C .4D .无数【答案】C 【分析】作出f (x )的函数图象,利用直线的斜率,根据不等式只有1整数解得出a 的范围. 【详解】作出f (x )的函数图象如图所示:()1f x x a--表示点(,())x f x 和点(,1)a 所在直线的斜率,即曲线上只有一个点(,())x f x 且x 是整数和点(,1)a 所在直线的斜率大于零.如图所示,动点(,1)a 在直线1y =上运动.因为(0)0,(1)3,(2)0f f f ===,当[1,0]a ∈-时,只有点(1,3)这个点满足()10f x x a ->-,当[1,2]a ∈时,只有点(0,0)这个点满足()10f x x a->-. 所以a ∈][1,01,2⎡⎤-⋃⎣⎦.所以满足条件的整数a 有4个.故选:C.【点睛】关键点睛:本题主要考查函数的图像,考查直线的斜率,关键在于考查学生对这些知识的掌握水平和数形结合分析推理能力. 二、多选题9.(2021·重庆高三三模)()f x 是定义在R 上周期为4的函数,且()(](]1,112,1,3x f x x x ⎧∈-⎪=⎨--∈⎪⎩,则下列说法中正确的是( ) A .f ()x 的值域为[]0,2B .当(]3,5x ∈时,()f x =C .()f x 图象的对称轴为直线4,x k k Z =∈D .方程3f x x 恰有5个实数解【答案】ABD 【分析】画出()f x 的部分图象结合图形分析每一个选项即可. 【详解】根据周期性,画出()f x 的部分图象如下图所示,由图可知,选项A ,D 正确,C 不正确;根据周期为4,当(3,5]x ∈时,()(4)f x f x =-==B 正确.故选:ABD.10.(2021·辽宁铁岭二模)设函数()21,0,cos ,0.x x f x x x ⎧+≥=⎨<⎩则( )A .()f x 是偶函数B .()f x 值域为[)1,-+∞C .存在00x <,使得()()00f x f =D .()f x 与()f x -具有相同的单调区间【答案】BC【分析】根据函数奇偶性的定义判断A ,由分段函数求值域确定B ,由余弦函数性质确定C ,由二次函数及余弦函数的单调性确定D.【详解】因为()21,0,cos ,0.x x f x x x ⎧+≤-=⎨>⎩.所以()()f x f x -≠,()f x 不是偶函数,故选项A 错误. 当0x ≥时,211x +≥,当0x <时,cos [1,1]x ∈-,所以()f x 值域为[)1,-+∞,故B 正确; 因为()01f =,()21f π-=,选项C 正确.因为()f x 具有单调性的区间与()f x -具有单调性的区间不同,是数轴上关于原点对称的,选项D 错误(由()f x -表达式也可以看出).故选:BC 。
分段函数知识点
分段函数知识点分段函数,也称为分段定义函数,是指由多个不同定义域上的函数组成的一个整体。
在一个给定的定义域上,该函数按照不同的规则进行定义,因此其函数图像通常由多个不连续的线段或曲线段组成。
一、分段函数的定义分段函数可以通过以下形式进行定义:f(x) = { f1(x), x∈D1f2(x), x∈D2...fn(x), x∈Dn其中,f1(x), f2(x), ..., fn(x) 分别表示在不同的定义域 D1, D2, ..., Dn 上的函数,每个定义域 Dn 为函数 f(x) 的某个区间。
二、分段函数的图像分段函数的图像通常由多段曲线或线段组成。
每一段的形状和位置由该段定义的函数决定。
在各个定义域的交界处,函数的图像通常出现不连续的情况,也可能存在间断点。
三、分段函数的性质1. 定义域:分段函数的定义域为各个函数定义域的并集,即 D = D1 ∪ D2 ∪ ... ∪ Dn。
2. 奇偶性:分段函数的奇偶性由各个函数分别决定,具体取决于各个函数的奇偶性质。
3. 连续性:分段函数在各个定义域的内部是连续的,但在定义域之间的交界处可能是不连续的,具体取决于函数定义的方式。
4. 极值:分段函数的极值可能出现在每个定义域的端点,以及在各个定义域之间的交界点处。
5. 最值:分段函数在定义域上的最值由各个函数的最值决定,需要分别找到各个函数的最大值和最小值进行比较。
四、常见的分段函数1. 绝对值函数:f(x) = |x| = { x, x≥0-x, x<02. 阶梯函数:f(x) = ⌊x⌋,表示小于等于 x 的最大整数。
3. 取整函数:f(x) = [x],表示不大于 x 的最大整数。
4. 符号函数:f(x) = { -1, x<00, x=01, x>0五、分段函数的应用分段函数在数学和实际应用中有广泛的应用,如经济学中的需求函数、供给函数;物理学中的速度、加速度函数;计算机科学中的条件运算等。
初中一次函数分段函数知识
分段函数定义:一般地,如果有实数a1,a2,a3……k1,k,2k3……b1,b2,b3……且a1≤a2≤a3……函数Y与自变量X之间存在k1x+b1 x≤a1y = k2x+b2 a1≤x≤a2 ①的函数解析式,则称该函数解析式为X的分K3x+b3 a2≤x≤a3 段函数。
…………应该指出:(一), 函数解析式①这个整体只是一个函数,并非是Y=K1X+b1 Y=K2X+b2……等几个不同函数的简单组合,而k1x+b1,k2x+b2……是函数Y的几种不同的表达式.。
所以上例中Y={这个整体只是一个函数,不能认为它是两个不同的函数,只能说110X和110×80%X是同一函数中的自变量X在两种不同取值范围内的不同表达式。
(二),由于k1,k2,k3……b1,b2,b3是实数,所以函数Y在X的某个范围内的特殊函数,如正比例函数和常数函数。
(三),由于问题的不同,当然分段函数也可能在自变量某范围内不是一次函数而是其他形式的函数,在这里我们不予讨论。
(四), 一次函数的分段函数是简单的分段函数。
分段函数应用题分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。
在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型。
收费问题与我们的生活息息相关,如水费问题、电费问题、话费问题等,这些收费问题往往根据不同的用量,采用不同的收费方式.以收费为题材的数学问题多以分段函数的形式出现在中考试题中,下面请看几例.一、水费、电费、话费中的分段函数例1 某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?例2 今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x≥100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?分析:从函数图象上看图象分为两段,当0≤x≤100时,电费y是电量x的正比例函数,当x≥100时,y是x的一次函数,且函数图象经过点(100,65)和(130,89),设出相应的函数关系式,将点的坐标代入即可确定函数关系式,根据函数关系式可解决问题.图3中考中的分段函数分段函数,是近几年中考数学中经常遇到的题型。
初中分段函数知识点及常见题型总结
丌之 间的函数 关系式为
`与
邮资问题
习题 2.小 李 从 西安通 过某 快 递 公 司给在 南 昌的外婆 寄一盒樱桃 ,快 递 时,他 了解 到这个 公 司 除 了收取每 次 6元 包装 费外,樱 桃不超 过 1kg收 费 ” 元 ;超过 1kg,则
超 出部分 按每千 克 10元 加 收 费用 ,设 该 公 司从 西安到南 4或 -掂 ,故 选 【 D】 .
分段函数的应用
票价问题
例 3.某 风景 区集体 门票 的收费标准是 ⒛ 人 以内 (含 20人 ),每 人 犭 元;超 过 ⒛ 人,超 过 的部分每 人 10元 。
(1)写 出应 收 门票 费 y(元 )与 游览人数 石 (人 )之 间的函数 关系式;
初 中分段函数知识点总结
硐 数 畴趟不相同时 这样
,
’
函
喝岍
线o ) < o ) 的形式 其图象 ’
图 (1)绝 对值 函数 的图象
注意 :
(1)分 段 函数 是 同一个 函数,不 是 多个 函数。 (2)求 分段 函数 的关系式 时,应 在每个关系式 的后面注 明相应 的 自变量 的取值 范
围。 (3)求 分段 函数 的函数值 时,应 看 自变量 的值在 哪个 取值 范 围 内,然 后代入相应 的 关系 式求值 . 求分段函数的函数值
(2)利 用 (1)中 的函数 关系式,计 算某班 54名 学生 去该风景 区游览 时,购 门票共
花 了多少元 ,
分析 :(1),这 是 分段 函数 ,分 两种 情况讨论 :艿 ≤⒛ ,艿 )20;
(2)求 出函数 关系式后 ,根 据 自变量 的取值 范 围把 艿〓54代 入 相应 的函数 关 系式
超 过 3千 米 的部 分 按 每 千 米 1.6元 计 算 ,则 该 市 出租 车 收 费 y(元 )与 行 驶 路 程 艿
分段函数的知识点总结
分段函数的知识点总结一、分段函数的定义1.1 分段函数的基本形式分段函数的基本形式可以表示为:\[ f(x)=\begin{cases}f_{1}(x), & x\in D_{1}\\f_{2}(x), & x\in D_{2}\\… \\f_{n}(x), & x\in D_{n}\\\end{cases} \]其中,\( D_{1}, D_{2},..., D_{n} \)表示函数的定义域的不相交区间,\( f_{1}(x), f_{2}(x),...,f_{n}(x) \)分别表示在不同区间内的函数表达式。
1.2 分段函数的定义域和值域分段函数的定义域由各个子函数的定义域合并而成,而值域则由各个子函数的值域的并集组成。
1.3 分段函数的解析性质对于分段函数,通常要考虑其在各个定义域内的解析表达式。
在定义分段函数时,要考虑到各个分段的连续性、一致性等性质,以确保分段函数在各个区间内的函数表达式具有良好的连续性和可导性。
1.4 分段函数的特殊形式分段函数的特殊形式包括绝对值函数、符号函数、取整函数、阶梯函数等。
这些特殊形式的分段函数在实际问题中具有广泛的应用,例如在信号处理、控制系统等领域中均有重要的作用。
二、分段函数的性质2.1 分段函数的奇偶性对于分段函数,其奇偶性通常由各个子函数的奇偶性来确定。
如果各个子函数均为偶函数,则分段函数也为偶函数;若各个子函数均为奇函数,则分段函数也为奇函数;若各个子函数均为非奇非偶函数,则分段函数既不是奇函数也不是偶函数。
2.2 分段函数的周期性对于分段函数,其周期性通常由各个子函数的周期性来确定。
如果各个子函数均具有相同的周期,则分段函数也具有这一周期;若各个子函数的周期不同,则分段函数通常不具有周期性。
2.3 分段函数的单调性对于分段函数,其单调性通常由各个子函数的单调性来确定。
如果各个子函数均为单调递增或单调递减函数,则分段函数也为单调递增或单调递减函数;若各个子函数既不是单调递增也不是单调递减函数,则分段函数通常不具有单调性。
玩转函数第10招--分段函数
玩转函数第十招 焦建新编第10招:玩转分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数.它是一类表达形式特殊的函数,是中学数学中的一种重要函数模型。
分段函数有关问题蕴含着分类讨论、数形结合等思想方法. 一、分段函数的定义域和值域分段函数的定义域为每一段函数定义域的并集,在表示每一段函数中x 的取值范围时,要确保做到定义域不重不漏,即交集为空集, 并集为整个定义域.值域应是其定义域内不同子集上各关系式的取值范围的并集。
例1求函数4,23,0123,10x x y x x x x -+>⎧⎪=+<≤⎨⎪+-≤≤⎩的定义域和值域二、分段函数的求值在求分段函数的值0()f x 时,一定首先要判断0x 属于定义域的哪个子集,然后再代相应的关系式 例1、(辽宁理)设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________2、(2006山东)设1232(2),()(1)(2).log x x f x x e x -⎧<⎪=⎨-≥⎪⎩则[(2)]f f = A.0B.1C.2D.3 3、 已知=)(x f ⎩⎪⎨⎪⎧-log 3(x + 1)(x>6)3x -6(x ≤6),若记)(1x f -为)(x f 的反函数,且),91(1-=fa 则=+)4(a f .4 、设222(1),()1(1).1x x f x x x⎧--≤⎪=⎨>⎪+⎩ 则1[()]2f f = ( ) A.12 B.413C.95- D.2541A5、 已知sin (0),()(1)1(0).x x f x f x x π<⎧=⎨-->⎩则1111((66f f -+的值为 . 三、分段函数的单调性 例(2006北京理)、已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是(A )(0,1) (B )1(0,3(C )11[,73(D )1[,1)7四、分段函数的图象 1.作出函数()1y x x =+的图象2.函数ln |1|xy ex =--的图象大致是( )五、分段函数的反函数 (2006年安徽卷)函数22,0,0x x y x x ≥⎧=⎨-<⎩ 的反函数是( ) A.,020x x y x ⎧≥⎪=< B.2,00x x y x ≥⎧⎪=< C.,020x x y x ⎧≥⎪=⎨⎪<⎩ D.2,0x x y x ≥⎧⎪=⎨<⎪⎩ 六、分段函数的解析式1、在同一平面直角坐标系中,函数)(x f y = 和)(x g y =的图象关于直线x y =对称. 现将 )(x g y =的图象沿x 轴向左平移2个单位,再 沿y 轴向上平移1个单位,所得的图象是由 两条线段组成的折线(如图2所示),则函 数)(x f的表达式为 ( )A .22,10,()2,0 2.2x x f x xx +-≤≤⎧⎪=⎨+<≤⎪⎩ B .22,10,()2,0 2.2x x f x xx --≤≤⎧⎪=⎨-<≤⎪⎩ C .22,12,()1,2 4.2x x f x xx -≤≤⎧⎪=⎨+<≤⎪⎩ D .26,12,()3,2 4.2x x f x xx -≤≤⎧⎪=⎨-<≤⎪⎩ 2、(2006年上海春卷)已知函数)(x f 是定义在),(∞+∞-上的偶函数. 当)0,(∞-∈x 时,4)(x x x f -=,则当),0(∞+∈x 时,=)(x f .3、已知函数)(x f 是定义在R 上的奇函数,且当20,()2 3.x f x x x >=-+时求f(x)的解析式. 七、分段函数的最值(2005上海高考题)对定义域分别是,f g D D 的函数(),()y f x y g x ==.规定:函数()(),,()(),(),f gf g g f f x g x x x h x f x x x g x x x D D D D D D ⎧∈∈⎪⎪=∈∉⎨⎪∈∉⎪⎩当且当且当且 (I )若函数21(),()1f xg x x x ==-,写出函数()h x 的解析式; (II )求问题(I )中函数()h x 的最大值;八、分段函数的奇偶性 判断函数(1)(0),()(1)(0).x x x f x x x x -<⎧=⎨+>⎩的奇偶性 九、与分段函数有关的不等式问题 1、设函数2(1).(1)()41)x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量x 的取值范围是__________ 2已知1(0)()1(0)x f x x ≥⎧=⎨-<⎩ ,则不等式(2)(2)5x x f x +++≤的解集是________3、(山东理)设f(x)= 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式f(x)>2的解集为(A)(1,2)⋃(3,+∞)(B)(10,+∞)(C)(1,2)⋃ (10 ,+∞)(D)(1,2)4、 设f (x)=1()0x x ⎧⎨⎩为有理数(为无理数),使所有x 均满足x ·f (x)≤g (x)的函数g(x)是( )A .g (x)=sinxB .g (x)=xC .g (x)=x 2D .g (x)=|x|十、分段函数与方程的根 1、.函数f(x)=⎪⎩⎪⎨⎧>≤-)1|(|||)1|(|12x x x x ,如果方程f(x)=a 有且只有一个实根,那么a 满足A.a<0B.0≤a<1C.a=1D.a>12、设定义为R 的函数lg 1,1,()0,0.x x f x x ⎧-≠⎪=⎨=⎪⎩则关于x 的方程2()()0f x bf x c ++=有7个不同的实数解的充要条件是( )A. 0b <且0c >B. 0b >且0c <C. 0b <且0c =D. 0b ≥且0c =3、设函数()f x 在(,)-∞+∞上满足(2)(2)f x f x -=+,(7)f x -=(7)f x +,且在闭区间[0,7]上,只有(1)(3)0f f ==. (Ⅰ)试判断函数()y f x =的奇偶性;(Ⅱ)试求方程()0f x =在闭区间[2005,20-上的根的个数,并证明你的结论.十一、分段函数与导数 1. 一给定函数()y f x =的图象在下列图中,并且对任意1(0,1)a∈,由关系式1n a+=()nf a得到的数列{}n a满足1(*)n na a n N+>∈,则该函数的图象是()2. 已知函数,(1,0],(),(0,1).ax b xf x x bxx a+∈-⎧⎪=-⎨∈⎪-⎩其中0,0a b>>,若lim()xf x→存在,且()f x在(1,1)-上有最大值,则b的取值范围是()A.1b> B.112b<≤ C.1b≥D.01b<≤十二、开放性自义分段函数1. 定义在R的任意函数()f x,都可以表示成一个奇函数()g x 和一个偶函数()h x之和,如果()lg(101)xf x=+,那么()A. ()g x x=,()lg(10102)x xh x-=++ B. 1()[lg(1010]2xg x x=++,1()[lg(101)]2xh x x=+-C.(),()lg(101)22x x x g x h x ==+- D.(),()lg(101)22x x xg x h x =-=++.七、答案(I )(23)(2)(1),()2(1).x x x h x x x -+-≥⎧=⎨-<⎩(II )18九、1(答:(,2][0,10]-∞- );2(答:3(,]2-∞)。
分段函数知识点及常见题型总结精选全文完整版
可编辑修改精选全文完整版分段函数知识点及常见题型总结资料编号:20190726 一、分段函数的定义有些函数在其定义域内,对于自变量x的不同取值区间,有着不同的对应关系,这样的函数称为分段函数.关于分段函数:(1)分段函数的定义域是各段函数定义域的并集.注意各段函数定义域的交集为空集; (2)分段函数的值域是各段函数值域的并集;(3)分段函数包括几段,它的图象就有几条曲线组成.采用“分段作图”法画分段函数的图象:在同一平面直角坐标系中,依次画出各段函数的图象,这些函数的图象组合在一起就是分段函数的图象;(4)分段函数是一个函数,而不是几个函数;(5)分段函数在书写时要用大括号把各段函数合并写成一个函数的形式,并在各段解析式的后面标明相应的自变量的取值范围;(6)处理分段函数问题时,首先要确定自变量的取值在哪一段函数的区间内,再选取相应的对应关系.二、几种常见的分段函数1.取整函数[]xy=([]x表示不大于x的最大整数).其图象如图(1)所示.图(1)取整函数的图象图(2)绝对值函数的图象2.绝对值函数 含有绝对值符号的函数.如函数()()⎩⎨⎧-<---≥+=+=22222x x x x x y ,其图象如图(2)所示,为一条折线.解决绝对值函数的问题时,先把绝对值函数化为对应的分段函数,然后分段解决. 3.自定义函数如函数()()()⎪⎩⎪⎨⎧>-≤<----≤--=2221211)(2x x x x x x x x f 为自定义的分段函数,其图象如图(3)所示.4.符号函数x y sgn =符号函数()()()⎪⎩⎪⎨⎧<-=>==010001sgn )(x x x x x f ,其图象如图(4)所示.符号函数的性质: x x x sgn =.图(3)图(4)符号函数的图象说明:函数的图象既可以是连续的曲线,也可以是直线、折线或离散的点. 三.分段函数的常见题型 1.求分段函数的函数值.求分段函数的函数值的方法是:先确定自变量的值属于哪一个区间段,然后代入该段的解析式求值.当出现))((a f f 的形式时,应从内到外依次求值.例1. 已知函数⎪⎩⎪⎨⎧≤+>-+=,2,2,2,21)(2x x x x x x f ,则))1((f f 的值为【 】 (A )21-(B )2 (C )4 (D )11 解:∵21<,∴()32112=+=f ,∴()3))1((f f f = ∵23>,∴()423133=-+=f ,∴4))1((=f f .【 C 】. 习题1. 已知函数⎩⎨⎧>-≤++=,0,3,0,34)(2x x x x x x f ,则=))5((f f 【 】(A )0 (B )2- (C )1- (D )1 2.已知分段函数的函数值,求自变量的值.方法是:先假设函数值在分段函数的各段上取得,解关于自变量的方程,求出各段上自变量的值.注意:所求出的自变量的值应在相应的各段函数定义域内,不在的应舍去.例2. 已知函数⎩⎨⎧<<--≤+=)21()1(2)(2x x x x x f ,若3)(=x f ,则=x _________.解:当1-≤x 时,32=+x ,解之得:1=x ,不符合题意,舍去;当21<<-x 时,32=x ,解之得:3±=x ,其中13-<-=x ,舍去,∴3=x 综上,3=x .习题2. 已知函数⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若5)(=x f ,则x 的值是【 】(A )2- (B )2或25-(C )2或2- (D )2或2-或25-习题3. 已知⎩⎨⎧≤+>=)0(1)0(2)(x x x x x f ,若0)1()(=+-f a f ,则实数a 的值等于_________.3.求分段函数自变量的取值范围在分段函数的前提下,求某条件下自变量的取值范围的方法是:先假设自变量的值在分段函数的各段上,然后求出在相应各段定义域上自变量的取值范围,再求它们的并集即可.例3. 已知函数⎩⎨⎧<+-≥-=)1(32)1(23)(22x x x x x x f ,求使2)(<x f 成立的x 的取值范围. 解:由题意可得:⎩⎨⎧<-≥22312x x x 或⎩⎨⎧<+-<23212x x 解不等式组⎩⎨⎧<-≥22312x x x 得:1≤371+<x ;解不等式在⎩⎨⎧<+-<23212x x 得:22-<x 或122<<x ∴使2)(<x f 成立的x 的取值范围为⎭⎬⎫⎩⎨⎧⎩⎨⎧+<<-<3712222x x x 或.习题4. 已知()()⎩⎨⎧<≥=0001)(x x x f ,则不等式x x xf +)(≤2的解集为【 】(A )][1,0 (B )][2,0 (C )](1,∞- (D )](2,∞-习题5. 设函数()()⎩⎨⎧<+≥+-=06064)(2x x x x x x f ,则不等式)1()(f x f >的解集是____________.习题6. 函数()()()⎪⎩⎪⎨⎧≥<<-+-≤=434212)(x x x x x x x f ,若3)(-<a f ,则实数a 的取值范围是_________.例4. 已知0≠a ,函数()()⎩⎨⎧≥--<+=1212)(x a x x a x x f ,若()()a f a f +=-11,则a 的值为_________.解:当11<-a ,即0>a 时,11>+a∴()()a a a a f -=+-=-2121,()a a a a f 31211--=---=+ ∵()()a f a f +=-11 ∴a a 312--=-,解之得:023<-=a ,不符合题意,舍去; 当11>-a ,即0<a 时,11<+a()()a a a a f --=---=-1211,()()a a a a f 32121+=++=+∵()()a f a f +=-11图(5)∴a a 321+=--,解之得:43-=a ,符合题意. 综上,a 的值为43-. 习题7. 设()⎩⎨⎧≥-<<=)1(12)10()(x x x x x f ,若)1()(+=a f a f ,则=⎪⎭⎫⎝⎛a f 1_________.习题8. 设函数⎩⎨⎧<≥=)0()0()(2x x x x x f ,⎩⎨⎧>-≤=)2()2()(2x x x x x ϕ,则当0<x 时,=))((x f ϕ【 】(A )x - (B )2x - (C )x (D )2x习题9. 设函数⎪⎪⎩⎪⎪⎨⎧<≥-=)0(1)0(121)(x xx x x f ,若a a f =)(,则实数a 的值为【 】(A )1± (B )1- (C )2-或1- (D )1±或2- 4.求分段函数的定义域分段函数的定义域是各段函数定义域的并集.例5. 函数⎪⎩⎪⎨⎧≥+<<+≤≤=)2(12)21(1)10(2)(x x x x x x x f 的定义域是_________.解:由各段函数的定义域可知该分段函数的定义域为[]())[)[∞+=∞+,0,22,11,0 . 5.求分段函数的值域分段函数的值域是各段函数值域的并集.对于某些简单的分段函数,可画出其图象,由图象的最高点和最低点求值域(图象法). 例6. 设∈x R ,求函数x x y 312--=的值域.解:当x ≥1时,()2312--=--=x x x y ; 当0≤1<x 时,()25312+-=--=x x x y ;当0<x 时,()2312+=+-=x x x y .综上所述,⎪⎩⎪⎨⎧<+<≤+-≥--=)0(2)10(25)1(2x x x x x x y图(6)其图象如图(5)所示,由图象可知其值域为](2,∞-. 另解:由上面可知:⎪⎩⎪⎨⎧<+<≤+-≥--=)0(2)10(25)1(2x x x x x x y当x ≥1时,函数2--=x y 的值域为](3,-∞-; 当0≤1<x 时,函数25+-=x y 的值域为(]2,3-; 当0<x 时,函数2+=x y 的值域为)(2,∞-.∴函数x x y 312--=的值域为]( 3,-∞-(] 2,3-)(=∞-2,](2,∞-.例7. 若∈x R ,函数)(x f 是x y x y =-=,22这两个函数值中的较小者,则函数)(x f 的最大值为【 】(A )2 (B )1 (C )1- (D )无最大值 解:解不等式22x -≥x 得:2-≤x ≤1 ∴当2-≤x ≤1时,x x f =)(,其值域为[]1,2-; 解不等式x x <-22得:1>x 或2-<x∴当1>x 或2-<x 时,22)(x x f -=,其值域为()1,∞-综上所述,⎩⎨⎧-<>-≤≤-=)21(2)12()(2x x x x x x f 或 函数)(x f 的值域为[] 1,2-()](1,1,∞-=∞- ∴函数)(x f 在其值域内的最大值为1. 函数)(x f 的图象如图(6)所示.习题10. 若函数⎪⎩⎪⎨⎧<≤<≤<<=)2015(5)1510(4)100(2)(x x x x f ,则函数)(x f 的值域是【 】(A ){}5,4,2 (B )()5,2 (C )()4,2 (D )()5,4习题11. 函数⎪⎩⎪⎨⎧≥<<≤≤=)2(3)21(2)10(2)(2x x x x x f 的值域是【 】(A )R (B ))[∞+,0 (C )[]3,0 (D )[]{}32,0 习题12. 已知函数()2221)(≤<--+=x x x x f .(1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域.习题13. 已知函数⎪⎩⎪⎨⎧<-=>-=)0(21)0(2)0(3)(2x x x x x x f .(1)画出函数)(x f 的图象;(2)求))(1(2R a a f ∈+,))3((f f 的值; (3)当)(x f ≥2时,求x 的取值范围.图(7)。
初中数学专题01分段函数的理解
分段函数的理解分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数。
1、它是一个函数,不是几个不同函数的组合,是同一函数在自变量X的不同取值范围内的不同表达式。
2、最简单的分段函数是一次函数的分段函数。
分段函数也可能在自变量某范围内不是一次函数而是其他形式的函数,在这里我们不予讨论。
谈谈中考中的分段函数在现实生活中存在着很多需分段计费的实际问题,分段函数是近几年中考数学中一种重要的题型。
分段函数的应用题多设计成两种(段)情况以上,解答时需分段讨论。
它是考查分类思想,读取、搜集、处理图像信息等综合能力的综合题。
这些分段函数都是直线型,通常是由正比例函数的图像和一次函数的图像构成。
下面我们归纳分析如下,供学习时参考。
一、两段型分段函数1.1正比例函数与一次函数构成的分段函数解答这类分段函数问题的关键,就是分别确定好正比例函数的解析式和一次函数的解析式。
例1、某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费______元;(2)分别写出当0≤x≤100 , x≥100时,x与y之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?分析:本题是一道和话费有关的分段函数问题,通过图象可观察到,在0到100分钟之间月话费y(元)是月通话时间x(分钟)的正比例函数,当x≥100时, 月话费y(元)是月通话时间x(分钟)的一次函数.解:(1)观察图象可知月通话为100分钟时,应交话费40元;(2)当0≤x≤100时,设y与x之间的函数关系式为y=kx,x=100时,y=40 所以y=2/5xx≥100时, 设y与x之间的函数关系式为y=kx+b由图知:x=100时,y=40;x=200时,y=60则有 ,解之得 k=1/5,b=20所求函数关系式为y=1/5x+20(3)把x=280代入y=1/5x+20,得y=1/5x280+20=76,即月通话为280分钟时,应交话费76元.【巩固练习】1、水费中的分段函数某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图(1)分别写出当0≤x≤15和x≥15时, y与x的函数关系式;(2)若某户该月用水21吨, 则应交水费多少元?2、电费中分段函数今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x≥100时, y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?1.2一次函数与一次函数构成的分段函数1、为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费用为y元,则y(元)和x(小时)之间的函数图像如图5所示.(1)根据图像,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的?(2)分别写出当0≤x≤20和x≥20时, y与x的函数关系式;(3)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?1.3常数函数与一次函数构成的分段函数例1、有甲、乙公司,甲公司每月通话的收费标准如图6所示;乙公司每月通话收费标准如表1所示.(1)观察图6,甲公司用户月通话时间不超过100分钟时应付话费金额是元;甲公司用户通话100分钟以后,每分钟的通话费为元;(2)分别写出当0≤x≤100和x≥100时, y与x的函数关系式(3)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择?二、三段型分段函数如图7,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M运动,则△APM 的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()三、四段型分段函数例7、星期天,小强骑自行车到郊外与同学一起游玩,从家出发2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,如图11,是他们离家的路程y(千米)与时间x(时)的函数图像。
七年级分段计费问题知识点描述
七年级分段计费问题知识点描述在数学学科中,分段函数是一种具有不同定义域范围的函数类型。
它通常由两个或多个函数构成,每个函数都有各自的定义域,而它们的定义域能够共同覆盖整个函数的输入范围。
在生活中,分段函数也有很多实际应用。
比如,在购买电影票、旅游路费或移动话费等场合,我们经常会遇到分段计费的情况。
这就要求我们能够理解和应用分段函数的相关知识点。
以下是七年级分段计费问题的知识点描述。
1.分段函数的定义和表示在数轴上,我们可以把函数的定义域按照不同的条件分成几段。
对于每一段,我们可以给定一个函数规则,从而得到一个分段函数。
例如,一种表示电影票价的分段函数可以是:f(x)=8(0<=x<10),f(x)=7(10<=x<17),f(x)=5(x>=17),其中,x表示电影的时长,f(x)表示电影票的价格。
2.分段函数的连续性和间断点在分段函数中,我们需要特别关注函数在每个分段交接处的连续性。
如果交接处的函数值相等,则函数是连续的;如果不相等,则函数有间断点。
在实际应用中,我们可以通过分析函数值的变化来确定函数的连续性和间断点,从而得出最终的计费结果。
3.分段函数的计费规则和应用在分段计费问题中,我们需要根据实际需求来设计分段函数的计费规则。
通常,我们会根据不同的使用量或时长来定制不同的计费标准,从而满足不同消费者的实际需求。
例如,在移动话费的计费中,我们可以设置不同的套餐和费率,以适应用户的使用情况。
在实际应用中,我们需要对不同的计费规则进行比较和分析,从而选择最合适的计费方式。
总的来说,分段计费问题是数学中非常实用的应用问题。
通过掌握分段函数的相关知识和应用方法,我们能够更好地理解和解决实际计费问题,为生活带来更多的便利和经济效益。
分段函数
戴氏教育精品堂培训学校名校冲刺戴氏教育温馨提醒:聪明的人,总在寻找好心情;成功的人,总在保持好心情;幸福的人,总在享受好心情分段函数一、考点、热点回顾分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集.二、典型题型1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.【解析】作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞,值域为(1,3]-.例2.(05年浙江理)已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f . 【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+- 2.求分段函数的解析式例3.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )11o 322-1y x-1222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 【解析】当[2,0]x ∈-时, 121y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([1,0])f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)x x x f x x +-≤≤⎧=⎨+<≤⎩,故选A .3.作分段函数的图像例4.函数|ln ||1|x y e x =--的图像大致是( )A11oyxByx11OCyxO11DyxO11-12131o-2yx4.判断分段函数的单调性例5.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R 上是单调递增函数;或画图易知()f x 在R 上是单调递增函数.例6.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为12(,]-∞-. 5.求分段函数的最值例7.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==, 当1x >时,5154x -+<-+=, 综上有max ()4f x =.6.判断分段函数的奇偶性例8.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.7.求分段函数得反函数yx52o -1252例9.已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31x f x =-, 设()f x 得反函数为()y g x =, 求()g x 的表达式.【解析】设0x <, 则0x ->, 所以()31x f x --=-, 又因为()f x 是定义在R 上的奇函数, 所以()()f x f x -=-, 且(0)0f =, 所以()13x f x -=-, 因此31(0)()0(0)13(0)x x x f x x x -⎧->⎪==⎨⎪-<⎩, 从而可得33log (1)(0)()0(0)log (1)(0)x x g x x x x +>⎧⎪==⎨⎪--<⎩. 8.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为【解析】若142x -=, 则222x --=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =, 则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.9.解分段函数的不等式例11.设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】首先画出()y f x =和1y =的大致图像, 易知0()1f x >时,所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.【解析2】因为0()1f x >, 当00x ≤时, 0211x -->, 解得01x <-, 当00x >时, 1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D. xy1-11例12.设函数2(1)(1)()41(1)x x f x x x ⎧+<⎪=⎨--≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时,()14111310f x x x x ≥⇔--≥⇔-≤⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.【点评:】以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.三、课堂练习1.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32 C .1,32或3± D .3 2.函数222(03)()6(20)x x x f x x x x ⎧-≤≤⎪=⎨+-≤≤⎪⎩的值域是( )A .RB .[)9,-+∞C .[]8,1-D .[]9,1- 3.设函数2()2()g x x x R =-∈,()4,(),(),().(){g x x x g x g x x x g x f x ++<-≥=则()f x 的值域是(A )9,0(1,)4⎡⎤-⋃+∞⎢⎥⎣⎦ (B )[0,)+∞ (C )9[,)4-+∞(D )9,0(2,)4⎡⎤-⋃+∞⎢⎥⎣⎦【答案】D4.已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A.(,0]-∞B.(,1]-∞C.[2,1]-D.[2,0]-【答案】D5.已知函数()()0f x x a x a a =+--≠,()()()2200x x x h x x x x ⎧-+>⎪=⎨+≤⎪⎩, 则()(),f x h x 的奇偶性依次为( )A .偶函数,奇函数B .奇函数,偶函数C .偶函数,偶函数D .奇函数,奇函数6.若函数f(x)=212log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a)>f(-a),则实数a 的取值范围是(A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞) (C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1) 【答案】C7.函数2x +2x-3,x 0x)=-2+ln x,x>0f ⎧≤⎨⎩(的零点个数为 ( ) A .3 B .2 C .1 D .0 【答案】B8.函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( )A .4B .3C .2D .19.若函数234(0)()(0)0(0)x x f x x x π⎧->⎪==⎨⎪<⎩,则((0))f f = .10.已知函数⎪⎩⎪⎨⎧<≤-<=20,tan 0,2)(3πx x x x x f ,则=))4((πf f ________ 【答案】2- .11.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中分段函数知识点总结
分段函数的定义
对于同一函数关系,当自变量的取值范围不同,函数的关系式也不相同时,这样的函数称为分段函数. 如绝对值函数x y =就是分段函数,它可以写成()()
⎩⎨⎧<-≥=00x x x x y 的形式,其图象如下图所示,为一条折线.
注意:
(1)分段函数是同一个函数,不是多个函数.
(2)求分段函数的关系式时,应在每个关系式的后面注明相应的自变量的取值范围.
(3)求分段函数的函数值时,应看自变量的值在哪个取值范围内,然后代入相应的关系式求值.
求分段函数的函数值
求分段函数的函数值的方法是:先确定自变量的值在哪一段自变量的取值范围内,然后代入该段的解析式求值.
例1. 若函数()()⎩
⎨⎧<≥+=04012x x x x y ,则当2=x 时,函数y 的值是 【 】 (A )5 (B )6 (C )7 (D )8
分析:这是关于分段函数的问题.因为2=x 在x ≥0的范围之内,所以对应的函数
图(1)绝对值函数的图象
值应把2=x 代入函数关系式12+=x y 求得.
解: ∵02>
∴当2=x 时,5122=+⨯=y .
故选【 A 】.
已知分段函数的函数值,求自变量的值.
方法是:先假设函数值在分段函数的各段上取得,解关于自变量的方程,求出各段上自变量的值.
注意:所求出的自变量的值应在相应的各段函数自变量的取值范围内,不在的应舍去.
例2. 若函数()()
⎩⎨⎧>≤+=22222x x x x y ,则当8=y 时,自变量x 的值是 【 】 (A )6± (B )4 (C )6±或4 (D )4或6- 分析:注意分类讨论以及自变量相应的取值范围.
解:当x ≤2时,822=+x ,解之得:6-=x (6=x 舍去);
当2>x 时,82=x ,解之得:4=x .
综上所述,自变量x 的值是4或6-,故选【 D 】.
分段函数的应用
票价问题
例3. 某风景区集体门票的收费标准是20人以内(含20人),每人25元;超过20人,超过的部分每人10元.
(1)写出应收门票费y (元)与游览人数x (人)之间的函数关系式;
(2)利用(1)中的函数关系式,计算某班54名学生去该风景区游览时,购门票共花了多少元.
分析:(1),这是分段函数,分两种情况讨论:x ≤20,20>x ;
(2)求出函数关系式后,根据自变量的取值范围把54=x 代入相应的函数关系式求值即可.
解:(1)()()()
⎩⎨⎧>-+⨯≤=20201020252025x x x x y
整理得:
()()
⎩⎨⎧>+≤=20300102025x x x x y ; (2)∵2054>=x
8403005410=+⨯=y (元).
答:购门票共花了840元.
出租车计费问题
习题1. 某市出租车的计费标准如下:行驶路程不超过3千米,收费8元;行驶路程超过3千米的部分按每千米1. 6元计算,则该市出租车收费y (元)与行驶路程x (千米)()3>x 之间的函数关系式为____________;若某人一次乘出租车时,付费
14. 4元,则他这次乘坐了_________千米的路程.
分析:本题中,若无条件3>x 的限制,则y 与x 之间的函数关系式为___________.
邮资问题
习题 2. 小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除了收取每次6元包装费外,樱桃不超过1 kg 收费22元;超过1 kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快寄樱桃的费用为y (元),所寄樱桃为x (kg ).
(1)求y 与x 之间的函数关系式;
(2)已知小李给外婆快寄了2. 5 kg 樱桃,请你求出这次快寄的费用是多少元.
习题3. 某实验中学组织学生到距学校6 km 的光明科技馆去参观,学生王琳因有
事没能乘上学校的校车,于是准备在学校门口改乘出租车去光明科技馆,出租车的收费标准如下:
(1)写出出租车行驶的路程x (km )(x ≥3且x 为整数)与费用y (元)之间的函数关系式;
(2)王琳身上仅有14元,乘出租车到光明科技馆的车费够不够?请说明理由.
习题4. 如图,根据所示程序计算,若输入3=x ,则输出结果为_________.
分析:根据自变量的值,读懂程序图,选择正确的函数关系式进行计算.
习题5. 已知函数()()
⎩⎨⎧>-≤+=02012x x x x y ,若10=y ,则=x _________.。