高中数学竞赛历届IMO竞赛试题届完整中文版优选稿
第一届imo数学竞赛试题答案
第一届imo数学竞赛试题答案第一届国际数学奥林匹克竞赛(IMO)是在1959年在罗马尼亚举行的。
由于时间跨度较长,具体的试题和答案可能需要通过历史资料查询。
不过,我可以提供一个示例答案,以展示IMO题目的类型和解答风格。
假设第一届IMO中有一道题目如下:题目:证明对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots +n^2 \) 的和等于 \( \frac{n(n + 1)(2n + 1)}{6} \)。
解答:我们可以使用数学归纳法来证明这个公式。
基础情况:当 \( n = 1 \) 时,左边的和为 \( 1^2 = 1 \),右边的表达式为\( \frac{1(1 + 1)(2 \times 1 + 1)}{6} = \frac{6}{6} = 1 \)。
因此,当 \( n = 1 \) 时,等式成立。
归纳步骤:假设对于某个正整数 \( k \),等式成立,即:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 = \frac{k(k + 1)(2k + 1)}{6} \]我们需要证明当 \( n = k + 1 \) 时,等式仍然成立:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 + (k + 1)^2 = \frac{(k +1)((k + 1) + 1)(2(k + 1) + 1)}{6} \]根据归纳假设,我们可以将左边的和替换为:\[ \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 \]接下来,我们简化这个表达式:\[ \frac{k(k + 1)(2k + 1) + 6(k + 1)^2}{6} \]\[ = \frac{k(k + 1)(2k + 1) + 6k^2 + 12k + 6}{6} \]\[ = \frac{k(k + 1)(2k + 1) + 6(k^2 + 2k + 1)}{6} \]\[ = \frac{k(k + 1)(2k + 1) + 6(k + 1)^2}{6} \]可以看到,这个表达式与我们想要证明的等式右边相等,因此等式对于 \( n = k + 1 \) 也成立。
2020年国际数学奥林匹克(IMO)全部试题解答
2020年第61届国际数学奥林匹克(IMO)全部试题解答海亮高级中学高三康榕博高二陈昶旭第一天第1题. 考虑凸四边形ABCD. 设P 是ABCD 内部一点. 且以下比例等式成立:∠PAD:∠PBA:∠DPA=1: 2 :3=∠CBP:∠BAP:∠BPC.证明: ∠ADP 的内角平分线、∠PCB 的内角平分线和线段AB 的垂直平分线三线共点.证明:如图,设∠PAD=α,∠PBC=β,则∠ABP=2α,∠BAP=2β, ∠APD=3α,∠BPC=3β,取△ABP外心O, 则∠AOP=4α=π-∠ADP∴A, O, P, D共圆.∴∠ADO=∠APO=∠PAO=∠PDO∴OD平分∠PDA.同理, OC平分∠PCB.而O为△ABP外心, 显然在AB中垂线上.故∠PDA平分线, ∠PCB平分线, AB中垂线均过点O.证毕.第2题. 设实数a, b, c, d 满足a ≥b ≥c ≥d > 0, 且 a + b + c + d = 1. 证明:(234)1a b c d a b c d a b c d +++<. 证明: 由加权AM -GM 不等式, 我们有2222a b c d a b c d a a b b c c d d a b c d <⋅+⋅+⋅+⋅=+++ 故只需证明22223(234)()()cyca b c d a b c d a ++++++<∑ (*)注意到332()36cyc cyc sym cyca a ab abc =++∑∑∑∑, 及32222cyca ab ad a a ++≥∑2232222222cyca b ab b bc bd b a ++++≥∑2222233333cyca cbc ac cd c a +++≥∑22234444cyc a d a b abd acd bcd d a ++++≥∑∴ (*)成立. 故原不等式成立.第3题. 有4n 枚小石子, 重量分别为1, 2, 3, . . . , 4n. 每一枚小石子都染了n 种颜色之一, 使得每种颜色的小石子恰有四枚. 证明: 我们可以把这些小石子分成两堆, 同时满足以下两个条件:• 两堆小石子有相同的总重量;• 每一堆恰有每种颜色的小石子各两枚.证明: 引理:将n 种颜色的点个4个两两分组, 则可取n 组使得每种颜色的点各2个.即证: n 阶4-正则图G(不一定简单)必有2-正则生成子图. n =1, G 为v 的2个自环, 成立.设0n n ≤成立, 则01n n =+时:若G 有点含两自环或有两点含4重边, 对其余部分用归纳假设,该部分取1自环或2重边即可.下设无这样的结构.若G 含三重边,设x,y 间有三条边, 且,(,)xu yv G u y v x ∈≠≠. 考虑将x,y 去掉, 并添入边uv 得到图G ’. 由归纳假设, 图G ’有2-正则生成子图, 若该图含添入的边 uv, 删去该边并加入ux, xy, yv 即可. 若不含, 加入xy, xy 即可.下设无三重边.显然G 有圈. 设最小圈为121,,...,t x x x x . 由G 无2自环,3重边知01t n <+, i x 有两边不指向12,,...t x x x . 设这两边指向,i i u v ,以下下标模t.在G 中删去点12,,...t x x x 并加入边1(1)i i i e u v i t +=≤≤得到G’. 由归纳假设, G ’有2-正则子图G 1.对1≤i ≤t, 若1i e G ∈, 则选择G 中的边11,i i i i x u x v ++, 若1i e G ∉, 则选自1i i x x +, 其余边按G 1中边选择, 则选出的边即为G 的2-正则生成子图的边集.结论成立.回到原题. 将重量为{,41}k n k +-的小石子分为一组.(12)k n ≤≤, 由引理可取n 组使每种颜色的小石子恰2个. 这2n 个分为一组, 其余分为一组, 此即满足条件的分法, 命题成立.第二天第4题. 给定整数n > 1. 在一座山上有n2个高度互不相同的缆车车站. 有两家缆车公司A和B, 各运营k辆缆车; 每辆从一个车站运行到某个更高的车站(中间不停留其他车站). A 公司的k辆缆车的k个起点互不相同,k个终点也互不相同, 并且起点较高的缆车,它的终点也较高. B公司的缆车也满足相同的条件. 我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数k, 使得一定有两个车站被两个公司同时连接.解: 由题意得, 每个缆车与1或2个缆车相连. (否则有两辆缆车起点不同, 终点相同)∴A, B各自的缆车线路图可划分为若干个链.注意到每条链长度大于等于2, 且首尾两点不能作为终点和起点, 故恰有2n k-条链.若21k n n≥-+, 则A最多由n-1条链.由抽屉原理, 其中至少有一条链上有221nnn⎡⎤=+⎢⎥-⎢⎥个点, 设为P. 而B仅有n-1条链, 故P上一定有两个点同时在B 的一条链上, 则这两点可被两个公司同时连接.另一方面, 2k n n=-时, 记2n个车站高度排序为21,2,...n (从低到高)令A的2n n-辆缆车为2(1)i n i i n n→+≤≤-令B的2n n-辆缆车为21(11,|)i i i n n i→+≤≤-/易见此时任两个车站不能被两个公司同时相连.2 min 1k n n∴=-+.第5题. 有一叠n > 1张卡片. 在每张卡片上写有一个正整数. 这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n, 使得可以推出这叠卡片上的数均相等? 解: 设这n 张卡片上的数为1212,,....(...)n n x x x x x x ≤≤. 若12gcd(,,...)1n x x x d =>, 用i x d 代替i x , 不影响结果. 故不妨设12gcd(,,...)1n x x x =.由题意得, 1,2i jx x i j n +∀≤≤≤为代数整数.则2|i j i x x x +⇒模2同余. 又12gcd(,,...)1n x x x =, 故i x 全为奇数.任取一个素数p, p ≥3.记{|1,|},{|1,|}i i i i A x i n p x B x i n p x =≤≤=≤≤/ 则对,,2x y x A y B +∀∈∈不为p 的倍数. 设121(...)2k k i i i x y x x x +=, 则121|(...)2k k i i i x y p x x x +=/ ∴对1,j i j k x B ∀≤≤∈.max 2i i x B x y x ∈+∴≤. 取max ,max i i i i x A x B x x y x ∈∈==, 则max max i i i i x A x B x x ∈∈≤若1n x ≠, 取n x 的奇素因子p, 由12gcd(,,...)1n x x x =知, i ∃, 使|i p x /.取0max{|1,|}i i i i n p x =≤≤/, 由上述结论知0n i x x ≤, 则o n i x x =. 又0|,|i n p x p x /, 矛盾!1n x ∴=. 则1,1i i n x ∀≤≤=.∴对任意n ≥2, 卡片上的所有数均相等.第6题. 证明: 存在正常数c 具有如下性质:对任意整数n > 1, 以及平面上n 个点的集合S, 若S 中任意两点之间的距离不小于1,则存在一条分离S 的直线ℓ, 使得S 中的每个点到直线ℓ 的距离不小于13cn -.(我们称直线ℓ分离点集S, 如果某条以S 中两点为端点的线段与ℓ 相交.)证明: 以每个点为圆心,12为半径作圆, 则这些圆两两公共部分面积为0.引理1: 对凸多边形P, 其内部最多由421s l π++个点在S 中,其中s,l 代表P 的面积和周长. 证明: 如图, 将P 的每条边往外侧平移12, 并以P 上每个点为圆心, 12为半径作圆, 拓展区域面积为124l π+. ∴P 内部最多1422414S l s l πππ+++=+个点. 现在对于一条直线l, 作S 中每个点在l 上的投影. 任取相邻两个投影点, 则这两点连线的中垂线分离点集S, 且所有的到该直线的距离≥12投影点距离.设S 的直径为D, 则可作一个以D 为边长的正方形覆盖S. 由引理1, 122481()D Dn D n π++≥⇒=Ω 设P,Q ∈S, PQ =D. 将PQ 作为上述l, 记我们所能做到的使每个点到一条直线的距离均不小于该数的最大值为d.由于仅与夹角有关, 故d 存在.而l 上除P,Q 外有n -2个投影点.2(1)2D D d n n∴≥>-. 又12()D n =Ω, 故12()d n -=Ω. 需证明13()d n -=Ω .取点集S 的凸包P. 若一直线过P 上一点且使得S 中所有点都在该线一侧, 我们认为其亦分离S. 称其为支撑边. 对于任一常数C, 作两条平行的距离为C 的直线, 满足这两条直线分离S. 作他们的垂线l, 设这个带状区域内有m 个S 中的点, 则11c c d m m d≥⇒≥-+. 不妨设(1)d o =, 则可以认为m 远远大于1. 为使m 尽量小, 应取两直线其中之一为支撑边.∴现在对于一条分离S 的直线l, 设l 与P 围成的区域内部有B 个点. P 中与l 距离最近的点到l 距离为0s , 则01s d B ≥+ (以下用≥代表数量级估计) 我们证明d≥从而311D d n D n ≥⋅= 则13()d n -=Ω. 如图, P 夹在这样一个区域里, 取XY 上一点Z, 使得0YZ s =. 过Z 作MN ⊥XY , 点M,N 在以X 为圆心, D 为半径的圆上. 则B ≤YMN 内S 中点的个数.不妨设XY 为x 轴, 对YMN 内任意两点1122(,),(,)x y x y , 221201212||,()()1x x s x x y y -≤-+-≥, 则12||1y y B -≥⇒≤+.而MN =02s d MN∴≥=+由于0(1)s =Θd ∴≥, 则13d n -≥, 即13()d n -=Ω证毕.。
2020年国际数学奥林匹克(IMO)全部试题解答
2020年第61届国际数学奥林匹克(IMO)全部试题解答海亮高级中学高三康榕博高二陈昶旭第一天第1题. 考虑凸四边形ABCD. 设P 是ABCD 内部一点. 且以下比例等式成立:∠PAD:∠PBA:∠DPA=1: 2 :3=∠CBP:∠BAP:∠BPC.证明: ∠ADP 的内角平分线、∠PCB 的内角平分线和线段AB 的垂直平分线三线共点.证明:如图,设∠PAD=α,∠PBC=β,则∠ABP=2α,∠BAP=2β, ∠APD=3α,∠BPC=3β,取△ABP外心O, 则∠AOP=4α=π-∠ADP∴A, O, P, D共圆.∴∠ADO=∠APO=∠PAO=∠PDO∴OD平分∠PDA.同理, OC平分∠PCB.而O为△ABP外心, 显然在AB中垂线上.故∠PDA平分线, ∠PCB平分线, AB中垂线均过点O.证毕.第2题. 设实数a, b, c, d 满足a ≥b ≥c ≥d > 0, 且 a + b + c + d = 1. 证明:(234)1a b c d a b c d a b c d +++<. 证明: 由加权AM -GM 不等式, 我们有2222a b c d a b c d a a b b c c d d a b c d <⋅+⋅+⋅+⋅=+++ 故只需证明22223(234)()()cyca b c d a b c d a ++++++<∑ (*)注意到332()36cyc cyc sym cyca a ab abc =++∑∑∑∑, 及32222cyca ab ad a a ++≥∑2232222222cyca b ab b bc bd b a ++++≥∑2222233333cyca cbc ac cd c a +++≥∑22234444cyc a d a b abd acd bcd d a ++++≥∑∴ (*)成立. 故原不等式成立.第3题. 有4n 枚小石子, 重量分别为1, 2, 3, . . . , 4n. 每一枚小石子都染了n 种颜色之一, 使得每种颜色的小石子恰有四枚. 证明: 我们可以把这些小石子分成两堆, 同时满足以下两个条件:• 两堆小石子有相同的总重量;• 每一堆恰有每种颜色的小石子各两枚.证明: 引理:将n 种颜色的点个4个两两分组, 则可取n 组使得每种颜色的点各2个.即证: n 阶4-正则图G(不一定简单)必有2-正则生成子图. n =1, G 为v 的2个自环, 成立.设0n n ≤成立, 则01n n =+时:若G 有点含两自环或有两点含4重边, 对其余部分用归纳假设,该部分取1自环或2重边即可.下设无这样的结构.若G 含三重边,设x,y 间有三条边, 且,(,)xu yv G u y v x ∈≠≠. 考虑将x,y 去掉, 并添入边uv 得到图G ’. 由归纳假设, 图G ’有2-正则生成子图, 若该图含添入的边 uv, 删去该边并加入ux, xy, yv 即可. 若不含, 加入xy, xy 即可.下设无三重边.显然G 有圈. 设最小圈为121,,...,t x x x x . 由G 无2自环,3重边知01t n <+, i x 有两边不指向12,,...t x x x . 设这两边指向,i i u v ,以下下标模t.在G 中删去点12,,...t x x x 并加入边1(1)i i i e u v i t +=≤≤得到G’. 由归纳假设, G ’有2-正则子图G 1.对1≤i ≤t, 若1i e G ∈, 则选择G 中的边11,i i i i x u x v ++, 若1i e G ∉, 则选自1i i x x +, 其余边按G 1中边选择, 则选出的边即为G 的2-正则生成子图的边集.结论成立.回到原题. 将重量为{,41}k n k +-的小石子分为一组.(12)k n ≤≤, 由引理可取n 组使每种颜色的小石子恰2个. 这2n 个分为一组, 其余分为一组, 此即满足条件的分法, 命题成立.第二天第4题. 给定整数n > 1. 在一座山上有n2个高度互不相同的缆车车站. 有两家缆车公司A和B, 各运营k辆缆车; 每辆从一个车站运行到某个更高的车站(中间不停留其他车站). A 公司的k辆缆车的k个起点互不相同,k个终点也互不相同, 并且起点较高的缆车,它的终点也较高. B公司的缆车也满足相同的条件. 我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数k, 使得一定有两个车站被两个公司同时连接.解: 由题意得, 每个缆车与1或2个缆车相连. (否则有两辆缆车起点不同, 终点相同)∴A, B各自的缆车线路图可划分为若干个链.注意到每条链长度大于等于2, 且首尾两点不能作为终点和起点, 故恰有2n k-条链.若21k n n≥-+, 则A最多由n-1条链.由抽屉原理, 其中至少有一条链上有221nnn⎡⎤=+⎢⎥-⎢⎥个点, 设为P. 而B仅有n-1条链, 故P上一定有两个点同时在B 的一条链上, 则这两点可被两个公司同时连接.另一方面, 2k n n=-时, 记2n个车站高度排序为21,2,...n (从低到高)令A的2n n-辆缆车为2(1)i n i i n n→+≤≤-令B的2n n-辆缆车为21(11,|)i i i n n i→+≤≤-/易见此时任两个车站不能被两个公司同时相连.2 min 1k n n∴=-+.第5题. 有一叠n > 1张卡片. 在每张卡片上写有一个正整数. 这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n, 使得可以推出这叠卡片上的数均相等? 解: 设这n 张卡片上的数为1212,,....(...)n n x x x x x x ≤≤. 若12gcd(,,...)1n x x x d =>, 用i x d 代替i x , 不影响结果. 故不妨设12gcd(,,...)1n x x x =.由题意得, 1,2i jx x i j n +∀≤≤≤为代数整数.则2|i j i x x x +⇒模2同余. 又12gcd(,,...)1n x x x =, 故i x 全为奇数.任取一个素数p, p ≥3.记{|1,|},{|1,|}i i i i A x i n p x B x i n p x =≤≤=≤≤/ 则对,,2x y x A y B +∀∈∈不为p 的倍数. 设121(...)2k k i i i x y x x x +=, 则121|(...)2k k i i i x y p x x x +=/ ∴对1,j i j k x B ∀≤≤∈.max 2i i x B x y x ∈+∴≤. 取max ,max i i i i x A x B x x y x ∈∈==, 则max max i i i i x A x B x x ∈∈≤若1n x ≠, 取n x 的奇素因子p, 由12gcd(,,...)1n x x x =知, i ∃, 使|i p x /.取0max{|1,|}i i i i n p x =≤≤/, 由上述结论知0n i x x ≤, 则o n i x x =. 又0|,|i n p x p x /, 矛盾!1n x ∴=. 则1,1i i n x ∀≤≤=.∴对任意n ≥2, 卡片上的所有数均相等.第6题. 证明: 存在正常数c 具有如下性质:对任意整数n > 1, 以及平面上n 个点的集合S, 若S 中任意两点之间的距离不小于1,则存在一条分离S 的直线ℓ, 使得S 中的每个点到直线ℓ 的距离不小于13cn -.(我们称直线ℓ分离点集S, 如果某条以S 中两点为端点的线段与ℓ 相交.)证明: 以每个点为圆心,12为半径作圆, 则这些圆两两公共部分面积为0.引理1: 对凸多边形P, 其内部最多由421s l π++个点在S 中,其中s,l 代表P 的面积和周长. 证明: 如图, 将P 的每条边往外侧平移12, 并以P 上每个点为圆心, 12为半径作圆, 拓展区域面积为124l π+. ∴P 内部最多1422414S l s l πππ+++=+个点. 现在对于一条直线l, 作S 中每个点在l 上的投影. 任取相邻两个投影点, 则这两点连线的中垂线分离点集S, 且所有的到该直线的距离≥12投影点距离.设S 的直径为D, 则可作一个以D 为边长的正方形覆盖S. 由引理1, 122481()D Dn D n π++≥⇒=Ω 设P,Q ∈S, PQ =D. 将PQ 作为上述l, 记我们所能做到的使每个点到一条直线的距离均不小于该数的最大值为d.由于仅与夹角有关, 故d 存在.而l 上除P,Q 外有n -2个投影点.2(1)2D D d n n∴≥>-. 又12()D n =Ω, 故12()d n -=Ω. 需证明13()d n -=Ω .取点集S 的凸包P. 若一直线过P 上一点且使得S 中所有点都在该线一侧, 我们认为其亦分离S. 称其为支撑边. 对于任一常数C, 作两条平行的距离为C 的直线, 满足这两条直线分离S. 作他们的垂线l, 设这个带状区域内有m 个S 中的点, 则11c c d m m d≥⇒≥-+. 不妨设(1)d o =, 则可以认为m 远远大于1. 为使m 尽量小, 应取两直线其中之一为支撑边.∴现在对于一条分离S 的直线l, 设l 与P 围成的区域内部有B 个点. P 中与l 距离最近的点到l 距离为0s , 则01s d B ≥+ (以下用≥代表数量级估计) 我们证明d≥从而311D d n D n ≥⋅= 则13()d n -=Ω. 如图, P 夹在这样一个区域里, 取XY 上一点Z, 使得0YZ s =. 过Z 作MN ⊥XY , 点M,N 在以X 为圆心, D 为半径的圆上. 则B ≤YMN 内S 中点的个数.不妨设XY 为x 轴, 对YMN 内任意两点1122(,),(,)x y x y , 221201212||,()()1x x s x x y y -≤-+-≥, 则12||1y y B -≥⇒≤+.而MN =02s d MN∴≥=+由于0(1)s =Θd ∴≥, 则13d n -≥, 即13()d n -=Ω证毕.。
高中数学竞赛赛题精选(带答案)
高中数学竞赛赛题精选一、选择题(共12题)1.定义在R 上的函数()y f x =的值域为[m,n ],则)1(-=x f y 的值域为( ) A .[m,n ]B .[m-1,n-1]C .[)1(),1(--n f m f ]D .无法确定解:当函数的图像左右平移时,不改变函数的值域.故应选A.2.设等差数列{n a }满足13853a a =,且n S a ,01>为其前n 项之和,则)(*∈N n S n 中最大的是( ) A. 10S B. 11S C. 20S D. 21S 解:设等差数列的公差为d,由题意知3(1a +7d)=5(1a +12d),即d=-3921a , ∴n a = 1a +( n-1)d= 1a -3921a (n-1)= 1a (3941-392n),欲使)(*∈N n S n 最大,只须n a ≥0,即n ≤20.故应选C.3.方程log 2x=3cosx 共有( )组解.A .1B .2C .3D .4解:画出函数y=log 2x 和y=3cosx 的图像,研究其交点情况可知共有3组解.应选C .4.已知关于x 的一元二次方程()02122=-+-+a x a x 的一个根比1大,另一个根比1小,则()A.11<<-a B.1-<a 或1>aC.12<<-aD.2-<a 或1>a解:令f(x)= ()2122-+-+a x a x ,其图像开口向上,由题意知f(1)<0,即 ()211122-+⨯-+a a <0,整理得022<-+a a ,解之得12<<-a ,应选C .5.已知βα,为锐角,,cos ,sin y x ==βα53)cos(-=β+α,则y 与x 的函数关系为( ) A .1)x 53( x 54x 153y 2<<+--= B .1)x (0 x 54x 153y 2<<+--=C .)53x (0 x 54x 153y 2<<---= D .1)x (0 x 54x 153y 2<<---= []xx y 54153sin )sin(cos )cos()(cos cos 2+-⋅-=⋅+++=-+==αβααβααβαβ解: 而)1,0(∈y 15415302<+-⋅-<∴x x , 得)1,53(∈x .故应选A. 6.函数sin y x =的定义域为[],a b ,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a-的最大值是( )A. πB. π2C.34πD. 35π解:如右图,要使函数sin y x =在定义域[],a b 上,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a -的最大值是74()663πππ--=.故应选C. 7.设锐角使关于x 的方程x 2+4x cos+cot =0有重根,则的弧度数为 ( )A .6B .12或512C .6或512D .12解:由方程有重根,故14=4cos 2-cot =0,∵ 0<<2,2sin2=1,=12或512.选B . 8.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ,则b 的取值范围是 ( )A .[-62,62] B .(-62,62) C .(-233,233] D .[-233,233] 解:点(0,b )在椭圆内或椭圆上,2b 2≤3,b ∈[-62,62].选A .9.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4] 解:令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),x ∈[2,4),选C .10.设点O 在ABC 的内部,且有+2+3=,则ABC 的面积与AOC 的面积的比为( )A .2B .32C .3D .53解:如图,设AOC=S ,则OC 1D=3S ,OB 1D=OB 1C 1=3S ,AOB=OBD=1.5S .OBC=0.5S ,ABC=3S .选C .11.设三位数n=,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A .45个B .81个C .165个D .216个 解:⑴等边三角形共9个;⑵ 等腰但不等边三角形:取两个不同数码(设为a ,b ),有36种取法,以小数为底时总能构成等腰三角形,而以大数为底时,b <a <2b .a=9或8时,b=4,3,2,1,(8种);a=7,6时,b=3,2,1(6种);a=5,4时,b=2,1(4种);a=3,2时,b=1(2种),共有20种不能取的值.共有236-20=52种方法,而每取一组数,可有3种方法构成三位数,故共有523=156个三位数即可取156+9=165种数.选C .12.顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为 ( )A .53 B .253 C .63 D .263解:AB ⊥OB ,PB ⊥AB ,AB ⊥面POB ,面PAB ⊥面POB .OH ⊥PB ,OH ⊥面PAB ,OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,PC ⊥面OCH .PC 是三棱锥P -OCH 的高.PC=OC=2.而OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30,OB=PO tan30=263.又解:连线如图,由C 为PA 中点,故V O -PBC =12V B -AOP ,S B 11OABCABPO H C而V O -PHC ∶V O -PBC =PH PB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=,则V P —AOB =16R 3sin cos =112R 3sin2,V B -PCO =124R 3sin2. PO 2PB 2=R 2R 2+R 2cos 2=11+cos 2=23+cos2.V O -PHC =sin23+cos2112R 3. ∴ 令y=sin23+cos2,y=2cos2(3+cos2)-(-2sin2)sin2(3+cos2)2=0,得cos2=-13,cos =33, ∴ OB=263,选D .二、填空题(共10题)13. 设n S 为等差数列{}n a 的前n 项和,若510S =,105S =-,则公差为 解:设等差数列{}n a 的首项为1a ,公差为d .由题设得⎩⎨⎧-=+=+,,545101010511d a d a 即 ⎩⎨⎧-=+=+,,1922211d a d a 解之得1-=d .14. 设()log ()a f x x b =+(0a >且1)a ≠的图象经过点(21),,它的反函数的图象经过点(28),,则b a +等于 4 .解:由题设知 log (2)1log (8)2a a b b +=⎧⎨+=⎩,, 化简得 2(2)(8).b a b a +=⎧⎨+=⎩,解之得 1131a b =⎧⎨=⎩,; 2224.a b =-⎧⎨=-⎩,(舍去). 故a b +等于4.15.已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为 [21)x ∈-, .解: 因为 ()()22lg 620lg (3)11lg111x x x -+=-+≥>,所以()2lg 6200x x -+<. 于是,由图象可知,2111x x +≤-,即 201x x +≤-,解得 21x -≤<. 故x 的取值范围为 [21)x ∈-,.16.圆锥曲线0|3|102622=+--+-++y x y x y x 的离心率是 2 .解:原式变形为|3|)1()3(22+-=-++y x y x ,即=2|3|2+-y x .所以动点),(y x 到定点(31)-,的距离与它到直线03=+-y x 的距离之比为2.故此动点轨迹为双曲线,离心率为2.17.在ABC ∆中,已知3tan =B ,322sin =C ,63=AC ,则ABC ∆的面积为ABC S ∆=解:在ABC ∆中,由3tan =B 得︒=60B .由正弦定理得sin 8sin AC CAB B⋅==.因为︒>60322arcsin,所以角C 可取锐角或钝角,从而31cos ±=C .sin sin()sin cos cos sin A B C B C B C =+=+=sin 2ABC AC ABS A ∆⋅== 18. 设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>. 命题P 与Q 中有 且仅有一个成立,则实数a 的取值范围是 021≤<-a 或 121<≤a . 解:由a a <2得10<<a .由0142>++ax x 对于任何x ∈R 成立,得04162<-=∆a ,即2121<<-a .因为命题P 、Q 有且仅有一个成立,故实数 a 的取值范围是 021≤<-a 或 121<≤a .19.22cos 75cos 15cos75cos15++⋅的值是 . 解:22cos 75cos 15cos75cos15++⋅ =cos²75°+sin²75°+sin15°·cos15° =1+°30sin 21=5420.定义在R 上的函数()f x 满足(1)2f =,且对任意的x R ∈,都有1()2f x '<,则不等式22log 3(log )2x f x +>的解集为 . 解:令g ﹙x ﹚=2f ﹙x ﹚-x ,由f '(x ) <1/2得,2f '(x ) -1<0,即'g ﹙x ﹚<0,g(x)在R 上为减函数,且g(1)=2f(1)-1=3,不等式f(log2X)>2log 2X化为2f(log2X)—log2X≥3,即g(log2X)>g(1),由g(x)的单调性得:log2X<1,解得,0<x<2. 21.圆O 的方程为221x y +=,(1,0)A ,在圆O 上取一个动点B ,设点P 满足()AP OB R λλ=∈且1AP AB ⋅=.则P 点的轨迹方程为 .解:设P(x,y), AB =λOB (λϵR)得B(k(x —1),ky),(λ=k1)。
高中的数学竞赛试题及答案
高中的数学竞赛试题及答案高中数学竞赛试题一、选择题(每题5分,共20分)1. 下列哪个数不是有理数?A. πB. √2C. 0.333...(无限循环)D. 1/32. 如果函数f(x) = 2x^2 - 5x + 3在x = 2时取得最小值,那么f(2)的值是多少?A. -1B. 1C. 3D. 53. 已知等差数列的前三项分别为3, 8, 13,求第10项的值。
A. 43B. 48C. 53D. 584. 若sinx = 1/2,求cosx的值(假设x在第一象限)。
A. √3/2B. -√3/2C. 1/2D. -1/2二、填空题(每题4分,共12分)5. 计算(2x^3 - 3x^2 + 4x - 5) / (x - 1)的商式和余数。
商式为:________余数为:______6. 已知复数z = 3 + 4i,求其共轭复数。
共轭复数为:______7. 一个圆的半径为5,求其内接正六边形的边长。
边长为:______三、解答题(每题18分,共54分)8. 证明:对于任意正整数n,n^5 - n 总是能被30整除。
9. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求其导数g'(x),并找出g(x)的极值点。
10. 解不等式:|x + 2| + |x - 3| > 4。
四、证明题(每题10分,共10分)11. 证明:对于任意实数a和b,(a^2 + b^2)(1/a^2 + 1/b^2) ≥ 2。
五、附加题(每题15分,共15分)12. 一个圆的半径为r,圆内接正n边形的边长为s。
证明:s =2r*sin(π/n)。
高中数学竞赛试题答案一、选择题1. A(π是无理数)2. B(f(2) = 4 - 10 + 3 = -3,但题目要求最小值,故应为B)3. C(公差d = 13 - 8 = 5,第10项a_10 = 3 + 9*5 = 53)4. A(根据勾股定理,cosx = √3/2)二、填空题5. 商式为:2x^2 - x - 5,余数为:-36. 共轭复数为:3 - 4i7. 边长为:10三、解答题8. 证明略。
高中数学竞赛试题及解题答案
高中数学竞赛试题及解题答案在高中数学竞赛中,试题是考察学生数学思维和解决问题的能力的重要手段。
下面将为大家提供一部分高中数学竞赛试题及解题答案,希望能够帮助大家更好地理解和应用数学知识。
一、整数与多项式试题1:已知多项式P(x)满足P(x)=x^3-5x^2+ax+b,其中a、b均为整数。
若多项式P(x)除以(x-1)得到余数4,则多项式P(x)除以(x+2)的余数为多少?解题思路:我们知道,多项式f(x)除以x-a的余数等于把a带入f(x)中所得到的值。
那么,题目中给出了P(x)除以(x-1)的余数为4,即P(1)=4,我们可以将1代入P(x)中,得到一个方程。
同理,题目要求求解P(x)除以(x+2)的余数,即P(-2)=?根据题意,我们有以下方程:P(1) = 4,即1^3 - 5(1^2) + a(1) + b = 4P(-2) = ?,即(-2)^3 - 5((-2)^2) + a(-2) + b = ?解题步骤:1. 代入P(1)的方程求解:1 - 5 + a + b = 4化简得 a + b = 82. 代入P(-2)的方程求解:-8 - 20 - 2a + b = ?化简得 -2a + b = ?将两个方程合并求解可得:-2a + b = a + b - 16当两边消去b时,可得:-2a = a - 16a = -8将a代入第一个方程a + b = 8,可得:-8 + b = 8b = 16因此,通过计算可得多项式P(x)除以(x+2)的余数为-16。
试题2:已知整数序列a1, a2, a3, ...,其中a1 = 1,a2 = 2,an = an-1 + an-2(n ≥ 3)。
求证:对于任意正整数n,任务子序列a1, a2, ..., an中必定存在一个数可以被11整除。
解题思路:根据题意,我们需要证明对于任意正整数n,序列a1, a2, ..., an中必定存在一个数可以被11整除。
历年全国高中数学竞赛试卷及答案(77套)
(5月14日下午14:30—16:30)
题目
一
二
三
总成绩
13
14
15
16
得分
评卷人
复核人
考生注意:1.本试卷共有三大题(16个小题),全卷满分140分
2.用黑(蓝)色圆珠笔或钢笔作答。
3.计算器,通讯工具不准待入考场。
4.解题书写不要超过封线
一,单项选择题(本大题共6个小题,每小题5分,共30分)
二,填空题(本大题共6个小题,每小题5分,共30分)
7.1008 8.0 9.2 10. 11.2 12.243
三,解答题(本大题共4个小题,每小题20分,共80分)
13.证明:(1)因为
所以,数列 成等比数列 ……5分
于是
即数列 的通项公式 ……10分
(2)法1:因为 对任意的正整数n都成立,故
由(1)知
∴共有C 种比赛方式.
三.(15分)长为 ,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积.
解:过轴所在对角线BD中点O作MN⊥BD交边AD、BC于M、N,作AE⊥BD于E,
则△ABD旋转所得旋转体为两个有公共底面的圆锥,底面半径AE= = .其体积V= ( )2· = π.同样,
1.设有三个函数,第一个是y=φ(x),它的反函数是第二个函数,而第三个函数的图象与第二个函数的图象关于x+y=0对称,那么,第三个函数是( )
A.y=-φ(x)B.y=-φ(-x)C.y=-φ-1(x)D.y=-φ-1(-x)
解:第二个函数是y=φ-1(x).第三个函数是-x=φ-1(-y),即y=-φ(-x).选B.
2021年第62届IMO数学试题及答案
x + y = (2k − 1)2, x + z = (2k)2, y + z = (2k + 1)2
三者之一, 故必为完全平方数.
【评注】较为简单的问题. 切入点是去找三个数使得两两的和都是完全平方数, 那么自然的就可以去 尝试 x + y = k2, x + z = (k + 1)2, y + z = (k + 2)2. 这时 k 必须是奇数,因为 x + y, x + z, y + z 不可 能出现两个偶数一个奇数的情况. 我们就可以把 k 替换成 2k − 1. 接下来解出 x, y, z 的值再去设法证 明 x, y, z 都在 [n, 2n] 中就可以了.
当 f ′(0) ≥ 0 时,对 λ ≤ 0,有 f ′(λ) ≥ f ′(0) ≥ 0;当 f ′(0) < 0 时,对 λ ≥ 0,有 f ′(λ) ≤ f ′(0) < 0.
因此,可以选取适当的 λ,使得所有 xi 同时加上 λ 后,不等式右侧不增,且调整过后存在某组 (i, j) 满足 xi + xj = 0.
2. 对任意实数 x1, x2, · · · , xn,证明下述不等式成立:
∑n xj| ≤
|xi + xj|.
i=1 j=1
i=1 j=1
3. 设 D 是锐角三角形 ABC (AB > AC) 内部一点,使得 ∠DAB = ∠CAD. 线段 AC 上的点 E 满足 ∠ADE = ∠BCD,线段 AB 上的点 F 满足 ∠F DA = ∠DBC,且直线 AC 上的点 X 满足 CX = BX. 设 O1 和 O2 分别是三角形 ADC 和三角形 EXD 的外心. 证明:直线 BC, EF 和 O1O2 共点.
2020年IMO高中数学竞赛真题
星期一,21.九月2020第1题.考虑凸四边形ABCD.设P是ABCD内部一点.且以下比例等式成立:∠P AD:∠P BA:∠DP A=1:2:3=∠CBP:∠BAP:∠BP C.证明:∠ADP的内角平分线、∠P CB的内角平分线和线段AB的垂直平分线三线共点.第2题.设实数a,b,c,d满足a≥b≥c≥d>0,且a+b+c+d=1.证明:(a+2b+3c+4d)a a b b c c d d<1.第3题.有4n枚小石子,重量分别为1,2,3,...,4n.每一枚小石子都染了n种颜色之一,使得每种颜色的小石子恰有四枚.证明:我们可以把这些小石子分成两堆,同时满足以下两个条件:•两堆小石子有相同的总重量;•每一堆恰有每种颜色的小石子各两枚.星期二,22.九月2020第4题.给定整数n>1.在一座山上有n2个高度互不相同的缆车车站.有两家缆车公司A和B,各运营k辆缆车;每辆从一个车站运行到某个更高的车站(中间不停留其他车站).A公司的k辆缆车的k个起点互不相同,k个终点也互不相同,并且起点较高的缆车,它的终点也较高.B公司的缆车也满足相同的条件.我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动).确定最小的正整数k,使得一定有两个车站被两个公司同时连接.第5题.有一叠n>1张卡片.在每张卡片上写有一个正整数.这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n,使得可以推出这叠卡片上的数均相等?第6题.证明:存在正常数c具有如下性质:对任意整数n>1,以及平面上n个点的集合S,若S中任意两点之间的距离不小于1,则存在一条分离S的直线ℓ,使得S中的每个点到直线ℓ的距离不小于cn−1/3.(我们称直线ℓ分离点集S,如果某条以S中两点为端点的线段与ℓ相交.)注.如果证明了比cn−1/3弱的估计cn−α,会根据α>1/3的值,适当给分.。
第49届国际数学奥林匹克(IMO)试题及解答 (1)
324006 浙江省衢州 高级中学 吴光耀
严密 性是数学 的三大特 点之一 ,数学计 算 与教学证明的严密性,既是数学科学的特点,又 可以训练思维,使学生细心周密,而这些素质又 指导学生去思考生活、工作中的问题,使他们养 成周密稳重的习惯,有助于提高基本素质.
下面的前二个问题是学生在进行研究性学 习时出现的.
。
2
,( 借) <丝掣( 2) . 舒任意n,6∈I,口<6,当A>0时恒有
剖析:这里( 1) 与( 2) 等价是有条件的,并不 是对任意的函数,( z) 都成立的.如反例:
当J =Q( 有理数) ,A为无理数时,则对于任
意 的 口 , 6, ∈ Q, 厂 (z)=z2, 有 竿 尝 ∈ Q, 所 以
第4题解答( 吴天琦) 解,令们=z —y—z =1,得( ,( 1) ) 2= ,( 1) ,所以 ,( 1) 一1.
‘ 紫 一 等 , 对任意f >o,令训=£,T—l ,y=2一以,
得
去分母整理得( ∥‘(£) 一1) (/’( £) 一£) =0, 所以,对每个f >0,
,( £) =f ,或者厂( f ) 一÷.
01 旦 , 这 里 的 丽 表 示 有 向 线 估 x3,如图2所
应:“口的各元素在模挖的意义下对应相同”( 例 如竹一2,忌一4时,6一( 2,2 ,2,1) 可对应如口一 ( 4,4,2,1) ,Ⅱ一(2,2,2,1), 口一(2,4, 4,1)等) , 那么由于6是 B类列,其中1,2,…,挖的个数必 定全为奇数,而d是A类列,又要求口中l ,…,咒 的个数全为奇数,且以+1 ,…,2以的个数全为偶 数.于是对任意的i ∈{1,2,…,行} ,设6中有6i 个i ,则口必须且只需满足对任意的i ∈{1,2, …,行) ,6中是i 的6i 个元所在位上在n中都是i 或者挖+i ,且i 有奇数个( 自然行+i 就有偶数 个) ,那么由引理及乘法原理,6恰可对应
十年全国高中数学联合竞赛试题及参考答案
5.答案:B设整点坐标(m,n),则它到直线25x-15y+12=0的距离为
由于m,n∈Z,故5(5m-3n)是5的倍数,只有当m=n=-1,时5(5m-3n)=-10与12的和的绝对值最小,其值为2,从而所求的最小值为 .
=7an+48an-1+42bn-1-27 ,
由an=7an-1+6bn-1-3 ,得42bn-1=7an-49an-1+21 ,
从而an+1=7an+48an-1+7an-49an-1+21-27
=14an-an-1-6 .
也就是an+1=14an-an-1-6 .
设(an+1-kan+t)=p(an-kan-1+t)……①②③④
从而有
(x-ω2)(x-ω4)(x-ω6)(x-ω8)(x-ω10)=x5-1………②
①÷②得(x-ω)(x-ω3)(x-ω5)(x-ω7)(x-ω9)=x5+1………③
③的两边同除以(x-ω5)=x+1,得
(x-ω)(x-ω3) (x-ω7)(x-ω9)= x4-x3+x2-x+1.
所以ω,ω3,ω7,ω9为根的方程是x4-x3+x2-x+1=0.
故对任何n N,有f (n)= 由于f(8)= ,故f(n)的最大值为
14.答案:所求区间为[1,3]或[-2- ].
解化三种情况讨论区间[a,b].
(1)若0 a<b,则f (x)在[ a, b ]上单调递减,故f(a) =2b, f(b)=2a于是有
高中数学奥林匹克竞赛试题及答案
1 求一个四位数,它的前两位数字及后两位数字分别相同,而该数本身等于一个整数的平方.1956年波兰.x=1000a+100a+10b+b=11(100a+b)其中0<a≢9,0≢b≢9.可见平方数x被11整除,从而x被112整除.因此,数100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b≢18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某个自然数的平方.对a=1,2,…,9逐一检验,易知仅a=7时,9a+1为平方数,故所求的四位数是7744=882.2 假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.1953年匈牙利.【证设2n2=kd,k是正整数,如果n2+d是整数x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k+1)2得出k2+2k不是平方数.3 试证四个连续自然数的乘积加上1的算术平方根仍为自然数.1962年上海高三决赛题.【证】四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.4 已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.1963年俄【证】设此算术级数公差是d,且其中一项a=m2(m∈N).于是a+(2km+dk2)d=(m+kd)2对于任何k∈N,都是该算术级数中的项,且又是完全平方数.5 求一个最大的完全平方数,在划掉它的最后两位数后,仍得一个完全平方数(假定划掉的两个数字中的一个非零).1964年俄.【解】设n2满足条件,令n2=100a2+b,其中0<b<100.于是n>10a,即n≣10a+1.因此b=n2100a2≣20a+1由此得 20a+1<100,所以a≢4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402≣422-402>100.因此,满足本题条件的最大的完全平方数为412=1681.6 求所有的素数p,使4p2+1和6p2+1也是素数.1964年波兰【解】当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.7 证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a都不是素数.1969德国.【证】对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)而 n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2≣m2>1故n4+4m4不是素数.取a=4²24,4²34,…就得到无限多个符合要求的a.8 将某个17位数的数字的顺序颠倒,再将得到的数与原来的数相加.证明:得到的和中至少有一个数字是偶数.1970年苏【证】假设和的数字都是奇数.在加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≢9.于是将已知数的前两位数字a、b与末两位数字c、d去掉,所得的13位数仍具有性质:将它的数字颠倒,得到的数与它相加,和的数字都是奇数.照此进行,每次去掉首末各两位数字.最后得到一位数,它与自身相加显然是偶数.矛盾!9 证明:如果p和p+2都是大于3的素数,那么6是p+1的因数.1973年加拿大【证】因p是奇数,2是p+1的因数.因为p、p+1、p+2除以3余数不同,p、p+2都不被3整除,所以p+1被3整除.10 证明:三个不同素数的立方根不可能是一个等差数列中的三项(不一定是连续的).美国1973年【证】设p、q、r是不同素数.假如有自然数l、m、n和实数a、d,消去a,d,得化简得(m-n)3p=(l-n)3q+(m-l)3r+3(l-n)(m11 设n为大于2的已知整数,并设V n为整数1+kn的集合,k=1,2,….数m∈V n称为在V n中不可分解,如果不存在数p,q∈V n使得pq=m.证明:存在一个数r∈V n可用多于一种方法表达成V n中不可分解的元素的乘积.1977年荷兰【证】设a=n-1,b=2n-1,则a2、b2、a2b2都属于V n.因为a2<(n+1)2,所以a2在V n中不可分解.式中不会出现a2.r=a2b2有两种不同的分解方式:r=a2²b2=a2…(直至b2分成不可分解的元素之积)与r=ab²ab=…(直至ab分成不可分解的元素之积),前者有因数a2,后者没有.12 证明在无限整数序列10001,100010001,1000100010001,…中没有素数.注意第一数(一万零一)后每一整数是由前一整数的数字连接0001而成.1979年英国【证】序列1,10001,100010001,…,可写成1,1+104,1+104+108,…一个合数.即对n>2,a n均可分解为两个大于1的整数的乘积,而a2=10001=137²73.故对一切n≣2,a n均为合数.13 如果一个自然数是素数,并且任意地交换它的数字,所得的数仍然是素数,那么这样的数叫绝对素数.求证:绝对素数的不同数字不能多于3个.1984年苏【证】若不同数字多于3个,则这些数字只能是1、3、7、9.不难验证1379、3179、9137、7913、1397、3197、7139除以7,余数分别为0、1、2、3、4、5、6.因此对任意自然数M,104³M与上述7个四位数分别相加,所得的和中至少有一个被7整除,从而含数字1、3、7、9的数不是绝对素数.14正整数d不等于2、5、13.证在集合{2,5,13,d}中可找到两个不同元素a、b,使得ab-1不是完全平方数.1986年德【证】证明2d-1、5d-1、13d-1这三个数中至少有一个不是完全平方数即可.用反证法,设5d-1=x2 5d-1=y2 13d -1=z2 其中x、y、z是正整数.x是奇数,设x=2n-1.代入有2d-1=(2n-1)2即d=2n2-2n+1 说明d也是奇数.y、Z是偶数,设y=2p,z=2q,代入(2)、(3)相减后除以4有2d=q2-p2=(q+p)(q-p)因2d是偶数,即q2-p2是偶数,所以p、q同为偶数或同为奇数,从而q+p和q-p都是偶数,即2d是4的倍数,因此d是偶数.这与d是奇数相矛盾,故命题正确.15 .求出五个不同的正整数,使得它们两两互素,而任意n(n≢5)个数的和为合数.1987年全苏【解】由n个数a i=i²n!+1,i=1,2,…,n组成的集合满足要求.因为其中任意k个数之和为m²n!+k(m∈N,2≢k ≢n)由于n!=1²2²…²n是k的倍数,所以m²n!+k是k的倍数,因而为合数.对任意两个数a i与a j(i>j),如果它们有公共的质因数p,则p也是a i-a j=(i-j)n!的质因数,因为0<i-j<n,所以p也是n!的质因数.但a i与n!互质,所以a i与a j不可能有公共质因数p,即a i、a j(i≠j)互素.令n=5,便得满足条件的一组数:121,241,361,481,601.16 n≣2,证:如果k2+k+n对于整数k素数.1987苏联(1)若m≣p,则p|(m-p)2+(m-p)+n.又(m-p)2+(m-p)+n≣n>P,这与m是使k2+k+n为合数的最小正整数矛盾.(2)若m≢p-1,则(p-1-m)2+(p-1-m)+n=(p-1-m)(p-m)+n被p整除,且(p-1-m)2+(p-1-m)+n≣n>p因为(p-1-m)2+(p-1-m)+n为合数,所以p-1-m≣m,p≣2m+1由得4m2+4m+1≢m2+m+n即3m2+3m+1-n≢0由此得17 正整数a与b使得ab+1整除a2+b2.求证:(a2+b2)/(ab+1)是某个正整数的平方.1988德国a2-kab+b2=k (1)显然(1)的解(a,b)满足ab≣0(否则ab≢-1,a2+b2=k(ab+1)≢0).又由于k不是完全平方,故ab>0.设(a,b)是(1)的解中适合a>0(从而b>0)并且使a+b最小的那个解.不妨设a≣b.固定k与b,把(1)看成a的二次方程,它有一根为a.设另一根为a′,则由韦达定理a′为整数,因而(a′,b)也是(1)的解.由于b>0,所以a′>0.但由(3)从而a′+b<a+b,这与a+b的最小性矛盾,所以k必为完全平方.18 求证:对任何正整数n,存在n个相继的正整数,它们都不是素数的整数幂.1989年瑞典提供.【证】设a=(n+1)!,则a2+k(2≢k≢n+1),被k整除而不被k2整除(因为a2被k2整除而k不被k2整除).如果a2+k是质数的整数幂p l,则k=p j(l、j都是正整数),但a2被p2j整除因而被p j+1整除,所以a2+k被p j整除而不被p j+1整除,于是a2+k=p j=k,矛盾.因此a2+k(2≢k≢n+1)这n个连续正整数都不是素数的整数幂.19 n为怎样的自然数时,数32n+1-22n+1-6n是合数?1990年全苏解32n+1-22n+1-6n=(3n-2n)(3n+1+2n+1)当n>l时,3n-2n>1,3n+1+2n+1>1,原数是合数.当n=1时,原数是13 20 设n是大于6的整数,且a1、a2、…、a k是所有小于n且与n互素的自然数,如果a2-a1=a3-a2=…=a k-a k-1>0求证:n或是素数或是2的某个正整数次方.1991年罗马尼亚.证由(n-1,n)=1,得a k=n-1.令d=a2-a1>0.当a2=2时,d=1,从而k=n-1,n与所有小于n的自然数互素.由此可知n是素数.当a2=3时,d=2,从而n与所有小于n的奇数互素.故n是2的某个正整数次方.设a2>3.a2是不能整除n的最小素数,所以2|n,3|n.由于n-1=a k=1+(k-1)d,所以3d.又1+d=a2,于是31+d.由此可知3|1+2d.若1+2d<n,则a3=1+2d,这时3|(a3,n).矛盾.若1+2d≣n,则小于n且与n互素自然数的个数为2.设n=2m(>6).若m为偶数,则m+1与n互质,若m为奇数,则m+2与m互质.即除去n-1与1外、还有小于n且与n互质的数.矛盾.综上所述,可知n或是素数或是2的某个正整数次方.21 试确定具有下述性质的最大正整数A:把从1001至2000所有正整数任作一个排列,都可从其中找出连续的10项,使这10项之和大于或等于A.1992年台北数学奥林匹克【解】设任一排列,总和都是1001+1002+…+2000=1500500,将它分为100段,每段10项,至少有一段的和≣15005,所以A≣15005另一方面,将1001~2000排列如下:2000 1001 1900 1101 18001201 1700 1301 1600 14011999 1002 1899 1102 17991202 1699 1302 1599 1402………………1901 1100 1801 1200 17011300 1601 1400 1501 1300并记上述排列为a1,a2,…,a2000(表中第i行第j列的数是这个数列的第10(i-1)+j项,1≢i≢20,1≢j≢10)令S i=a i+a i+1+…+a i+9(i=1,2,…,1901)则S1=15005,S2=15004.易知若i为奇数,则S i=15005;若i为偶数,则S i=15004.综上所述A=15005.22 相继10个整数的平方和能否成为完全平方数?1992年友谊杯国际数学竞赛七年级【解】(n+1)2+(n+2)2+…+(n+10)2=10n2+110n+385=5(2n2+22n+77)不难验证n≡0,1,-1,2,-2(mod 5)时,均有2n2+22n+77≡2(n2+n+1)0(mod 5)所以(n+1)2+(n+2)2+…+(n+10)2不是平方数,23 是否存在完全平方数,其数字和为1993?1993年澳门数学奥林匹克第二轮【解】存在,取n=221即可.24 能表示成连续9个自然数之和,连续10个自然数之和,连续11个自然数之和的最小自然数是多少?1993年美国数学邀请赛【解】答495.连续9个整数的和是第5个数的9倍;连续10个整数的和是第5项与第6项之和的5倍;连续11个整数的和是第6项的11倍,所以满足题目要求的自然数必能被9、5、11整除,这数至少是495.又495=51+52+…+59=45+46+…+54=40+41+…+5025 如果自然数n使得2n+1和3n+1都恰好是平方数,试问5n+3能否是一个素数?1993年全俄数学奥林匹克【解】如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)-(3n+1)=4k2-m2=(2k+m)(2k-m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k-m≠1(否则5n+3=2k+m=2m+1).从而5n+3=(2k+m)(2k-m)是合数.26 设n是正整数.证明:2n+1和3n+1都是平方数的充要条件是n+1为两个相邻的平方数之和,并且为一平方数与相邻平方数2倍之和.1994年澳大利亚数学奥林匹克【证】若2n+1及3n+1是平方数,因为2(2n+1),3(3n+1),可设2n+1=(2k+1)2,3n+1=(3t±1)2,由此可得n+1=k2+(k+1)2,n+1=(t±1)2+2t2反之,若n+1=k2+(k+1)2=(t±1)2+2t2,则2n+1=(2k+1)2,3n+1=(3t±1)2从而命题得证.27 设a、b、c、d为自然数,并且ab=cd.试问a+b+c+d能否为素数.1995年莫斯科数学奥林匹克九年级题【解】由题意知正整数,将它们分别记作k与l.由a+c>c≣c1,b+c>c≣c2。
2020年IMO高中数学竞赛真题
2020年IMO高中数学竞赛真题星期一,21.九月2020 第1题.考虑凸四边形ABCD.设P是ABCD内部一点.且以下比例等式成立:∠PAD:∠PBA:∠DPA=1:2:3=∠CBP:∠BAP:∠BPC.证明:∠ADP的内角平分线、∠PCB的内角平分线和线段AB的垂直平分线三线共点.第2题.设实数a,b,c,d满足a≥b≥c≥d>0,且a+b+c+d=1.证明:(a+2b+3c+4d)a a b b c c d d<1.第3题.有4n枚小石子,重量分别为1,2,3,...,4n.每一枚小石子都染了n种颜色之一,使得每种颜色的小石子恰有四枚.证明:我们可以把这些小石子分成两堆,同时满足以下两个条件:•两堆小石子有相同的总重量;•每一堆恰有每种颜色的小石子各两枚.星期二,22.九月2020 第4题.给定整数n>1.在一座山上有n2个高度互不相同的缆车车站.有两家缆车公司A和B,各运营k辆缆车;每辆从一个车站运行到某个更高的车站(中间不停留其他车站).A公司的k辆缆车的k个起点互不相同,k个终点也互不相同,并且起点较高的缆车,它的终点也较高.B公司的缆车也满足相同的条件.我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动).确定最小的正整数k,使得一定有两个车站被两个公司同时连接.第5题.有一叠n>1张卡片.在每张卡片上写有一个正整数.这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n,使得可以推出这叠卡片上的数均相等?第6题.证明:存在正常数c具有如下性质:对任意整数n>1,以及平面上n个点的集合S,若S中任意两点之间的距离不小于1,则存在一条分离S的直线ℓ,使得S中的每个点到直线ℓ的距离不小于cn−1/3.(我们称直线ℓ分离点集S,如果某条以S中两点为端点的线段与ℓ相交.)注.如果证明了比cn−1/3弱的估计cn−α,会根据α>1/3的值,适当给分.。
数学竞赛高中试题及答案
数学竞赛高中试题及答案一、选择题(每题5分,共20分)1. 若函数f(x) = 2x^2 - 4x + 1,那么f(2)的值是多少?A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{an}的前三项分别为1, 4, 7,求该数列的第五项。
A. 10B. 13C. 16D. 19答案:A3. 一个圆的直径为10cm,那么它的半径是多少?A. 5cmB. 10cmC. 15cmD. 20cm答案:A4. 在直角坐标系中,点P(3, -4)关于x轴的对称点坐标是多少?A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)答案:A二、填空题(每题5分,共20分)5. 计算:\(\sqrt{49} - \sqrt{16} = \)______。
答案:56. 一个等腰三角形的两边长分别为5cm和8cm,那么它的周长是_______cm。
答案:187. 已知函数g(x) = x^3 - 3x^2 + 2,求g(2)的值。
答案:-28. 一个数的平方加上它的两倍等于17,设这个数为n,则n的值为______。
答案:3或-4三、解答题(每题10分,共60分)9. 已知函数h(x) = x^3 - 6x^2 + 11x - 6,求函数的零点。
答案:函数h(x)的零点为x = 1, 2, 3。
10. 一个长方体的长、宽、高分别为a、b、c,且a > b > c,求证:长方体对角线的长度d满足\(d^2 = a^2 + b^2 + c^2\)。
答案:证明略。
11. 已知数列{bn}满足:b1 = 2,bn+1 = 2bn + 1,求数列的前五项。
答案:2, 5, 11, 23, 4712. 一个圆的内接三角形的三个顶点分别在圆上,且三角形的周长为12cm,求圆的半径。
答案:2cm13. 已知函数f(x) = x^2 - 6x + 9,求函数的最小值。
答案:函数的最小值为0。
高中数学竞赛 历届imo竞赛试题(-46届完整中文版)
第1届I M O1.求证(21n+4)/(14n+3) 对每个自然数 n都是最简分数。
2.设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解:(a) A=√2;(b)A=1;(c)A=2。
3.a、b、c都是实数,已知 cos x的二次方程a cos2x +b cos x +c = 0,试用a,b,c作出一个关于 cos 2x的二次方程,使它的根与原来的方程一样。
当a=4,b=2,c=-1时比较 cos x和cos 2x的方程式。
4.试作一直角三角形使其斜边为已知的 c,斜边上的中线是两直角边的几何平均值。
5.在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N,(a.) 求证 AF、BC相交于N点;(b.) 求证不论点M如何选取直线MN 都通过一定点 S;(c.) 当M在A与B之间变动时,求线断 PQ的中点的轨迹。
6.两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。
试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q上。
第2届IMO1.找出所有具有下列性质的三位数 N:N能被11整除且 N/11等于N的各位数字的平方和。
2.寻找使下式成立的实数x:4x2/(1 - √(1 + 2x))2< 2x + 93.直角三角形ABC的斜边BC的长为a,将它分成 n 等份(n为奇数),令α为从A 点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证:tan α = 4nh/(an2 - a).4.已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC。
5.正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D')。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学竞赛历届I M O 竞赛试题届完整中文版集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)第1届I M O1.求证(21n+4)/(14n+3) 对每个自然数 n都是最简分数。
2.设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解:(a) A=√2;(b)A=1;(c)A=2。
3.a、b、c都是实数,已知 cos x的二次方程a cos2x +b cos x +c = 0,试用a,b,c作出一个关于 cos 2x的二次方程,使它的根与原来的方程一样。
当a=4,b=2,c=-1时比较 cos x和cos 2x的方程式。
4.试作一直角三角形使其斜边为已知的 c,斜边上的中线是两直角边的几何平均值。
5.在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N,(a.) 求证 AF、BC相交于N点;(b.) 求证不论点M如何选取直线MN 都通过一定点 S;(c.) 当M在A与B之间变动时,求线断 PQ的中点的轨迹。
6.两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。
试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q上。
第2届IMO1.找出所有具有下列性质的三位数 N:N能被11整除且 N/11等于N的各位数字的平方和。
2.寻找使下式成立的实数x:4x2/(1 - √(1 + 2x))2 < 2x + 93.直角三角形ABC的斜边BC的长为a,将它分成 n 等份(n为奇数),令为从A点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证:tan = 4nh/(an2 - a).4.已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC。
5.正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D')。
X是对角线AC上任意一点,Y是B'D'上任意一点。
a.求XY中点的轨迹;b.求(a)中轨迹上的、并且还满足 ZY=2XZ的点Z的轨迹。
6.一个圆锥内有一内接球,又有一圆柱体外切于此圆球,其底面落在圆锥的底面上。
令V1为圆锥的体积,V2为圆柱的体积。
(a).求证:V1不等于 V2;(b).求V1/V2的最小值;并在此情况下作出圆锥顶角的一般。
7.等腰梯形ABCD,AB平行于DC,BC=AD。
令AB=a,CD=c,梯形的高为h。
X点在对称轴上并使得角BXC、AXD都是直角。
试作出所有这样的X 点并计算X到两底的距离;再讨论在什么样的条件下这样的X点确实存在。
第3届IMO1.设a、b是常数,解方程组x + y + z = a; x2 + y2 + z2 = b2; xy=z2并求出若使x、y、z是互不相同的正数,a、b应满足什么条件?2.设a、b、c是某三角形的边,A 是其面积,求证:a2 + b2 + c2>= 4√3 A.并求出等号何时成立。
3.解方程 cos n x - sin n x = 1, 其中n是一个自然数。
4. P是三角形ABC内部一点,PA交BC于D,PB交AC于E,PC交AB于F,求证AP/PD, BP/PE, CP/PF 中至少有一个不大于2,也至少有一个不小于2。
5.作三角形ABC使得 AC=b, AB=c,锐角AMB = ,其中M是线断BC的中点。
求证这个三角形存在的充要条件是b tan(/2) <=c < b.又问上式何时等号成立。
6.三个不共线的点A、B、C,平面p不平行于ABC,并且A、B、C在p的同一侧。
在p上任意取三个点A', B', C', A'', B'', C''设分别是边AA', BB', CC'的中点,O是三角形A''B''C''的重心。
问,当A',B',C'变化时,O的轨迹是什么第4届IMO1.找出具有下列各性质的最小正整数 n:它的最后一位数字是6,如果把最后的6去掉并放在最前面所得到的数是原来数的4被。
2.试找出满足下列不等式的所有实数 x:√(3-x)- √(x+1) > 1/2.3. 正方体 ABCDA'B'C'D'(ABCD 、A'B'C'D'分别是上下底)。
一点 x 沿着正方形ABCD 的边界以方向ABCDA 作匀速运动;一点Y 以同样的速度沿着正方形B'C'CB 的边界以方向B'C'CBB'运动。
点X 、Y 在同一时刻分别从点A 、B'开始运动。
求线断XY 的中点的轨迹。
4. 解方程cos 2x + cos 22x + cos 23x = 1。
5. 在圆K 上有三个不同的点A 、B 、C 。
试在K 上再作出一点D 使得这四点所形成的四边形有一个内切圆。
6. 一个等腰三角形,设R 为其外接圆半径,内切圆半径为 r ,求证这两个圆的圆心的距离是√(R(R -2r))。
7. 求证:正四面体有5个不同的球,每个球都与这六条边或其延长线相切;反过来,如果一个四面体有5个这样的球,则它必然是正四面体。
第5届IMO1. 找出下列方程的所有实数根(其中 p 是实参数):√(x 2-p)+2√(x 2-1) = x.2. 给定一点A 及线断BC ,设空间中一点P 使得存在线段BC 上有一点X 满足 角APX 是直角,试求出所有这样的点P 的轨迹。
3. 在一个 n 边形中,所有内角都相等,边长依次是a 1 >= a 2 >= ... >= a n ,求证:所有边长都相等。
4. 设 y 是一个参数,试找出方程组 x i + x i+2 = y x i+1 (i = 1, ... , 5)的所有解 x 1, ... , x 5。
5. 求证cos pi/7 - cos 2pi/7 + cos 3pi/7 = 1/2.6.五个同学A、B、C、D、E参加竞赛,一种猜测说比赛结果的名次依然是ABCDE。
但是实际上没有一位同学的名次被猜中,而且预测中名次相邻的同学也没有真的相邻(例如,C、D两位同学名次不是(1,2)、(2,3)、(3,4)、(4,5)中的任何一种)。
还有一种猜测说结果会是DAECB的顺序。
实际上是恰好有两个同学所得的名次与预测的一样;而且有两对同学(4个不同的同学)的名次像预测中的一样是相连。
试讨论最后的名次如何第6届IMO1. (a) 求所有正整数 n 使得 2n - 1 能被 7整除;(b) 求证不存在正整数 n 使得 2n + 1 能被 7 整除。
2.假设a、b、c是某三角形的三边长,求证:a2(b + c - a) + b2(c + a - b) + c2(a + b - c) <= 3abc.3.三角形ABC的三边长为别为a、b、c。
分别平行于ABC的各边作三角形ABC内切圆的切线,每条切线都在ABC中又切出一个小三角形,再在每个这样的小三角形中作内切圆,求这四个内切圆的面积之和(用a,b,c 表示)。
4.十七个人互相通信,每一个人都和其他人写信。
在他们的信上一共讨论有三个不同的话题,每两个人只讨论一个话题,求证:这些人当中至少有三个人他们所讨论的话题是一样的。
5.平面上有五个点,任意两点的连线都不平行,也不垂直,现从每一个点向其他四点两两连接的直线作垂线,试求出所有这些垂线的交点的最大数目。
6.四面体ABCD的中心是D0,分别过A、B、C作 DD的平行线,这些线分别交平面BCD、CAD、ABD于点 A0、 B、 C,求证:ABCD的体积是A 0BCD的三分之一;再问如果 D为三角形ABC内的任意一点,结果是否仍然成立第7届IMO1.试找出所有位于区间[0, 2pi] 的x使其满足2 cos x ≤ | √(1 + sin 2x) - √(1 - sin 2x)| ≤ √2 .2.如下方程组的系数 aij,a11x1+ a12x2+ a13x3= 0a21x1+ a22x2+ a23x3= 0a31x1+ a32x2+ a33x3= 0满足:a.a11、 a22、 a33是正数,其余是负数;b.每个方程中的系数之和是正的。
求证:该方程组的有唯一的解 x1 = x2= x3= 0。
3.四面体ABCD被平行于AB、CD边的一个平面分割成两部分,并且该平面到AB边的距离是该平面到CD边距离的 k倍。
试求出这两部分的体积比。
4.四个实数,它们中的任何三个的乘积再加上第四个数都等于2,求出这四个数的所有可能值。
5.三角形OAB中的角O是锐角,M是边AB上任意一点,从M向OA、OB 边引垂线,垂足分别为P、Q。
设三角形OPQ的垂心为,求出当M在AB边上移动时点H的轨迹;若M在三角形OAB内部移动是H的轨迹又是什么6.平面上给定了 n>2个点,任何两点之间都有线断相连,这些线断长度中的最大值被定义为这个点集的直径,求证:长度为直径的线断至多有n条。
第8届IMO1.在一次数学竞赛中共有A、B、C三道题,25名参赛者每人至少答对了一题。
在所有没有答对A的学生中,答对B的人数是答对C的人数的两倍,只答对问题A的人数比既答对A又至少答对其他一题的人数多1。
又已知在所有恰好答对一题的参赛者中,有一半没有答对A。
请问有多少学生只答对B2.三角形ABC,如果,BC + AC = tan C/2 (BC tan A + AC tan B).则该三角形为等腰三角形。
3.求证:从正四面体的内切圆圆心到各顶点距离之和小于从空间中任意其他点到各顶点距离之和。
4.对任何自然数 n以及满足 sin 2n x 不为 0 的实数x,求证:1/sin 2x + 1/sin 4x + ... + 1/sin 2n x = cot x - cot 2n x.5. ai(i=1,2,3,4)是互不相同的实数,解方程组(i=1,2,3,4)|ai - a1| x1+ |ai- a2| x2+ |ai- a3| x3+ |ai- a4| x4= 1。
6.在三角形ABC的边BC、CA、AB上分别任选三内点K、L、M,求证三角形AML、BKM、CLK之中至少有一个的面积小于活等于三角形ABC的四分之一。
第9届IMO1.平行四边形ABCD,边长 AB = a, AD = 1,角 BAD = A, 已知三角形ABD是一个锐角三角形,求证以A,B,C,D为圆心半径为1的四个圆能够覆盖此平行四边形的充要条件是a ≤ cos A + √3 sin A.2. 若四面体有且仅有一边大于1,求证其体积 ≤ 1/8.3. k, m, n 是自然数 且 m + k + 1 是一个大于 n+1 的素数,令c s = s(s+1),求证(c m+1 - c k )(c m+2 - c k ) ... (c m+n - c k )可被乘积 c 1c 2 ... c n 整除。