第1讲 实数的有关概念和计算(讲练)(原卷版)
七年级(下)数学 同步讲义 实数的概念及数的开方 (解析版)

知识点1:实数的概念1、无限不循环的小数叫做无理数.注意:1)整数和分数统称为有理数; 2)圆周率π是一个无理数. 2、无理数也有正、负之分.如2、π、0.101001000100001等这样的数叫做正无理数;2-、π-、0.101001000100001-这样的数叫做负无理数;只有符号不同的两个无理数,如2与2-,π与π-,称它们互为相反数.实数、数的开方知识结构模块一 实数的概念和分类知识精讲3、有理数和无理数统称为实数. (1)按定义分类⎧⎫⎧⎪⎪⎨⎬⎨⎪⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数(2)按性质符号分类0⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数【例1】 写出下列各数中的无理数:3.1415926,2π,16,.0.5,0,23-,0.1313313331…(两个1之间依次多一个3),0.2121121112.【答案】2π、0.1313313331….【解析】无限不循环小数都是无理数. 【总结】考查无理数的概念.【例2】 判断正误,在后面的括号里对的用“√”,错的记“×”表示.(1)无限小数都是无理数. ( ) (2)无理数都是无限小数.( ) (3)带根号的数都是无理数.( ) (4)不带根号的数一定不是无理数.()【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)无限不循环小数才是无理数;(2)无理数是无限不循环小数当然是无限小数; (3)开方开不尽的数是无理数;(4)π没带根号但是无理数. 【总结】考查无理数的概念及无理数与小数的关系.【例3】 a 是正无理数与a 是非负无理数这两种说法是否一样?为什么. 【答案】一样.例题解析【解析】a 是非负无理数实质上就是说a 是正无理数,因为0不是无理数. 【总结】考查无理数的分类及无理数的概念.【例4】 若a +bx =c +dx (其中a 、b 、c 、d 为有理数,x 为无理数),则a =c ,b =d ,反之, 亦成立,这种说法正确吗?说明你的理由. 【答案】略.【解析】移项得:()()a c d b x -=-, 因为非零有理数乘以无理数的结果还是无理数,而a c -是有理数(两个有理数的差仍是有理数),忧伤0d b -=,从而0a c -=, 于是有:a c b d ==,,当a c b d ==,时,等式a bx c dx +=+成立. 【总结】考查有理数、无理数的运算性质.【例5】 3为什么是无理数?请说明理由.【解析】假设3是有理数,则3能写成两个整数之比的形式:3p q=, 又因为p 、q 没有公因数可以约去,所以pq是最简分数. 把3p q=两边平方,得223p q =,即223q p =.由于23q 是3的倍数,则p 必定是3的倍数.设3p m =, 则2239q m =, 同理q 必然也是3的倍数,设3q n =,既然p 、q 都是3的倍数,它们必定有公因数3,与前面假设pq是最简分数矛盾, 故3是无理数.【总结】考查对无理数的理解及证明.模块二:数的开方知识精讲一、开平方:1、定义:求一个数a的平方根的运算叫做开平方.2、如果一个数的平方等于a,那么这个数叫做a的平方根.这个数a叫做被开方数.x=±,1的平方根是1±.如21x=,1说明:1)只有非负数才有平方根,负数没有平方根;2)平方和开平方互为逆运算.3、算术平方根:正数a的两个平方根可以用“a的正平方根(又叫算术平方根),读作“根号a”;a的负平方根,读作“负根号a”.★注意:1)一个正数有两个平方根,这两个平方根互为相反数;零的平方根是0;2=2是被开方数的根指数,平方根的根指数为2,书写上一般平方根的根指数2略写;3)一个数的平方根是它本身,则这个数是0.二、开立方:1、定义:求一个数a的立方根的运算叫做开立方.2、如果一个数的立方等于a,那么这个数叫做a的立方根号a a叫做被开方数,“3”叫做根指数.★注意:1)任意一个实数都有立方根,而且只有一个立方根;负数有立方根;2)零的立方根是0;3)一个数的立方根是它本身,则这个数是0,1和-1.三、开n次方:1、求一个数a的n次方根的运算叫做开n次方.a叫做被开方数,n叫做根指数.2、如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根.3、当n为奇数时,这个数为a的奇次方根;当n为偶数时,这个数为a的偶次方根.★注意:1)实数a a是任意一个数,根指数n是大于1的奇数;2)正数a”表示,负n次方根用“0n=时,在中省略n);a>,根指数n是正偶数(当23)负数的偶次方根不存在;4)零的n 次方根等于零,表示为00n =.【例6】 写出下列各数的平方根:(1)9121; (2)2(9)-.【答案】(1)311±; (2)3±. 【解析】注意要先把题中给的算式化简,再求它的平方根. 【总结】考查平方根的概念,注意平方根有两个.【例7】 写出下列各数的正平方根: (1)225;(2)9.【答案】(1)15;(2)3.【解析】(1)15; (2)93=,3的正平方根是3. 【总结】考查平方根的概念,注意对正平方根的准确理解.【例8】 下列各式是否正确,若不正确,请说明理由.(1)1的平方根是1;(2)9是2(9)-的算术平方根; (3)π-是2π-的平方根;(4)81的平方根是9±.【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)错误:1的平方根是1±;(2)正确;(3)错误:2π-是负数,没有平方根; (4)2π-错:819=,9的平方根是3±.例题解析【总结】考查平方根的基本概念,注意一定要先化简,再求平方根.【例9】写出下列各数的立方根:(1)216;(2)0;(3)1-;(4)3438-;(5)27.【解析】(1)6;(2)0;(3)1-;(4)72-;(5)3.【总结】本题主要考查立方根的概念.【例10】判断下列说法是否正确;若不正确,请说明理由:(1)一个数的偶次方根总有两个;()(2)1的奇次方根是1±;()(3)7=±;()(4)2±是16的四次方根;()(5)a的n次方根的个数只与a的正负有关.()【答案】(1)×;(2)×;(3)×;(4)√;(5)×.【解析】(1)错误:负数没有偶次方根;(2)错误:奇次方根只有一个,所以1的奇次方根是1;(37=;(4)正确;(5)错误:还与n的奇偶性有关.【总结】考查数的开方的基本概念,注意奇次方根与偶次方根的区别.【例11】写出下列各数的整数部分和小数部分:(1(2(3)9【解析】(1)因为89=,8,8;(2)因为78==77;(3)因为34=,所以596<<,所以95,小数部分为4-【总结】考查利用估算法求出无理数的整数部分和小数部分.【例12】 求值:(1 (2);(3)2; (4)2(.【解析】(1)12; (2)0.1- ; (3)4; (4)11. 【总结】考查对平方根的理解及运用.【例13】 求值:(1 (2 (3; (4【解析】(1)4; (2)35-; (3)原式54=-; (4)原式2-. 【总结】考查实数的立方根的运用.【例14】 求值:(1 (2 (3; (4【解析】(1)6 ; (2)3 ; (3)3- ; (4)2. 【总结】考查实数的奇次方根与偶次方根的计算.【例15】 求值:(1(2)(3.【解析】(1)0.5 ; (2)原式=95; (3)原式60=. 【总结】考查实数的立方根运算.【例16】 小明的房间面积为17.62m ,房间的地面恰好由110块大小相同的正方形地砖铺成,问:每块地砖的边长是多少? 【答案】0.4m .【解析】设每块地砖的边长是x 米,则有:211017.6x =,化简得20.16x =,解得:0.4x = 即每块地砖的边长是0.4m .【总结】考查实数的运算在实际问题中的运用.【例17】 已知2a -1的平方根是3±,3a +b -1的算术平方根是4 【答案】3.【解析】由题意知:219a -=,3116a b +-=,即210a =,173b a =-解得:5a =,2b =,所以2549a b +=+=3=. 【总结】本题主要考查实数的平方根与算术平方根的区别,以及代数式的值.【例18】 若a 的平方根恰好是方程3x +2y =2的一组解,求x y a a +的值.【答案】125716()1616或.【解析】由题意,因为a 的两个平方根是相反数,那么y x =-,则有:32322x y x x +=-=,即2x =,2y =-.那么由题意可得:4a =,所以22125744161616x y a a -+=+=+=. 【总结】本题主要考查实数的平方根与求代数式的值.【例19】 3,3(43)8x y +=-,求2()n x y +的值. 【答案】1.【解析】由题意可得:49432x y x y -=⎧⎨+=-⎩, 解得:12x y =⎧⎨=-⎩,所以222()(12)(1)1n n n x y +=-=-=.【总结】本题考查实数的开方以及二元一次方程组的解法,学生忘记解方程组的情况下,老师可以略微拓展复习一下二元一次方程组的解法哦.【例20】用“>”把下列各式连接起来:=,-12-23【总结】本题考查实数的大小比较,注意先化简,再比较大小.【例21】 1.732 5.477≈,利用以上结果,求下列各式的近似值.(1≈_______;(2____________;(3≈_________;(4≈______________;(5___________;(6≈_____________.【答案】略.【解析】(1 1.7321017.32⨯=;(2 5.4771054.77≈⨯=;(3 1.732100173.2⨯=;(4 5.4770.10.5477≈⨯=;(5 1.7320.10.1732⨯=;(6 5.4770.010.05477≈⨯=.【总结】本题考查实数的运算,注意每题之间的联系,类比推理.【例22】填写下表,并回答问题:a…0.000001 0.001 1 1000 1000000 …….3a……(1)数a与它的立方根3a的小数点的移动有何规律?(2)根据这个规律,若已知33,,求a的值.==a0.005250.1738 1.738【解析】(1)由题可知,被开方数a的小数点每向右或向左移动三位,立方根3a的小数点相应地向右或向左移动一位;(2)由(1)总结的规律可知: 5.25a=.【总结】本题考查实数的开方与被开方数之间的关系,注意引导学生仔细分析表格.【例23】阅读下面材料并完成填空:你能比较两个数20162017和20172016的大小吗?为了解决这个问题先把问题一般化,要比较n n+1和(n+1)n的大小(的整数),先从分析n=1,=2,=3,……这些简单的情况入手,从中发现规律,经过归纳,猜想出结论.(1)通过计算,比较下列①—⑦各组中两个数的大小(在横线上填“>、=、<”号①12______21;②23______32;③34______43;④45______54;⑤56______65;⑥67______76;⑦78______87.(2)对第(1)小题的结果进行归纳,猜想出n n+1和(n+1)n的大小关系: ______(3)根据上面的归纳结果猜想得到的一般结论是:20162017_____20172016.【答案】(1)①<;②<;③>;④>;⑤>;⑥>;⑦>:(2)当n =1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)>.【解析】(1)①12 <21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)当n=1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)根据第(2)小题的结论可知,20162017>20172016.【总结】本题考查实数的运算规律,注意观察计算后的结果,总结出规律。
(完整版)实数知识点和练习

第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类,7等;(1)开方开不尽的数,如32π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等(这类在初三会出现)是有理数,而不是无判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16理数。
3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。
(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
如果,那么x叫做a的平方根。
(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
如果,那么x叫做a的立方根。
2、运算名称(1)求一个正数a 的平方根的运算,叫做开平方。
平方与开平方互为逆运算。
(2)求一个数的立方根的运算,叫做开立方。
开立方和立方互为逆运算。
3、运算符号(1)正数a 的算术平方根,记作“a ”。
(2)a(a ≥0)的平方根的符号表达为。
(3)一个数a 的立方根,用表示,其中a 是被开方数,3是根指数。
4、运算公式4、开方规律小结(1)若a ≥0,则a 的平方根是a ±,a 的算术平方根a ;正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。
实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。
第1讲 实数及其有关概念

数和式班级___________姓名__________学号__________ 一、选择题1. 如果一个正数的平方根为2a +1和3a -11,则a =( )A .±1B .1C .2D .9 2. (-13)-1-4cos 30°+|-12|的计算结果为( ) A .-4 B .4 C .-3 D .-23. 小红要购买珠子串成一条手链,黑色珠子每个a 元,白色珠子每个b 元,要串成如图所示的手链,小红购买珠子应该花费( ) A .(3a +4b )元 B .(4a +3b )元 C .4(a +b )元 D .3(a +b )元4.(2016·雅安)已知a 2+3a =1,则代数式2a 2+6a -1的值为( ) A .0 B .1 C .2 D .35. (2015·天水)定义运算:a ⊗b =a (1-b ).下面给出了关于这种运算的几种结论:①2⊗(-2)=6;②a ⊗b =b ⊗a ;③若a +b =0,则(a ⊗a )+(b ⊗b )=2ab ;④若a ⊗b =0,则a =0或b =1,其中结论正确的序号是( )A .①④B .①③C .②③④D .①②④ 6. (2016·北京)如果a +b =2,那么代数式(a -b 2a )·a a -b的值是( )A .2B .-2 C.12 D. -127.在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,,()()()()1331;g a b b a g =如②,=,.,,,()()()()1313h a b a b h --=--如③,=,.,,,. 按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( )A .()53--, B .()53, C .()53-, D .()53-,8.计算的值是( ) .(A ) 1 (B ) 5 (C ) (D ) 59.当219941+=x 时,多项式20013)199419974(--x x 的值为( ) (A )1; (B )-1; (C )22001(D )-22001二、填空题1. 若实数m ,n 满足|m -2|+(n -2014)2=0,则m -1·n 2=___________.2. 计算:(π-2015)0+(-12)-3-2cos 60°=__________.3. 已知x 2+x -5=0,则代数式(x -1)2-x (x -3)+(x +2)(x -2)的值为_____________.4. (2016·滨州)观察下列式子:1×3+1=22; 7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2016个式子为________________________.5. (2016·雅安)P 为正整数,现规定P !=P (P -1)(P -2)×…×2×1,若m !=24,则正整数m =______________.6. 刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数: a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(m ,-2m )放入其中,得到实数2,则m =______.7. (2015·黔西南)已知x =5-12,则x 2+x +1=______________. 8.,0141258422=+-++a b b a 则=-b a 3271________ 三、解答题1. (2016·哈尔滨)先化简,再求代数式(2a +1-2a -3a 2-1)÷1a +1的值,其中a =2sin 60°+tan 45°.2. 利民商店出售一种原价为a 的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问用这三种方案调价的结果是否一样?最后是不是都恢复了原价?3. 已知a ,b 为有理数,m ,n 分别表示5-7的整数部分和小数部分,且amn +bn 2=1,求2a +b 的值.4. 求1+2+22+23+24+…+22016的值.5. (2016·重庆A)我们知道,任意一个正整数n 都可以进行这样的分解:n =p×q(p ,q 是正整数,且p≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解.并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数. 求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x≤y≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F(t)的最大值.6. 如图所示,在矩形ABCD 中,AB =12,AC =20,两条对角线相交于点O . 以OB 、OC 为邻边作第1个平行四边形OBB 1C ,对角线相交于点A 1;再以A 1B 1、A 1C 为邻边作第2个平行四边形A 1B 1C 1C ,对角线相交于点O 1;再以O 1B 1、O 1C 1为邻边作第3个平行四边形O 1B 1B 2C 1……依次类推. (1)求矩形ABCD 的面积;(2)求第1个平行四边形OBB 1C 、第2个平行四边 形A 1B 1C 1C 和第6个平行四边形的面积.O1 ABD2A 2B 2A 1B 1O 16.(2015·重庆A)如果一个自然数各数位上的数字从最高位到个位依次排出的一串数字与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是6,4,7,4,6,从个位到最高位排出的一串数字也是:6,4,7,4,6,所以64746是“和谐数”.再如:33,181,212,4664,…都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位数“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.21.利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问用这三种方案调价的结果是否一样?最后是不是都恢复了原价?解:(1)a(1+10%)(1-10%)=0.99a;(2)a(1-10%)(1+10%)=0.99a;(3)a (1+20%)(1-20%)=0.96a ,∴调价结果不都一样,只有(1)(2)相同,最后都没有恢复原价15.已知a ,b 为有理数,m ,n 分别表示5-7的整数部分和小数部分,且amn +bn 2=1,求2a +b 的值. (导学号 02052050)解:∵4<7<9,即2<7<3,∴2<5-7<3,∴m =2,n =(5-7)-2=3-7,将m ,n 代入amn +bn 2=1,得a ×2×(3-7)+b ×(3-7)2=1,(6-27)a +(16-67)b -1=0,(6a +16b -1)+(-2a -6b )7=0,∵a ,b 为有理数,∴⎩⎪⎨⎪⎧6a +16b -1=0-2a -6b =0,解得⎩⎪⎨⎪⎧a =32b =-12,∴2a +b =2×32+(-12)=3-12=5216.(2016·重庆A )我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是12的最佳分解,所以F (12)=34.(1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F (m )=1; (2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F (t )的最大值.(导学号 02052019)(1)证明:设m =n 2=n ×n ,其中m 和n 均为正整数, ∴F (m )=nn =1;(2)解:由题意得:10y +x -(10x +y )=18, 即:y =x +2,∴t 可能的值为13,24,35,46,57,68,79,当t =13时,F (t )=113,当t =24时,F (t )=23,当t =35时,F (t )=57,当t =46时,F (t )=223,当t =57时,F (t )=319,当t =68时,F (t )=417,当t =79时,F (t )=179, ∴F (t )的最大值为5716.(2015·重庆A )如果一个自然数各数位上的数字从最高位到个位依次排出的一串数字与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是6,4,7,4,6,从个位到最高位排出的一串数字也是:6,4,7,4,6,所以64746是“和谐数”.再如:33,181,212,4664,…都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位数“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x (1≤x ≤4,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式. (导学号 02052010)解:(1)四位“和谐数”:1221,1331,1111,6666(答案不唯一);任意一个四位“和谐数”都能被11整除,理由如下:设任意四位数“和谐数”形式为:abba (a ,b 为自然数),则a ×103+b ×102+b ×10+a =1001a +110b ,∵1001a +110b 11=91a +10b ,∴四位数“和谐数”abba 能被11整数;∴任意四位数“和谐数”都可以被11整除;(2)设能被11整除的三位“和谐数”为:xyx ,则x ×102+y ×10+x =101x +10y ,101x +10y11=9x+y +2x -y 11,∵1≤x ≤4,101x +10y 能被11整除,∴2x -y =0,∴y =2x (1≤x ≤4)(32016-2)×32016+1=(32016-1)2。
2022年中考数学分类复习强化练 -第一讲 实数(含答案)

第一讲 实 数专项一 实数及有关概念知识清单1. 实数的分类⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎫⎨⎪⎨⎬⎪⎪⎩⎭⎩⎪⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正整数负整数实数分数有限小数或无限循环小数正无理数无理数无限不循环小数负无理数 2.规定了_____、_____和_____的直线叫做数轴.实数与数轴上的点具有______的关系.3.相反数、绝对值、倒数定 义 性 质 相反数 只有______不同的两个数互为相反数,0的相反数是______若a 与b 互为相反数,则a+b=______ 绝对值 数轴上表示数a 的点到原点的______叫做数a 的绝对值 |a|=(0)00(0)a a a a a ⎧⎪=⎨⎪-⎩>()< 倒数 乘积为______的两个数互为倒数.0是唯一没有倒数的数,倒数等于它本身的数是_____若a 与b 互为倒数,则ab=1 考点例析例1 (2021•模考 福建)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10 907米.假设以马里亚纳海沟所在海域的海平面为基准,记为 0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10 907米处,该处的高度可记为 米.分析:在一对具有相反意义的量中,规定其中一个为正,则另一个就用负表示,理解了“正”与“负”的意义后再根据题意作答即可.解:例2 (2021•模考 郴州)如图,表示互为相反数的两个点是( )A .点A 与点B B .点A 与点DC .点C 与点BD .点C 与点D分析:根据只有符号不同的两个数互为相反数可得答案.解:例3 (2021•模考 武威)下列实数是无理数的是( )A .-2B .16C .9D .11 分析:根据无理数的定义逐一分析.解:归纳:判断一个实数是不是无理数,关键是掌握几种常见的无理数:(1)含根号型,如322,等开方开不尽的数;⑵三角函数型:如sin60°,tan30°等;⑶特定结构型,如0.101 001 000 1…(每相邻两个1之间依次多一个0);⑷与π有关的数:如4π,π-1等.(注:在判断无理数时,不能只根据某些无理数的形式来判断,关键要看化简后的结果,如题中9含根号,但它是有理数)跟踪训练1.(2021•模考 无锡)-7的倒数是( )A .7B .17C .-17D .-7 2.(2021•模考 鄂尔多斯)实数-3的绝对值是( )A .3B .-33C .-3D .333.(2021•模考 天水)下列四个实数中,是负数的是( )A .-(-3) B. (-2)2 C. |-4| D.-54.(2021•模考 烟台)实数a ,b ,c 在数轴上对应点的位置如图所示,那么这三个数中绝对值最大的是( )A .aB .bC .cD .无法确定第4题图5.(2021•模考 株洲)一实验室检测A ,B ,C ,D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A B C D专项二 科学记数法知识清单科学记数法就是把一个数写成 的形式,其中a 的范围是 .当表示一个大于10 的数时,n 的值等于原数的整数位数减去1;当表示一个大于0小于1的数时,n 是负整数,且其绝对值等于原数左起第一个非零数前所有零的个数(包括小数点前的零).考点例析例1 (2021•模考 成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成,该卫星距离地面约36 000千米,将数据36 000用科学记数法表示为()A.3.6×103 B.3.6×104 C.3.6×105 D.36×104分析:根据科学记数法的表示方法表示即可.解:例2 (2021•模考滨州)冠状病毒的直径约为80~120纳米,1纳米=1.0×10-9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10-9米 B.1.1×10-8米 C.1.1×10-7米 D.1.1×10-6米分析:先将110纳米转化成110×10-9米,再根据科学记数法的表示方法移动小数点即可.解:归纳:对于含有计数(量)单位的数用科学记数法表示时,应先把计数(量)单位转化为数字,然后再表示为科学记数法的形式.常见的计数单位:1千可以表示为103 ,1万可以表示为104 ,1亿可以表示为108 ;常考的计量单位:1毫米可以表示为10-3 米,1纳米可以表示为10-9 米等.跟踪训练1.(2021•模考长沙)为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632 400 000 000元,其中632 400 000 000用科学记数法表示为()A.6.324×1011 B.6.324×1010 C.632.4×109 D.0.6324×10122.(2021•模考江西)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50 175亿元,比上年增长8.74%.将50 175亿用科学记数法表示为()A.5.017 5×1011 B.5.017 5×1012 C.0.501 75×1013 D.0.50 175×10143.(2021•模考苏州)某种芯片每个探针单元的面积为0.000 001 64 cm²,0.000 001 64用科学记数法可表示为()A.1.64×10-5 B.1.64×10-6 C.16.4×10-7 D.0.164×10-54.(2021•模考威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为()A.10×10-10 B.1×10-9 C.0.1×10-8 D.1×109专项三无理数的估算知识清单无理数的估算,最常见的就是对带根号的无理数的估算,通常用“夹逼法”,即将被开方数限定在两个连续的平方数之间,然后确定无理数的整数部分和小数部分.考点例析例1(2021•模考)A.3和4之间B.4和5之间C.5和6之间D.6和7之间,开方即可求得答案.解:例2 (2021•模考南通)若m<<m+1,且m为整数,则m=.分析:m的值.解:跟踪训练1.(2021•模考 黔东南州)实数 )A .4和5之间B .5和6之间C .6和7之间D .7和8之间2.(2021•模考 临沂)设a +2,则( )A .2<a <3B .3<a <4C .4<a <5D .5<a <63.(2021•模考 河南)请写出一个大于1且小于2的无理数 .4.(2021•模考 最接近的自然数是 .专项四 实数的大小比较知识清单实数的大小比较有以下几种常用方法:(1)在数轴上表示的两个数,右边的数总比左边的 ;(2)正数 零,负数 零,正数 负数;两个负数,绝对值大的 ;(3)作差比较法:若a-b>0,则a>b ;若a-b=0,则a=b ;若a-b<0,则a<b ;(4)平方比较法:,则a>b (a >0,b >0).考点例析例1 (2021•模考 聊城)在实数-10,41中,最小的实数是( )A .-1B .41 C .0 D 分析:思路一:把这几个数在数轴上表示出来,根据它们在数轴上的位置来比较大小;思路二:根据解:例2 (2021•模考 菏泽)下列各数中,绝对值最小的数是( )A .﹣5B .12C .﹣1 D分析:先求出四个数的绝对值,再进行比较即可得出结果.解:归纳:对含有无理数的实数在比较其大小时,可先估算出无理数的近似值,再和其他的有理数比较大小.跟踪训练1.(2021•模考 内江)下列四个数中,最小的数是( )A. 0B. 12020C. 5D. -12.(2021•模考 天门)下列各数中,比-2小的数是( )A .0B .-3C .-1D .|-0.6|3.(2021•模考 大庆)在﹣1,0 )A .﹣1B .0C .πD 4.(2021•模考 株洲)下列不等式错误的是( )A .﹣2<﹣1B C .52.13>0.3专项五 平方根、立方根知识清单1. 平方根:若一个数的____等于a ,则这个数叫做a 的平方根.一个正数有___个平方根,它们____,0的平方根是_____,负数____平方根.一个正数____的平方根,叫做它的算术平方根,0的算术平方根是 .2.立方根:若一个数的____等于a ,则这个数叫做a 的立方根.正数有一个____的立方根;负数有一个____的立方根;0的立方根是____.3.开平方:求一个非负数a 的______的运算,叫做开平方.4.开立方:求一个数a 的______的运算,叫做开立方.考点例析例1 (2021•模考 烟台)4的平方根是( )A .±2B .-2C .2D 分析:一个正数有两个平方根,它们互为相反数.例2 (2021•模考 常州)8的立方根是( )A .B .±C .2D .±2分析:根据立方根的定义求解即可.解:跟踪训练1.(2021•模考 0,则x 的值是( )A .﹣1B .0C .1D .22.(2021•模考 金昌)若一个正方形的面积是12,则它的边长是( )A .B .3C .D .43.(2021•模考 攀枝花)下列说法中正确的是( )A .0.09的平方根是0.3B 4C .0的立方根是0D .1的立方根是±14.(2021•模考 恩施州)9的算术平方根是 .5.(2021•模考 徐州)7的平方根是 .6.(2021•模考 的结果是 .专项六 实数的运算知识清单1. 实数的运算法则(1)加法:同号两数相加,取相同符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大数的绝对值减去较小数的绝对值;一个数同零相加仍得这个数.(2)减法:减去一个数,等于加上这个数的相反数.(3)乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,积为零.(4)除法:两数相除,同号得正,异号得负,并把绝对值相除;零除以任何一个不为零的数都得零;除以任何一个不为零的数等于乘以这个数的倒数.2.求______________的运算,叫做乘方,乘方可以转化为乘法运算.3.用字母表示运算律:交换律:a+b=________,ab=________;结合律:(a+b )+c=a+(b+c )_________,(ab )c=________;乘法对加法的分配律m (a+b+c )=_________.4.实数的运算顺序:先算_____,再算______,最后算______;有括号的要先算_____;同级运算,要按________的顺序依次进行计算.5.若实数0≠a ,m 为整数,则0a =______,m a -=______.考点例析例1 (2021•模考 铜仁)计算:2÷12﹣(﹣1)20200. 分析:先根据除法法则、乘方的意义、算术平方根的定义、零指数幂的运算公式分别求得2÷12=4,(﹣1)2020=1=20=1,然后再进行实数的运算.解:归纳:在进行实数的运算时,一定要养成良好的习惯:运算前要认真审题,确定顺序(包括使用简便方法);运算过程中,要耐心细致;得出结果后,要认真检查,谨防出错.要特别注意a 0=1(a ≠0),(-1)2n+1=-1(n 是整数),(-1)2n =1(n 是整数).例2 (2021•模考 =0,则(a+b )2020= .分析:由非负数的意义,得a-2=0,b+1=0,求出a ,b 的值,代入计算即可.解:归纳:对非负数的考查是中考的一个热点,一个数的绝对值a ,一个非负数的算术平方根()0≥a a ,一个数的偶数次方n a 2是初中阶段常见的非负数.在解题时要正确理解并熟练应用非负数的性质:非负数有最小值(为零),但无最大值;如果几个非负数的和等于零,那么每一个非负数都等于零.例3 (2021•模考 娄底)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为( )A .135B .153C .170D .189分析:由前三个正方形可知规律为:左上方的数等于序号数,左下方的数比左上方的数大1,右上方的数是左下方数的2倍,右下方的数为左下方数与右上方数的乘积加上序号数,由此即可求得答案. 归纳:实数问题中的找规律问题是中考的常考内容,解题的关键是通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后进行归纳总结,得出一般的结论,从而将问题解决. 跟踪训练 1.(2021•模考 凉山州)-12020=( )A .1B .-1C .2020D .-20202.(2021•模考 咸宁)早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是( )A .3+(-2)B .3-(-2)C .3×(-2)D .(-3)÷(-2)3.(2021•模考 雅安)已知2a -+|b ﹣2a|=0,则a+2b 的值是( )A .4B .6C .8D .104.(2021•模考 连云港)我市某天的最高气温是4℃,最低气温是-1℃,则这天的日温差是 ℃.5.(2021•模考 常州)计算:|-2|+(π-1)0= .6.(2021•模考 随州)(-1)2+9= .7.(2021•模考 张家界)观察下面的变化规律:213⨯=1-13,235⨯=13-15,257⨯=15-17,279⨯=17-19,…根据上面的规律计算:213⨯+235⨯+257⨯+…+220192021⨯= . 8.(2021•模考 宜宾)计算:()()1020*******π-⎛⎫----+- ⎪⎝⎭. 专项七 数轴与数形结合知识清单数和形是数学研究的两个方面,数形结合实质就是把问题中的数量关系转化为图形的性质,或者把图形的性质转化为数量关系来解决问题,这样可以使复杂的问题简单化、抽象的问题具体化. 考点例析例1 (2021•模考 北京)实数a 在数轴上对应点的位置如图1所示,若实数b 满足-a <b <a ,则b 的值可以是( )A .2B .-1C .-2D .-3图1分析:根据数轴可得1<a <2,所以-2<-a <-1.如图1,在数轴上找出-a 的对应点,即可确定符合条件的b 的值.解:例2 (2021•模考 铜仁)实数a ,b 在数轴上对应的点的位置如图2所示,下列结论正确的是( )A.a>b B.﹣a<b C.a>﹣b D.﹣a>b图2分析:先由数轴,得-2<a<-1,0<b<1,所以1<-a<2,-1<-b<0,再根据实数的大小比较方法进行比较即可求解.解:归纳:实数与数轴上的点具有一一对应的关系,把数和点对应起来,也就是说把“数”和“形”结合起来,二者相互补充,相辅相成,把许多复杂问题转化为简单的问题.跟踪训练1.(2021•模考盐城)实数a,b在数轴上对应的位置如图所示,则()A.a>0 B.a>b C.a<b D.|a|<|b|第1题图2.(2021•模考福建)如图,数轴上两点M,N所对应的实数分别为m,n,则m-n的结果可能是()A.-1 B.1 C.2 D.3第2题图3.(2021•模考枣庄)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1﹣a>1第3题图参考答案专项一实数及有关概念例1 -10 907 例2 B 例3 D1.C 2.A 3.D 4.A 5.D专项二科学记数法例1 B 例2 C1.A 2.B 3.B 4.B专项三无理数的估算例1 B 例2 51.C 2.C 3.2专项四实数的大小比较例1 D 例2 B1.D 2.B 3.C 4.C专项五平方根、立方根例1 A 例2 C1.C 2.A 3.C 4.3 5 6.3专项六实数的运算例1 0.例2 1 例3 C1.B 2.C 3.D 4.5 5.3 6.4 7.202020218.1.专项七数轴与数形结合例1 B 例2 D1.C 2.C 3.D。
中考复习:有理数与实数讲解+练习

内容基本要求略高要求较高要求有理数理解有理数的意义会比较有理数的大小无理数了解无理数的概念能根据要求用有理数估计一个无理数的大致范围数轴能用数轴上的点表示有理数;知道实数与数轴上的点一一对应相反数会用有理数表示具有相反意义的量,借助数轴理解相反数的意义,会求实数的相反数掌握相反数的性质绝对值借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题近似数、有效数字和科学记数法了解近似数和有效数字的概念;会用科学记数法表示数在解决实际问题中,能按问题的要求对结果取近似值;能对含有较大数字的信息作出合理的解释和推断有理数运算理解乘方的意义掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)能运用的有理数的运算解决简单问题运算律理解有理数运算律能用运算律简化有理数运算实数了解实数的概念会进行简单的实数运算平方根、算术平方根了解开方与乘方互为逆运算,了解平方根及算术平方根的概念,会用根号表示非负数的平方根及算术平方根会用平方运算的方法,求某些非负数的平方根立方根了解立方根的概念,会用根号表示数的立方根会用立方运算的方法,求某些数的立方根二次根式及其性质了解二次根式的概念,会确定二次根式有意义的条件能根据二次根式的性质对代数式作简单变形;能在给定的条件下,确定字母的值二次根式的化简和运算理解二次根式的加、减、乘、除运算法则会进行二次根式的化简,会进行二次根式的混合运算(不要求分母有理化)有理数与实数2014年中考怎么考2022年中考复习方案知识点一 有理数一、有理数注意:0既不是正数,也不是负数,前面带“—”号的不一定是负数二、数轴注意:原点、正方向、单位长度称为数轴的三要素,三者缺一不可.三、相反数⑴代数意义:只有符号不同的两个数叫做互为相反数,特别地,0的相反数是0. 相反数必须成对出现,不能单独存在.⑵几何意义:一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.这两点是关于原点对称的.四、绝对值绝对值几何意义当x a =时,0x a -=,此时a 是x a -的零点值.零点分段讨论的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.五、科学计数法、有效数字科学记数法:把一个大于10的数表示成10n a ⨯的形式(其中110a ≤<,n 是整数),此种记法叫做科学记数法.例如:5200000210=⨯就是科学记数法表示数的形式. 710200000 1.0210=⨯也是科学记数法表示数的形式.有效数字: 从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字. 如:0.00027有两个有效数字:2,7 ;1.2027有5个有效数字:1,2,0,2,7.注意:万410=,亿810=常考点及易错点:科学计数法中的单位转换,精确到什么位与保留有效数字的差别.记忆方法:移动几位小数点问题.比如:1800000要科学记数法,实际就是小数点向左移动到1和8之间,移动了6位,故记为61.810⨯.知识点二 实数①若0a ≥,则2()a a =;②不管a 为何值,总有2(0)||(0)a a a a a a ≥⎧==⎨-<⎩注:平方根要取正负,算术平方根只有一个且为非负.被开方数一定为非负数知识点三 二次根式自检自查必考点最简二次根式:⑴被开方数不能存在小数、分数形式⑵被开方数中不含能开得尽方的因数或因式⑶分母中不含二次根式二次根式的计算结果要写成最简根式的形式.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.考点一有理数☞考点说明:本类题型无难度,但需要细心【例1】有理数-2的相反数是()A.2B.-2C.12D.12-【例2】13-的倒数是()A.3B.3- C.12D.13【例3】23-的倒数的绝对值为()A.23B.32C.3D.2【例4】这些数1750.1390.10101010.1010010001211π----,,,,,,,……,……中为无理数的个数是()A.1个B.2个C.3个D.4个【例5】2009年初甲型H1N1流感在墨西哥爆发并在全球蔓延,研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m,用科学记数法表示这个数(保留两位有效数字)是()A.0.16×510-m B.0.156×510m C.1.6×610-m D.1.56×610m【例6】2010年上海世博会开园第一个月共售出门票664万张,664万用科学计数法表示为( )A.664×104B.66.4×l05C.6.64×106D.0.664×l07【例7】在电子显微镜下测得一个圆球体细胞的直径是5510-⨯cm,3210⨯个这样的细胞排成的细胞链的长是( )A.210-cm B.110-cm C.310-cm D.410-cm【例8】用四舍五入法按要求对0.06249分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.06(精确到百分位)中考满分必做题C .0.06(精确到千分位)D .0.062(精确到0.001)【例9】 已知有理数a 与b 在数轴上的位置如图所示,那么a ,b ,a -,b -的大小顺序为___________【例10】已知01x <<,则2x ,x ,1x的大小顺序为_____________ 【例11】设23a m a +=+,12a n a +=+,1ap a =+,若3,a <-则( )A.m n p << B . n p m << C . p n m << D .p m n <<【例12】若化简绝对值26a -的结果为62a -,则a 的取值范围是( )A.3a >B.3a ≥C.3a <D.3a ≤【例13】若220x x -+-=,则x 的取值范围是____________【例14】 已知2()55a b b b +++=+,且210a b --=,那么ab =_______【例15】如果有理数a 、b 、c 在数轴上的位置如图所示,则11a b b a c c +------的值为______.考点二 实数与二次根式☞考点说明:本类型题在选择和填空中都有可能出现,只要掌握二次根式的四个公式即可 【例16】若a <11( )A .2a -B .2a -C .aD .a -【例17】已知1x <化简的结果是_______________. 【例18】下列计算正确的是( )A= B .632=⋅C .224=-3-【例19_________【例20】已知a b ,为两个连续的偶数,且a b <,则a b +=________. 【例21】把(2a -____________。
实数的有关计算问题(真题10道+模拟30道)-中考数学重难题型押题培优导练案【解析版】

实数的有关计算问题(北京真题10道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢1.实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.2.实数运算的“三个关键”(1).运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.(2).运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.(3).运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.【典例剖析】典例精讲,方法提炼,精准提分【例1】(2021·北京·中考真题)计算:2sin60°+√12+|−5|−(π+√2)0.【答案】3√3+4【解析】【分析】根据特殊三角函数值、零次幂及二次根式的运算可直接进行求解.【详解】+2√3+5−1=3√3+4.解:原式=2×√32【点睛】本题主要考查特殊三角函数值、零次幂及二次根式的运算,熟练掌握特殊三角函数值、零次幂及二次根式的运算是解题的关键.【例2】(2022·北京·中考真题)计算:(π−1)0+4sin45∘−√8+|−3|.【答案】4【解析】【分析】根据零次幂、特殊角的正弦值、二次根式和去绝对值即可求解.【详解】解:(π−1)0+4sin45∘−√8+|−3|.=1+4×√22−2√2+3=4.【点睛】本题考查了实数的混合运算,掌握零次幂、特殊角的正弦值、二次根式的化简及去绝对值是解题的关键.【真题再现】必刷真题,关注素养,把握核心1.(2013·北京·中考真题)计算:.【答案】5【解析】【分析】针对零指数幂,绝对值,特殊角的三角函数值,负整数指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:原式=1+√2−2×√22+4=5.2.(2014·北京·中考真题)计算:(6−π)0+(−15)−1−3tan30°+|−√3|.【答案】-4【解析】【详解】特殊角的三角函数值,按顺序计算即可试题解析:原式=1+(−5)−√3+√3=-4考点:1、零指数幂;2特殊角的三角函数值;3、绝对值;4、负指数幂3.(2015·北京·中考真题)计算:(12)−2−(π−√7)0+|√3−2|+4sin60°.【答案】5+√3【解析】【分析】先根据一个数的负指数幂等于正指数幂的倒数,一个不等于零的数的零指数幂为1,一个数的绝对值是非负数,特殊角三角函数值sin60°=√32,求出各项的值即可. 【详解】解:原式=4−1+2−√3+4×√32=5−√3+2√3 =5+√3 【点睛】本题考查实数的混合运算;特殊角三角函数值.4.(2016·北京·中考真题)计算:(3−π)0+4sin45∘−√8+|1−√3|. 【答案】√3.【解析】【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算即可.【详解】解:原式=1+4×√22−2√2+√3−1=√3. 5.(2017·北京·中考真题)计算:4cos30°+(1−√2)°−√12+|−2|.【答案】3.【解析】【详解】试题分析:利用特殊三角函数值,零指数幂,算术平方根,绝对值计算即可.试题解析:原式=4×√32 +1-2√3+2=2√3+1-2√3+2=3 . 6.(2018·北京·中考真题)计算:4sin45°+(π−2)0−√18+|−1|.【答案】2−√2【解析】【分析】按照实数的运算顺序进行运算即可.【详解】原式=4×√22+1−3√2+1=2−√2.【点睛】本题考查实数的运算,主要考查零次幂,绝对值,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.7.(2019·北京·中考真题)计算:|−√3|−(4−π)0−2sin60∘+(14)−1.【答案】3【解析】【分析】根据绝对值、零指数幂、特殊角的三角函数值、负指数幂法则计算即可【详解】原式=√3−1+2×√32+4=√3−1−√3+4=3【点睛】本题考查零指数幂、特殊角的三角函数值,负指数幂,熟练掌握相关的知识是解题的关键.8.(2020·北京·中考真题)计算:(13)−1+√18+|−2|−6sin45°【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=3+3√2+2−6×√22=3+3√2+2−3√2=5.【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.【模拟精练】押题必刷,巅峰冲刺,提分培优1.(2022·北京房山·二模)计算:tan60°+(3−π)0+|1−√3|+√27.【答案】5√3【解析】【分析】分别计算三角函数值、零指数幂,化简绝对值和二次根式,再进行加减即可.【详解】解:原式=√3+1+√3−1+3√3=5√3.【点睛】本题考查特殊角三角函数、零指数幂以及绝对值和二次根式的化简,属于基础题,熟练掌握上述基本知识是解题的关键.2.(2022·北京朝阳·二模)计算√18+2sin45∘−(12)−1+|√2−2|.【答案】3√2【解析】【分析】分别根据二次根式的性质,45°角的三角函数值,负整数指数幂及绝对值的性质进行化简,最后再由二次根式的运算法则合并即可.【详解】解:原式=3√2+2×√22−2+2−√2 =3√2.故答案为:3√2.【点睛】 此题考查了实数的混合运算,正确掌握二次根式的性质,45°角的三角函数值,负整数指数幂定义及绝对值的性质是解题的关键.3.(2022·北京平谷·二模)计算:√83+(13)−1−2cos30°+|1−√3|.【答案】4【解析】【分析】先利用负整数指数幂,特殊角锐角三角函数值,绝对值的性质,立方根的性质化简,再合并,即可求解.【详解】 解:√83+(13)−1−2cos30°+|1−√3|=2+3−2×√32+√3−1=2+3−√3+√3−1 =4.【点睛】本题主要考查了负整数指数幂,特殊角锐角三角函数值,绝对值的性质,立方根的性质,熟练掌握相关运算法则是解题的关键是解题的关键.4.(2022·北京北京·二模)计算:(12)−1−4cos30∘+√12+|−2|.【答案】4【解析】【分析】先计算乘方和化简二次根式,并把特殊角的三角函数值代入,去值符号,再计算乘法,最后计算加减即可.【详解】解:原式=2−4×√32+2√3+2 =2-2√3+2√3+2=4.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则,负整指数幂的运算,熟记特殊角的三角函数值是解题的关键.5.(2022·北京丰台·二模)计算:|−3|−2sin45∘+√8+(π+√3)0【答案】4+√2【解析】【分析】原式第一项利用绝对值的意义化简,第二项利用特殊角的三角函数值计算,第三项化为最简二次根式,第四项利用零指数幂法则计算即可得到结果.【详解】解:原式 = 3−2×√22+2√2+1 =3−√2+2√2+1=4+√2.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.6.(2022·北京西城·二模)计算:|−√2|+2cos45°−√8+(13)−2. 【答案】9【解析】【分析】先去绝对符号,把特殊角三角函数值代入,化简二次根式并计算乘方,再进行乘法运算,最后计算加减即可.【详解】解:原式=√2+2×√22-2√2+9 =√2+√2-2√2+9=9.【点睛】本题考查实数的混合运算,熟练掌握特殊角的三角函数值、二次根式化简、负整指数幂的运算是解题的关键.7.(2022·北京顺义·二模)计算:√18−4cos45°+|−2|−(1−√2)0. 【答案】√2+1【解析】【分析】根据二次根式的性质化简,代入特殊角的三角函数值,化简绝对值,求零次幂,进行实数的计算即可求解.【详解】解:原式=3√2−4×√22+2−1 =3√2−2√2+2−1 =√2+1.【点睛】本题考查了实数的混合运算,掌握二次根式的性质化简,代入特殊角的三角函数值,化简绝对值,求零次幂是解题的关键.8.(2022·北京市十一学校二模)计算:√3tan30°+|√2−2|−√83+(π−3)0【答案】2−√2【解析】【分析】先根据特殊角锐角三角函数值,绝对值的性质,立方根,零指数幂化简,再合并,即可求解.【详解】 解:√3tan30°+|√2−2|−√83+(π−3)0 =√3×√33+2−√2−2+1=1+2−√2−2+1=2−√2【点睛】本题主要考查了特殊角锐角三角函数值,绝对值的性质,立方根,零指数幂,熟练掌握相关运算法则是解题的关键.9.(2022·北京大兴·一模)计算:2sin30°+√8+|−5|−(−12)−1. 【答案】8+2√2【解析】【分析】先计算锐角三角函数、算术平方根、绝对值和负整数指数幂,再利用实数的加减法法则计算即可.【详解】解:原式=2×12+2√2+5−(−2)=1+2√2+5+2=8+2√2.【点睛】本题考查特殊三角函数值、负整数指数幂、算术平方根等内容,掌握运算法则是解题的关键.10.(2022·北京东城·二模)计算:(−1)2022+√83−(13)−1+√2sin45°.【答案】1【解析】【分析】先计算乘方和开方运算,并把特殊角的三角函数值代入,再计算乘法,最后计算加减即可求解.【详解】解:原式=1+2-3+√2×√22=1+2-3+1=1【点睛】本题考查实数的混合运算,熟练掌握负整指数幂的运算法则和熟记特殊角的三角函数值是解题的关键. 11.(2022·北京丰台·一模)计算:(12)﹣1﹣2cos30°+|﹣√12|﹣(3.14﹣π)0. 【答案】√3+1【解析】【分析】分别根据负整数指数幂、特殊角的三角函数值、绝对值的性质、零指数幂计算出各数,再根据混合运算的法则进行计算;【详解】解:(12)﹣1﹣2cos30°+|﹣√12|﹣(3.14﹣π)0=2﹣2×√32+2√3﹣1 =2﹣√3+2√3﹣1 =√3+1【点睛】此题考查了负整数指数幂、特殊角的三角函数值、绝对值的性质、零指数幂,掌握相关运算法则是解题的关键.12.(2022·北京一七一中一模)计算:3tan30°+(13)−1+20220+|√3−2|.【答案】6【解析】【分析】根据特殊角三角函数值,负整数指数幂,零指数幂,绝对值的计算法则求解即可.【详解】解:3tan30°+(13)−1+20220+|√3−2|=3×√33+3+1+2−√3 =√3+3+1+2−√3=6.【点睛】本题主要考查了特殊角三角函数值,负整数指数幂,零指数幂,绝对值,实数的混合计算,熟知相关计算法则是解题的关键.13.(2022·北京平谷·一模)计算:√12+(15)−1−3tan30°−|−2|.【答案】3+√3【解析】【分析】根据特殊角三角函数值,负整数指数幂,绝对值,以及二次根式的性质进行求解即可.【详解】 解:√12+(15)−1−3tan30°−|−2|=2√3+5−3×√33−2 =2√3+5−√3−2=3+√3.【点睛】本题主要考查了特殊角三角函数值,负整数指数幂,绝对值,以及二次根式的性质,实数的运算,熟知相关计算法则是解题的关键.14.(2022·北京·东直门中学模拟预测)计算:2cos30°+√12−|−√3|−(π+√2)°.【答案】2√3−1【解析】【分析】根据0指数幂运算法则、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:原式=2×√32+2√3−√3−1=√3+2√3−√3−1=2√3−1.【点睛】本题考查的是实数的运算,熟知0指数幂的运算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.15.(2022·北京市第一六一中学分校一模)计算:2sin45°+|√2−3|−(π−2022)0+(13)−2.【答案】11【解析】【分析】原式第一项利用特殊角的三角函数值计算,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.【详解】解:2sin45°+|√2−3|−(π−2022)0+(13)−2=2×√22+3−√2−1+32=√2+3−√2−1+9=11.【点睛】此题考查了实数的运算、特殊角的三角函数值、零指数幂和负整数指数幂,熟练掌握运算法则是解本题的关键.16.(2022·北京朝阳·一模)计算:2cos30°+|−√3|−(π−√3)0−√12.【答案】-1【解析】【分析】根据实数的计算,把各个部分的值求出来进行计算即可.【详解】解:原式=2×√32+√3−1−2√3 =√3+√3−1−2√3=-1.【点睛】本题考查了实数的混合运算,准确记忆特殊角的锐角三角函数值、绝对值化简、零指数幂、二次根式的化简是解题的关键.17.(2022·北京顺义·一模)计算:2tan60°−√27+(12)−2+|1−√3|.【答案】3【解析】【分析】直接利用二次根式的性质、绝对值的性质、特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.【详解】解:原式=2×√3−3√3+4+√3−1=3【点睛】此题主要考查了特殊角的三角函数值、实数运算,正确化简各数是解题关键.18.(2022·北京·中国人民大学附属中学朝阳学校一模)计算:4cos45°+(√3−1)0−√8+2−1. 【答案】32【解析】【分析】先分别根据特殊角的三角函数值、零指数幂、二次根式的化简、负指数幂计算,然后根据实数混合运算法则计算即可求得结果.【详解】解:原式=4×√22+1−2√2+12 =2√2+32−2√2 =32. 【点睛】本题考查了特殊角的三角函数值、零指数幂、二次根式的化简、负指数幂,熟练掌握相关运算法则和熟记特殊角的三角函数值是解题的关键.19.(2022·北京·模拟预测)计算:cos 230°+|1﹣√2|﹣2sin45°+(π﹣3.14)0 【答案】34【解析】【分析】根据cos30°=√32,|1−√2|=√2−1,sin45°=√22,(π−3.14)0=1,再计算即可. 【详解】解:原式=(√32)2+√2−1−2×√22+1 =34+√2−√2 =34【点睛】本题主要考查了实数的运算,掌握特殊角三角函数值,零指数次幂,绝对值的性质是解题的关键. 20.(2022·北京市师达中学模拟预测)计算:(15)−1−(π−2022)0+|√3−1|−3tan30°【答案】3【解析】【分析】先根据负指数幂、零指数幂、绝对值的意义和特殊角的三角函数值分别计算,然后再根据实数的混合运算法则计算即可求得结果.【详解】解:原式=5−1+√3−1−3×√33=3+√3−√3=3【点睛】本题主要考查负指数幂、零指数幂、绝对值的意义和特殊角的三角函数值,熟练掌握相关运算法则和熟记特殊角的三角函数值是解题的关键.21.(2022·北京朝阳·模拟预测)计算:(﹣1)2020﹣√9﹣(3﹣π)0+|3﹣√3|+(tan30°)﹣1.【答案】0【解析】【分析】计算乘方、算术平方根、零指数幂、去绝对值符号、代入三角函数值并计算负整数指数幂,再计算加减可得;【详解】解:原式=1﹣3﹣1+3﹣√3+(√33)-1=1﹣3﹣1+3﹣√3+√3=0.【点睛】本题考查了实数的运算,解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、特殊角的三角函数值、绝对值等考点的运算.22.(2022·北京·一模)计算√2cos45°+(1−π)0+√14+|1−√2|.【答案】32+√2【解析】【分析】根据特殊角的三角函数值,零指数幂,二次根式的性质,化简绝对值进行计算即可.【详解】原式=√2×√22+1+12+(√2−1)=1+1+12+√2−1=32+√2【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值,零指数幂,二次根式的性质,化简绝对值是解题的关键.23.(2022·北京·北理工附中模拟预测)计算:−√274−(1−π)0+2tan 30°−|√32−(√32)−1| 【答案】−√3−1【解析】【分析】根据二次根式的性质化简,零指数幂,特殊角的三角函数值,负整数指数幂,化简绝对值,进行计算即可【详解】解:−√274−(1−π)0+2tan 30°−|√32−(√32)−1| =−3√32−1+2×√33−|√32−2√33| =−3√32+2√33−(2√33−√32)−1 =−√3−1 【点睛】本题考查了实数的混合运算,掌握二次根式的性质化简,零指数幂,特殊角的三角函数值,负整数指数幂,化简绝对值是解题的关键.24.(2022·北京师大附中模拟预测)计算:√8+(−12)−1−4cos45°+|−2|【答案】0【解析】【分析】根据二次根式的性质、负整数指数幂、特殊角的三角函数值分别计算各项,即可求解.【详解】解:原式=2√2−2−4×√22+2 =0.【点睛】本题考查实数的混合运算,掌握二次根式的性质、负整数指数幂、特殊角的三角函数值是解题的关键. 25.(2022·北京四中模拟预测)计算:(13)−1−√12+3tan30°+|√3−2|.【答案】5−2√3【解析】【分析】直接利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简得出答案.【详解】解:原式=3−2√3+3×√33+2−√3 =5−2√3.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.26.(2021·北京平谷·二模)计算:|−√2|−2cos45°+(π−1)0+(12)−1【答案】3【解析】【分析】根据绝对值的性质、特殊角的三角函数值、零指数幂以及负整指数幂进行运算即可【详解】解:|−√2|−2cos45°+(π−1)0+(12)−1 =√2−2×√22+1+2 =3【点睛】本题考查了实数的混合运算,涉及到绝对值的性质、特殊角的三角函数值、零指数幂以及负整指数幂,熟练掌握法则是解题的关键27.(2021·北京朝阳·二模)计算:√12+(√5−2)0−(13)−1+tan60°. 【答案】3√3−2【解析】【分析】直接根据无理数的运算,零指数幂,负整数指数幂和特殊角的三角函数值计算即可.【详解】解:原式=2√3+1−3+√3=3√3−2.【点睛】本题主要考查实数的运算,掌握无理数的运算,零指数幂,负整数指数幂的运算法则和特殊角的三角函数值是关键.28.(2021·北京顺义·二模)计算:(2−π)0+3−1+|√2|−2sin45°.【答案】43【解析】【分析】根据混合运算公式运算即可【详解】解:原式=1+13+√2−2×√22=43【点睛】本题主要考查实数混合运算内容,注意运算中的易错点,避免犯错,属于常考题.29.(2021·北京房山·二模)计算:(13)−1−2sin60°+|−√3|−(π−2021)0【答案】2【解析】【分析】根据负整数指数幂,绝对值的化简,零指数幂定义依次化简及特殊角的三角函数值代入计算即可.【详解】解:原式=(13)−1−2sin60°+|−√3|−(π−2021)0=3−√3+√3−1=2.【点睛】此题考查实数的计算,正确掌握负整数指数幂,绝对值的化简,零指数幂定义依次化简及特殊角的三角函数值是解题的关键.30.(2021·北京海淀·二模)计算:(12)−1+√8+|√3−1|−2sin60°.【答案】1+2√2【解析】【分析】原式利用负整数指数幂法则、二次根式的性质、绝对值的性质以及特殊角的三角函数值计算即可求出值.【详解】原式=2+2√2+√3−1−2×√32=1+2√2.【点睛】此题考查了实数的运算,负整数指数幂,绝对值的性质以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.。
备战中考数学分点透练真题实数(含二次根式)(解析版)

第一讲实数(含二次根式)命题1 实数的分类级正负数意义1.(2020•河池)如果收入10元记作+10元,那么支出10元记作()A.+20 元B.+10元C.﹣10元D.﹣20元【解答】解:如果收入10元记作+10元,那么支出10元记作﹣10元.故选:C.2.(2021•凉山州)在实数,,0,,,﹣1.414,有理数有()A.1个B.2个C.3个D.4个【解答】解:,0,,﹣1.414,是有理数,故选:D.3.(2021•河池)下列4个实数中,为无理数的是()A.﹣2B.0C.D.3.14【解答】解:A.﹣2是整数,属于有理数,故本选项不合题意;B.0是整数,属于有理数,故本选项不合题意;C.是无理数,故本选项符合题意;D.3.14有限小数,属于有理数,故本选项不合题意;故选:C.命题点2 相反数、倒数、绝对值4.(2021•沈阳)9的相反数是()A.B.﹣C.9D.﹣9【解答】解:9的相反数是﹣9,故选:D.5.(2021•内江)﹣2021的绝对值是()A.2021B.C.﹣2021D.﹣【解答】解:﹣2021的绝对值是2021,故选:A.6.(2021•宜昌)﹣2021的倒数是()A.2021B.﹣2021C.D.﹣【解答】解:﹣2021的倒数是.故选:D.命题点3 数轴7.(2021•广州)如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A 表示的数为()A.﹣3B.0C.3D.﹣6【解答】解:∵a+b=0,∴a=﹣b,即a与b互为相反数.又∵AB=6,∴b﹣a=6.∴2b=6.∴b=3.∴a=﹣3,即点A表示的数为﹣3.故选:A.8.(2021•凉山州)下列数轴表示正确的是()A.B.C.D.【解答】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.9.(2021•威海)实数a,b在数轴上的位置如图所示,则下列结论正确的是()A.a+b>0B.a﹣b>0C.a•b>0D.>0【解答】解:依题意得:﹣1<a<0,b>1∴a、b异号,且|a|<|b|.∴a+b>0;a﹣b=﹣|a﹣b|<0;a•b<0;<0.故选:A.命题点4 科学计数法10.(2021•黔西南州)2021年2月25日,全国脱贫攻坚总结表彰大会在北京隆重举行.从2012年开始,经过七年多的精准扶贫,特别是四年多的脱贫攻坚战,全国现行标准下的9899万农村贫困人口全部脱贫,完成了消除绝对贫困的艰巨任务,创造了又一个彪炳史册的人间奇迹,数9899万用科学记数法表示为()A.0.9899×108B.98.99×106C.9.899×107D.9.899×108【解答】解:9899万=98990000=9.899×107,故选:C.11.(2021•巴中)据中央电视台新闻联播报道:今年4月我国国际收支口径的国际货物和服务贸易顺差337亿美元.用科学记数法表示337亿正确的是()A.337×108B.3.37×1010C.3.37×1011D.0.337×1011【解答】解:337亿=33700000000=3.37×1010.故选:B.12.(2021•桂林)细菌的个体十分微小,大约10亿个细菌堆积起来才有一颗小米粒那么大.某种细菌的直径是0.0000025米,用科学记数法表示这种细菌的直径是()A.25×10﹣5米B.25×10﹣6米C.2.5×10﹣5米D.2.5×10﹣6米【解答】解:0.0000025米=2.5×10﹣6米.故选:D.命题点5 实数的大小比较13.(2021•朝阳)在有理数2,﹣3,,0中,最小的数是()A.2B.﹣3C.D.0【解答】解:∵﹣3<0<<2,∴在有理数2,﹣3,,0中,最小的数是﹣3.故选:B.14.(2021•常州)已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b【解答】解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选:A.命题点6 平方根、算术平方根、立方根15.(2021•通辽)的平方根是()A.±4B.4C.±2D.+2【解答】解:=4,±=±2,故选:C.16.(2021•济南)9的算术平方根是()A.3B.﹣3C.±3D.【解答】解:∵32=9,∴9的算术平方根是3.故选:A.17.(2021•抚顺)27的立方根为.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.18.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x=.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.命题点7 二次根式及其运算类型一二次根式的有关概念及性质19.(2021•桂林)下列根式中,是最简二次根式的是()A.B.C.D.【解答】解:A.,不是最简二次根式;B.,不是最简二次根式;C.,不是最简二次根式;D.,是最简二次根式.故选:D.20.(2021•泰州)下列各组二次根式中,化简后是同类二次根式的是()A.与B.与C.与D.与【解答】解:A、=2和不是同类二次根式,本选项不合题意;B、=2与不是同类二次根式,本选项不合题意;C、与不是同类二次根式,本选项不合题意;D、=5,=3是同类二次根式,本选项符合题意.故选:D.21.(2021•襄阳)若二次根式在实数范围内有意义,则x的取值范围是()A.x≥﹣3B.x≥3C.x≤﹣3D.x>﹣3【解答】解:若二次根式在实数范围内有意义,则x+3≥0,解得:x≥﹣3.故选:A.22.(2021•日照)若分式有意义,则实数x的取值范围为.【解答】解:要使分式有意义,必须x+1≥0且x≠0,解得:x≥﹣1且x≠0,故答案为:x≥﹣1且x≠0.类型二二次根式的运算23.(2021•苏州)计算()2的结果是()A.B.3C.2D.9【解答】解:()2=3.故选:B.24.(2021•益阳)将化为最简二次根式,其结果是()A.B.C.D.【解答】解:==,故选:D.25.(2021•柳州)下列计算正确的是()A.=B.3=3C.=D.2【解答】解:A、与不是同类二次根式,不能合并,故A不符合题意.B、3与不是同类二次根式,不能合并,故B不符合题意.C、原式=,故C符合题意.D、﹣2与2不是同类二次根式,不能合并,故D不符合题意.故选:C.26.(2021•天津)计算(+1)(﹣1)的结果等于.【解答】解:原式=()2﹣1=10﹣1=9.故答案为9.27.(2021•山西)计算:+=.【解答】解:原式=2+3=;故答案为:5.类型三二次根式的估值28.(2021•营口)估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【解答】解:∵16<21<25,∴4<<5,故选:B.29.(2021•台州)大小在和之间的整数有()A.0个B.1个C.2个D.3个【解答】解:∵2<3<4<5,∴<<<,即<<2<,∴在和之间的整数有1个,就是2,故选:B.30.(2020•黔南州)已知a=﹣1,a介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<5【解答】解:∵4<<5,∴3<﹣1<4,∴﹣1在3和4之间,即3<a<4.故选:C.命题点8 实数的运算类型一有理数的运算31.(2021•阜新)计算:3+(﹣1),其结果等于()A.2B.﹣2C.4D.﹣4【解答】解:3+(﹣1)=2.故选:A.32.(2021•聊城)计算:(﹣﹣)÷=.【解答】解:原式=(﹣)×=﹣,故答案为:﹣.33.(2021•雅安)若规定运算:a⊕b=2ab,aΘb=,a⊗b=a﹣b2,则(1⊕2)⊗(6Θ3)=.【解答】解:∵a⊕b=2ab,aΘb=,a⊗b=a﹣b2,∴(1⊕2)⊗(6Θ3)=(2×1×2)⊗=4⊗=4﹣()2=4﹣=,故答案为:.类型二实数的运算34.(2021•河池)计算:+4﹣1﹣()2+|﹣|.【解答】解:原式=2+﹣+=3.35.(2021•百色)计算:(π﹣1)0+|﹣2|﹣()﹣1+tan60°.【解答】解:原式=1+2﹣﹣3+=0.36.(2021•常州)计算:﹣(﹣1)2﹣(π﹣1)0+2﹣1.【解答】解:原式=2﹣1﹣1+=.。
专题01实数的有关概念及计算(测试)-2023年中考数学一轮复习讲练测(浙江专用)(解析版)

2023年中考数学总复习一轮讲练测(浙江专用)第一单元数与式专题01实数的有关概念及计算(测试)班级:________ 姓名:__________ 得分:_________注意事项:本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.本试卷所选题目为浙江地区中考真题、模拟试题、阶段性测试题.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022•台州)计算﹣2×(﹣3)的结果是( )A.6B.﹣6C.5D.﹣5【分析】根据有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘即可得出答案.【解析】﹣2×(﹣3)=+(2×3)=6.故选:A.2.(2022•宁波)﹣2022的相反数是( )A.―12022B.12022C.﹣2022D.2022【分析】根据相反数的定义直接求解.【解析】﹣2022的相反数是2022,故选:D.3.(2022•杭州)国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为( )A.14.126×108B.1.4126×109C.1.4126×108D.0.14126×1010【分析】根据科学记数法的规则,进行书写即可.【解析】1412600000=1.4126×109,故选:B.4.(2022•金华)在﹣2,12,2中,是无理数的是( )A .﹣2B .12CD .2【分析】利用有理数,无理数的概念对每个选项进行判断即可得出结论.【解析】﹣2,12,2故选:C .5.(2022•A .1和2之间B .2和3之间C .3和4之间D .4和5之间【分析】根据无理数的估算分析解题.【解析】∵4<6<9,∴23.故选:B .6.(2022秋•杭州期中)在数2,0,﹣2,―A .―B .0C .﹣2D .2【分析】根据正数、0、负数比较大小的办法得结论.【解析】∵正数>0>负数,∴数2,0,﹣2,―2.故选:D .7.(2022•富阳区一模)已知a ,b 是两个连续整数,a ―1<b ,则a ,b 分别是( )A .﹣1,0B .0,1C .1,2D .2,3【分析】估算无理数的大小即可得出答案.【解析】∵4<5<9,∴23,∴1―1<2,∴a =1,b =2,故选:C .8.(2022秋•杭州期中)以下几种说法:①每一个无理数都可以用数轴上的点来表示;②近似数1.70所表示的准确数x 的范围是1.695≤x <1.705;③在数轴上表示的数在原点的左边;④立方根是它本身的数是0和1;其中正确的有( )A.1个B.2个C.3个D.4个【分析】①数轴上的点与实数是一一对应关系,每一个无理数都可以用数轴上的点来表示;②根据四舍五入来判定x的取值范围;③在数轴上表示的数可以在原点的左边右边或原点上;④根据立方根的定义解答.【解析】①数轴上的点与实数是一一对应关系,每一个无理数都可以用数轴上的点来表示;②根据四舍五入来判定近似数1.70所表示的准确数x的范围是1.695≤x<1.705;③在数轴上表示的数可以在原点的左边右边或原点上;④立方根是它本身的数为0,1,﹣1.故选B.9.(2020秋•拱墅区期末)一个物体自由下落时,它所经过的距离h(米)和时间t(秒)之间的关系我们可以用t假设物体从超过10米的高度自由下落,小明要计算这个物体每经过1米所需要的时间,则经过第5个1米时所需要的时间最接近( )A.1秒B.0.4秒C.0.2秒D.0.1秒【分析】用经过5米所用的时间减去经过4米所用的时间计算即可.【解析】当h=5时,t=1,当h=4时,t=≈0.9,∴1﹣0.9=0.1(秒),∴经过第5个1米时所需要的时间最接近0.1秒,故选:D.10.(2021秋•秀洲区校级期中)对于实数a、b,定义min{a,b}的含义为:当a<b时,min{a,b}=a;当a>b时,min{a,b}=b,例如:min{1,﹣2}=﹣2.已知min a}=a,min b}=a 和b为两个连续正整数,则2a﹣b的值为( )A.1B.2C.3D.4【分析】根据a,b的范围,然后再代入求出2a﹣b的值即可.【解析】∵min a}=a,min b}=∴a b∵a,b是两个连续的正整数.∴a=5,b=6.∴2a﹣b=2×5﹣6=4.故选:D.二.填空题(共6小题)11.(2022•宁波)请写出一个大于2【分析】首先2【解析】大于2的无理数有:须使被开方数大于4.12.(2021秋•余杭区期中)若(x﹣1)3=8,则x= 3 .【分析】直接利用立方根的定义得出x的值,进而得出答案.【解析】∵(x﹣1)3=8,∴x﹣1=2,解得:x=3.故答案为:3.13.(2022秋•萧山区校级期中)已知6―a,小数部分b,则a= 2 ,2a﹣b【分析】先估算6―a和小数部分b,最后代入计算2a﹣b.34,∴﹣4<――3,∴6﹣4<6―6﹣3,即2<63.∴a=2,b=62=4―∴2a﹣b=2×2﹣(4=4﹣4+=故答案为:214.(2016秋•嵊州市校级期中)有一个数值转换器,流程如下:当输入的x值为64时,输出的y【分析】依据运算程序进行计算即可.8,是有理数,8的立方根是2,是有理数,215.(2017春•梁子湖区期中)对于任何实数a ,可用[a ]表示不超过a 的最大整数,如[4]=4,=1.现对72进行如下操作:72第一次→=8第二次→=2第三次→=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是 255 .【分析】根据规律可知,最后的取整是1,得出前面的一个数字最大是3,再向前一步推取整是3的最大数为15,继续会得到取整是15的最大数为255;反之验证得出答案即可.【解析】∵=1,=3,=15;所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为:255.16.(2020秋•柯桥区期中)如图,Rt △OAB 的直角边OA =2,AB =1,OA 在数轴上,在OB 上截取BC =BA ,以原点O 为圆心,OC 为半径画弧,交数轴于点P ,则OP 的中点D 对应的实数是 2 .【分析】根据勾股定理求出OB ,进而求出OC ,最后求出OD 即可.【解析】∵Rt △OAB 的直角边OA =2,AB =1,∴OB =又∵BA =BC ,∴OC =OB ﹣BC =1=OP ,∵点D 是OP 的中点,∴OD =12OP =即点D 所表示的数为:2,故答案为:2.三.解答题(共7小题)17.(2022秋•上城区校级期中)计算:(1)(―79+56―118)×(﹣18);(2)﹣24―17×[2﹣(﹣3)2];(3)8.4×103﹣4.8×104.【分析】(1)根据乘法分配律计算即可;(2)先计算乘方,再计算乘法,最后计算减法,有括号的先计算括号内的;(3)根据科学记数法的表示方法计算即可.【解析】(1)(―79+56―118)×(﹣18)=79×18―56×18+118×18=14﹣15+1=0;(2)﹣24―17×[2﹣(﹣3)2]=―16―17×(2―9)=―16―17×(―7)=﹣16+1=﹣15;(3)8.4×103﹣4.8×104.=8400﹣48000=﹣39600.18.(2021•金华)计算:(﹣1)2021+―4sin45°+|﹣2|.【分析】先分别计算有理数的乘方,二次根式的化简,代入特殊角三角函数值,绝对值的化简,然后再计算.【解析】原式=﹣1+4×+2=﹣2=1.19.(2022•杭州)计算:(﹣6)×(23―■)﹣23.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是12,请计算(﹣6)×(23―12)﹣23.(2)如果计算结果等于6,求被污染的数字.【分析】(1)将被污染的数字12代入原式,根据有理数的混合运算即可得出答案;(2)设被污染的数字为x,根据计算结果等于6列出方程,解方程即可得出答案.【解析】(1)(﹣6)×(23―12)﹣23=(﹣6)×16―8=﹣1﹣8=﹣9;(2)设被污染的数字为x,根据题意得:(﹣6)×(23―x)﹣23=6,解得:x=3,答:被污染的数字是3.20.(2020•拱墅区模拟)计算:已知|x|=23,|y|=12,且x<y<0,求6÷(x﹣y)的值.【分析】直接利用绝对值的性质结合有理数混合运算法则计算得出答案.【解析】∵|x|=23,|y|=12,且x<y<0,∴x=―23,y=―12,∴6÷(x﹣y)=6÷(―23+12)=﹣36.21.(2020•西湖区二模)(1)若a=cos45°,b=(π+1)0,c=d=(―12)﹣1,化简得a= 2 ,b= 1 ,c= 12 ,d= ﹣2 ;(2)在(1)的条件下,试计算a―cd.【分析】(1)根据cos45°=a0=1(a≠0),负整数指数幂:a﹣p=1a p(a≠0,p为正整数),算术平方根分别计算即可;(2)把(1)中的数据代入进行计算即可.【解析】(1)a=cos45°b=(π+1)0=1,c=12,d=(―12)﹣1=﹣2,故答案为:2;1;12;﹣2;(2)a―cd―(﹣1)=2+1=3.22.(2021•宁波模拟)规定一种新运算a※b=a2﹣2b.(1)求(﹣1)※2的值;(2)这种新运算满足交换律吗?若不满足请举反例,若满足请说明理由.【分析】(1)把a=(﹣1),b=2,代入所给运算中计算就可以了;(2)不满足,举出反例,例如:1※2≠2※1等.【解析】(1)(﹣1)※2=(﹣1)2﹣2×2=1﹣4=﹣3;(2)不满足.例如:∵1※2=﹣3,2※1=2.∴1※2≠2※1.23.(2022秋•温州期中)操作探究:已知在纸面上有一数轴(如图所示),(1)折叠纸片,使表示1的点与表示﹣1的点重合,则表示﹣2的点与表示 2 的点重合;(2)折叠纸片,使表示﹣1的点与表示3的点重合,回答以下问题:①表示5的点与表示 ﹣3 的点重合;②若数轴上A、B两点之间的距离为13(A在B的左侧),且A、B两点经折叠后重合,此时点A表示的数是 ―112 ;点B表示的数是 152 .③(3)已知数轴上P,Q两点表示的数分别为﹣1和3,有一只电子小蜗牛从P点出发以每秒2个单位的速度向右移动,运动多少秒时,它到点P的距离是到点Q的距离的2倍?【分析】(1)根据题意确定纸片是沿着0点进行折叠的,再求解即可;(2)①由题意确定纸片是沿着表示1的点进行折叠的,再求解即可;②设点A表示的数是x,则点B表示的数是x+13,根据折叠的性质可得x x132=1,求出x的值再求解即可;③由①2―(3)设运动时间为t 秒,小电子小蜗牛运动的点表示的数为x ,则x =﹣1+2t ,根据题意列出方程|x +1|=2|x ﹣2|,求出x 后再求t 的值即可求解.【解析】(1)∵表示1的点与表示﹣1的点重合,∴纸片是沿着0点进行折叠的,∴表示﹣2的点与表示2的点重合,故答案为:2;(2)①∵表示﹣1的点与表示3的点重合,又∵132=1,∴纸片是沿着表示1的点进行折叠的,∴表示5的点与表示﹣3的点重合,故答案为:﹣3;②设点A 表示的数是x ,则点B 表示的数是x +13,∵A 、B 两点经折叠后重合,∴x x 132=1,解得x =―112,∴―112+13=152,∴点A 表示的数是―112,点B 表示的数是152,故答案为:―112,152;③∵纸片是沿着表示1的点进行折叠的,2―故答案为:2(3)设运动时间为t 秒,小电子小蜗牛运动的点表示的数为x ,∴x =﹣1+2t ,∵它到点P 的距离是到点Q 的距离的2倍,∴|x +1|=2|x ﹣2|,解得x=1或x=5,当x=1时,2t﹣1=1,解得t=1,当x=5时,2t﹣1=5,解得t=3,∴运动1秒或3秒时,它到点P的距离是到点Q的距离的2倍.。
2013版中考总复习数学(人教版 全国通用)基础讲练 第1讲 实数(含答案点拨)

第一单元数与式第1讲实数考纲要求命题趋势1.理解有理数、无理数和实数的概念,会用数轴上的点表示有理数.2.借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.3.理解平方根、算术平方根、立方根的概念,会求一个数的算术平方根、平方根、立方根.4.理解科学记数法、近似数与有效数字的概念,能按要求用四舍五入法求一个数的近似值,能正确识别一个数的有效数字的个数,会用科学记数法表示一个数.5.熟练掌握实数的运算,会用各种方法比较两个实数的大小.实数是中学数学重要的基础知识,中考中多以选择题、填空题和简单的计算题的形式出现,主要考查基本概念、基本技能以及基本的数学思想方法.另外,命题者也会利用分析归纳、总结规律等题型考查考生发现问题、解决问题的能力.知识梳理一、实数的分类实数⎩⎪⎪⎨⎪⎪⎧⎭⎪⎬⎪⎫有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧零负整数分数⎩⎪⎨⎪⎧正分数负分数有限小数或无限循环小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫负无理数无限不循环小数二、实数的有关概念及性质1.数轴(1)规定了______、________、____________的直线叫做数轴;(2)实数与数轴上的点是一一对应的.2.相反数(1)实数a的相反数是____,零的相反数是零;(2)a与b互为相反数⇔a+b=____.3.倒数(1)实数a(a≠0)的倒数是____;(2)a与b互为倒数⇔______.4.绝对值(1)数轴上表示数a的点与原点的______,叫做数a的绝对值,记作|a|.(2)|a |=⎩⎪⎨⎪⎧(a >0), (a =0), (a <0).5.平方根、算术平方根、立方根(1)平方根①定义:如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根(也叫二次方根),数a 的平方根记作______.②一个正数有两个平方根,它们互为________;0的平方根是0;负数没有平方根. (2)算术平方根①如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根,a 的算术平方根记作____.零的算术平方根是零,即0=0.②算术平方根都是非负数,即a ≥0(a ≥0).③(a )2=a (a ≥0),a 2=|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).(3)立方根①定义:如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 叫做a 的立方根(也叫三次方根),数a 的立方根记作______.②任何数都有唯一一个立方根,一个数的立方根的符号与这个数的符号相同. 6.科学记数法、近似数、有效数字 (1)科学记数法把一个数N 表示成______(1≤a <10,n 是整数)的形式叫做科学记数法.当N ≥1时,n 等于原数N 的整数位数减1;当N <1时,n 是一个负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零).(2)近似数与有效数字一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时从______第1个不为0的数字起,到末位数字止,所有的数字都叫做这个近似数的有效数字.三、非负数的性质 1.常见的三种非负数|a |≥0,a 2≥0,a ≥0(a ≥0). 2.非负数的性质(1)非负数的最小值是零;(2)任意几个非负数的和仍为非负数;(3)几个非负数的和为0,则每个非负数都等于0. 四、实数的运算 1.运算律(1)加法交换律:a +b =______.(2)加法结合律:(a +b )+c =________. (3)乘法交换律:ab =____.(4)乘法结合律:(ab )c =______.(5)乘法分配律:a (b +c )=__________. 2.运算顺序(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从____至____的顺序进行;(3)如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.3.零指数幂和负整数指数幂(1)零指数幂的意义为:a 0=____(a ≠0);(2)负整数指数幂的意义为:a -p =______(a ≠0,p 为正整数). 五、实数的大小比较 1.实数的大小关系在数轴上表示两个数的点,右边的点表示的数总比左边的点表示的数____.正数大于零,负数小于零,正数大于一切负数;两个负数比较,绝对值大的反而小. 2.作差比较法(1)a -b >0⇔a >b ;(2)a -b =0⇔a =b ;(3)a -b <0⇔a <b . 3.倒数比较法 若1a >1b ,a >0,b >0,则a <b . 4.平方法因为由a >b >0,可得a >b ,所以我们可以把a 与b 的大小问题转化成比较a 和b 的大小问题.(提示:本书[知识梳理]栏目答案见第122~123页) 自主测试1.-2的倒数是( )A .-12B ..12C .-2D .22.-2的绝对值等于( )A .2B .-2C .12D .-123.下列运算正确的是( )A .-|-3|=3B .⎝⎛⎭⎫13-1=-3 C .9=±3 D .3-27=-34.2012年世界水日主题是“水与粮食安全”.若每人每天浪费水0.32 L ,那么100万人每天浪费的水,用科学记数法表示为( )A .3.2×107 LB .3.2×106 LC .3.2×105 LD .3.2×104 L5.已知实数m ,n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0 6.计算:|-5|+16-32.考点一、实数的分类【例1】四个数-5,-0.1,12,3中为无理数的是( )A .-5B .-0.1C .12D . 3解析:因为-5是整数属于有理数,-0.1是有限小数属于有理数,12是分数属于有理数,3开不尽方是无理数,故选D. 答案:D方法总结 一个数是不是无理数,应先计算或者化简再判断.有理数都可以化成分数的形式.常见的无理数有四种形式:(1)含有π的式子;(2)根号内含开方开不尽的式子;(3)无限且不循环的小数;(4)某些三角函数式.触类旁通1 在实数5,37,2,4中,无理数是( )A .5B .37C . 2D . 4考点二、相反数、倒数、绝对值与数轴【例2】(1)-15的倒数是__________;(2)(-3)2的相反数是( )A .6B .-6C .9D .-9(3)实数a ,b 在数轴上的位置如图所示,化简|a +b |+(b -a )2=__________.解析:(1)-15的倒数为1-15=-5;(2)因为(-3)2=9,9的相反数是-9,故选D ;(3)本题考查了绝对值,平方根及数轴的有关知识. 由图可知,a <0,b >0,|a |>|b |,所以a +b <0,b -a >0,原式=-a -b +b -a =-2a . 答案:(1)-5 (2)D (3)-2a方法总结 1.求一个数的相反数,直接在这个数的前面加上负号,有时需要化简得出. 2.解有关绝对值和数轴的问题时常用到字母表示数的思想、分类讨论思想和数形结合思想.3.相反数是它本身的数只有0;绝对值是它本身的数是0和正数(即非负数);倒数是它本身的数是±1.触类旁通2 下列各数中,相反数等于5的数是( ) A .-5 B .5C .-15D .15考点三、平方根、算术平方根与立方根 【例3】(1)(-2)2的算术平方根是( )A .2B .±2C .-2D . 2 (2)实数27的立方根是__________.解析:(1)(-2)2的算术平方根,即(-2)2=|-2|=2; (2)27的立方根是327=3. 答案:(1)A (2)3方法总结 1.对于算术平方根,要注意:(1)一个正数只有一个算术平方根,它是一个正数;(2)0的算术平方根是0;(3)负数没有算术平方根;(4)算术平方根a 具有双重非负性:①被开方数a 是非负数,即a ≥0;②算术平方根a 本身是非负数,即a ≥0.2.(3a )3=a ,3a 3=a .触类旁通3 4的平方根是( ) A .2 B .±2 C .16 D .±16考点四、科学记数法、近似数、有效数字【例4】2012年安徽省有682 000名初中毕业生参加中考,按四舍五入保留两位有效数字,682 000用科学记数法表示为( )A .0.69×106B .6.82×105C .0.68×106D .6.8×105解析:用科学记数法表示的数必须满足a ×10n (1≤|a |<10,n 为整数)的形式;求近似数时注意看清题目要求和单位的换算;查有效数字时,要从左边第1个非零数查起,到精确到的数为止.682 000=6.82×105≈6.8×105.答案:D方法总结 1.用科学记数法表示数,当原数的绝对值大于或等于1时,n 等于原数的整数位数减1;当原数的绝对值小于1时,n 是负整数,它的绝对值等于原数中左起第一位非零数字前零的个数.2.取一个数精确到某一位的近似数时,应对“某一位”后的第一个数进行四舍五入,而之后的数不予考虑.3.用科学记数法表示的近似数,乘号前面的数(即a )的有效数字即为该近似数的有效数字;而这个近似数精确到哪一位,应将用科学记数法表示的数还原成原来的数,再看最后一个有效数字处于哪一个数位上.触类旁通4 某种细胞的直径是5×10-4毫米,这个数是( ) A .0.05毫米 B .0.005毫米 C .0.000 5毫米 D .0.000 05毫米 考点五、非负数性质的应用【例5】若实数x ,y 满足x -2+(3-y )2=0,则代数式xy -x 2的值为__________. 解析:因为x -2≥0,(3-y )2≥0,而x -2+(3-y )2=0,所以x -2=0,3-y =0,解得x =2,y =3,则xy -x 2=2×3-22=2.答案:2方法总结 常见的非负数的形式有三种:|a |,a (a ≥0),a 2,若它们的和为零,则每一个式子都为0.触类旁通5 若|m -3|+(n +2)2=0,则m +2n 的值为( ) A .-4 B .-1 C .0 D .4 考点六、实数的运算【例6】计算:(1)2-1+3cos 30°+|-5|-(π-2 011)0.(2)(-1)2 011-⎝⎛⎭⎫12-3+⎝⎛⎭⎫cos 68°+5π0+|33-8sin 60°|. (1)分析:2-1=12,cos 30°=32,|-5|=5,(π-2 011)0=1.解:原式=12+3×32+5-1=12+32+5-1=6.(2)分析:⎝⎛⎭⎫12-3=(2-1)-3=23=8,⎝⎛⎭⎫cos 68°+5π0=1,sin 60°=32. 解:原式=-1-8+1+⎪⎪⎪⎪33-8×32=-8+ 3.点拨:(1)根据负整数指数幂的意义可把负整数指数幂转化为正整数指数幂运算,即a -p =1ap (a ≠0).(2)a 0=1(a ≠0). 方法总结 提高实数的运算能力,首先要认真审题,理解有关概念;其次要正确、灵活地应用零指数、负整数指数的定义、特殊角的三角函数、绝对值、相反数、倒数等相关知识及实数的六种运算法则,根据运算律及顺序,选择合理、简捷的解题途径.要特别注意把好符号关.考点七、实数的大小比较【例7】比较2.5,-3,7的大小,正确的是( ) A .-3<2.5<7 B .2.5<-3<7 C .-3<7<2.5 D .7<2.5<-3 解析:由负数小于正数可得-3最小,故只要比较2.5和7的大小即可,由2.52<(7)2,得2.5<7,所以-3<2.5<7. 答案:A方法总结 实数的各种比较方法,要明确应用条件及适用范围.如:“差值比较法”用于比较任意两数的大小,而“商值比较法”一般适用于比较符号相同的两个数的大小,还有“平方法”、“倒数法”等.要依据数值特点确定合适的方法.触类旁通6在-6,0,3,8这四个数中,最小的数是( ) A .-6 B .0 C .3 D .81.(2012湖北黄石)-13的倒数是( )A .13B .3C .-3D .-132.(2012江苏南京)下列四个数中,负数是( )A .|-2|B .(-2)2C .- 2D .(-2)23.(2012北京)首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元.将60 110 000 000用科学记数法表示应为( )A .6.011×109B .60.11×109C .6.011×1010D .0.6011×10114.(2012四川南充)计算2-(-3)的结果是( ) A .5 B .1 C .-1 D .-55.(2012四川乐山)计算:⎪⎪⎪⎪-12=__________. 6.(2012重庆)计算:4+(π-2)0-|-5|+(-1)2 012+⎝⎛⎭⎫13-2.1.下列各数中,最小的数是( )A .0B .1C .-1D .- 2 2.若|a |=3,则a 的值是( )A .-3B .3C .13D .±33.下列计算正确的是( )A .(-8)-8=0B .⎝⎛⎭⎫-12×(-2)=1 C .-(-1)0=1 D .|-2|=-24.如图,数轴上A ,B 两点对应的实数分别为1和3,若点A 关于点B 的对称点为C ,则点C 所表示的实数是( )A .23-1B .1+ 3C .2+ 3D .23+15.(1)实数12的倒数是____.(2)写出一个比-4大的负无理数__________.6.若将三个数-3,7,11表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________.7.定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则,计算2☆3的值是__________.8.如图,物体从点A 出发,按照A →B (第1步)→C (第2步)→D →A →E →F →G →A →B →…的顺序循环运动,则第2 012步到达点________处.9.计算:|-2|+(-1)2 012-(π-4)0.参考答案导学必备知识 自主测试1.A 1-2=-12.2.A3.D A 中-|-3|=-3,B 中⎝⎛⎭⎫13-1=3,C 中9=3.4.C 0.32×100万=320 000=3.2×105.5.C 因为从数轴可知:m 小于0,n 大于0,则mn <0,m -n <0. 6.解:|-5|+16-32=5+4-9=0. 探究考点方法触类旁通1.C 因为5是整数,37是分数,4=2是整数.触类旁通2.A 因为5的相反数是-5,-15的相反数是15,15的相反数是-15.触类旁通3.B触类旁通4.C 因为0.05=5×10-2,0.005=5×10-3,0.000 5=5×10-4,0.000 05=5×10-5,故选C.触类旁通5.B 因为|m -3|≥0,且(n +2)2≥0,又因为|m -3|+(n +2)2=0,所以m -3=0且n +2=0.所以m =3,n =-2,所以m +2n =3+2×(-2)=-1.触类旁通6.A 因为根据正数大于0,0大于负数,正数大于负数,解答即可. 品鉴经典考题1.C ∵-3×⎝⎛⎭⎫-13=1,∴-13的倒数是-3. 2.C A 中,|-2|=2,是正数,故本选项错误;B 中,(-2)2=4,是正数,故本选项错误;C 中,-2<0,是负数,故本选项正确;D 中,(-2)2=4=2,是正数,故本选项错误.3.C 因为科学记数法的形式为a ×10n ,用科学记数法表示较大的数,其规律为1≤a <10,n 是比原数的整数位数小1的正整数,所以60 110 000 000=6.011×1010.4.A 原式=2+3=5.5.12根据负数的绝对值是它的相反数,得⎪⎪⎪⎪-12=12. 6.解:原式=2+1-5+1+9=8. 研习预测试题1.D 因为正数和0都大于负数,2>1,两个负数比较大小,绝对值大的反而小,所以-2最小.2.D 绝对值为3的数有+3和-3两个,且互为相反数.3.B (-8)-8=-16,⎝⎛⎭⎫-12×(-2)=1,-(-1)0=-1,|-2|=2. 4.A 因为数轴上A ,B 两点对应的实数分别为1和3, 所以OA =1,OB = 3.所以AB =OB -OA =3-1. 由题意可知,BC =AB =3-1.所以OC =OB +BC =3+(3-1)=23-1. 5.(1)2 (2)-4+2(答案不唯一)6.7 因为-3<0,11>3,1<7<3. 7.56 因为2☆3=12+13=36+26=56. 8.A 由题意知,每隔8步物体到达同一点,因为2 012÷8=251余4,所以第2 012步到达A 点.9.解:原式=2+1-1=2.。
第一讲 实数的有关概念和计算(讲练)(解析版)

备战2020年中考数学总复习一轮讲练测第一单元数与式第一讲实数的有关概念和计算1、了解:平(立)方根、算术平方根的概念;无理数、实数的概念;近似数、有效数字的概念;2、理解:有理数的意义;借助数轴理解相反数和绝对值的意义;了解a 的含义;实数与数轴上的点一一对应;有理数的运算律.3、会:比较有理数大小;能求实数的相反数与绝对值;用根号表示数的平(立)方根;求平(立)方根;进行简单的实数运算.4、掌握:有理数的加、减、乘、除、乘方及简单的混合运算;能用有理数估计一个无理数的大致范围.5、能:用有理数的运算解决简单问题;用有理数估计无理数的大致范围.1.(2018•朝阳区模拟)如图所示,数轴上表示绝对值大于3的数的点是( )A .点EB .点FC .点MD .点N【解答】解:| 3.5| 3.5-=,3,|1|13-=<,|1.5| 1.53=<,|3|33==,所以数轴上表示绝对值大于3的数的点是点E ,故选:A .2.(2019•北京中考)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为( )A .60.43910⨯B .64.3910⨯C .54.3910⨯D .343910⨯【解答】解:将439000用科学记数法表示为54.3910⨯.故选:C .3.(2019•丰台区模拟)实数a ,b ,c 在数轴上的对应点的位置如图所示,如果0a b +=,那么下列结论正确的是( )A .||||a c >B .0a c +<C .0abc <D .0a b =【解答】解:0a b +=Q ,∴原点在a ,b 的中间,如图,由图可得:||||a c <,0a c +>,0abc <,1a b=-, 故选:C .4.(2019•海淀区一模)实数a 、b 、c 在数轴上的对应点的位置如图所示,若||||a b =,则下列结论中错误的是( )A .0a b +>B .0a c +>C .0b c +>D .0ac < 【分析】根据||||a b =,确定原点的位置,根据实数与数轴即可解答.【解答】解:||||a b =Q ,∴原点在a ,b 的中间,如图,由图可得:||||a c <,0a c +>,0b c +<,0ac <,0a b +=,故选项A 错误, 故选:A .5.(2019秋•海淀月考)下列说法正确的是( )A .有理数和数轴上的点一一对应B .不带根号的数一定是有理数C .一个数的平方根仍是它本身D 42【解答】解:A 、和数轴上的点一一对应的是实数,故选项错误; B 、不带根号也可以无限不循环,即也可以是无理数,故选项错误;C 、一个数的平方根不一定是它本身,故选项错误;D 42,2的平方根是2±故选:D .6.(2018•海淀区二模)实数a ,b ,c 在数轴上的对应点的位置如图所示,若||||a b >,则下列结论中一定成立的是( )A .0b c +>B .2a c +<-C .1ba < D .0abc …【解答】解:不妨设0a c b <<<,则A ,D 错误,0a c +<,无法判断a c +与2-的大小,1ba <,故选:C .7.(2019秋•朝阳区模拟)下列计算错误的是( )A 30.0080.2B 3621010--C 9311164 D 2(3)3-=【解答】解:A 、原式0.2=,不符合题意;B 、原式210=-,不符合题意;C 、原式255164==,符合题意;D 、原式|3|3=-=,不符合题意,故选:C .8.(2019秋•大兴区期中)若2(2)2x +=,则x 的值是( )A 24B 22C 2222D 22或22-【解答】解:因为2(2)2x +=, 所以22x +=± 所以22x =,或22x =.故选:D .9.(201921(2)0x y -+=,则2020()x y +等于( )A .1-B .1C .20203D .20203-【解答】解:Q 21(2)0x y -+=,10x ∴-=,20y +=,1x ∴=,2y =-,20202020()(12)1x y ∴+=-=,故选:B .10.(2019•北京中考)计算:011|3|(4)2sin 60()4π----+︒+. 【解答】解:原式331243134323=-+⨯+=-++=+.1.实数的有关概念(1) 整数 和 分数 统称为有理数.(2) 有理数 和 无理数 统称实数.(3)数轴的三要素为 原点 、 正方向 和 单位长度 . 数轴上的点与 实数 一一对应.(4)实数a 的相反数为a - .若a ,b 互为相反数,则b a += 0 .(5)非零实数a 的倒数为1a. 若a ,b 互为倒数,则ab = 1 . (6)绝对值(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩.若=a a ,则a 为 非负数 ;若a a =-,则a 为 非正数 .(7)科学记数法:把一个数表示成10n a ⨯的形式,其中1≤a <10的数,n 是整数. 2.实数的计算(1)n a 表示n 个a 相乘,na 称为幂,其中a 叫做 底数 ,n 叫做 指数 . =0a 1 (其中a ≠ 0);0的任何非零次幂都等于0;=-p a 1p a (其中a ≠ 0,p 为整数) (2)平方根:如果一个数x 的平方等于a ,即2x a =,那么这个数x 叫做a 的平方根或二次方根,记为a ±.一个正数有 两个 平方根,它们互为 相反数 ;负数没有平方根;0的平方根是 0 .(3)算术平方根:如果一个正数x 的平方等于a ,则这个正数x 为a 的算术平方根,记为a ±.一个正数有 一个 算术平方根,0的算术平方根是 0 .(4)立方根:一个数x 的立方等于a ,那么这个数x 叫做a 的立方根或三次方根,记为3a . 一个正数有一个正的立方根;一个负数有一个 负 的立方根;0的立方根是 0 .3. 实数运算顺序及运算律(1)先算 乘方 ,再算 乘除 ,最后算 加减 ;如果有括号,先算 括号 里面的,同一级运算按照从 左 到 右 的顺序依次进行.(2)运算律:交换律、结合律、乘法分配律.4. 实数大小的比较(1) 数轴上两个点表示的数, 右边 的点表示的数总比 左边 的点表示的数大.(2)正数 大于 0,负数 小于 0,正数 大于 负数;两个负数比较大小,绝对值大的 绝对值小的.考点一 实数分类例1.(2019春•丰台区期末)下列各数中,无理数是( )A .0.3B .12C 3D .4【解答】解:A 、0.3是有理数,选项不合题意;B 、12是有理数,选项不合题意; C 3D 、42-=-,是有理数,选项不合题意;故选:C .【变式训练】1.(2019春•海淀区校级月考)49-2π,3.1415,227-5这五个实数中,是无理数的有( ) A .1个B .2个C .3个D .4个 【解答】解:无理数有2π5,共2个. 故选:B .考点二 实数与数轴(相反数、绝对值)例2.(2018•北京中考)实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>【解答】解:43||4a a A -<<-∴<∴Q 不正确;又c b >Q ,0c b ∴->,B ∴正确;又0a <Q ,0c >,0ac ∴<,C ∴不正确;又3a <-Q ,3c <,0a c ∴+<,D ∴不正确;故选:B .【变式训练】(2019•朝阳区一模)实数m ,n 在数轴上对应的点的位置如图所示,若0mn <,且||||m n <,则原点可能是( )A .点AB .点BC .点CD .点D【分析】由若0mn <可知,m 、n 异号,所以原点可能是点B 或点C ,而又由||||m n <即可根据距离正确判断.【解答】解:0mn <Qm ∴、n 异号∴原点可能是点B 或点C又由||||m n <,观察数轴可知,原点应该是点B .故选:B .2.(2019春•海淀区校级期末)如图,点A 表示的实数是( )A .2-B 2C .12D 21【解答】解:设点A 所表示的实数为a ,Q 边长为1212a ∴-+=12a ∴=∴点A 在数轴上表示的实数是12-.故选:C .12.(2018•东城一模)若实数a ,b 满足||||a b >,则与实数a ,b 对应的点在数轴上的位置可以是( )A .B .C .D . 【解答】解:由||||a b >,得a 与原点的距离比b 原点的距离远,故选:D .13.(2018•海淀区一模)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示.若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a >C .ad bc >D .||||a d >【解答】解:由数轴上的点表示的数右边的总比左边的大,得0a b c d <<<<,A 、0b d +=,0b c ∴+<,故A 不符合题意;B 、0c a<,故B 不符合题意; C 、0ad bc <<,故C 不符合题意;D 、||||||a b d >=,故D 正确;故选:D .14.(2018•朝阳区二模)如图,在数轴上有点O ,A ,B ,C 对应的数分别是0,a ,b ,c ,2AO =,1OB =,2BC =,则下列结论正确的是( )A .||||a c =B .0ab >C .1a c +=D .1b a -=【解答】解:2AO =Q ,1OB =,2BC =,2a ∴=-,1b =,3c =,||||a c ∴≠,0ab <,1a c +=,1(2)3b a -=--=,故选:C .考点三 科学记数法例3.(2019•怀柔区一模)据央广网消息,近年来,数字技术推动数字贸易兴起,通过采用数字技术,提高员工生产力、降低成本、创造新收益,数字贸易在中国国内创造了高达人民币3200000000000元的经济效益.将3200000000000用科学记数法表示应为( )A .113.210⨯B .123.210⨯C .123210⨯D .130.3210⨯【解答】解:将32000 0000 0000用科学记数法表示应为123.210⨯.故选:B .【变式训练】1.(2019•朝阳区一模)电影《流浪地球》中,人类计划带着地球一起逃到距地球4光年的半人马星座比邻星.已知光年是天文学中的距离单位,1光年大约是95000亿千米,则4光年约为( )A .49.510⨯亿千米B .49510⨯亿千米C .53.810⨯亿千米D .43.810⨯亿千米【考点】科学记数法-表示较大的数【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中1||10a <„,n 为整数,据此判断即可.【解答】解:950004380000⨯=380000亿千米53.810=⨯亿千米.故选:C .2.(2019•海淀区一模)2019年2月,美国宇航局()NASA 的卫星监测数据显示地球正在变绿,分析发现是中国和印度的行为主导了地球变绿,尽管中国和印度的土地面积加起来只占全球的9%,但过去20年间地球三分之一的新增植被两国贡献的,面积相当于一个亚马逊雨林,已知亚马逊雨林的面积为26560000m ,则过去20年间地球新增植被的面积约为( )A .626.5610m ⨯B .726.5610m ⨯C .72210m ⨯D .82210m ⨯ 【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <„,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:过去20年间地球新增植被的面积2726560000319680000210m m =⨯=≈⨯故选:C .3.(2019•石景山区一模)在北京筹办2022年冬奥会期间,原首钢西十筒仓一片130000平方米的区域被改建为北京冬奥组委办公区.将130000用科学记数法表示应为( )A .41310⨯B .51.310⨯C .60.1310⨯D .71.310⨯【解答】解:将130000用科学记数法可表示为51.310⨯.故选:B .考点四 实数的非负性及最值例4.(2019春•东城区校级期末)若2(2)0a -=,则3a = 8 .【解答】解:Q 2(2)0a -=,20a ∴-=,解得2a =,3328a ∴==.故答案为:8.例5.如果x 为有理数,式子2019|2|x --存在最大值,这个最大值是( )A .2016B .2017C .2019D .2021【解答】解:x Q 为有理数,式子2019|2|x --存在最大值,|2|0x ∴-=时,2019|2|x --最大为2019,故选:C .【变式训练】1.(2019春•海淀区校级期末)如果2(21)|5|0x y x y -+++-=,那么y x = 9 .【解答】解:2(21)|5|0x y x y -+++-=Q ,∴215x y x y -=-⎧⎨+=⎩①②,②-①得:36y =,解得:2y =,把2y =代入①得:3x =,则原式9=,故答案为:92.(2018春•朝阳区期末)若21(1)0x y ++-=,则x y += 0 .【解答】解:Q 21(1)0x y ++-=,10x ∴+=且10y -=,则1x =-、1y =,110x y ∴+=-+=,故答案为:0.考点五 实数的估算例6.(2018•西城区二模)下列实数中,在2和3之间的是( )A .πB .2π-C .325D .328【解答】解:A 、34π<<,故本选项不符合题意;B 、122π<-<,故本选项不符合题意;C 、32253<<,故本选项符合题意;D 、33284<<,故本选项不符合题意;故选:C .【变式训练】1.(2018•大兴一模)若10a =,则实数a 在数轴上对应的点的大致位置是()A .点EB .点FC .点GD .点H【解答】解:Q 910163104∴<<,10a =Q ,34a ∴<<,故选:C .2.(2019a ,小数部分是b ,则2a b -= 24【解答】解:89<Q ,8a ∴=,8b ,2288)24a b ∴-=⨯-=.故答案为:24考点六 实数比较大小例7.比较大小:(填“>”、“=”、“<”).【解答】解:Q =∴<∴<故答案为:<.【变式训练】1 58.(填“>”,“<”或“=”)58-58=-=Q 229808110-=-=-<,9∴,∴90<,∴508-<,∴58<. 故答案为:<.考点七 实数中的规律例8.(1)填写下表,观察被开方数a(2)根据你发现的规律填空:① 2.6838.485=,;②6.164=61.64=,则x = ,(3a 的大小.【解答】解:(1)20.040.0016=Q,∴0.04;0.4,4=;40=故答案为:0.04;0.4;4;40;(2)①由表格可知,被开方数a动1位,84.85=0.02683=;故答案为:84.85;0.02683;②由表格可知,被开方数a 1位, Q 6.164=61.64,3800x ∴=,故答案为:3800;(3)0;01;1;1;a a a a a a a ==<=><当时当时当时当时【变式训练】1 2.477= 1.8308,填空:= 24.77 ②0.18308=,则x = .【解答】解:①Q 2.477=,∴24.77;② 1.8308=0.18308=,则0.006137x =,故答案为:①24.77;②0.006137考点八 实数的运算例9.(2019•海淀区一模)计算:04sin 60(1)1|π︒+-.【分析】本题涉及零指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:04sin 60(1)|1|π︒+--411=+-11=-=.【变式训练】1.(2019•北京大学附中期末)计算1)-的结果为 .【解答】解:原式24=-2=,故答案为:22.(2019春•海淀区期中)求出下列等式中x 的值:(1)21236x =;(2)33388x-=.【解答】解:(1)23x=x∴=(2)3243x-=327x=3x∴=3.(2019•西城区一模)计算0|5|2sin60(2019)π-︒--【分析】先分别计算绝对值、二次根式、三角函数值、零指数幂,然后算加减法.【解答】解:原式521=+51=+4=+。
专题 实数的概念及性质(含答案)

第六讲 实数的概念及性质数是随着客观实际与社会实践的需要而不断扩充的.从有理数到无理数,经历过漫长曲折的过程,是一个巨大的飞跃,由于引入无理数后,数域就由有理数域扩充到实数域,这样,实数与数轴上的点就建立了一一对应的关系. 由于引入开方运算,完善了代数的运算.平方根、立方根的概念和性质,是学习二次根式、一元二次方程等知识的基础.平方根、立方根是最简单的方根,建立概念的方法,以及它们的性质是进一步学习偶次方根、奇次方根的基础.有理数和无理数统称为实数,实数有下列重要性质:1.有理数都可以写成有限小数或循环小数的形式,都可以表示成分数pq 的形式;无理数是无限不循环小数,不能写成分数pq 的形式,这里p 、q 是互质的整数,且0≠p .2.有理数对加、减、乘、除是封闭的,即任何两个有理数的和、差、积、商还是有理数;无理数对四则运算不具有封闭性,即两个无理数的和、差、积、商不一定是无理数. 例题求解【例1】若a 、b 满足ba 53+3=7,则S =ba 32-的取值范围是 . (全国初中数学联赛试题)思路点拨 运用a 、b 的非负性,建立关于S 的不等式组.注: 古希腊的毕达哥拉斯学派认为,宇宙间的一切现象都能归结为整数或整数之比.但是该学派的成员希伯索斯发现边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示,这严重地冲击了当时希腊人的传统见解,这一事件在数学史上称为第一次数学危机.希伯索斯的发现没有被毕达哥拉斯学派的信徒所接受,相传毕氏学派就因这一发现而把希伯索斯投入海中处死.【例2】 设a 是一个无理数,且a 、b 满足ab -a -b+1=0,则b 是一个( )A .小于0的有理数B .大于0的有理数C .小于0的无理数D .大于0的无理数(武汉市选拔赛试题)思路点拨 对等式进行恰当的变形,建立a 或b 的关系式. 【例3】已知a 、b 是有理数,且032091412)121341()2331(=---++b a ,求a 、b 的值.思路点拔 把原等式整理成有理数与无理数两部分,运用实数的性质建立关于a 、b 的方程组.【例4】(1) 已知a 、b 为有理数,x ,y 分别表示75-的整数部分和小数部分,且满足axy+by 2=1,求a+b 的值. (南昌市竞赛题)(2)设x 为一实数,[x]表示不大于x 的最大整数,求满足[-77.66x]=[-77.66]x+1的整数x 的值.(江苏省竞赛题)思路点拨 (1)运用估算的方法,先确定x ,y 的值,再代入xy+by 2=1中求出a 、b 的值;(2)运用[x]的性质,简化方程.注: 设x 为一实数,则[x]表示不大于x 的最大整数,[x]]又叫做实数x 的整数部分,有以下基本性质:(1)x -1<[x]≤x (2)若y< x ,则[y]≤[x] (3)若x 为实数,a 为整数,则[x+a]= [x]+ a .【例5】 已知在等式sdcx b ax =++中,a 、b 、c 、d 都是有理数,x 是无理数,解答:(1)当a 、b 、c 、d 满足什么条件时,s 是有理数; (2) 当a 、b 、c 、d 满足什么条件时,s 是无理数.( “希望杯”邀请赛试题)思路点拨 (1)把s 用只含a 、b 、c 、d 的代数式表示;(2)从以下基本性质思考: 设a 是有理数,r 是无理数,那么①a+r 是无理数;②若a ≠0,则a r 也是无理数;③ r 的倒数r 1也是无理数,解本例的关键之一还需运用分式的性质,对a 、b 、c 、d 取值进行详细讨论.注:要证一个数是有理数,常证这个数能表示威几十有理数的和,差,积、商的形式;要证一个数是无理数,常用反证法,即假设这个数是有理数,设法推出矛盾.学力训练1.已知x 、y 是实数,96432=+-++y yx ,若yx axy=-3,则a= .(2002年个数的平方根是22b a +和1364+-b a ,那么这个数是 . 3.方程185=++-+y y x 的解是 .4.请你观察思考下列计算过程:∵112=121,∴11121=;同样∵1112=12321,∴11112321=;…由此猜想=76543211234567898 .(济南市中考题)5.如图,数轴上表示1、2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C所表示的数是( )A .12-B .21-C .22-D .22-(江西省中考题) 6.已知x 是实数, 则πππ1-+-+-x x x 的值是( )A .π11-B .π11+C .11-πD .无法确定的( “希望杯”邀请赛试题)7.代数式21-+-+x x x 的最小值是( ) A .0 B .21+ C .1 D .不存在的 ( “希望杯”邀请赛试题) 8.若实数a 、b 满足032)2(2=+-+-+a b b a ,求2b+a -1的值.(山西省中考题)9.细心观察图形,认真分析各式,然后解答问题.21)1(2=+,211=S ;31)2(2=+,222=S ;41)3(2=+,233=S ;…(1)请用含有n(n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S l 2+S 22+S 32+…+S 210的值. (烟台市中考题) 10.已知实数 a 、b 、c 满足412212=+-+++-c c c b b a ,则a(b+c)= .11.设x 、y 都是有理数,且满足方程04)231()321(=--+++πππy x ,那么x -y 的值是 .( “希望杯’邀请赛试题)12.设a 是一个无理数,且a 、b 满足ab+a -b =1,则b= . (四川省竞赛题)13.已知正数a 、b 有下列命题:①若a=1,b =1,则1≤ab ; ②若25,21==b a ,则23≤ab ;③若a =2,b=3,则25≤ab ; ④若a=1,b=5,则3≤ab .根据以上几个命题所提供的信息,请猜想,若a=6,b=7,则≤ab . (黄冈市竞赛题) 14.已知:11=-a a,那么代数式aa +1的值为( )A .25 B .25-C .5-D .5(重庆市竞赛题)15.设[x]表示最接近x 的整数(x ≠n+0.5,n 为整数),则[21⨯]+[32⨯]+[43⨯]+…+[101100⨯]的值为( )A .5151B .5150C .5050D .5049( “五羊杯”邀请赛试题) 16.设a<b<0,ab b a 422=+,则ba b a -+的值为( )A .3B .6C .2D .3 (全国初中数学竞赛题)17.若a 、b 、c 为两两不等的有理数,求证:222)(1)(1)(1a c c b b a -+-+-为有理数.18.某人用一架不等臂天平称一铁块a 的质量,当把铁块放在天平左盘中时,称得它的质量为300克,当把铁块放在天平的右盘中时,称得它的质量为900克,求这一铁块的实际质量. (安徽省中考题).19.阅读下面材料,并解答下列问题:在形如a b =N 的式于中,我们已经研究过两种情况:①已知a 和b ,求N ,这是乘方运算,②已知b 和N ,求a ,这是开方运算. 现在我们研究第三种情况;已知a 和N ,求b ,我们把这种运算叫做对数运算. 定义:如果a b=N (a>0,a ≠1,N>0),则b 叫做以a 为底的N 的对数,记作b=log a N . 例如:因为23=8,所以log 28=3;因为2-3=81,所以log 281=-3.(1)根据定义计算:①log 3 81= ;②log 33= ;③log 3l= ;④如果log x 16=4,那么x= . (2)设a x=M ,a y=N ,则log a M=x ;log a N =y(a>0,a ≠1,N>0,M ,N 均为正数). 用log A M ,log A N 的代数式分别表示log a MN 及log a NM ,并说明理由.(泰州市中考题) 20.设dcx b ax y++=,a 、b 、c 、d 都是有理数,x 是无理数.求证:(1)当bc=ad 时,y 是有理数;(2)当bc ≠ad 时,y 是无理数.21.设△ABC 的三边分别是a 、b 、c ,且0448222=--++bc ab b c a ,试求AABC 的形状.。
1 实数的有关概念课件

三.知识要点
x 5.非负数:正实数与零的统称 (表示为: ≥ 0 ) 非负数:正实数与零的统称.(表示为: 非负数
a 2 (a 为一切实数 常见的非负数形式有: ① 常见的非负数形式有: a (a 为一切实数 a (a ≥ 0 )
) )
性质:若干个非负数的和为0, ② 性质 : 若干个非负数的和为 , 则所有非负数均为 0.
三.知识要点
11.实数的运算法则: 实数的运算法则: 实数的运算法则
①加法运算法则: 加法运算法则: A.同号两数相加,取相同的符号,并把绝对值相加; 同号两数相加, 同号两数相加 取相同的符号,并把绝对值相加; B.异号两数相加, 绝对值相等的和为 ; 绝对值不等 , 取绝对 异号两数相加, 异号两数相加 绝对值相等的和为0;绝对值不等, 值较大的加数的符号,并用较大的绝对值减去较小的绝对值. 值较大的加数的符号,并用较大的绝对值减去较小的绝对值 减法运算法则:减去一个数,等于加上这个数的相反数. ②减法运算法则:减去一个数,等于加上这个数的相反数 即 a − b = a + (− b ) ; 乘法运算法则:两数相乘,同号得正,异号得负, ③乘法运算法则:两数相乘,同号得正,异号得负,并把绝对 值相乘. 值相乘 除法运算法则:两数相除,同号得正,异号得负, ④除法运算法则:两数相除,同号得正,异号得负,并把绝对 值相除;0除以任何一个非 除以任何一个非0数 都得0. 值相除 除以任何一个非 数,都得 除以一个数,等于乘以这个数的倒数. 除以一个数,等于乘以这个数的倒数 1 即 a ÷ b = a ⋅ (b ≠ 0 ) ; b
三.知识要点 12.实数的运算法则: 实数的运算法则: 实数的运算法则
⑤乘方运算性质: 乘方运算性质: A.正数的任何次幂都是正数 ; 负数的偶次幂是正数 ; 正数的任何次幂都是正数; 正数的任何次幂都是正数 负数的偶次幂是正数; 负数的奇次幂是负数; 负数的奇次幂是负数; B.任何数的偶次幂都是非负数; 任何数的偶次幂都是非负数; 任何数的偶次幂都是非负数 C.1 的任何次幂都是 ;0 的任何次幂都是 ;- 的 的任何次幂都是1; 的任何次幂都是0;- ;-1的 偶次幂是1;- 的奇次幂是- ;-1的奇次幂是 偶次幂是 ;- 的奇次幂是-1. 开方运算: 主要针对开平方运算 主要针对开平方运算) ⑥开方运算:(主要针对开平方运算
第1课时实数的有关概念

第1课时实数的有关概念【知识梳理】1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0.5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.6.叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小.8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.【思想方法】数形结合,分类讨论【例题精讲】例1.下列运算正确的是()A.33--=B.3)31(1-=-C3=±D3=-例)A.B C.2-D.2例3.2的平方根是()A.4 B C.D.例4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是()A.107.2610⨯元B.972.610⨯元C .110.72610⨯ 元D .117.2610⨯元例5.实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0a b< 例6.(改编题)有一个运算程序,可以使: a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +2, a ⊕(b +1)= n -3现在已知1⊕1 = 4,那么2009⊕2009 = .【当堂检测】1.计算312⎛⎫- ⎪⎝⎭的结果是( ) A .16 B .16- C .18 D .18- 2.2-的倒数是( ) A .12- B .12 C .2 D .2-3.下列各式中,正确的是( )A .3152<<B .4153<<C .5154<<D .161514<<4.已知实数a 在数轴上的位置如图所示,则化简|1|a -的结果为( )A .1B .1-C .12a -D .21a -5.2-的相反数是( )A .2B .2-C .12D .12- 6.-5的相反数是____,-12的绝对值是=_____.7.写出一个有理数和一个无理数,使它们都是小于-1的数 .8.如果2()13⨯-=,则“”内应填的实数是( ) A .32 B . 23 C .23- D .32-第2课时 实数的运算第4题图0 例5图【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘; 任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除; 0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.6.有理数的运算律:加法交换律:a+b=b+a(a b 、为任意有理数)加法结合律:(a+b)+c=a+(b+c)(a, b,c 为任意有理数)【思想方法】数形结合,分类讨论【例题精讲】 例1.某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A .伦敦时间2006年6月17日凌晨1时.B .纽约时间2006年6月17日晚上22时.C .多伦多时间2006年6月16日晚上20时 .D .汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________例4.下列运算正确的是() 9 0 -4 国际标准时间(时)-5 例2图 ……例3图A .523=+B .623=⨯C .13)13(2-=-D .353522-=-例5.计算: (1) 911)1(8302+-+--+-π(2)0(tan 45π--+º(3)102)21()13(2-+--;(4)2008011(1)()3π--+-.【当堂检测】1.下列运算正确的是( )A .a 4×a 2=a 6B .22532a b a b -=C .325()a a -=D .2336(3)9ab a b =2.某市2008年第一季度财政收入为76.41亿元,用科学记数法(结果保留两个有效数字)表示为( )A .81041⨯元B .9101.4⨯元C .9102.4⨯元D .8107.41⨯元3.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间4.如图,数轴上点P 表示的数可能是( )AB. C . 3.2- D.5.计算: (1)02200960cos 16)21()1(-+--- (2))10112-⎛⎫--+ ⎪⎝⎭第3课时 整式与分解因式第4题图【知识梳理】1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a≠0);⑤负整数指数:n n a a 1=-(a≠0,n 为正整数);2.整式的乘除法:(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.(2)单项式乘以多项式,用单项式乘以多项式的每一个项.(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项.(4)多项式除以单项式,将多项式的每一项分别除以这个单项式.(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方, 即22))((b a b a b a -=-+;(6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去) 它们的积的2倍,即2222)(b ab a b a +±=±3.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:公式22()()a b a b a b -=+- ; 2222()a ab b a b ±+=±5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.6.分解因式时常见的思维误区:⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉.(3) 分解不彻底,如保留中括号形式,还能继续分解等【例题精讲】【例1】下列计算正确的是( )A. a +2a=3a 2B. 3a -2a=aC. a 2•a 3=a 6D.6a 2÷2a 2=3a 2【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是( )A .mB .mC .m +1D .m -1【例3】若2320a a --=,则2526a a +-= .【例4】下列因式分解错误的是( )A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________【例6】给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a -= , _____________223=---x x x2.对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时, (a ,b )=(c ,d ).定义运算“⊗”:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p = ,q = .3. 已知a=1.6⨯109,b=4⨯103,则a 2÷2b=( )A. 2⨯107B. 4⨯1014C.3.2⨯105D. 3.2⨯1014 .4.先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中2332a b =-=,.5.先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.。
第1讲 实数及其有关概念

3.(2015·丹东 1 题 3 分)-2015 的绝对值是( B )
A.-2015
B.2015
1 C.2015
D.-20115
精品课件
单击此处编辑母版标题样式
4.(2016·锦州 1 题 2 分)|-6|的相反数是( B )
A•.单6•击第B.此二-处级6 编C.辑16 母D.版-文16 本样式
单击此处编辑母版标题样式
命题点 4 实数的大小比较
1•.单(20击15此·沈处阳 1编题辑3 分母)比版0文大的本数样是式( D )
A.-• 2第•二B第.级三-级32 C.-0.5 D.1
2.(2016·朝阳• 第1 题四级3 分)在下列实数中,-3, 2,0,2,-1,绝对值最
小的数是( B ) • 第五级
1.(2015·朝阳 1 题 3 分)计算-2+1 的结果是( B )
A.-3 B.-1 C.3 D.1
2.(2014·锦州 11 题 3 分)计算:tan45°-13(
2 3-1)0=_3__.
精品课件
单击此处编辑母版标题样式
3.(2016·大连 17 题 9 分)计算:( 5+1)( 5-1)+(-2)0-3 27.
•1.单(2击014此·鞍处山 1编题辑3 分母)4版的文平方本根样是(式B )
A.2• 第B.二±级2 C. 2 D.± 2
2.(2014•·沈第阳三9级题 4 分)计算: 9=_3_. 3.(2014·本溪• 第13四题级3 分)一个数的算术平方根是 2,这个数是_4__. 命题点 6 实数的• 运第算五级
•_-_单_a_,击0此的相处反编数是辑0母;a版与文b 互本为样相反式数⇔a+b=_0_.
(3)绝•对第值二级
实数的概念,运算教案

实数的概念、运算教学目标:1.了解算数平方根、平方根和立方根的概念,会求非负数的算数平方根和实数的立方根。
2.了解无理数与实数的概念,知道实数与数轴上的点的一一对应关系,能用有理数估计一个无理数的大致范围。
3.会用算术平方根的性质进行实数的简单四则运算,会用计算器进行近似计算。
重点难点:1.重点:用算术平方根的性质进行实数的简单四则运算。
2.难点:实数的分类及无理数的概念、近似估计。
一、复习导入1.想一想:边长为1的正方形其对角线长为 ,它是有理数吗?合作学习:(教材P71)思考1.由对角线围成的正方形面积是其边长是?如何表示正方形的边长?介于那两个相邻整数之间?2.估算2的大小,表格数据在教材P72。
因此,2既不是有限小数也不是循环小数,因此2不是分数,又2不是整数,根据有理数的分类,2不是有理数。
所以,2是无理数。
有理数与无理数统称为实数。
师生共同完成实数的分类(教材P72)。
有理数的相反数、绝对值同样适用于实数。
试一试:数轴上的任何一点与实数一一对应,试一试:你能用直尺和 圆规精确地在数轴上表示出2吗?5呢?2.练一练:16= 3064.0=41= 41×16=想一想:实数的运算与有理数的运算有什么不同?引出实数的运算。
回顾有理数的运算法则和运算律,如下表:加法 减法 乘法 除法 乘方 开方 运算法则加法法则减法法则乘法法则除法法则,除法转化为乘法法则乘方法则开方法则运算律 加法交换律,结合律乘法交换律,结合律和分配律思考有理数的运算法则和运算律在实数中是否也能成立?实数的运算与有理数的运算之间就是增加了无理数的运算,那么,这些运算法则在无理数的运算中是否也能成立呢?举例说明在实数范围中增加了开方运算,开方运算与乘方运算是同级运算。
结论:实数的运算:先算乘方和开方,再算乘除,最后算加减。
如果遇到括号,则先进行括号里的运算。
试一试:1.计算:(1)38-9 (2)9-2×(4+25)2.计算:2×(3+5)+4-2×5二、知识要点复习1.平方根:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做a 的二次方根。
专题01 实数的有关概念及运算-2年中考1年模拟备战2018年中考数学精品系列(原卷版)

中考系列:数学2年中考1年模拟 第一篇 数与式专题01 实数的有关概念及运算【题组】一、选择题1.作为世界文化遗产的长城,其总长大约为6700000m .将6700000用科学记数法表示为( ) A .6.7×105 B .6.7×106 C .0.67×107 D .67×108 2.若21a =,b 是2的相反数,则a +b 的值为( )A .﹣3B .﹣1C .﹣1或﹣3D .1或﹣3 3.正整数x 、y 满足(2x ﹣5)(2y ﹣5)=25,则x +y 等于( ) A .18或10 B .18 C .10 D .26 4.﹣5的相反数是( )A .5B .﹣5C .51D .51- 5.近似数5.0×102精确到( )A .十分位B .个位C .十位D .百位6.总投资647亿元的西域高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为( )A .647×108B .6.47×109C .6.47×1010D .6.47×1011 7.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( )A .5.035×10﹣6 B .50.35×10﹣5 C .5.035×106 D .5.035×10﹣5 8.若244x x -+ 与23x y --互为相反数,则x +y 的值为( ) A .3 B .4 C .6 D .99.纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市 悉尼 纽约 时差/时+2﹣13当北京6月15日23时,悉尼、纽约的时间分别是( )A .6月16日1时;6月15日10时B .6月16日1时;6月14日10时C .6月15日21时;6月15日10时D .6月15日21时;6月16日12时 10.下列四个数中最大的数是( )A .0B .﹣1C .﹣2D .﹣311.若数轴上表示﹣1和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( ) A .﹣4 B .﹣2 C .2 D .4 12.(﹣21)÷7的结果是( ) A .3 B .﹣3 C .13 D .13- 13.小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为( ) A .2 B .2.0 C .2.02 D .2.03 14.把0.0813写成a ×10n (1≤a <10,n 为整数)的形式,则a 为( ) A .1 B .﹣2 C .0.813 D .8.1315.23222333m n ⨯⨯⨯=+++6474814243个个……( ) A .23n m B .23m n C .32m nD .23m n16.从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( ) A .15 B .25 C .35 D .4517.观察下列关于自然数的式子: 4×12﹣12① 4×22﹣32② 4×32﹣52③ …根据上述规律,则第2017个式子的值是( )A .8064B .8065C .8066D .8067 18.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A.22B.32C.23D.819.9的算术平方根是()A.3B.﹣3C.±3D.320.估计38的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间21.下列四个数中,最大的数是()A.3B.3C.0D.π22.下列实数中的无理数是()1A.9B. C.0D.323.64的立方根是()A.4B.8C.±4D.±824.如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是()302sin60°22﹣3﹣2﹣sin45°0|﹣5|623()﹣14()﹣1A.5B.6C.7D.8二、填空题25.写出一个比3大且比4小的无理数:.26.如图,数轴上点A表示的实数是.27.若单项式425m nx y+-与22017m nxy -是同类项,则m ﹣7n 的算术平方根是 .28.某市前年PM 2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM 2.5的年均浓度比去年也下降10%,那么今年PM 2.5的年均浓度将是 微克/立方米. 29.定义一种新的运算:2*x y x y x +=,如:32153*133+?==,则()2*3*2= . 30.已知A ,B ,C 是数轴上的三个点,且C 在B 的右侧.点A ,B 表示的数分别是1,3,如图所示.若BC =2AB ,则点C 表示的数是 .三、解答题’31.计算:2)21(|275|60sin 6)2017(----+-οοπ.32.计算:2017002)1(60tan |32|)2()33(-++---+--π. 33.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a ﹣b .例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x =﹣2011,求x 的值; (2)若x ⊗3<5,求x 的取值范围.34.在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2,BC =1,如图所示.设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少? (2)若原点O 在图中数轴上点C 的右边,且CO =28,求p .【练习题组】一、选择题1.﹣|﹣2|的倒数是( ) A .2 B .12 C .12- D .﹣2 2.计算(﹣2)﹣5的结果等于( )A .﹣7B .﹣3C .3D .7 3.如果向右走5步记为+5,那么向左走3步记为( ) A .+3 B .﹣3 C .13+ D .13- 4.以下选项中比12-小的数是( ) A .1 B .2 C .12 D .12- 5.当1<a <2时,代数式|a ﹣2|+|1﹣a |的值是( )A .﹣1B .1C .3D .﹣36.从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( )A .17 B .27 C .37 D .477.如图,数轴上点P 对应的数为p ,则数轴上与数2p-对应的点是( )A .点AB .点BC .点CD .点D8.若a 、b 、c 为△ABC 的三边长,且满足420a b -+-=,则c 的值可以为( ) A .5 B .6 C .7 D .89.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论: 甲:b ﹣a <0 乙:a +b >0 丙:|a |<|b | 丁:ba>0 其中正确的是( )A .甲乙B .丙丁C .甲丙D .乙丁10.数轴上点A 、B 表示的数分别是5、﹣3,它们之间的距离可以表示为( ) A .﹣3+5 B .﹣3﹣5 C .|﹣3+5| D .|﹣3﹣5| 11.(2016江苏省扬州市)已知M =219a -,N =279a a -(a 为任意实数),则M 、N 的大小关系为( ) A .M <N B .M =N C .M >N D .不能确定 12.实数a 、b 满足221440a a ab b ++++=,则a b 的值为( ) A .2 B .12 C .﹣2 D .12- 13.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .84B .336C .510D .132614.13世纪数学家斐波那契的(计算书)中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )A .42B .49C .67 D .7715.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .Φ44.98D .Φ45.01 16.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是( )A .B .C .D .17.已知点M 、N 、P 、Q 在数轴上的位置如图,则其中对应的数的绝对值最大的点是( )A .MB .NC .PD .Q 18.1.58×106米的百万分之一大约是( )A .初中学生小丽的身高B .教室黑板的长度C .教室中课桌的宽度D .三层楼房的高度19.实数a ,b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .|a |<|b |B .a >bC .a <﹣bD .|a |>|b | 20.27的运算结果应在哪两个连续整数之间( )A .2和3B .3和4C .4和5D .5和621.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n +q =0,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n22.实数a ,b 在数轴上对应点的位置如图所示,化简2()a a b +-的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b 23.4的平方根是( )A .±2B .﹣2C .2D .12±24.如图,数轴上点A ,B 分别对应1,2,过点B 作PQ ⊥AB ,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 对应的数是( )A . 3B . 5C . 6D . 7 25.已知实数x ,y 满足480x y -+-=,则以x ,y 的值为两边长的等腰三角形的周长是( )A .20或16B .20C .16D .以上答案均不对 26.下列说法中正确的是( ) A .12化简后的结果是22 B .9的平方根为3C .8是最简二次根式D .﹣27没有立方根 27.﹣8的立方根是( )A .2B .﹣2C .±2D .32-28.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算 21=2 22=4 23=8 (31)=3 32=933=27… 新运算 log 22=1log 24=2log 28=3…log 33=1log 39=2 log 327=3…根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 212=﹣1.其中正确的是( ) A .①② B .①③ C .②③ D .①②③ 29.38的算术平方根是( )A .2B .±2C .2D .2±30.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为( ) A .2.5434×103B .2.5434×104C .2.5434×10﹣3D .2.5434×10﹣431.科学家在实验中检测出某微生物约为0.0000035米,将0.0000035用科学记数法表示为( ) A .3.5×10﹣6B .3.5×106C .3.5×10﹣5D .35×10﹣532.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为( )A .18.1×105B .1.81×106C .1.81×107D .181×10433.近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)( )A .1.2×1011B .1.3×1011C .1.26×1011D .0.13×1012 34.用科学记数法表示的数是1.69×105,则原来的数是( )A .169B .1690C .16900D .169000 二、填空题35.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算.现有如下的运算法则:log an n a =.log N M=log log n n MN(a >0,a≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=1010log 5log 2,则100log 1000= .36.实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别为A ,N ,M ,B (如图),若2AM =BM •AB ,2BN =AN •AB ,则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”,当b ﹣a =2时,a ,b 的大黄金数与小黄金数之差m ﹣n = .37.计算:139282--+--= .38.已知220x y x y -+++-=,则22x y -的值为 .39.如图,O 为数轴原点,A ,B 两点分别对应﹣3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M 对应的实数为 .40.对于实数a ,b ,定义运算“*”:a *b =2 ()()a ab a b a b a b ⎧-≥⎨-<⎩.例如:因为4>2,所以4*2=2442-⨯=8,则(-3)*(-2)= . 41.比较大小:53-522-. 42.能够说明“2x x =不成立”的x 的值是 (写出一个即可).43.已知⊙O 1和⊙O 2的半径分别为m 、n ,且m 、n 满足21(2)0m n -+-=,圆心距O 1O 2=52,则两圆的位置关系为 .44.高斯函数[x ],也称为取整函数,即[x ]表示不超过x 的最大整数. 例如:[2.3]=2,[﹣1.5]=﹣2. 则下列结论:①[﹣2.1]+[1]=﹣2;②[x ]+[﹣x ]=0;③若[x +1]=3,则x 的取值范围是2≤x <3;④当﹣1≤x <1时,[x +1]+[﹣x +1]的值为0、1、2.其中正确的结论有 (写出所有正确结论的序号).45.(2016四川省雅安市)P 为正整数,现规定P !=P (P ﹣1)(P ﹣2)…×2×1.若m !=24,则正整数m = .46.一天有8.64×104秒,一年如果按365天计算,用科学记数法表示一年有秒. 三、解答题47.计算:013133tan 308(2016)()2π--+---+o. 48.请你参考黑板中老师的讲解,用运算律简便计算: (1)999×(﹣15) (2)413999118999()99918555⨯+⨯--⨯.49.计算116()23÷-+,方方同学的计算过程如下,原式=116()623÷-+÷=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.50.求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法﹣﹣更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数.51.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.52.(2016重庆市)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=pq.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F (t )的最大值.☞考点归纳归纳 1:实数及其分类 基础知识归纳:基本方法归纳:判断一个数是不是有理数,关键是看它是不是有限小数或无限循环小数;判断一个数是不是无理数,关键在于看它是不是无限不循环小数.注意问题归纳:在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;【例1】下列实数中,无理数是( )A .0B .2C .﹣2D .27归纳 2:实数的有关概念 基础知识归纳:1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a |≥0;正数的绝对值是它的本身,负数的绝对值是它的相反数,0的绝对值是0.3、倒数如果a 与b 互为倒数,则有ab =1,反之亦成立.倒数等于本身的数是1和-1.基本方法归纳:如果a 与b 互为相反数,则有a +b =0,a =-b ,反之亦成立;零的绝对值是它本身,若|a |=a ,则a ≥0;若|a |=-a ,则a ≤0注意问题归纳:零没有倒数;一个非零的数的绝对值一定是正数【例2】若244x x -+ 与23x y --互为相反数,则x +y 的值为( ) A .3 B .4 C .6 D .9 归纳 3:实数的大小比较 基础知识归纳:正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小.基本方法归纳:(1)求差比较:设a 、b是实数,,0b a b a >⇔>-,0b a b a =⇔=-b a b a <⇔<-0(2)求商比较法:设a 、b 是两正实数,;1;1;1b a bab a b a b a b a <⇔<=⇔=>⇔> (3)平方法:设a 、b 是两负实数,则b a b a <⇔>22.注意问题归纳:实数的大小比较,一般要将其进行化简,并合理选择方法来进行比较. 【例3】用“<”号,将1)61(-、0)2(-、2)3(-、22-连接起来______【例4】已知实数a ,b 在数轴上的对应点的位置如图所示,则a +b 0.(填“>”,“<”或“=”)归纳 4:科学计数法与近似数基础知识归纳:根据科学记数法的定义,科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.基本方法归纳:利用科学计数法表示一个数,在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)注意问题归纳:利用科学计数法表示数和转化为原数时,要注意数位的变化.【例5】PM 2.5是指大气中直径小于或等于2.5μm (1μm =0.000001m )的颗粒物,也称为可入肺颗粒物,它们还有一定量的有毒、有害物质,对人体健康和大气环境质量有很大影响.2.3μm 用科学记数法可表示为( )A .23×10﹣5m B .2.3×10﹣5m C .2.3×10﹣6m D .0.23×10﹣7m 归纳 5:实数的混合运算基础知识归纳:实数混合运算时,将运算分为三级,加减为一级运算,乘除为二级运算,乘方为三级运算.同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行基本方法归纳:实数的混合运算经常涉及到零指数幂、负整数指数幂、特殊角的三角函数值、绝对值的化简、二次根式等内容,要熟练掌握这些知识.注意问题归纳:实数的混合运算经常以选择、填空和解答的形式出现,是中考是热点,也是比较容易出错的地方,在解答此类问题时要注意基本性质和运算的顺序.【例6】计算:2021(2017)(12)2cos 452π-⎛⎫-+---+ ⎪⎝⎭o .☞1年模拟一、选择题1.某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是( )A .1.6×10﹣4 B .1.6×10﹣5 C .1.6×10﹣6 D .16×10﹣42.23-的相反数是( ) A .32 B .32- C .23 D .23-3.C 919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为( )A .1×106B .100×104C .1×107D .0.1×1084.生物学家发现了一种病毒,其长度约为0.00000032mm ,数据0.00000032用科学记数法表示正确的是( )A .3.2×107B .3.2×108C .3.2×10﹣7 D .3.2×10﹣8 5.81-的相反数是( ) A .8 B .﹣8 C .18 D .81- 6.计算12-+的结果是( )A .-3B .-1C .1D .37.下列运算错误..的是( ) A .0(31)1-= B .291(3)44-÷= C .22256x x x -=- D .3224(2)(2)m m m ÷=8.如图,数轴上点A 表示数a ,则|a |是( )A .2B .1C .﹣1D .﹣2 9.下列四个数中,最小的数是( ) A .﹣1 B .0 C .12D .3 10.计算12+(﹣18)÷(﹣6)﹣(﹣3)×2的结果是( ) A .7 B .8 C .21 D .36 11.在0、2、﹣1、﹣2这四个数中,最小的数为( ) A .0 B .2 C .﹣1 D .﹣212.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n ,则n 的值为( )A .5B .6C .7D .8 13.大米包装袋上(10±0.1)kg 的标识表示此袋大米重( )A .(9.9~10.1)kgB .10.1kgC .9.9kgD .10kg 14.下列四个数:﹣3,3-,﹣π,﹣1,其中最小的数是( ) A .﹣π B .﹣3 C .﹣1 D .3- 15.4的算术平方根是( )A .4B .2C .﹣2D .±2 16.下列实数中,为无理数的是( )A .﹣2B .2C .2D .417.将一组数2,2,6,22,10,…,210,按下列方式进行排列:2,2,6,22,10; 23,14,4,32,25;…若2的位置记为(1,2),23的位置记为(2,1),则38这个数的位置记为( ) A .(5,4) B .(4,4) C .(4,5) D .(3,5) 18.若3<a <10,则下列结论中正确的是( )A .1<a <3B .1<a <4C .2<a <3D .2<a <4 二、填空题19.请写出一个无理数 .20.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{}min 2,3--= ;若{}22min (1),1x x -=,则x = .三、解答题 21.阅读理解题:定义:如果一个数的平方等于-1,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(,a b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.例如计算:()()()()253251372i i i i -++=++-+=+()()()21212221213i i i i i i i +⨯-=⨯-+⨯-=+-++=+;根据以上信息,完成下列问题:(1)填空:3i =_________,4i =___________; (2)计算:()()134i i +⨯-; (3)计算:232017i i i i++++L .22.规定:[x ]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x ≠n +0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是 .(写出所有正确说法的序号)①当x =1.7时,[x ]+(x )+[x )=6; ②当x =﹣2.1时,[x ]+(x )+[x )=﹣7; ③方程4[x ]+3(x )+[x )=11的解为1<x <1.5;④当﹣1<x <1时,函数y =[x ]+(x )+x 的图象与正比例函数y =4x 的图象有两个交点. 23.已知实数m 、n 满足210n m -++=,则m +2n 的值为 . 24.计算1+4+9+16+25+…的前29项的和是 .25.若a 、b 、c 为三角形的三边,且a 、b 满足29(2)0a b -+-= ,第三边c 为奇数,则c = .26.计算:020171(252)25(1)453-+-+--⨯.。
中考数学总复习课件(完整版)

第2讲┃ 归类示例
请解答下列问题:
(1)按以上规律列出第5个等式:a5=__9×_1_1_1___=
___12_×__19_-_1_11_______;
(2)用含n的代数式表示第n个等式:an= (_2n_-__1_)_×_1_(__2_n+__1_)__=_12_×__2_n_1-_1_-__2_n_1+_1___(n为正整数);
第1讲 实数的有关概念 第2讲 实数的运算与实数的大小比较 第3讲 整式及因式分解 第4讲 分式 第5讲 数的开方及二次根式
第1讲┃ 实数的有关概念
第1讲┃ 考点聚焦
考点聚焦
考点1 实数的概念及分类
1.按定义分类:
实数
有理数
整数
分数
正整数 零 负整数
正分数 有限小数或 负分数 无限循环小数
________2.
图1-2
第1讲┃ 回归教材
2.[2011·贵阳] 如图1-3,矩形OABC的边OA长为2,
边 AB 长为1,OA 在数轴上,以原点 O 为圆心,对角线 OB
的长为半径画弧,交正半轴于一点,则这个点表示的实数是
( D) A . 2.5
B . 2√2
C.√3
D.√5
图1-3 [解析] 由勾股定理得 OB= OA2+AB2= 22+12= 5.
而应从最后结果去判断.一般来说,用根号表示
的数不一定就是无理数,如
是有理数,
用三角函数符号表示的数也不一定就是无理数,
如sin30°、tan45°也不是无理数,一个数是不
是无理数关键在于不同形式表示的数的最终结果
是不是无限不循环小数.
第1讲┃ 归类示例
► 类型之二 实数的有关概念
初中数学 数与式模块1-2 实数讲义(含答案解析)

实数题型练题型一平方根例1.16的平方根是().A .±8B .±4C .4D .-4【解析】因为(±4)2=16,所以16的平方根是±4变式1.若a +1和-5是实数m 的平方根,则a 的值是().A.1B.2C.3D.4或-6【答案】D【解析】【分析】根据平方根的定义可得两个关于a 的一元一次方程,解方程即可得.【详解】解:由题意得:15a +=-或1(5)0a ++-=,解得6a =-或4a =,故选:D .【点睛】本题考查了平方根、一元一次方程的应用,熟练掌握平方根的定义是解题关键.题型二算术平方根(2)非负数a 的算术平方根a 有双重非负性:①被开方数a 是非负数;②算术平方根a 本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.例2.2.81的算术平方根为().A.9B.-9C.-3D.27【答案】A【解析】【分析】根据算术平方根的定义即可得.【详解】解:2981=Q ,81\的算术平方根为9,故选:A .【点睛】本题考查了算术平方根,熟记定义是解题关键.变式3.下列式子错误的是().A.2=±B.1=±C.3=- D.32=【答案】B【解析】【分析】根据算术平方根和平方根的定义求解即可.【详解】A.2=±,故该选项正确,不符合题意;B.1=,故该选项错误,符合题意;C.3=-,故该选项正确,不符合题意;D.32==,故该选项正确,不符合题意;故选B .【点睛】本题考查算术平方根和平方根的定义,熟练掌握相关定义是解答本题的关键.题型三非负数的性质:算术平方根(1)非负数的性质:算术平方根具有非负性.(2)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0利用此性质列方程解决求值问题.例3.4.下列说法正确的是()A.﹣81平方根是﹣9B.9C.平方根等于它本身的数是1和0D.一定是正数【答案】D【解析】【分析】根据一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根进行分析即可.【详解】A 、﹣81没有平方根,故A 选项错误;B 9的平方根是±3,故B 选项错误;C 、平方根等于它本身的数是0,故C 选项错误;D 一定是正数,故D 选项正确,故选D .【点睛】本题主要考查了平方根,解题的关键是掌握平方根的性质.变式5.0=,则x y +的值为()A.10B.不能确定C.6-D.10-【答案】C【分析】根据算术平方根的非负性得到x 和y 的值,再代入计算.0=,∴x-2=0且y+8=0,∴x=2,y=-8,∴x y +=-6,故选C .【点睛】本题考查了算术平方根的非负性,解题的关键是掌握被开方数是非负数.题型四立方根例4.-8的立方根等于.【解析】∵(-2)3=-8,∴-8的立方根是-2变式6.若519x +的立方根是4,则27x +的平方根是________.【答案】5±【分析】首先利用立方根的定义可以得到关于x 的方程,解方程即可求出x ,然后利用平方根的定义即可求解.【详解】∵5x+19的立方根是4,∴5x+19=64,解得x=9则2x+7=2×9+7=25,∴25的平方根是±5故答案±5.【点睛】此题主要考查了利用立方根的概念解题.牢牢掌握灵活运用.如果一个数x 的立方等于a ,即x 的三次方等于a (x 3=a ),那么这个数x 就叫做a 的立方根,也叫做三次方根.读作“三次根号a”其中,a 叫做被开方数,3叫做根指数.题型五计算器—数的开方正数a 的算术平方根a 与被开方数a 的变化规律是:当被开方数a 的小数点每向左或向右平移2位时,它的算术平方根的小数点也相应向左或向右平移1位,即a 每扩大(或缩小)100倍,a 相应扩大(或缩小)10倍.例5.7.用计算器计算:≈_____.(精确到0.01)【答案】15.63【解析】【分析】根据计算器的使用方法、精确度的定义即可得.15.63≈,故答案为:15.63.【点睛】本题考查了计算器的使用、精确度,熟练掌握计算器的使用方法是解题关键.变式8.利用计算器,得7.071≈≈≈≈,按此规【答案】22.36【解析】【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.7.071≈≈≈≈,不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,因此得到第三个数的估值扩大1022.36≈.故答案为22.36.【点睛】本题是规律题,主要考查找规律,即各数之间的规律变化,在做题时,学会观察,利用已知条件得到规律是解题的关键.题型六无理数(1)定义:无限不循环小数叫做无理数.说明:无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数.如圆周率、2的平方根等.(2)无理数与有理数的区别:①把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,比如4=4.0,13=0.33333…而无理数只能写成无限不循环小数,比如2=1.414213562②所有的有理数都可以写成两个整数之比;而无理数不能.例6.9.在2π,3.14,0,0.1010010001…,23中,无理数有______个.【答案】2【解析】【分析】根据无理数的种类即可判断出上述题目中无理数的个数.【详解】无理数是无限不循环小数,在2π,3.14,0,0.1010010001…,23中,2π,0.1010010001…两个数是无理数.【点睛】此题重点考察学生对无理数的理解,掌握无理数的定义是解题的关键.变式10.下列说法正确的是()A.9的算术平方根是﹣3B.带根号的数是无理数C.无理数是无限小数D.的算术平方根是2【答案】C【解析】【分析】根据算术平方根的概念、无理数的概念进行判断即可.【详解】解:A 、9的算术平方根是3,故此选项错误;B 、带根号的数不一定是无理数,如,故此选项错误;C 、无理数是无限小数,故此选项正确;D 故选:C .【点睛】本题考查算术平方根、无理数,理解无理数的概念,会求一个数的算术平方根是解答的关键,注意D 选项是易错点.题型七实数(1)实数的定义:有理数和无理数统称实数.(2)实数的分类:①可分为:有理数和无理数;②可分为:正实数、0和负实数.例7.11.在−,0,2270.1010010001…−2π中,负实数集合:{________________}.【答案】−2π【解析】【分析】先根据二次根式的性质,立方根的运算,负整指数幂的运算,将各数进行化简,再根据负实数的定义,进行判断即可.【详解】0-=-<,是负实数;0不是负实数;227>,不是负实数;50=-<,是负实数;0.1010010001…>0,不是负实数;110==>,不是负实数;2π-<,是负实数,综上所述,负实数有:−2π,故填:−2π.【点睛】此题主要考查了负实数的定义,二次根式的性质,立方根的计算,负整指数幂的计算,解题关键是掌握负理数的定义,二次根式的性质,立方根的计算,负整指数幂的运算法则.变式12.我们规定:相等的实数看作同一个实数.有下列六种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③每个有理数都可以用数轴上唯一的点来表示;④数轴上每一个点都表示唯一一个实数;⑤没有最大的负实数,但有最小的正实数;⑥没有最大的正整数,但有最小的正整数.其中说法错误的有_____(注:填写出所有错误说法的编号)【答案】⑤【解析】【详解】分析:根据每种说法所涉及的数学知识进行分析判断即可.详解:(1)“数轴上有无数多个表示无理数的点”的说法是正确的,故①正确;(2)“带根号的数不一定是无理数”是正确的,如带有根号,但它是有理数,故②正确;(3)“每个有理数都可以用数轴上唯一的点来表示”的说法是正确的,故③正确;(4)“数轴上的每一个点都表示唯一的实数”的说法是正确的,故④正确;(5)“没有最大的负实数,但有最小的正实数”的说法是错误的,因为没有最小的正实数,故⑤错误;(6)“没有最大的正整数,但有最小的正整数”的说法是正确的,故⑥正确.综上所述,上述说法中,只有⑤中说法是错误的.故答案为:⑤.点睛:熟悉“每种说法中所涉及的相关数学知识”,知道“实数和数轴上的点是一一对应的关系”是正确解答本题的关键.题型八实数的性质(1)在实数范围内绝对值的概念与在有理数范围内一样.实数a的绝对值就是在数轴上这个数对应的点与原点的距离.(2)实数的绝对值:正实数a的绝对值是它本身,负实数的绝对值是它的相反数,0的绝对值是0(3)实数a的绝对值可表示为|a|={a(a≥0)-a(a<0),就是说实数a的绝对值一定是一个非负数,即|a|≥0.并且有若|x|=a(a≥0),则x=±a.实数的倒数乘积为1的两个实数互为倒数,即若a与b互为倒数,则ab=1;反之,若ab=1,则a与b互为倒数,这里应特别注意的是0没有倒数.例8.13.的绝对值是________,相反数是________,倒数是________.【答案】①.②.③.【解析】【分析】根据负数的绝对值是它的相反数,可得负数的绝对值;根据只有符号不同的两个数互为相反数,可得一个数的相反数;根据乘积为1的两个数互为倒数,可得一个数的倒数.的绝对值是倒数是故答案为(1).(2).(3).【点睛】本题考查的是绝对值、相反数和倒数的知识,熟知绝对值的性质、相反数的定义及倒数的定义是解答此题的关键.变式14.23﹣π的绝对值是_____.【答案】①.﹣②.π﹣3【解析】【分析】根据相反数和绝对值的计算方法解答.【详解】解:2的相反数:﹣(2|3﹣π|=π﹣3.故答案是:﹣π﹣3.【点睛】本题考查了相反数、绝对值,熟练掌握相反数、绝对值的定义是解题的关键.题型九实数与数轴(1)实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.(2)在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等,实数a 的绝对值就是在数轴上这个数对应的点与原点的距离.(3)利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.例9.15.如果正实数a在数轴上对应的点到原点的距离是a=______.【解析】【分析】根据数轴的特点即可求解.【详解】∵实数a在数轴上对应的点到原点的距离是,∴a∵a为正∴a=.【点睛】此题主要考查实数与数轴,解题的关键是熟知数轴的特点.变式16.如图,在数轴上找到表示-3的点B,过点A作AB⊥OB,AB=2,以O为圆心,OA为半径作弧,弧与数轴交于点C,则点C在数轴上表示的数是__.【答案】【解析】OB=,再利用勾股定理可得OA=从而可得【分析】先根据数轴的定义可得3OC==,【详解】解:设点C在数轴上表示的数是a,则OC aOB=--=,由题意得:0(3)3,⊥=AB OB AB,2∴===,OA由作图可知,OC OA==,即a=解得a=a<-<,由数轴的定义得:30∴=,a即点C在数轴上表示的数是,故答案为:.【点睛】本题考查了实数与数轴、勾股定理,熟练掌握实数与数轴的关系是解题关键.题型十实数大小比较(1)任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.例10.17.将实数,π-,0,1由大到小用“>”连起来,可表示为__________.【答案】10π>>>-解:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解析】【详解】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.-≈-.解:∵ 2.6≈-,π 3.14∴10π>>>-变式18.比较大小:(1)-100___0.3;(2___3;(3)-3.14___-π.【答案】①.<②.<③.>【解析】【分析】(1)根据负数小于正数即可得;(2)根据无理数的估算方法即可得;(3)根据负数绝对值大的反而小即可得.【详解】解:(1)由负数小于正数得:1000.3-<,故答案为:<;(2)79< ,<3<,故答案为:<;(3) 3.1415926 3.14π≈> ,3.14π∴->-,故答案为:>.【点睛】本题考查了实数的大小比较、无理数的估算,熟练掌握实数的大小比较方法是解题关键.题型十一估算无理数的大小估算无理数大小要用逼近法.思维方法:用有理数逼近无理数,求无理数的近似值.例11.<a ,且a 是整数,则a =.<2<a ∴a =2变式19.3-最接近的整数是___.【答案】1【解析】【分析】先根据无理数的估算可得34<<,再比较3-与4的大小,由此即可得出答案.【详解】解:91416<< ,<<,即34<<,--=--+3(434=-,7=-,3.5)=>,->-,34最接近的整数是4,-=,3-最接近的整数是431故答案为:1.【点睛】本题考查了无理数的估算、实数的大小比较,熟练掌握无理数的估算方法是解题关键.题型十二实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.例12.(−5)2=.解:(−5)2=25−4+2=23变式20.计算+【答案】7.【解析】【分析】先计算立方根、算术平方根,再计算有理数的加减即可得.【详解】解:原式27=-++,52=+,7=.【点睛】本题考查了立方根、算术平方根等知识点,熟练掌握各定义和运算法则是解题关键.实战练21.若9x2-16=0,则x=_______.【答案】4 3±【解析】【分析】先将方程变形为216 9x=,然后方程两边同时开平方即可得到x的值.【详解】解:由题意可知:216 9x=,等式两边同时开平方,得到:43x=±,故答案为:43±.【点睛】本题考查了利用平方根的定义解方程,计算过程中细心,注意正数开平方后有两个平方根.22.的算术平方根是_______.【解析】=10,然后再根据算术平方根的定义可得答案.=10,10,,.【点睛】此题主要考查了实数和算术平方根,相反数,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.23.0+=,则22012a b --=______.【答案】109-【解析】【详解】分析:先由非负性的性质得出3a +1=0,b ﹣1=0,求出a ,b 代入式子计算即可.=0,∴3a +1=0,b ﹣1=0,∴a =﹣13,b =1,∴﹣a 2﹣b 2012=﹣(13)2﹣12012=﹣19﹣1=﹣109.故答案为﹣109.点睛:本题是非负数的性质:算术平方根,主要考查了一元一次方程的解法,有理数的运算,解答本题的关键是求出a ,b .24.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.【答案】4【解析】【分析】首先根据平方根的定义,求出m 值,再根据立方根的定义求出n ,代入-n+2m ,求出这个值的算术平方根即可.【详解】解:∵一个正数的两个平方根分别是m+3和2m-15,∴m+3+2m-15=0,解得:m=4,∵n 的立方根是-2,∴n=-8,把m=4,n=-8代入-n+2m=8+8=16,所以-n+2m 的算术平方根是4.故答案为:4.【点睛】本题考查了平方根、算术平方根、立方根.解题的关键是掌握平方根、算术平方根、立方根的定义,能够利用定义求出m 、n 值,然后再求-n+2m 的算术平方根.25.如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共__个.【答案】4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点.【详解】解:根据题意可得以AB为边画直角△ABC,使点C在格点上,且三边都为无理数,满足这样条件的点C共D,E,F,H4个点.故答案为8.26.若|a,则的相反数是____.【答案】2【解析】【分析】先化简绝对值可得a=26a=,再根据算术平方根的定义、相反数的定义即可得.,【详解】解:a=∴=,a26∴=,a===-,2则的相反数是2,故答案为:2.【点睛】本题考查了化简绝对值、算术平方根、相反数,熟练掌握算术平方根的定义是解题关键.27.①点M在数轴上与原点相距M表示的实数为____,②数轴上到的点所表示的数是___.【答案】①.②.0或-【解析】【分析】①根据实数与数轴的关系建立等式,再化简绝对值即可得;②根据实数与数轴、数轴两点间的距离公式即可得.【详解】解:①设点M表示的实数为m,m-=,则0解得m=即点M表示的实数为故答案为:②设这个点所表示的数是a,-=,则aa=或a=-解得0即这个点所表示的数是0或-,故答案为:0或-.【点睛】本题考查了实数与数轴,正确建立含绝对值的等式是解题关键.28.比较大小:________(填“>”或“<”=).【答案】>【解析】【分析】先将两个数进行平方再比大小【详解】∵22==1812(,(又18>12∴>故答案为>【点睛】此题主要考查二次根式的大小比较29.已知a的整数部分,b则(-a)3+(2+b)2=________;【答案】0【解析】【分析】根据4<8<9的整数部分,表示出小数部分,确定出a与b 的值,代入所求式子计算即可求出值.【详解】∵4<8<9,∴23,的整数部分a=2,小数部分,则原式=-8+8=0.故答案为0.【点睛】此题考查了估算无理数的大小,解题关键是确定无理数的整数部分与小数部分.30.+2=________.【答案】5【解析】【分析】由立方根、算术平方根的性质化简.2=3+2=5故答案为:5.【点睛】本题考查实数的运算,涉及立方根、算术平方根等知识,是基础考点,难度较易,掌握相关知识是解题关键.31.若一个正数的两个平方根分别为2-a与3a+6,则这个正数为()A.2B.-4C.6D.36【答案】D【解析】【分析】根据平方根的定义可得一个关于a的一元一次方程,解方程求出a的值,再计算有理数的乘方即可得.【详解】解:由题意得:2(36)0a a -++=,解得4a =-,则这个正数为222(2)(24)636a -=+==,故选:D .【点睛】本题考查了平方根、一元一次方程的应用,熟练掌握平方根的定义是解题关键.32.下列说法正确的是()A.-4是(-4)2的算术平方根B.±4是(-4)2的算术平方根C.2D.-2【答案】D【解析】【分析】根据算术平方根、平方根的定义逐项判断即可得.【详解】A 、2(4)16-=,16的算术平方根是4,则此项错误,不符题意;B 、2(4)16-=,16的算术平方根是4,则此项错误,不符题意;C 4=,4的平方根是2±,则此项错误,不符题意;D 4=,4的平方根是2±,则2-故选:D .【点睛】本题考查了算术平方根、平方根,掌握理解定义是解题关键.33.0+=,则x -y 的值为()A.3B.-3C.1D.-1【答案】D【解析】【分析】先根据算术平方根的非负性可得10,20x y -=-=,从而可得1,2x y ==,再代入计算即可得.【详解】解:由题意得:10,20x y -=-=,解得1,2x y ==,则121x y -=-=-,故选:D .【点睛】本题考查了算术平方根的非负性,熟练掌握算术平方根的非负性是解题关键.34.2=-,则的值是()A.1B.2C.3D.4【答案】C【解析】【分析】先根据立方根的定义求出a 的值,再根据算术平方根的定义即可得.【详解】解:2=-,18a ∴-=-,解得9a =,3==,故选:C .【点睛】本题考查了立方根与算术平方根、一元一次方程的应用,熟练掌握立方根与算术平方根的定义是解题关键.35.下列说法正确的是()A.实数可分为有理数和无理数B.无限小数都是无理数C.只有0的立方根是它本身D.1的任何次方根都是1【答案】A【解析】【分析】根据实数的概念,立方根的概念,无理数的概念逐个求解即可.【详解】解:选项A :实数分为有理数和无理数,故选项A 正确;选项B :无限不循环的小数是无理数,无限循环小数可以写成分数的形式,是有理数,故选项B 错误;选项C :立方根等于它本身的数有-1,0,1,故选项C 错误;选项D :1的平方根为±1,故选项D 错误;故选:A .【点睛】本题考查实数的分类,无理数的定义,立方根,平方根的性质,解题的关键是熟记这些基本概念.36.若a,b ,c 的相反数、绝对值、倒数,则下列结论正确的是()A.a b> B.b c < C.a c > D.2b c =【答案】D【解析】【分析】根据题意分别列出a ,b ,c 分别表示的数,然后比较即可得出结论.【详解】由题意,a =b =,2c ==,∴2b c =,故选:D .的倒数求出是解题关键.37.如图,根据图中的标注和作图痕迹可知,在数轴上的点A 所表示的数为()A.1-B.1-+C.D.1【答案】A【解析】【分析】根据勾股定理,结合数轴即可得出结论.【详解】解:∵在Rt △BCD 中,BD=2,CD=1,∴∵根据图中的标注和作图痕迹可知,∴∴点A 表示的实数是1--故选A .【点睛】本题考查勾股定理,以及数轴与实数,关键是求出BC 的长.38.1-的值()A.在4和5之间B.在5和6之间C.在6和7之间D.在7和8之间【答案】B【解析】【分析】根据无理数的估算即可得.【详解】解:364149<< ,<<,即67<<,61171∴-<-<-,即516<-<,故选:B .【点睛】本题考查了无理数的估算,熟练掌握无理数的估算方法是解题关键.39.实数a 、b 在数轴上的位置如图所示,那么a b -的结果是()A.2aB.2bC.2a -D.2b-【答案】D【解析】【分析】由数轴可得到0b a <<a b =+和绝对值的性质,即可得到答案.【详解】解:根据题意,则0b a <<,∴0a b ->,0a b +<,∴a b -+=a b a b-++=a b a b---=2b -;故选:D .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是掌握所学的知识,正确得到0b a <<.40.已知一个正数m 的两个不同的平方根是2a +3和1-3a ,求m 的值.【答案】121【解析】【分析】一个正数的两个平方根互为相反数,根据它们的和为0,求出a 的值,然后求出这个数的平方根,最后根据平方根的平方即可求出m 的值.【详解】解:根据题意得:(2a +3)+(1-3a )=0,2a +3+1-3a =0,解得:a =4,∴这个数的其中一个平方根为2×4+3=11∴m =112=121.【点睛】本题考查平方根的定义,熟练掌握正数的平方根有两个,它们互为相反数,即它们的和为0.41.互为相反数,求(x+y)2016的平方根.【答案】±1【解析】【详解】试题分析:根据相反数的性质列出算式,根据非负数的性质列出二元一次方程组,解方程组求出x、y的值,根据平方根的概念解答即可.=0,则3020x yx y-+⎧⎨+⎩==,解得,21xy-⎧⎨⎩==,∴(x+y)2016=1,∴(x+y)2016的平方根是±1.42.正数x的两个平方根分别为3﹣a和2a+7.(1)求a的值;(2)求44﹣x这个数的立方根.【答案】(1)a=﹣10;(2)4-x的立方根是﹣5【解析】【分析】(1)理解一个正数有几个平方根及其两个平方根间关系:一个正数有两个平方根,它们互为相反数,求出a的值;根据a的值得出这个正数的两个平方根,即可得出这个正数,计算出44-x的值,再根据立方根的定义即可解答.【详解】解:(1)由题意得:3﹣a+2a+7=0,∴a=﹣10,(2)由(1)可知x=169,则44-x=﹣125,∴44-x的立方根是-5.【点睛】此题考查了立方根,平方根,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.43.判断下面两句话是否正确.若正确请说明理由;若不正确,请举例说明.(1)两个实数的和一定大于每一个加数.(2)两个无理数的积一定是无理数.【答案】(1)、答案见解析;(2)、答案见解析【解析】【分析】(1)、当两个加数为负数时,则和小于任何一个加数;(2)、当两个数为同一个无理数时,则两数的积为有理数.【详解】(1)、错误.例子:(-1)+(-2)=-3,-3<-1,-3<-2;(2)、错误.是无理数,而2是有理数.44.实数a 、b 、c 在数轴上的位置如图所示,其中c 为8的立方根,求代数式2b a b +--的值.【答案】2.【解析】【分析】先根据数轴的定义可得0b a c <<<,从而可得0,0b a b c -<-<,再根据立方根的定义可得2c =,然后根据算术平方根的定义、化简绝对值即可得.【详解】解:由数轴的定义得:0b a c <<<,0,0b a b c ∴-<-<,c 为8的立方根,2c ∴=,()()()22b a b a a b c b b +--=-+-+---,2a a b c b b =-+-+-+,c =,2=.【点睛】本题考查了实数与数轴、立方根与算术平方根等知识点,熟练掌握数轴的定义是解题关键.45.(1)用“<”、“>”或“=”(2)由以上可知:①1-=________________=_____________;(3)计算:1-+ .(结果保留根号)【答案】(1)<,<;(21-;(31-【解析】【分析】(1)当被开方数越大时算数平方根越大,依此判断即可;(2)依据(1)知次数为负数,而负数的绝对值等于它的相反数即可化简;(3)依据(2)将化简的结果相加即可.【详解】解:(1)<,<(21-(3)原式1-+-+-+1【点睛】此题是考察算数平方根的大小比较,准确解得(1)是关键,为后两问做基础.46.已知:31a +的立方根是2-,21b -的算术平方根3,c(1)求,,a b c 的值;(2)求922a b c -+的平方根.【答案】(1)3,5,6a b c =-==;(2)其平方根为4±.【解析】【分析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值;(2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根.【详解】解:(1)由题得318,219a b +=--=.3,5a b ∴=-=.<<,67∴<<.6c ∴=.3,5,6a b c ∴=-==.(2)当3,5,6a b c =-==时,()99223561622a b c -+=⨯--+⨯=.∴其平方根为4=±.【点睛】本题考查了立方根,平方根,无理数的估算.正确把握相关定义是解题的关键.47.计算下列各题:(1+(2)7π--,(3(21+--+.【答案】(1)118;(2)π-;(3)8.【解析】【分析】(1)先计算算术平方根、立方根,再计算有理数的加减即可得;(2)先化简绝对值、计算算术平方根,再计算实数的加减即可得;(3)先计算算术平方根、化简绝对值、立方根、实数的平方,再计算实数的加减即可得.【详解】解:(1)原式14(3)2+-+=-11143228=--++,118=;(2)原式(7π=--,77π=,π=-;(3)原式)125=+-+,613=+,8=.【点睛】本题考查了算术平方根与立方根、实数的加减运算、化简绝对值,熟练掌握各运算法则是解题关键.培优练48.先阅读,然后解答提出的问题:设a,b是有理数,且满足a b=3﹣,求b a的值.解:由题意得(a﹣3)+(b+2=0,因为a,b都是有理数,所以a﹣3,b+2也是有理数,是无理数,所以a﹣3=0,b+2=0,所以a=3,b=﹣2,所以b a=(﹣2)3=﹣8.问题:设x,y都是有理数,且满足x2﹣2y x+y的值.【答案】8或0.【解析】【分析】根据所给信息,先移项,然后将有理数和无理数分组,从而可得(x2-2y-8)y-4)=0,结合所给信息即可得出x、y的值,代入代数式即可得出答案.【详解】解:移项得(x2-2y-8)+(y-4,∴y-4=0,x2-2y-8=0∴y=4,x=±4,故x+y=8或0.【点睛】本题考查了实数的运算,解答本题的关键是仔细审题,得到题目所给的解题思路,然后套用这个思路解题,正确理解题意、熟练掌握实数的性质是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备战2021年中考数学总复习一轮讲练测
第一单元数与式
第1讲实数的有关概念和计算
1、了解:平(立)方根、算术平方根的概念;无理数、实数的概念;近似数、有效数字的概念;二次根式的概念及其加、减、乘、除运算法则.
2、理解:有理数的意义;借助数轴理解相反数和绝对值的意义;实数与数轴上的点一一对应;有理数的运算律.
3、会:比较有理数大小;求有理数的相反数;会求有理数的绝对值;用根号表示数的平(立)方根;求平(立)方根;进行实数的简单四则运算.
4、掌握:有理数的加、减、乘、除、乘方;简单的混合运算.
5、能:灵活处理较大数字的信息;能用有理数估计无理数的大致范围.
1.(2020•顺义区二模)5-的倒数是( ) A .5-
B .1
5
C .15
-
D .5
2.(2020•东城区一模)2019年上半年北京市实现地区生产总值15212.5亿元,同比增长6.3%.总体来看,经济保持平稳运行,高质量发展.将数据15212.5用科学记数法表示应为( ) A .51.5212510⨯
B .41.5212510⨯
C .50.15212510⨯
D .60.15212510⨯
3.(2020•石景山区一模)实数a ,b ,c 在数轴上的对应点的位置如图所示,则不正确的结论是( )
A .||3a >
B .0b c -<
C .0ab <
D .a c >-
4.(2020•北京一模)在数轴上,点A ,B 分别表示实数a ,b ,将点A 向左平移1个单位长度得到点C ,若点C ,B 关于原点O 对称,则下列结论正确的是( ) A .1a b +=
B .1a b +=-
C .1a b -=
D .1a b -=-
5.(2020春•西城区校级期中)如图,3,11在数轴上的对应点分别为C ,B ,点C 是AB 的中点,则点A 表示的数是( )
A .11-
B .311
C 113
D .611
6.(2020秋•通州区期末)下列说法正确的是( ) A .16的算术平方根是4±
B .任何数都有两个平方根
C .因为3的平方是9,所以9的平方根是3
D .1-是1的平方根
7.若21(2)0x y
-++=,则2021()x y +等于( ) A .1-
B .1
C .20203
D .20203-
8.(2020秋•海淀区校级月考)写出一个比3大且比13小的整数是 . 9.(2020•平谷区一模)计算:0113tan30(4)()|32|2π-︒--++-.
10.(2020•北京一模)计算:11
4sin30|2|8()2
-︒+---.
1.实数的有关概念
(1) 和 统称为有理数. (2) 和 统称实数.
(3)数轴的三要素为 、 和 . 数轴上的点与 一一对应. (4)实数a 的相反数为 .若a ,b 互为相反数,则b a += . (5)非零实数a 的倒数为 . 若a ,b 互为倒数,则ab = .
(6)绝对值⎪⎪⎩
⎪
⎪⎨
⎧<=>=)
0()0()
0(a a a a .若=a a ,则a 为 ;若a a =-,则a 为 . (7)科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数. 2.实数的计算
(1)n
a 表示n 个a 相乘,n
a 称为幂,其中a 叫做 ,n 叫做 .
=0a (其中a 0);0的任何非零次幂都等于0;
=-p a (其中a 0,p 为整数)
(2)平方根:如果一个数x 的平方等于a ,即2x a =,那么这个数x 叫做a 的平方根或二次方根,记为a ±.
一个正数有 平方根,它们互为 ;负数没有平方根;0的平方根是 . (3)算术平方根:如果一个正数x 的平方等于a ,则这个正数x 为a 的算术平方根,记为a ±.
一个正数有 算术平方根,0的算术平方根是 .
(4)立方根:一个数x 的立方等于a ,那么这个数x 叫做a 的立方根或三次方根,记为3a .
一个正数有一个正的立方根;一个负数有一个 的立方根;0的立方根是 . 3. 实数运算顺序及运算律
(1)先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行. (2)运算律:交换律、结合律、乘法分配律. 4. 实数大小的比较
(1) 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大.
(2)正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的.
考点一 实数分类
例1.(2020秋•顺义区期末)实数2-,0.3,22
7
,2,π-中,无理数的个数是( ) A .2 B .3 C .4 D .5
【变式训练】
1.(2020春•东城区校级期末)下列各数中属于无理数的是( ) A .0.333 B .
22
7
C .5
D .327
考点二 实数与数轴
例2.(2020•海淀区一模)若实数m ,n ,p ,q 在数轴上的对应点的位置如图所示,且n 与q 互为相反数,则绝对值最大的数对应的点是( )
A .点M
B .点N
C .点P
D .点Q
【变式训练】
1.(2020•昌平区二模)实数a ,b ,c ,d 在数轴上对应的点的位置如图所示,下列结论正确的是( )
A .||||a b <
B .0ad >
C .0a c +>
D .0d a ->
2.(2020•丰台区二模)实数a ,b ,c 在数轴上的对应点的位置如图所示,则下列结论正确的是( )
A .a b c >>
B .||||b a >
C .0b c +<
D .0ab >
3.(2020•平谷区一模)若已知实数a ,b 满足0ab <,且0a b +>,则a ,b 在数轴上的位置符合题意的是
( ) A . B . C .
D .
4.(2020•西城区一模)在数轴上,点A ,B 表示的数互为相反数,若点A 在点B 的左侧,且22AB =则点A ,点B 表示的数分别是( ) A .2-2 B 22-C .0,22D .22-22
考点三 科学记数法
例3.(2020•海淀区一模)北京故宫有着近六百年的历史,是最受中外游客喜爱的景点之一,其年接待量在2019年首次突破19000000人次大关.将19000000用科学记数法可表示为( ) A .80.1910⨯ B .70.1910⨯ C .71.910⨯ D .61910⨯
【变式训练】
1.电影《流浪地球》中,人类计划带着地球一起逃到距地球4光年的半人马星座比邻星.已知光年是天文学中的距离单位,1光年大约是95000亿千米,则4光年约为( ) A .49.510⨯亿千米 B .49510⨯亿千米 C .53.810⨯亿千米
D .43.810⨯亿千米
2.(2020•丰台区二模)熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为( ) A .30.15610-⨯
B .31.5610-⨯
C .41.5610-⨯
D .415.610-⨯
3.(2020•丰台区一模)据报道,位于丰台区的北京排水集团槐房再生水厂,是亚洲规模最大的一座全地下再生水厂,日处理污水能力600000立方米,服务面积137平方公里.将600000用科学记数法表示为( ) A .50.610⨯ B .60.610⨯
C .5610⨯
D .6610⨯
考点四 实数的非负性
例4.(2020秋•石景山区期末)如果2|3|(2)0m n -++=,那么mn 的值为( ) A .6- B .6
C .1
D .9
【变式训练】
1.如果2(21)|5|0x y x y -+++-=,那么y x = .
2.(2020秋•通州区期末)已知23(2)0a b ++-=,那么a b +的值为 .
考点五 实数的估算
例5.(2020秋•顺义区期末)如果101m =-,那么m 的取值范围是( ) A .01m << B .12m <<
C .23m <<
D .34m <<
【变式训练】
1.(2020春•丰台区期末)如图,数轴上与40对应的点是( )
A .点A
B .点B
C .点C
D .点D
273a ,小数部分是b ,则2a b -= .
考点六 实数比较大小
例6.(202010小的整数: .
【变式训练】
1.(2020秋•延庆区期中)比较大小:
(1)
(2.
考点七 实数中的规律
例7.(2020秋•通州区期末)给出表格:
,0.15a b =,则a b += .(用含的代数式表示) 【变式训练】
1.(2020 1.2639≈ 2.7629≈ .
考点八 实数的运算
例8.(2020•海淀区一模)计算:0(2)2sin 30|-+︒+.
【变式训练】
1.计算1)-的结果为 .
2.(2020•石景山区一模)计算:101()(2020)1|3tan305
π---+-︒.
3.(2020•海淀区二模)计算:101
()(2020)1|2cos302
π-+-+-︒.。