声速的测量数据处理表格

合集下载

声速测量实验报告数据处理

声速测量实验报告数据处理

一、实验目的1. 掌握声速测量的基本原理和方法;2. 了解声速与介质参数的关系;3. 学会使用逐差法进行数据处理。

二、实验原理声速是指声波在介质中传播的速度。

声速的测量方法有多种,本实验采用共振干涉法、相位比较法和时差法进行测量。

1. 共振干涉法:利用声波的干涉现象,通过测量相邻波腹或波节的距离,计算声速。

2. 相位比较法:通过比较声波传播过程中接收器接收到的信号与发射器激励电信号的相位差,计算声速。

3. 时差法:测量声波传播的距离和时间,根据公式计算声速。

三、实验仪器与材料1. 实验仪器:超声波发射器、超声波接收器、示波器、函数信号发生器、游标卡尺、温度计、湿度计等。

2. 实验材料:空气、实验数据表格。

四、实验步骤1. 共振干涉法:调整超声波发射器与接收器之间的距离,使接收器接收到的声波与发射器发出的声波发生干涉。

观察示波器上的波形,当出现相邻波腹或波节时,记录游标卡尺测得的距离L。

2. 相位比较法:调整超声波发射器与接收器之间的距离,使接收器接收到的信号与发射器激励电信号的相位差为0。

观察示波器上的波形,记录此时游标卡尺测得的距离L。

3. 时差法:调整超声波发射器与接收器之间的距离,记录声波传播的时间t。

根据公式v = L/t计算声速。

五、数据处理1. 共振干涉法:计算相邻波腹或波节的距离L的平均值,根据公式v = λf计算声速,其中λ为波长,f为频率。

2. 相位比较法:计算相位差为0时的距离L,根据公式v = λf计算声速。

3. 时差法:计算声波传播的距离L和时间t的平均值,根据公式v = L/t计算声速。

六、实验结果与分析1. 共振干涉法:测量得到相邻波腹或波节的距离L的平均值为L1,根据公式v = λf计算声速v1。

2. 相位比较法:测量得到相位差为0时的距离L的平均值为L2,根据公式v =λf计算声速v2。

3. 时差法:测量得到声波传播的距离L和时间t的平均值为L3和t3,根据公式v = L/t计算声速v3。

测量声速的实验报告声速测定实验数据处理

测量声速的实验报告声速测定实验数据处理

测量声速的实验报告声速测定实验数据处理测量声速(实验报告)实验目的:1)探究影响声速的因素,超声波产生和接收的原理。

2)学习、掌握空气中声速的测量方法3)了解、实践液体、固体中的声速测量方法。

4)三种声速测量方法作初步的比较研究。

实验仪器:1)超声波发射器2)超声波探测器3)平移与位置显示部件。

4)信号发生器:5)示波器实验原理:1)空气中:a.在理想气体中声波的传播速度为v(式中 cpcV(1)称为质量热容比,也称“比热[容]比”,它是气体的质量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T是绝对温度,R=8.314472(1±1.7×10-6)Jmol-1K-1为摩尔气体常量。

)标准干燥空气的平均摩尔质量为Mst =28.966 10-3kg/mol b.在标准状态下(T0 273.15K,p 101.3 kPa),干燥空气中的声速为v0=331.5m/s。

在室温t℃下,干燥空气中的声速为v v0(2)(T0=273.15K)c.然而实际空气总会有一些水蒸气。

当空气中的相对湿度为r时,若气温为t℃时饱和蒸气压为pS,则水汽分压为rps。

经过对空气平均摩尔质量M 和质量热容比 的修正,在温度为t、相对湿度为r的空气中,声速为(在北京大气压可近似取p 101kPa;相对湿度r可从干湿温度计上读出。

温度t℃时的饱和水汽压ps可用lgps 10.2861780237.3trp v 331s 16m s (3)计算)d.式(3)的计算结果与实际的超声声速真值可能有一定偏差。

引起偏差的原因有:~状态参量的测量误差~理想气体理论公式的近似性~实际超声声速还与频率有关的声“色散”现象等。

实验方法:A. 脉冲法:利用声波传播时间与传播距离计算声速实验中用脉冲法测量,具体测量从脉冲声源(声发射器)到声探测器之间的传播时间tSD和距离lSD,进而算出声速v (实验中声源与探测器之间基本是同一被测煤质)lSDv tSDB. 利用声速与频率、波长的关系测量(要求声发射器的直径显著大于波长、声探测器的的直径小于波长(反射很少))测波长的方法有B-1 行波近似下的相位比较法B-2 驻波假设下的振幅极值法B-3 发射器与探测器间距一定时的变频测量法实验步骤:1)用行波近似下的相位比较法测量空气中的声速a. 正确接线将信号发生器的输出连接到声速仪的超声发射器信号的输入端的T型三通接头上,三通的另一个借口用导线连到示波器的一个输入端。

大学物理实验---声速的测定数据处理

大学物理实验---声速的测定数据处理

由于本实验中,声速和波长的函数关系可表达为多项式形式,波长和所测得距离也为比例函数,且在实验测量的过程中自变量为等间距变化,因此采用逐差法测量数据。

其优点是能充分利用测量数据而求得所需要的物理量 ,提高测量精度。

一、共振干涉法测量空气中的声速由干涉理论可知,L=λ/2,V=f λ=2f L 这两组线性关系。

实验中等间距的出现波腹或波节,相当于游标卡尺的位置也是等间距来变化的,对测量的数据进行逐差法处理数据。

共振干涉法测量空气中的声速(已知谐振频率fo=37.000KHZ,T 0=300k )等间隔对应项相减测量次数 i 位置 Li/mm 逐次相减 Li=L i+1 -L i/cmL5=L i+5 -L i/cm1 67.02 4.6823.94 2 71.7 4.983 76.68 5.1223.82 4 81.8 4.55 86.3 4.624.32 6 90.9 4.97 95.8 5.224.1 8 101 4.629 105.62 4.6223.88 10 110.24由逐次相减的数据可判断出li 基本相等,验证了L 与λ的线性关系,当然也可看出实验过程中,有些数据的测量还是有一定的误差的,可以进行重新测量作进一步的修正。

因此有L 平均 =??× ??????, L 平均 =4.802 mm, ??λ平均=2× ×3×4.802×1-3= 355.348 m/s ,并且此速度是在温度T0 =300 K测V=f =2fL 37 10得。

二、相位比较法测量空气中的声速实验中采用测量两个相同李萨如图像的位置点来测量波长。

选取的李萨如图形是?? = π时的斜直线,比较容易判断,减小实验误差,测得的数据进行逐差法处理。

相位比较法测量空气中的声速等间隔对应项相减测量次数 i 位置 Li/mm 逐次相减 li=li+1 -li/cml5=li+5 -l i/cm1 65.59.5446.7 2 75.049.663 84.79.3647.08 4 94.069.745 103.88.947.02 6 112.79.37 122 9.7246.96 8 131.72 9.429 141.14 9.3647.2 10 150.5由逐次相减的数据也可判断出li 基本相等,验证了L 与λ的线性关系,当然也可看出实验过程中,有些数据的测量还是有一定的误差的,可以进行重新测量作进一步的修正。

声速的测量实验报告及数据处理

声速的测量实验报告及数据处理

声速的测量实验报告及数据处理嘿伙计们,今天我们要来聊聊声速的测量实验报告及数据处理。

咱们得明白声速是什么吧?声速就是声音在空气中传播的速度,换句话说,就是我们听到的声音传到别人耳朵里需要多长时间。

好了,不多说了,让我们开始实验吧!实验目的:测量实验室内不同温度下的声音传播速度。

实验器材:麦克风、计时器、温度计、声速计、温度计。

实验步骤:1. 我们需要准备好实验器材。

把麦克风插上电源,打开开关,然后用计时器记录下从发出声音到接收到回声所需的时间。

用温度计测量实验室内的温度。

2. 接下来,我们要把声速计调整到合适的范围。

一般来说,声速计的量程是0-3499米/秒。

不过,我们这次实验的目的是测量不同温度下的声音传播速度,所以我们要把声速计调整到0-343米/秒这个范围内。

这样一来,我们就可以更准确地测量出声音在空气中传播的速度了。

3. 现在,我们可以开始实验了。

先让麦克风发出一个响亮的声音,然后用计时器记录下从发出声音到接收到回声所需的时间。

用温度计测量实验室内的温度。

重复这个过程几次,取平均值作为结果。

4. 把测得的时间和温度代入公式:声速 = (2 * 时间) / 温度,计算出声音在空气中传播的速度。

注意,这里的时间单位是秒,温度单位是摄氏度。

5. 我们可以把测得的结果整理成表格或图表的形式进行展示和分析。

通过对比不同温度下的声音传播速度,我们可以了解到什么因素会影响声音在空气中的传播速度。

好啦,实验完成啦!下面我们来分析一下实验数据。

根据我们的实验数据,我们发现随着温度的升高,声音在空气中传播的速度确实会变慢。

这是因为温度升高会导致空气分子的运动变得更加剧烈,从而使声音在空气中传播时受到更大的阻力。

所以呢,当我们感觉天气越来越热的时候,就会觉得声音变得“聒噪”了。

通过这次声速的测量实验报告及数据处理,我们不仅学到了如何测量声音在空气中传播的速度,还了解到了温度对声音传播速度的影响。

希望这些知识能帮助大家更好地理解我们周围的世界哦!。

声速测量实验报告数据处理

声速测量实验报告数据处理

声速测量实验报告数据处理实验目的,通过实验测量声速,并对实验数据进行处理,验证声速的理论值。

实验设备和材料,示波器、信号发生器、频率计、声速测量装置、直尺、计时器。

实验原理,声速的测量是通过发送声波信号并测量信号传播时间来实现的。

声速的测量公式为,声速=传播距离/传播时间。

实验步骤:1. 调节信号发生器,产生频率为f的声波信号。

2. 将声波信号输入示波器,并调节示波器使其显示出声波信号的波形。

3. 在示波器上观察到声波信号的起始点和终止点,分别记录下时间t1和t2。

4. 利用直尺测量声波信号传播的距离L。

5. 计算声速v,公式为v=L/(t2-t1)。

实验数据:1. 频率f=1000Hz。

2. 时间t1=2.5ms。

3. 时间t2=5.0ms。

4. 传播距离L=10m。

数据处理:根据实验步骤中的公式,代入实验数据进行计算,得到声速v的值。

v=10m/(5.0ms-2.5ms)=4000m/s。

实验结果分析:通过实验测得声速v=4000m/s,与理论值343m/s相差较大。

可能的误差来源包括,示波器读数误差、传播距离测量误差、时间测量误差等。

在实际操作中,应该尽量减小这些误差,提高实验数据的准确性。

结论:声速测量实验结果与理论值存在一定的偏差,需要进一步改进实验方法,减小误差,提高实验数据的可靠性。

实验总结:通过本次实验,我对声速测量方法有了更深入的了解,也意识到在实验操作中需要注意细节,减小误差,提高实验数据的准确性。

希望在今后的实验中能够更加严谨地进行数据处理,得到更可靠的实验结果。

参考文献:[1] 张三. 声速测量实验报告[M]. 北京,高等教育出版社,2008.[2] 李四. 声速测量方法及误差分析[J]. 物理实验,2010(3): 56-60.。

大学物理实验超声波声速的测量(含数据)

大学物理实验超声波声速的测量(含数据)

大学物理实验超声波声速的测量(含数据)
一、实验目的
1、测量水中超声波的传播速度;
二、实验器材
2、水槽;
3、测量卡尺。

三、实验原理
超声波声速可以通过测量超声波在介质中传播的时间和距离来确定。

假设超声波在水中的传播速度为v,声波从超声波发射器发出后,在经过水中的传播距离L后,到达超声波接收器所需的时间为t,则有:
v = L/t
四、实验步骤与数据处理
1、将超声波发射器和接收器分别固定在水槽的两侧边缘,距离为L = 100.0 cm。

2、开始实验前,先开启超声波声速测量仪,待其进入正常工作状态后再进行后续步骤。

3、将水箱中的水注满,保证水面平整,不产生涟漪。

4、在超声波声速测量仪屏幕上调节并观察渐进式扫描波形直到找到超声波信号。

然后在屏幕上调节幅度使其在2/3波形范围内。

这个范围内的任何波形变化都可能导致声波时间测量误差。

5、在超声波声速测量仪屏幕上记录观察到的第一个波峰(应为正弦波的正向部分)的位置,这标志着声波的发射时刻。

7、重复实验三次,并将每组实验数据记录在下表中。

实验次数时间t(ms)
1 0.270
2 0.267
3 0.269
8、计算各次实验的平均时间t和超声波速度v:
t = (0.270 ms + 0.267 ms + 0.269 ms) / 3 = 0.269 ms
五、实验结论
本实验测量得到的水中超声波的传播速度为3.72 km/s。

实验结果和实际值(约为1.5 km/s)存在较大的偏差,可能是由于实验误差和水中的水质、温度等因素的影响。

利用超声光栅测定液体中声速表格(最全)word资料

利用超声光栅测定液体中声速表格(最全)word资料

计算紫、绿、黄1、黄2每一条谱线衍射级间的平均间距2k l ,计算出不同级数不同波长所对应的光栅常数i d 求出-d ,然后求出V 及%100⨯-SSV V V 表1 数据表1.本实验如何保证平行光束垂直于声波的方向? 2.驻波波节之间距离为半个波长2λ,为什么超声光栅的光栅常数等于超声波的波长λ?【附 录】 一些参数:20℃时,乙醇(C 2H 5OH )中标准声速v S =1168m/s 水(H 2O )中标准声速v S =1451.0m/s紫光波长 λ=425.83nm 黄1光波长 λ=576.96nm 绿光波长 λ=546.07nm 黄2光波长 λ=579.07nm【实验数据】温度: 25℃公式为: k cl f V ∆=/λν 其中: MHz 4.11=ν理论值: V 。

=1497 m/s (25℃)L2焦距f=170mm ;汞灯波长λ(其不确定度忽略不计)分别为:汞蓝光435.8nm ,汞绿光546.1nm ,汞黄光578.0nm ,(双黄线平均波长)样品:水测微目镜中衍射条纹位置读数,小数点后第三位为估算值:(mm )用逐差法计算各色广衍射条纹平均间距及标准差:单位:(mm )))()()()((12130211203----+-+-+-=l l l l l l l l l k ∆1. 用逐差法处理数据的优点是什么? 2. 误差产生的原因? 3. 能否用钠灯作光源?4. 实验中看到蓝线会有晃动,是由什么原因产生?牛奶中三聚氰胺的含量测定一.样品分子结构中文名英文名分子结构三聚氰胺Melamine二. 样品来源记录样品商品名:样品测定描述:主成分含量测定生产厂家:三. 液相方法条件方法来源:自主开发;具体方法:色谱柱:AQ-C18,5um,4.6×250mm流动相:10mmol/L辛烷磺酸钠和20mmol/L磷酸氢二铵(用磷酸调节pH=3.3):乙腈=90:10;检测波长:236nm;温度:室温29度;流速:1.0ml/min;进样量:20ul;流动相的配制:准确称取10mmol的辛烷磺酸钠和20mmol的磷酸氢二铵溶于1000ml水中,用磷酸调节pH至3.3准确量取该溶液450ml与50ml乙腈混合均匀,超声脱气;样品处理方法:标准品处理:准确称量250mg三聚氰胺标准品加入250ml容量瓶中,用一定量的水:乙腈=50:50超声溶解,然后用水:乙腈=50:50溶液稀释至刻度,配制成1000ug/ml的三聚氰胺溶液,得溶液BZ1;量取BZ1标准溶液1.0ml,加入100ml容量品中,用乙腈:水=50:50稀释至刻度,摇匀的标准溶液BZ2(此时浓度为10ug/ml);样品处理:准确称取2.000g奶粉,加入到10ml容量瓶中,加入乙腈:水=50:50至刻度以下,摇匀,超声20min;用乙腈:水=50:50溶液稀释至刻度;离心或静置分层,取上层清夜用纯水稀释至原来浓度的1/5倍,针筒过滤,进样20ul;注意事项:1. 分析前,先用纯水以1.0ml/min流速冲洗色谱柱30min;分析完成后,先用纯水以1.0ml/min流速反向冲洗色谱柱45min,然后再用乙腈:水=90:10以1.0ml/min流速反向冲洗色谱柱45min;反向冲洗,正向使用;2. 缓冲溶液,隔天需重新配制。

大学物理实验---声速的测定数据处理

大学物理实验---声速的测定数据处理

由于本实验中,声速和波长的函数关系可表达为多项式形式,波长和所测得距离也为比例函数,且在实验测量的过程中自变量为等间距变化,因此采用逐差法测量数据。

其优点是能充分利用测量数据而求得所需要的物理量,提高测量精度。

一、共振干涉法测量空气中的声速由干涉理论可知,ΔL=λ/2,V=fλ=2fΔL这两组线性关系。

实验中等间距的出现波腹或波节,相当于游标卡尺的位置也是等间距来变化的,对测量的数据进行逐差法处理数据。

共振干涉法测量空气中的声速(已知谐振频率f o=,T0=300k)测量次数i 位置L i/mm逐次相减ΔL i=L i+1-L i/cm 等间隔对应项相减ΔL5=L i+5-L i/cm12345678101910由逐次相减的数据可判断出iλ的线性关系,当然也可看出实验过程中,有些数据的测量还是有一定的误差的,可以进行重新测量作进一步的修正。

因此有ΔL平均=,ΔL平均=,V=fλ=2fΔL平均=,并且此速度是在温度T0=300K测得。

二、相位比较法测量空气中的声速实验中采用测量两个相同李萨如图像的位置点来测量波长。

选取的李萨如图形是=时相位比较法测量空气中的声速测量次数i位置L i/mm逐次相减Δl i=l i+1-l i/cm 等间隔对应项相减Δl5=l i+5-l i/cm12345671228910由逐次相减的数据也可判断出Δl i基本相等,验证了ΔL与λ的线性关系,当然也可看出实验过程中,有些数据的测量还是有一定的误差的,可以进行重新测量作进一步的修正。

因此有ΔL平均=,ΔL平均=,V=fλ=fΔL平均=,并且此速度也是在温度T0=300K测得的。

三、时差法测量空气中的声速时差法测量水中的声速(已知谐振频率fo=,T0=300k)测量次数i 位置L i/mm时刻t i/us逐次相减Δt i=t i+1-t i/us等间隔对应项相减Δt5=t i+5-t i/us16028080310041205140616071808200922010240由逐次相减的数据也可判断出Δt i基本相等,验证了Δt i与V的线性关系,当然也可看出实验过程中,有些数据的测量还是有一定的误差的,可以进行重新测量作进一步的修正。

超声波声速测量数据处理范例

超声波声速测量数据处理范例

超声波声速的测量实验数据处理实验室初温:t 1= 33.6 o c ;实验室末温:t 2= 33.8 o c1.用逐差法处理波长λ 依公式计算)(316n n iL L -=+λ==∑n iλλ ==∑n f f i波长的不确定度:A 类分量: =--=∆∑)1()(2n n i A λλ0.085 0.184 0.024 0.033 0.0860.124 30 0.0072 0.03386 0.00058 0.00109 0.00740 0.01537 0.0665|30B 类分量:取其仪器误差限,考虑为均匀分布,则=∆=∆3仪B合成不确定度:=∆+∆=∆22B A波长λ的测量结果:2.频率f 的数据处理:A 类分量: =--=∆∑)1()(2n n f fi A B 类分量:取信号源误差限,考虑为均匀分布,则 =∆=∆3仪B合成不确定度: =∆+∆22B A频率f 的测量结果: 3.波速v 的数据处理=⋅=f V λ=∆+∆⋅=∆22)()(f V fV λλ不确定度传递为波速测量结果:4.理论值及相对误差的计算由实验室初温和末温:t 1 = 33.6 o c ,t 2 = 33.8 o c 得到温度的平均值为:t 0 = (t 1+t 2)/2 = (33.6+33.8)/2 = 33.7 o c声速的理论值:s m T t T V T T V V /4.35115.2737.3315.2735.311000000=+⨯=+⋅=⋅= 将声速的两次测量值与理论值进行比较,由100⨯-=理理实V V V E r % 5.实验结论:文 - 汉语汉字 编辑词条文,wen ,从玄从爻。

天地万物的信息产生出来的现象、纹路、轨迹,描绘出了阴阳二气在事物中的运行轨迹和原理。

故文即为符。

上古之时,符文一体。

古者伏羲氏之王天下也,始画八卦,造书契,以代结绳(爻)之政,由是文籍生焉。

--《尚书序》依类象形,故谓之文。

声速测定以及声速数据处理

声速测定以及声速数据处理

【实验目的】1.了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。

2.学习用共振干涉法、相位比较法和时差法测定超声波的传播速度。

3.通过用时差法对多种介质的测量,了解声纳技术的原理及其重要的实用意义。

【实验原理】在波动过程中波速V 、波长λ和频率f 之间存在着下列关系:λ∙=f V ,实验中可通过测定声波的波长λ和频率f 来求得声速V 。

常用的方法有共振干涉法与相位比较法。

声波传播的距离L 与传播的时间t 存在下列关系:t V L ∙= ,只要测出L 和t 就可测出声波传播的速度V ,这就是时差法测量声速的原理。

1.共振干涉法(驻波法)测量声速的原理:当二束幅度相同,方向相反的声波相交时,产生干涉现象,出现驻波。

对于波束1:)/X 2t cos(A F 1λ∙π-ω∙=、波束2:()λ∙π+ω∙=/X 2t cos A F 2,当它们相交会时,叠加后的波形成波束3:()t cos /X 2cos A 2F 3ω∙λ∙π∙=,这里ω为声波的角频率,t 为经过的时间,X 为经过的距离。

由此可见,叠加后的声波幅度,随距离按()λ∙π/X 2cos 变化。

如图28.1所示。

压电陶瓷换能器1S 作为声波发射器,它由信号源供给频率为数千周的交流电信号,由逆压电效应发出一平面超声波;而换能器2S 则作为声波的接收器,正压电效应将接收到的声压转换成电信号,该信号输入示波器,我们在示波器上可看到一组由声压信号产生的正弦波形。

声源1S 发出的声波,经介质传播到2S ,在接收声波信号的同时反射部分声波信号,如果接收面(2S )与发射面(1S )严格平行,入射波即在接收面上垂直反射,入射波与发射波相干涉形成驻波。

我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器2S 处的振动情况。

移动2S 位置(即改变1S 与2S 之间的距离),你从示波器显示上会发现当2S 在某些位置时振幅有最小值或最大值。

根据波的干涉理论可以知道:任何二相邻的振幅最大值的位置之间(或二相邻的振幅最小值的位置之间)的距离均为2/λ。

物理实验要求及数据表格实验14声速测量

物理实验要求及数据表格实验14声速测量

实验 超声波传播速度的测量专业___________________ 学号___________________ 姓名___________________一、预习要点1.声波的传播速度应如何计算,实验中应测量哪些物理量才能得到声速值? 2.测量每个物理量需要利用的原理是什么? 3.声速的理论值应如何计算? 4. 在课前写好预习报告,上课时务必将预习报告和原始数据表格一并带来,否则扣分。

二、实验内容1.连接声速测定仪,信号源和模拟示波器; 2.测量系统的谐振频率:重复测量3次,填入表1,计算其平均值,并利用平均值来测量波长; 3.共振干涉法测量波长:连续记录8次,填入表2; 4.相位比较法测量波长:连续记录8次,填入表3; 5.时差法测量声速:连续记录6次,填入表4,并计算表格中其余物理量; 6. 记录实验时的室温t =__________℃,计算室温下声速的理论值。

三、实验注意事项1. 调节声速测定仪上的手轮时,必须沿着同一个方向旋转,避免产生空程差,并能保证数据是连续的;2. 在求波长时采用的是数据之间的差值(即用逐差法计算波长),因此表2、表3的起点是任意的;由于换能器之间距离过近或过远均会产生较多干扰,因此建议在50~200mm 之间完成实验;3. 测量读数由标尺的读数与手轮的读数共同构成,读数原理类似于螺旋测微器,要估读到最小分度值的下一位。

四、数据处理要求(对表1、2、3进行以下数据处理;表4不需要进行数据处理) 1. 求出驻波法与相位法中,超声波的频率、波长以及传播速度的标准表达式;2. 求出室温下声速的理论值,以及上述两种方法的相对误差。

【参考公式】1. 求解频率标准表达式的计算过程: 11ni f f n =∑;f S=σ∆=仪f u =⇒ f f f u =± 2. 求解波长标准表达式的计算过程(需要用到逐差法): 共振干涉法:()424i i i L L λ+=-,相位比较法:()414i i i L L λ+=- 之后的计算步骤与求频率相同;3. 求解速度值标准表达式的计算过程:v f λ=⋅;v u = ⇒ v v v u =±4. 室温下的理论值:t v v =331.2m/s v =理5. 相对误差的计算;100%ttv v E v -=⨯注意:由于测量波长使用两种方法测量,因此波长值、速度值与相对误差,均应分别计算两次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档