江苏省泰州市第二中学2020-2021学年高二上学期三校联考12月第二次月考数学试题 含答案

合集下载

江苏省泰州中学2024-2025学年高二上学期10月月考数学试题

江苏省泰州中学2024-2025学年高二上学期10月月考数学试题

江苏省泰州中学2024-2025学年高二上学期10月月考数学试题一、单选题1.经过两点(0,3),(P Q -的直线的倾斜角为( ) A .30︒B .60︒C .120︒D .150︒2.若方程2224240x y mx y m m ++-+-=表示圆,则实数m 的取值范围是( ) A .0m < B .12m <C .1m >-D .2m ≥3.平面内一点M 到两定点()10,3F -,()20,3F 的距离之和为10,则M 的轨迹方程是( )A .2212516x y +=B .2212516y x +=C .2212516y x -=D .2212516x y -=4.一座圆拱桥,当水面在如图所示位置时,拱顶离水面3米,水面宽12米,当水面下降1米后,水面宽度为( )A .B .C .D .5.若直线y x m =+与曲线x m 的取值范围是( )A .m =B .m m ≤C .m D .11m -<≤或m =6.已知点P 在圆22:(2)(1)4O x y -+-=上,点()()1,2,2,2A B --,则满足6AP BP ⋅=u u u r u u u r的点P的个数为( ) A .3B .2C .1D .07.设直线 :10l x y +-=, 一束光线从原点 O 出发沿射线 ()0y kx x =≥ 向直线 l 射出, 经 l 反射后与 x 轴交于点 M , 再次经 x 轴反射后与 y 轴交于点 N . 若MN =, 则 k 的值为( )A .32B .23C .12D .138.已知圆22:16O x y +=,点12,2F ⎛- ⎝,点E 是:2160l x y -+=上的动点,过E 作圆O 的切线,切点分别为A ,B ,直线AB 与EO 交于点M ,则||MF 的最小值为( )A .32B C D二、多选题9.已知ABC V 中,()1,2A -,()1,0B ,()3,4C ,则关于ABC V 下列说法中正确的有( ) A .某一边上的中线所在直线的方程为2y = B .某一条角平分线所在直线的方程为2y = C .某一边上的高所在直线的方程为20x y += D .某一条中位线所在直线的方程为210x y -+= 10.下列说法正确的是( )A .直线sin 20x y α++=的倾斜角θ的取值范围是π3π0,,π44⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭B .“1a =-”是“直线210a x y -+=与直线20x ay --=互相垂直”的充要条件C .过点()1,2P 且在x 轴,y 轴截距相等的直线方程为30x y +-=D .设点()()2,3,3,2A B ---,若点P x ,y 在线段AB 上(含端点),则11y x --的取值范围是(]3,4,4∞∞⎡⎫--⋃+⎪⎢⎣⎭11.已知圆O :224x y +=,过圆O 外一点(),P a b 作圆O 的切线,切点为A ,B ,直线OP 与直线AB 相交于点D ,则下列说法正确的是( )A .若点P 在直线40x y ++=上,则直线AB 过定点()1,1-- B .当PA PB ⋅u u u r u u u r取得最小值时,点P 在圆2232x y +=上C .直线PA ,PB 关于直线22ax by a b +=+对称D .OP 与OD 的乘积为定值4三、填空题12.求过点(1,4)P -且与圆()()22231x y -+-=相切的直线方程为.13.已知方程22112x y m m+=--表示焦点在y 轴上的椭圆,则实数m 的取值范围是14.已知P 为圆22(1)(1)1x y -+-=上任意一点,()()0,0,2,0O B ,则P O B 的最小值为.四、解答题15.已知点()()1,3,5,7A B --和直线:34200l x y +-=. (1)求过点A 与直线l 平行的直线1l 的方程; (2)求过AB 的中点与l 垂直的直线2l 的方程.16.已知以点()1,2A -为圆心的圆与______,过点()2,0B -的动直线l 与圆A 相交于M ,N 两点.从①直线270x y ++=相切;②圆()22320x y -+=关于直线210x y --=对称.这2个条件中任选一个,补充在上面问题的横线上并回答下列问题. (1)求圆A 的方程;(2)当MN =l 的方程.17.如图,将一块直角三角形木板ABO 置于平面直角坐标系中,已知1AB OB ==,AB OB ⊥,点11,24P ⎛⎫⎪⎝⎭是三角形木板内一点,现因三角形木板中阴影部分受到损坏,要把损坏部分锯掉,可用经过点P 的任一直线MN 将三角形木板锯成AMN V ,设直线MN 的斜率为k .(1)用k 表示出直线MN 的方程,并求出M 、N 的坐标;(2)求锯成的AMN V 的面积的最小值.18.如图,圆()22:10C x a x y ay a -++-+=.(1)若圆C 与y 轴相切,求圆C 的方程;(2)当4a =时,圆C 与x 轴相交于两点,M N (点M 在点N 的左侧).问:是否存在圆222:O x y r +=,使得过点M 的任一条直线与该圆的交点,A B ,都有ANM BNM ∠=∠?若存在,求出圆方程,若不存在,请说明理由.19.已知()0,3A 、B 、C 为圆O :222x y r +=(0r >)上三点.(1)若直线BC 过点()0,2,求ABC V 面积的最大值;(2)若D 为曲线()()22143x y y ++=≠-上的动点,且AD AB AC =+u u u r u u u r u u u r ,试问直线AB 和直线AC的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.。

2023-2024学年江苏省泰州中学高二上学期第一次月度检测生物试题

2023-2024学年江苏省泰州中学高二上学期第一次月度检测生物试题

2023-2024学年江苏省泰州中学高二上学期第一次月度检测生物试题1.如图是下丘脑参与人体生命活动调节的部分途径示意图,ABC表示器官,abc表示相关激素。

据图分析下列说法正确的是()A.若图中的B为卵巢,则卵巢等雌性生殖器官不是激素b的靶器官B.图中C为机体调节内分泌活动的枢纽下丘脑,B为下丘脑直接支配的腺体C.若图中的B为甲状腺,则缺碘会导致激素a、c的含量增加,b的含量降低D.C具有感受刺激和传导兴奋的功能,但不具有分泌功能2.如图为人体血糖、体温和水盐平衡调节的部分过程示意图,下列分析正确的是()A.途径②属于体温调节,激素B 是促甲状腺激素B.途径③属于水盐平衡调节,激素D 是由垂体合成和释放的C.激素A、C、D 都是通过体液定向运输到靶细胞或靶器官起作用D.途径①属于血糖调节,胰岛B 细胞上有神经递质的受体3.人在情绪压力下,5-羟色胺(5-HT)含量会降低。

图示为5-HT在5-羟色胺能神经元和多巴胺能神经元间传递信号的过程,5-HTIA是5-HT的受体,该过程能使人产生愉悦情绪,从而增加抗压能力。

下列分析正确的是()A.突触后膜产生动作电位时Na +大量内流,需要载体蛋白的协助,并消耗能量B.适量补充蛋白质有利于产生愉悦情绪,增强人的抗压能力C.5-HT可与5-羟色胺能神经元上的5-HTIA结合引起突触后膜产生兴奋D.5-羟色胺能神经元可通过胞吐的形式分泌和回收5-HT4.图为大鼠视网膜神经细胞间的突触示意图,下列叙述正确的是()A.谷氨酸从甲膜释放到乙膜的过程都需要消耗能量B.谷氨酸与受体结合后使乙膜发生的电位变化是由外负内正转变为外正内负C.某药物抑制过程③谷氨酸的回收,乙膜持续兴奋,可能会导致谷氨酸受体减少D.过程①和过程②都体现了细胞质膜具有一定流动性5.如甲图所示,在神经纤维上连接两个完全相同的灵敏电表,表1两电极分别在a、b处膜外,表2两电极分别在d 处膜的内外侧。

在c 处给予适宜刺激,相关的电位变化曲线如乙图、丙图所示。

江苏省泰州中学2020-2021学年高二上学期期初检测生物试题含答案

江苏省泰州中学2020-2021学年高二上学期期初检测生物试题含答案

江苏省泰州中学期初检测高二生物试卷考试时间:90分钟注意:本试卷包含Ⅰ、Ⅱ两卷。

第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。

第Ⅱ卷为非选择题,所有答案必须填在答题卡的相应位置。

答案写在试卷上均无效,不予记分。

第Ⅰ卷(选择题)一、单选题(本大题共15小题,共30.0分)1.如图所示为人体体液相关组成及各成分间的关系,其中能表示组织液的是()A.①B.②C.③D.④2.如图表示反射弧和神经纤维局部放大的示意图,正确的是()A.在甲图中,反射弧中包含三个、两种神经元和两个突触B.乙图表示神经纤维受到刺激的瞬间膜内外电荷的分布情况,a、c为兴奋部位C.兴奋在③处和⑥处传导时,信号变化和速度均不同D.电刺激⑤处,测量③处的电位变化,可验证兴奋在神经元间的传递是单向的3.关于激素、酶和神经递质的叙述,正确的是()A.激素和酶都具有特异性,只能作用于特定的靶细胞B.激素和酶都具有高效性,非细胞条件下也能发挥作用C.激素弥散在全身的体液中,一经靶细胞接受即被灭活D.乙酰胆碱与特定分子结合后可在神经元之间传递信息4.下图表示正常人分别快速饮用1L清水、1L生理盐水后排尿量和血浆渗透压的变化情况。

下列相关叙述正确的是()A.曲线c表示饮用1L生理盐水后排尿量的变化B.饮用大量生理盐水后循环血量出现暂时性增加C.曲线d表示饮用1L生理盐水后血浆渗透压的变化D.饮用大量清水后垂体合成和分泌的抗利尿激素减少5.下图是人体血糖浓度变化的曲线,下列叙述正确的是()A.曲线ab段与曲线ef段血糖浓度上升的原因相同B.曲线be段与曲线de段血液中胰岛素变化趋势不同C.fg段血糖维持相对稳定只要依靠内分泌系统的调节就能完成D.当血糖偏低时,胰高血糖素可促进肝糖原和肌糖原分解从而使血糖升高6.下图是正常人体处在温度变化的环境中,机体散热量变化曲线图。

据图分析,下列说法中不正确的是()A.t3~t4时段,产热量等于散热量B.t1~t2时段,散热量增加是由于人体体温与环境温度的温差增大造成的C.t2~t3时段,散热量减少,这是体温调节的结果D. t3~t4时段的散热量大于O~t1时段,t3~t4时段的体温低于O~t2时段7.如图为某一神经冲动传递过程的简图,若在P点给予适宜强度的刺激,其中甲为肌肉,则下列叙述正确的是()A.图中共有3个神经元,乙为效应器B.丙神经元的细胞体通常位于脑或脊髓中C.刺激后神经冲动的方向为丁→戊→乙D.肌肉将发生收缩,该反应称为反射8.发生在人体内环境的生理过程是()A.肠脂肪酶催化脂肪分解B.神经递质在突触间險被分解C.氨基酸脱水缩合形成多肽D.mRNA经酶催化分解成核苷酸9.当快速牵拉骨骼肌时,会在d处记录到电位变化过程。

江苏省泰州中学2024-2025学年高二上学期10月月考英语试卷(含答案,无听力音频无听力原文)

江苏省泰州中学2024-2025学年高二上学期10月月考英语试卷(含答案,无听力音频无听力原文)

高二年级英语练习(满分:150分考试时间:120分钟)第一部分:听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. Why does David learn calligraphy?A. To show his works at exhibitions.B. To give his pieces to his parents as gifts.C. To teach his parents this ancient art form.2. What is probably the man?A A doctor. B. A car mechanic. C. A police officer.3. What is the woman advised to do?A. Buy a new phone.B. Get a pair of glasses.C. Have a bigger text size on her phone.4. How does the woman sound?A. Excited.B. Tired.C. Disappointed.5. What are the speakers talking about?A. The pro s and cons of technology.B. The time people spend on screens.C. Different ways to access information.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C 三个选项中选出最佳选项。

江苏省泰州中学2023-2024学年高二上学期第二次月考英语(原卷版)

江苏省泰州中学2023-2024学年高二上学期第二次月考英语(原卷版)

C. From a shopping program.
3. What are the speakers doing?
A. Making a card.
B. Writing a letter.
C. Decorating a house.
4. When does the man need to get up?
A. Other students. B. Company employees.
C. Family members.
20. What is wrong about traditional education according to Kirsti Lonka?
A. It makes math and grammar harder to learn.
听第 9 段材料,回答第 14 至 17 题。
14. What are the speakers mainly talking about?
A. How to put a band together.
B. How to sign up a social media account.
C. How to attract more visitors to a website.
schools nearby. Then, young local men began kicking balls around too.
“Balls” is perhaps the wrong word — the only football in Brazil at the time was the one that Charles Miller had
A. At 3:00 a.m.

2023-2024学年江苏省泰州中学高二(上)期中数学试卷【答案版】

2023-2024学年江苏省泰州中学高二(上)期中数学试卷【答案版】

2023-2024学年江苏省泰州中学高二(上)期中数学试卷一、单项选择题:(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求,请将答案填涂到答题卡相应区域.) 1.直线√3x −3y −2=0的倾斜角为( ) A .120°B .60°C .30°D .150°2.抛物线y 2=2x 的准线方程是( ) A .x =12 B .x =1C .x =−12D .x =﹣13.以双曲线x 216−y 29=1的焦点为顶点,顶点为焦点的椭圆方程是( )A .x 216+y 29=1 B .x 225+y 29=1C .x 225+y 216=1D .x 216+y 225=14.正项等比数列{a n }中,a n +1<a n ,a 2•a 8=6,a 4+a 6=5,则a 5a 7=( )A .56B .65C .23D .325.过原点的直线l 与双曲线x 2﹣y 2=6交于A ,B 两点,点P 为双曲线上一点,若直线P A 的斜率为2,则直线PB 的斜率为( ) A .4B .1C .12D .146.如图所示,一隧道内设双行线公路,其截面由一个长方形和抛物线构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m ,已知行车道总宽度AB =6m ,那么车辆通过隧道的限制高度为( )A .2.25mB .2.5mC .3.25mD .3.5m7.在数学课堂上,为提高学生探究分析问题的能力,教师引导学生构造新数列:现有一个每项都为1的常数列,在此数列的第n (n ∈N *)项与第n +1项之间插入首项为2,公比为2的等比数列的前n 项,从而形成新的数列{a n },数列{a n }的前n 项和为S n ,则( ) A .a 2023=26B .a 2024=26C .S 2023=264﹣3D .S 2023=264+1898.已知抛物线C :y 2=4x ,P 为C 上一点,A (﹣2,0),B (2,0),当|PB||PA|最小时,点P 到坐标原点的距离为( ) A .2√5B .3√2C .2√3D .8二、多项选择题:(本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有若干个选项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.)9.若三条直线l 1:3x +my ﹣1=0,l 2:3x ﹣2y ﹣5=0,l 3:6x +y ﹣5=0不能围成三角形,则m 的值可以是( ) A .2B .﹣2C .12D .−1210.设{a n }是无穷数列,A n =a n +a n +1,(n =1,2,…),则下面给出的四个判断中,正确的有( ) A .若{a n }是等差数列,则{A n }是等差数列 B .若{A n }是等差数列,则{a n }是等差数列 C .若{a n }是等比数列,则{A n }是等比数列 D .若{A n }是等差数列,则{a 2n }都是等差数列11.已知直线l 与圆O :x 2+y 2=9交于A ,B 两点,点P (4,0)满足P A ⊥PB ,若AB 的中点为M ,则|OM |的可能取值为( ) A .2+√22B .2+√32C .32+√22D .32+√212.已知F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)和双曲线E :x 2a 02−y 2b 02=1(a 0>0,b 0>0)的公共左,右焦点,P (在第一象限)为它们的一个交点,且∠F 1PF 2=60°,直线PF 2与双曲线交于另一点Q ,若|PF 2|=2|F 2Q |,则下列说法正确的是( ) A .△PF 1Q 的周长为16a 5B .双曲线E 的离心率为√133C .椭圆C 的离心率为√135D .|PF 1|=4|PF 2|三、填空题:本题共4小题,每小题5分,共20分. 13.设m 为实数,则双曲线x 2m 2+8−y 24−m 2=1的焦距为 .14.已知直线3x +4y ﹣12=0与x 轴、y 轴相交于A ,B 两点,点C 在圆(x ﹣5)2+(y ﹣6)2=9上移动,则△ABC 面积的最大值与最小值之和为 . 15.已知椭圆C 1:x 236+y 2b 2=1的焦点分别为F 1,F 2,且F 2是抛物线C 2:y 2=2px (p >0)的焦点,若P是C 1与C 2的交点,且|PF 1|=7,则cos ∠PF 1F 2的值为 .16.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上,设外围第一个正方形A 1B 1C 1D 1的边长为3,往里第二个正方形为A 2B 2C 2D 2,…,往里第n 个正方形为A n B n ∁n D n .那么第7个正方形的周长是 ,至少需要前 个正方形的面积之和超过20.(本小题第一空2分,第二空3分,参考数据:lg 2=0.301,lg 3=0.477).四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)求符合下列条件的双曲线的标准方程:(1)顶点在x 轴上,两顶点间的距离是8,离心率e =54; (2)渐近线方程是y =±2x ,虚轴长为4.18.(12分)已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x ﹣y ﹣5=0,AC 边上的高BH 所在直线方程为x ﹣2y ﹣7=0. (1)求顶点C 的坐标. (2)求直线BC 的方程.19.(12分)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到抛物线C 的焦点F 的距离为12,点A 到y 轴的距离为9. (1)求p 的值;(2)若斜率为1的直线l 经过抛物线C 的焦点F ,且与抛物线C 相交于M 、N 两点.求线段|MN |的长. 20.(12分)数列{a n }满足a 1=2,a n a n +1=16n (n ∈N *). (1)求{a n }的通项公式;(2)设b n ={a n ,n 为奇数b n−1+n ,n 为偶数,求数列{b n }的前2n 项和S 2n .21.(12分)已知等差数列{a n }满足a 3=S 2+1,S 3=a 4+2,其中S n 为{a n }的前n 项和,递增的等比数列{b n }满足:b 1=1,且b 1,b 2,b 3﹣4成等差数列. (1)求数列{a n }、{b n }的通项公式;(2)设{a n •b n }的前n 项和为T n ,求T n ;(3)设∁n =(a n+4)(S n +n)⋅b n+1,{∁n }的前n 项和为A n ,A n ≥λn+1恒成立,求实数λ的最大值.22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为2√23,左顶点为A (﹣3,0),直线l 与椭圆C 交于P ,Q 两点.(1)求椭圆的C 的标准方程;(2)若直线AP ,AQ 的斜率分别为k 1,k 2,且k 1•k 2=−29,求|PQ |的取值范围.2023-2024学年江苏省泰州中学高二(上)期中数学试卷参考答案与试题解析一、单项选择题:(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求,请将答案填涂到答题卡相应区域.) 1.直线√3x −3y −2=0的倾斜角为( ) A .120°B .60°C .30°D .150°解:因为直线√3x −3y −2=0的斜率为√33,故直线的倾斜角为30°.故选:C .2.抛物线y 2=2x 的准线方程是( ) A .x =12B .x =1C .x =−12D .x =﹣1解:根据题意,抛物线的标准方程为y 2=2x ,则其焦点在x 轴正半轴上,且p =1,则其准线方程为x =−12, 故选:C . 3.以双曲线x 216−y 29=1的焦点为顶点,顶点为焦点的椭圆方程是( )A .x 216+y 29=1 B .x 225+y 29=1C .x 225+y 216=1 D .x 216+y 225=1解:双曲线x 216−y 29=1,双曲线的焦点(±5,0),则椭圆的顶点(±5,0),双曲线顶点为(±4,0),椭圆的焦点(±4,0),可得a =5,c =4,则b =3, 所以椭圆方程为:x 225+y 29=1.故选:B .4.正项等比数列{a n }中,a n +1<a n ,a 2•a 8=6,a 4+a 6=5,则a 5a 7=( )A .56B .65C .23D .32解:因为正项等比数列{a n }中,a n +1<a n ,a 2•a 8=6,a 4+a 6=5, 所以a 4•a 6=6,a 4+a 6=5,解得a 4=3,a 6=2,a 5a 7=a 4a 6=32.故选:D .5.过原点的直线l 与双曲线x 2﹣y 2=6交于A ,B 两点,点P 为双曲线上一点,若直线P A 的斜率为2,则直线PB 的斜率为( )A .4B .1C .12D .14解:由题意可设A (m ,n ),B (﹣m ,﹣n ),P (x ,y ), 则m 2﹣n 2=6,x 2﹣y 2=6, 即有y 2﹣n 2=x 2﹣m 2, 即y 2−n 2x 2−m 2=1,由k P A =y−nx−m ,k PB =y+nx+m ,可得k P A •k PB =y 2−n 2x 2−m 2=1,而k P A =2,所以k PB =12. 故选:C .6.如图所示,一隧道内设双行线公路,其截面由一个长方形和抛物线构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m ,已知行车道总宽度AB =6m ,那么车辆通过隧道的限制高度为( )A .2.25mB .2.5mC .3.25mD .3.5m解:取隧道截面,以抛物线的顶点为原点,对称轴为y 轴,建立直角坐标系,则C (4,﹣4),设抛物线方程x 2=﹣2py (p >0),将点C 代入抛物线方程得p =2, ∴抛物线方程为x 2=﹣4y , 行车道总宽度AB =6m ,∴将x =3代入抛物线方程,y =﹣2.25m , ∴限度为6﹣2.25﹣0.5=3.25m . 故选:C .7.在数学课堂上,为提高学生探究分析问题的能力,教师引导学生构造新数列:现有一个每项都为1的常数列,在此数列的第n (n ∈N *)项与第n +1项之间插入首项为2,公比为2的等比数列的前n 项,从而形成新的数列{a n },数列{a n }的前n 项和为S n ,则( ) A .a 2023=26 B .a 2024=26C .S 2023=264﹣3D .S 2023=264+189解:由题意,可知新数列{a n }为:在每项都为1的常数列的第n (n ∈N *)项与第n +1项之间等比数列{2n }的前n 项, 故新数列{a n }:1,21,1,21,22,1,21,22,23,1,21,22,23,24,… 可将数列{a n }进行分组,第1组为1,21,共2项, 第2组为1,21,22,共3项, 第3组为1,21,22,23,共4项, 第4组为1,21,22,23,24,共5项,… 第n 组为1,21,22,…,2n ,共n +1项, ∴前n ﹣1组一共有2+3+4+…+n =(1+2+3+4+…+n )﹣1 =n(n+1)2−1项, ∵当n =63时,63×642−1=2015<2023,当n =64时,64×652−1=2079>2023,∴a 2023在数列{a n }的第64组的第2023﹣2015=8个, ∴a 2023=28﹣1=27,故选项A 错误;同理,a 2024在数列{a n }的第64组的第2024﹣2015=9个, 故a 2024=29﹣1=28,故选项B 错误;∴S 2023=a 1+a 2+…+a 2023=(1+21)+(1+21+22)+(1+21+22+23)+...+(1+21+...+262)+(1+21+ (27)=1−221−2+1−231−2+1−241−2+⋯+1−2631−2+1−281−2=(22﹣1)+(23﹣1)+(24﹣1)+…+(263﹣1)+(28﹣1)=(22+23+24+…+263)﹣62+28﹣1=22−2641−2−62+256﹣1=264+189,故选项C 错误,选项D 正确. 故选:D .8.已知抛物线C :y 2=4x ,P 为C 上一点,A (﹣2,0),B (2,0),当|PB||PA|最小时,点P 到坐标原点的距离为( ) A .2√5B .3√2C .2√3D .8解:由题意设P (n 24,n ),A (﹣2,0),B (2,0),|PB||PA|=√(n 24−2)2+n 2√(n 24+2)2+n 2=√n 416+4n 416+4+2n 2=√1+n 216+4n 2,当n 216+4n2取得最小值时,|PB||PA|取得最小值,n 216+4n 2≥2√n216⋅4n 2=1,当且仅当n 216=4n2,即n =±2√2时,取等号.此时P (2,±2√2),则点P 到坐标原点的距离为:√4+8=2√3. 故选:C .二、多项选择题:(本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有若干个选项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.)9.若三条直线l 1:3x +my ﹣1=0,l 2:3x ﹣2y ﹣5=0,l 3:6x +y ﹣5=0不能围成三角形,则m 的值可以是( ) A .2B .﹣2C .12D .−12解:因为l 2:3x ﹣2y ﹣5=0,l 3:6x +y ﹣5=0,可得l 2与l 3相交, 联立{3x −2y −5=06x +y −5=0,解得x =1,y =﹣1,即两条直线的交点(1,﹣1),且l 2的斜率为k 2=32,直线l 3的斜率k 3=﹣6,要使三条直线不能围成三角形,则l 1∥l 2或l 1∥l 3或直线l 1过(1,﹣1), 所以−3m =32或−3m =−6或3×1+m (﹣1)﹣1=0,解得m =﹣2或m =12或m =2. 故选:ABC .10.设{a n }是无穷数列,A n =a n +a n +1,(n =1,2,…),则下面给出的四个判断中,正确的有( ) A .若{a n }是等差数列,则{A n }是等差数列 B .若{A n }是等差数列,则{a n }是等差数列 C .若{a n }是等比数列,则{A n }是等比数列 D .若{A n }是等差数列,则{a 2n }都是等差数列解:A .若{a n }是等差数列,设公差为d ,则当n ≥2时,A n ﹣A n ﹣1=a n +a n +1﹣a n ﹣1﹣a n =a n +1﹣a n ﹣1=2d ,为常数,则{A n }是等差数列,故A 正确,B ..若{A n }是等差数列,设公差为d ,则当n ≥2时,A n ﹣A n ﹣1=a n +a n +1﹣a n ﹣1﹣a n =a n +1﹣a n ﹣1=2d , 即{a n }的偶数项成等差数列,奇数项成等差数列,则整体{a n }不一定是等差数列,故B 错误,C .若{a n }是等比数列,设公比为q ,则当q =﹣1时,A n =a n +a n +1=0,则{A n }不是等比数列,故C 错误,D …若{A n }是等差数列,设公差为d ,则当n ≥2时,a 2n ﹣a 2(n ﹣1)=a 2n ﹣a 2n ﹣2=2d ,则{a 2n }都是等差数列,故D 正确, 故选:AD .11.已知直线l 与圆O :x 2+y 2=9交于A ,B 两点,点P (4,0)满足P A ⊥PB ,若AB 的中点为M ,则|OM |的可能取值为( ) A .2+√22B .2+√32C .32+√22D .32+√2解:设A (x 1,y 1),B (x 2,y 2),AB 中点为M (x ,y ), 则x 1+x 2=2x ,y 1+y 2=2y ,∵x 12+y 12=9,x 22+y 22=9,∴x 12+x 22+y 12+y 22=18,即(x 1+x 2)2−2x 1x 2+(y 1+y 2)2−2y 1y 2=18,∴x 1x 2+y 1y 2=2x 2+2y 2﹣9①, ∵点P (4,0)满足的P A ⊥PB , ∴PA →⋅PB →=0,∵PA →=(x 1−4,y 1),PB →=(x 2−4,y 2),∴x 1x 2﹣4(x 1+x 2)+16+y 1y 2=0,即x 1x 2+y 1y 2=4(x 1+x 2)﹣16=8x ﹣16②, 结合①②可得,2x 2+2y 2﹣9=8x ﹣16,即(x −2)2+y 2=12,(另解:设AB 的中点M (x ,y ),由OM ⊥AB ,可得OM 2+MB 2=OB 2, 而MP =MA =MB ,即OM 2+MP 2=OB 2, 即x 2+y 2+(x ﹣4)2+y 2=9, 化为(x ﹣2)2+y 2=12),故中点M 的轨迹方程为(x −2)2+y 2=12,圆心为(2,0),半径为√22,则|OM |的最大值为√(2−0)2+(0−0)2+√22=2+√22, 则|OM |的最小值为√(2−0)2+(0−0)2−√22=2−√22, ∴|OM |的取值范围为[2−√22,2+√22].故选:AC .12.已知F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)和双曲线E :x 2a 02−y 2b 02=1(a 0>0,b 0>0)的公共左,右焦点,P (在第一象限)为它们的一个交点,且∠F 1PF 2=60°,直线PF 2与双曲线交于另一点Q ,若|PF 2|=2|F 2Q |,则下列说法正确的是( ) A .△PF 1Q 的周长为16a 5B .双曲线E 的离心率为√133C .椭圆C 的离心率为√135D .|PF 1|=4|PF 2|解:设|QF 2|=t ,则|PF 2|=2t ,|PF 1|=2t +2a 0,|QF 1|=t +2a 0,在△PF 1Q 中,由余弦定理|QF 1|2=|PF 1|2+|PQ|2−2|PF 1||PQ|cos∠F 1PQ , 得(t +2a 0)2=(2t +2a 0)2+9t 2−2(2a 0+2t)⋅3t ⋅cos60°, 化简得a 0=3t ,|PF 1|=2t +2a 0=8t =4|PF 2|,D 正确; 又2a =|PF 1|+|PF 2|=10t , 所以a =5t , 又|QF 1|=t +2a 0=7t ,则△PF 1Q 的周长为8t +3t +7t =18t =185a ,A 错误; △PF 1F 2中,|F 1F 2|=2c ,由余弦定理得4c 2=(8t )2+(2t )2﹣2×8t ×2t ×cos60°, 所以c =√13t ,因此双曲线的离心率为e 1=c a 0=√13t 3t =√133,B 正确;椭圆的离心率为e 2=c a =√13t 5t =√135,C 正确,三、填空题:本题共4小题,每小题5分,共20分. 13.设m 为实数,则双曲线x 2m 2+8−y 24−m 2=1的焦距为 4√3 .解:∵双曲线的方程为x 2m 2+8−y 24−m 2=1,∴a 2=m 2+8,b 2=4﹣m 2,(m 2<4), ∴c 2=a 2+b 2=12,∴c =2√3, ∴双曲线的焦距为2c =4√3. 故答案为:4√3.14.已知直线3x +4y ﹣12=0与x 轴、y 轴相交于A ,B 两点,点C 在圆(x ﹣5)2+(y ﹣6)2=9上移动,则△ABC 面积的最大值与最小值之和为 27 .解:作出与已知直线平行且与圆(x ﹣5)2+(y ﹣6)2=9相切的直线, 切点分别为P 1、P 2,如图所示:则动点C 在圆(x ﹣5)2+(y ﹣6)2=9上移动时,若C 与点P 1重合时, △ABC 面积达到最小值;而C 与点P 2重合时,△ABC 面积达到最大值, ∵直线3x +4y ﹣12=0与x 轴、y 轴相交于A (4,0)、B (0,3)两点, 可得|AB |=√42+32=5,∴△ABC 面积的最大值和最小值之和为:S =S △ABP 2+S △ABP 1=12|AB |(d 2+d 1)=52(d 2+d 1), 其中d 2、d 1分别为点P 2、点P 1到直线AB 的距离, ∵P 1、P 2是圆(x ﹣5)2+(y ﹣6)2=9的两条平行切线, 设圆心到直线的距离为d ,∴点P 2、点P 1到直线AB 的距离之和等于2d ,即d 2+d 1=2d =2×|15+4×6−12|√3+4=542,因此△ABC 面积的最大值和最小值之和为52(d 2+d 1)=52×542=27.15.已知椭圆C 1:x 236+y 2b 2=1的焦点分别为F 1,F 2,且F 2是抛物线C 2:y 2=2px (p >0)的焦点,若P是C 1与C 2的交点,且|PF 1|=7,则cos ∠PF 1F 2的值为57.解:依题意,由椭圆定义得|PF 1|+|PF 2|=12,而|PF 1|=7,则|PF 2|=5,因为点F 2是抛物线C 2:y 2=2px (p >0)的焦点,则该抛物线的准线过点F 1,如图,过点P 作PQ ⊥l 于点Q ,由抛物线定义知|PQ |=|PF 2|=5,而F 1F 2∥PQ , 则∠PF 1F 2=∠F 1PQ ,所以cos ∠PF 1F 2=sin ∠F 1PQ =|PQ||PF 1|=57, 故答案为:57.16.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上,设外围第一个正方形A 1B 1C 1D 1的边长为3,往里第二个正方形为A 2B 2C 2D 2,…,往里第n 个正方形为A n B n ∁n D n .那么第7个正方形的周长是500243,至少需要前 8 个正方形的面积之和超过20.(本小题第一空2分,第二空3分,参考数据:lg 2=0.301,lg 3=0.477).解:根据题意,设第n 个正方形的边长为a n ,则a 1=3,∵每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上, ∴A 2B 1=23a 1,B 1B 2=13a 1, 又由∠A 2B 1B 2=90°,∴A 2B 2=√A 2B 12+B 1B 22=√49a 12+19a 12=√53a 1, 即a 2=√53a 1,同理可得a n+1=√53a n , 即数列{a n }是首项为3,公比为√53的等比数列, ∴a 7=a 1×(√53)6=3×125729=125243,∴第7个正方形的周长是4a 7=500243, ∵a n =a 1×(√53)n−1=3×(√53)n−1,∴第n 个正方形的面积为a n 2=9×(59)n−1,∴前n 个正方形的面积之和S =9[1+59+(59)2+⋯+(59)n−1]=9×1×[1−(59)n]1−59=814[1﹣(59)n ], 令814[1−(59)n ]>2得,(59)n <181, 两边取常用对数得,nlg 59<lg181,变形可得:n >lg81lg9−lg5=4lg32lg3−lg5≈7.48, 故至少需要前8个正方形的面积之和超过20. 故答案为:500243;8.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)求符合下列条件的双曲线的标准方程:(1)顶点在x 轴上,两顶点间的距离是8,离心率e =54; (2)渐近线方程是y =±2x ,虚轴长为4.解:(1)因为该双曲线的顶点在x 轴上,两顶点间的距离是8,离心率e =54, 所以{2a =8e =c a=54, 解得a =4,c =5, 则b 2=c 2﹣a 2=9, 故双曲线的标准方程为x 216−y 29=1;(2)当双曲线焦点在x 轴上时, 因为渐近线方程是y =±2x ,虚轴长为4,所以{ba =22b =4,解得a =1,b =2,则双曲线的标准方程为x 2−y 24=1; 当双曲线焦点在y 轴上时,因为渐近线方程是y =±2x ,虚轴长为4,所以{a b =22b =4,解得a =4,b =2, 则双曲线的标准方程为y 216−x 24=1.综上所述,双曲线的标准方程为x 2−y 24=1或y 216−x 24=1.18.(12分)已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x ﹣y ﹣5=0,AC 边上的高BH 所在直线方程为x ﹣2y ﹣7=0. (1)求顶点C 的坐标. (2)求直线BC 的方程.解:(1)∵边AC 上的高BH 所在直线方程为x ﹣2y ﹣7=0 ∴k AC •k BH =﹣1, ∴k AC =﹣2,∵△ABC 的顶点A (5,1),∴直线AC 方程;y ﹣1=﹣2(x ﹣5),即2x +y ﹣11=0 与2x ﹣y ﹣5=0联立,{2x +y −11=02x −y −5=0,解得:{x =4y =3.∴顶点C 的坐标为(4,3).(2)∵CM 所在直线方程为2x ﹣y ﹣5=0,设点M (m ,2m ﹣5)∵M 是AB 中点,A (5,1), ∴B (2m ﹣5,4m ﹣11)∵B (2m ﹣5,4m ﹣11)在BH 所在直线方程为x ﹣2y ﹣7=0上 ∴2m ﹣5﹣2(4m ﹣11)﹣7=0, 解得:m =53, 所以B(−53,−133), ∴BC 的方程为:y −3=2217(x −4), 即22x ﹣17y ﹣37=0.19.(12分)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到抛物线C 的焦点F 的距离为12,点A 到y 轴的距离为9. (1)求p 的值;(2)若斜率为1的直线l 经过抛物线C 的焦点F ,且与抛物线C 相交于M 、N 两点.求线段|MN |的长. 解:(1)不妨设A (x ,y ), 因为点A 在抛物线上, 所以y 2=2px (p >0),因为点A 到抛物线C 的焦点F 的距离为12,点A 到y 轴的距离为9, 所以AF =9+p2=12, 解得p =6;(2)由(1)知抛物线C :y 2=12x ,焦点F (3,0), 此时直线l 的方程为y =x ﹣3,联立{y 2=12x y =x −3,消去y 并整理得x 2﹣18x +9=0,此时Δ=182﹣4×9>0,不妨设M (x 1,y 1),N (x 2,y 2), 由韦达定理得x 1+x 2=18,则|MN |=|MF |+|NF |=x 1+x 2+p =18+6=24.20.(12分)数列{a n }满足a 1=2,a n a n +1=16n (n ∈N *). (1)求{a n }的通项公式;(2)设b n ={a n ,n 为奇数b n−1+n ,n 为偶数,求数列{b n }的前2n 项和S 2n .解:(1)由a n a n+1=16n ,a 1=2,可得a 2=8, 由a n+1a n+2=16n+1,又a n a n +1=16n , 上面两式相除得:a n+2a n=16,可得数列{a n }的奇数项和偶数项均为公比为16的等比数列, 则a 2k =8×16k−1=24k−1,即a n =22n−1, a 2k−1=2×16k−1=24k−3,即a n =22n−1, 综上所述,{a n }的通项公式为:a n =22n−1; (2)由题设及(1)可知:b n ={22n−1,n 为奇数b n−1+n ,n 为偶数,S 2n =b 1+b 2+b 3+b 4+⋯+b 2n ﹣1+b 2n =(b 1+b 3+b 5+⋯+b 2n ﹣1)+(b 2+b 4+⋯+b 2n ) =(b 1+b 3+b 5+⋯+b 2n ﹣1)+(b 1+2+b 3+4+b 5+6+⋯+b 2n ﹣1+2n )=2(b 1+b 3+b 5+⋯+b 2n ﹣1)+(2+4+6+⋯+2n )=2(21+25+29+⋯+24n ﹣3)+(2+4+6+⋯+2n )=2×2(1−16n )1−16+n(2n+2)2=4(16n−1)15+n(n +1).21.(12分)已知等差数列{a n }满足a 3=S 2+1,S 3=a 4+2,其中S n 为{a n }的前n 项和,递增的等比数列{b n }满足:b 1=1,且b 1,b 2,b 3﹣4成等差数列. (1)求数列{a n }、{b n }的通项公式; (2)设{a n •b n }的前n 项和为T n ,求T n ; (3)设∁n =(a n +4)(S n +n)⋅b n+1,{∁n }的前n 项和为A n ,A n ≥λn+1恒成立,求实数λ的最大值.解:(1)数列{a n }的首项为a 1,公差为d 的等差数列,数列{a n }满足a 3=S 2+1,S 3=a 4+2, 整理得:{a 1+2d =2a 1+d +1S 3=3a 1+3×22d =a 1+3d +2,解得{a 1=1d =2,所以a n =2n ﹣1.递增的等比数列{b n }满足:b 1=1,且b 1,b 2,b 3﹣4成等差数列. 所以公比q >1.利用2×(b 1q)⬚=b 1+(b 1q 2−4),解得q =3或﹣1(﹣1舍去), 故b n =3n−1,(2)由(1)得:令c n =a n b n =(2n −1)⋅3n−1, 所以T n =1×30+3×31+...+(2n −1)⋅3n−1①, 3T n =1×31+3×32+...+(2n −1)⋅3n ②,①﹣②得:−2T n =1+2×[3×(3n−1−1)3−1]−(2n −1)⋅3n ,故T n =(n −1)⋅3n +1. (3)由于C n =(a n +4)(S n +n)⋅b n+1=2n+3(n 2+n)⋅3n =1n⋅3n−1−1(n+1)⋅3n,所以A n =11×30−12×31+...+1n⋅3n−1−1(n+1)⋅3n =1−1(n+1)⋅3n , 由于A n ≥λn+1恒成立, 即1−1(n+1)⋅3n ≥λn+1恒成立, 故λ≤n +1−13n , 由于函数f (x )=x +1−13x 为增函数,故f(x)min =f(1)=2−13=53, 所以λ≤53, 故λ的最大值为53.22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为2√23,左顶点为A (﹣3,0),直线l 与椭圆C 交于P ,Q 两点.(1)求椭圆的C 的标准方程;(2)若直线AP ,AQ 的斜率分别为k 1,k 2,且k 1•k 2=−29,求|PQ |的取值范围. 解:(1)由椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为2√23,左顶点为A (﹣3,0), 可得{c a =2√23a =3a 2=b 2+c 2,解得a =3,b =1,c =2√2,故椭圆C 的标准方程为:x 29+y 2=1;(2)直线AP ,AQ 的斜率分别为k 1,k 2,且k 1•k 2=−29, 由(1)得:x 29+y 2=1,因为直线l 与椭圆C 交于P ,Q 两点,由题可知,直线l 斜率为0时,k 1k 2>0,所以直线l 的斜率不为0, 设直线l :x =my +n ,P (x 1,y 1),Q (x 2,y 2), 联立方程{x =my +n x 29+y 2=1,得(m 2+9)y 2+2mny +n 2﹣9=0, 所以Δ=4m 2n 2﹣4(m 2+9)(n 2﹣9)=36(m 2﹣n 2+9),且y 1+y 2=−2mn m 2+9,y 1•y 2=n 2−9m 2+9, 所以k 1k 2=y 1x 1+3⋅y 2x 2+3=y 1y 2(my 1+n+3)(my 2+n+3)=y 1y 2m 2y 1y 2+m(n+3)(y 1+y 2)+(n+3)2=n 2−99(n+3)2=n−39(n+3)=−29,解得n =﹣1,此时Δ=36(m 2+8)>0恒成立,所以直线l 的方程为x =my ﹣1,直线l 过定点(﹣1,0), 此时y 1+y 2=2m m 2+9,y 1y 2=−8m 2+9, 所以|PQ|=√1+m 2⋅√(y 1+y 2)2−4y 1y 2 =√1+m 2⋅√4m 2(m 2+9)2+32m 2+9=6√(m 2+1)(m 2+8)m 2+9,令t =m 2+9≥9, 所以|PQ|=6√(t−8)(t−1)t 2=6√8t2−9t +1, 令u =1t,则t ∈(0,19],故|PQ |=6√8u 2−9u +1在(0,19]上单调递减, 故|PQ |的取值范围为[4√23,6).。

2020-2021学年高二数学05 数列(单选题)12月理(解析Word版)

2020-2021学年高二数学05 数列(单选题)12月理(解析Word版)

专题05 数 列(单选题)1.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S = A .31 B .32 C .63D .64【试题来源】甘肃省张掖市第二中学2020-2021学年高二第一学期期中考试(文) 【答案】C【分析】根据等比数列前n 项和的性质列方程,解方程求得6S .【解析】因为n S 为等比数列{}n a 的前n 项和,所以2S ,42S S -,64S S -成等比数列, 所以()()242264S S S S S -=-,即()()62153315-=-S ,解得663S =.故选C . 2.等差数列{}n a 中,22a =,公差2d =,则10S = A .200 B .100 C .90D .80【试题来源】广东省东莞市第四高级中学2020-2021学年高二上学期期中 【答案】C【解析】依题意120a a d =-=,所以101104545290S a d =+=⨯=.故选C . 3.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a = A .7 B .10 C .13D .16【试题来源】山东省济宁市2020-2021学年高三第一学期学分认定 【答案】C【解析】设等差数列{}n a 的公差为d ,141,16a S ==,41464616S a d d ∴=+=+=,2d ∴=,71613a a d ∴=+=.故选C .4.等差数列{}n a 中,已知14739a a a ++=,则4a = A .13 B .14 C .15D .16【试题来源】广西南宁市第十中学2020-2021学年高二上学期段考【答案】A【解析】由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得413a =,故选A .5.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S = A .10- B .8 C .12D .14【试题来源】福建省莆田第二十五中学2020-2021学年高二上学期期中考试 【答案】D【分析】利用等差数列下标性质求得4a ,再利用求和公式求解即可 【解析】147446=32a a a a a ++=∴=,则()177477142a a S a +===,故选D . 6.在数列{}n a 中,21n n a n +=+,则{}n a A .是常数列 B .不是单调数列 C .是递增数列D .是递减数列【试题来源】河南省焦作市2020-2021学年高二(上)期中(理) 【答案】D【分析】由21111n n a n n +==+++,利用反比例函数的性质判断即可. 【解析】在数列{}n a 中,21111n n a n n +==+++, 由反比例函数的性质得{}n a 是*n N ∈时单调递减数列,故选D . 7.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S = A .45 B .50 C .60D .80【试题来源】江西省临川二中、临川二中实验学校2020届高三第二次模拟考试(文) 【答案】C【分析】利用等差数列性质当m n p q +=+ 时m n p q a a a a +=+及前n 项和公式得解. 【解析】{}n a 是等差数列,3944a a a +=+,4844a a a ∴+=+,84a =,1158158()15215156022a a a S a +⨯⨯====,故选C .8.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为 A .8 B .13 C .26D .162【试题来源】安徽省马鞍山市和县第二中学2020-2021学年高一上学期期中联考(理) 【答案】B【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【解析】因为()351041072244a a a a a a ++=+==,所以71a =, 又()1131371313131132a a S a +===⨯=,故选B .【名师点睛】等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.9.已知函数()()837,8,8x a x x f x a x -⎧--≤=⎨>⎩,若数列{}n a 满足()()*n a f n n N =∈,且{}n a 是递增数列,则实数a 的取值范围是 A .()1,3B .17,39⎡⎫⎪⎢⎣⎭C .17,39⎛⎫⎪⎝⎭D .[)2,3【试题来源】湖北省随州市2020-2021学年高二上学期9月联考 【答案】C【分析】由题意可得分段函数()f x 在每一段都是单调递增且98a a >,即可得解.【解析】因为函数()()837,8,8x a x x f x a x -⎧--≤=⎨>⎩,()()*n a f n n N =∈,且{}n a 是递增数列,则()98301837a a a a -⎧->⎪>⎨⎪>--⎩,解得1739a <<.故选C . 【名师点睛】在处理函数与数列的综合问题时,要注意数列是一类特殊的函数,它的图象是一群孤立的点.10.已知等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,则n n S =aA .14n -B .41n -C .12n -D .21n -【试题来源】河南省洛阳市第一高级中学2020-2021学年高三上学期10月月考(文) 【答案】D【解析】因为等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,所以2413514522q a a a a =++==,因此()()111111111221112n nn n n n n n na q Sq q a a q q q ---⎛⎫- ⎪--⎝⎭====--⎛⎫ ⎪⎝⎭.故选D .11.设公差为d 的等差数列{}n a 的前n 项和n S ,若4228S S =+,则d = A .1 B .2 C .3D .4【试题来源】浙江省温州市2020-2021学年高三上学期11月高考适应性测试(一模) 【答案】B【分析】由4228S S =+,直接利用等差数列的前n 项和公式求解. 【解析】因为4228S S =+,所以()()14124282a a a a +=++, 所以()()11112328a a d a a d ++=+++,即48d =,解得2d =,故选B .12.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =A .1B .8【试题来源】吉林省乾安县第七中学2020-2021学年高二上学期第二次质量检测(理) 【答案】B【解析】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==, 所以33810371178b b b b b b b ===.故选B .13.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231n n a nb n =+,则2121S T 的值为A .1315 B .2335C .1117D .49【试题来源】甘肃省会宁县第一中学2020-2021学年高二上学期期中考试(理) 【答案】C 【解析】2121S T =12112121()21()22a ab b ++÷=121121a a b b ++=1111a b =2113111⨯⨯+=1117.故选C .14.设等差数列{}n a 的前n 项和为n S ,公差1d =,且6210S S ,则34a a +=A .2B .3C .4D .5【试题来源】江苏省苏州市相城区陆慕高级中学2020-2021学年高二上学期期中 【答案】B【分析】根据等差数列的性质,由题中条件,可直接得出结果. 【解析】因为n S 为等差数列{}n a 的前n 项和,公差1d =,6210S S ,所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=.故选B .15.在等差数列{}n a 中,3914a a +=,23a =,则10a =C .6D .3【试题来源】安徽省马鞍山市和县第二中学2019-2020学年高一下学期期中(文) 【答案】A【分析】利用等差数列的通项公式求解1,a d ,代入即可得出结论.【解析】由3914a a +=,23a =,又{}n a 为等差数列,得39121014a a a d +=+=,213a a d =+=,解得12,1a d ==,则101+92911a a d ==+=;故选A .16.数列{}n a 为等差数列,11a =,34a =,则通项公式是 A .32n - B .322n - C .3122n -D .3122n +【试题来源】内蒙古呼和浩特市第十六中学2020-2021学年高二上学期期中考试(文) 【答案】C【分析】根据题中条件,求出等差数列的公差,进而可得其通项公式. 【解析】因为数列{}n a 为等差数列,11a =,34a =,则公差为31322a a d -==, 因此通项公式为()33111222n a n n =+-=-.故选C . 17.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于 A .160 B .180 C .200D .220【试题来源】江苏省苏州市2020-2021学年高三上学期期中 【答案】B【分析】把已知的两式相加得到12018a a +=,再求20S 得解. 【解析】由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=.所以2012020()10181802S a a =+=⨯=.故选B . 18.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a = A .29B .38【试题来源】甘肃省永昌县第一中学2020-2021学年高三上学期第一次月考数学理试题 【答案】A【分析】根据等差中项的性质,求出414a =,再求10a ; 【解析】因为{}n a 为等差数列,所以264228a a a +==, 所以414a =.由59410a a a a +=+43=,得1029a =,故选A . 19.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a = A .11 B .12 C .23D .24【试题来源】河南省焦作市2020-2021学年高二(上)期中(理) 【答案】C 【解析】32153S a ==,25a ∴=,12a =,∴公差213d a a =-=,81727323a a d ∴=+=+⨯=,故选C .20.若数列{}n a 的通项公式为2(2)n a n n =-,其中*n N ∈,则5a = A .25 B .50 C .75D .100【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (理) 【答案】C 【解析】2(2)n a n n =-,525375a ∴=⨯=,故选C .21.已知数列{}n a 满足121n n n a a a +-=,132a =,则2021a = A .20202019 B .20212020 C .20222021D .20232022【试题来源】甘肃省永昌县第一中学2020-2021学年高三上学期第一次月考数学理试题 【答案】D【分析】根据题意可得112n n a a +=-,先求132a =,211423a a =-=,321524a a =-=,431625a a =-=,…,所以猜测21n n a n +=+,经验证即可得解. 【解析】因为121n n n a a a +-=,所以112n na a +=-, 因为132a =,所以211423a a =-=,321524a a =-=,431625a a =-=,…, 所以猜测21n n a n +=+,代入124231211121n n n n n n n a a a n n n n +++++-=-⨯==++++, 所以21n n a n +=+满足题意,所以202120232022a =,故选D .【名师点睛】本题考查了通过数列的递推关系求通项公式,考查了利用规律对通项公式的猜想和验算,属于中档题.解本类问题有两个关键点:(1)当数列无法直接得出通项公式时,可观察前几项的规律;(2)通过前几项的规律进行猜想;(3)最后验算,必须带入原等式进行验算. 22.数列1111,,,57911--,…的通项公式可能是n a = A .1(1)32n n --+B .(1)32nn -+C .1(1)23n n --+D .(1)23nn -+【试题来源】甘肃省庆阳市宁县第二中学2020-2021学年高二上学期期中 【答案】D【解析】因为数列1111,,,, (57911)--可写成()()()()2342322311111,1,1,12,..24.333-⨯-⨯-⨯+⨯+⨯+⨯+-⨯, 所以其通项公式为(1)(1)23213nnn a n n -=-=++⨯.故选D . 23.若数列{a n }的通项公式为a n =n (n -2),其中n ∈N *,则a 6= A .8B .15C .24D .35【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (文) 【答案】C【解析】代入通项公式得,66424a =⨯=,故选C . 24.数列{}n a 的通项公式为2π1sin2n n a n =+,前n 项和为n S ,则100S = A .50 B .-2400 C .4900-D .9900-【试题来源】河南省焦作市2020—2021学年高三年级第一次模拟考试(理) 【答案】C 【分析】由πsin2n y =的周期为4,可得22222210010013579799S =+-+-+⋅⋅⋅+-,利用并项求和可得解.【解析】2111a =+,21a =,2313a =-,41a =,…,考虑到πsin2n y =的周期为4, 所以()222222100100135797991002135799S =+-+-+⋅⋅⋅+-=-⨯++++⋅⋅⋅+(199)50100249002+⨯=-⨯=-.故选C .25.谈祥柏先生是我国著名的数学科普作家,在他的《好玩的数学》一书中,有一篇文章《五分钟挑出埃及分数》,文章告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).则下列埃及分数113⨯,135⨯,157⨯,…,120192021⨯的和是A .20202021 B .10102021C .10092019D .20182019【试题来源】江苏省南通市平潮高级中学2020-2021学年高二上学期期中 【答案】B【解析】因为()1111222n n n n ⎛⎫=- ⎪++⎝⎭111113355720192021∴++++⨯⨯⨯⨯11111111123355720192021⎛⎫=-+-+-+⋯+- ⎪⎝⎭11122021⎛⎫=- ⎪⎝⎭10102021=,故选B . 26.已知数列{}n a 的前n 项和n S 满足()12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项的和为A .89B .910C .1011D .1112【试题来源】黑龙江省哈尔滨市第三中学2020-2021学年高三上学期期中考试(文) 【答案】C【分析】首先根据()12n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得到答案.【解析】当1n =时,111a S ==,当2n ≥时,()()11122n n n n n n n a S S n -+-=-=-=. 检验111a S ==,所以n a n =.设()1111111n n n b a a n n n n +===-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭….故选C . 27.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为 A .2± B .2 C .3±D .3【试题来源】江苏省无锡市锡山高级中学2020-2021学年高二上学期期中 【答案】D【解析】4个数成等比数列,则3813q =,故3q =.故选D .28.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于若第六个单音的频率为f ,则A .第四个单音的频率为1122f - B .第三个单音的频率为142f - C .第五个单音的频率为162fD .第八个单音的频率为1122f【试题来源】湖北省宜昌市秭归县第一中学2020-2021学年高二上学期期中 【答案】B【分析】根据题意得该单音构成公比为再根据等比数列通项公式依次求第三、四、五、八项即可得答案.【解析】根据题意得该单音构成公比为f ,141422f f -==.661122f f -==.所以第五个单音的频率为1122f =.所以第八个单音的频率为1262f f =,故选B .29.在等比数列{}n a 中,11a =,427a =,则352a a += A .45 B .54 C .99D .81【试题来源】河南省焦作市2020—2021学年高三年级第一次模拟考试(理) 【答案】C【解析】设数列{}n a 的公比为q ,因为341a a q =,所以3q =,所以24352299a a q q +=+=.故选C .30.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于 A .40 B .81 C .121D .242【试题来源】安徽省马鞍山市和县第二中学2020-2021学年高一上学期期中联考(理) 【答案】C【分析】根据已知条件先计算出等比数列的首项和公比,然后根据等比数列的前n 项和公式求解出5S 的结果.【解析】因为12234,12a a a a +=+=,所以23123a a q a a +==+,所以1134a a +=,所以11a =,所以()5515113121113a q S q--===--,故选C .31的等比中项是A .-1B .1CD .【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (理) 【答案】D【解析】23111()()()2222-==±,12与12的等比中项是2±. 故选D .32.已知各项均为正数的等比数列{}n a 的前4项和为30,且53134a a a =+,则3a = A .2 B .4 C .8D .16【试题来源】黑龙江省哈尔滨市第三中学2020-2021学年高三上学期期中考试(文) 【答案】C【分析】根据等比数列的通项公式将53134a a a =+化为用基本量1,a q 来表示,解出q ,然后再由前4项和为30求出1a ,再根据通项公式即可求出3a . 【解析】设正数的等比数列{}n a 的公比为()0q q >,因为53134a a a =+,所以4211134a q a q a =+,则42340q q --=,解得24q =或21q =-(舍),所以2q,又等比数列{}n a 的前4项和为30,所以23111130a a q a q a q +++=,解得12a =,所以2318a a q ==.故选C . 33.等比数列{}n a 的各项均为正数,且101010113a a =.则313232020log log log a a a +++=A .3B .505C .1010D .2020【试题来源】黑龙江省哈尔滨市第三中学2020-2021学年高三上学期期中考试(理)【答案】C【解析】由120202201932018101010113a a a a a a a a =====,所以313232020log log log a a a +++()10103101010113log log 31010a a ===.故选C .34.已知等比数列{}n a 中,n S 是其前n 项和,且5312a a a +=,则42S S = A .76B .32 C .2132D .14【试题来源】四川省内江市第六中学2020-2021学年高三上学期第三次月考(文) 【答案】B【分析】由5312a a a +=,解得q ,然后由414242212(1)111(1)11a q S q q q a q S qq---===+---求解. 【解析】在等比数列{}n a 中,5312a a a +=,所以421112a q a q a +=,即42210q q +-=,解得212q =,所以414242212(1)1311(1)121a q S q q q a q S q q---===+=---,故选B . 35.记等比数列{}n a 的前n 项和为n S ,已知5=10S ,1050S =,则15=S A .180 B .160 C .210D .250【试题来源】云南省玉溪第一中学2020-2021学年高二上学期期中考试(理) 【答案】C【分析】首先根据题意得到5S ,105S S -,1510S S -构成等比数列,再利用等比中项的性质即可得到答案.【解析】因为{}n a 为等比数列,所以5S ,105S S -,1510S S -构成等比数列. 所以()()2155010=1050S --,解得15210S =.故选C .36.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=A .15B .10C .5D .3【试题来源】甘肃省庆阳市宁县第二中学2020-2021学年高二上学期期中 【答案】A【解析】因为478a a ⋅=, 则()()52212221021210110log log log log ...log a a a a a a a a ⋅⋅⋅=+⋅++=()2475log 15a a =⋅=.故选A .37.已知数列{}n a 的前n 项和为n S ,且21(1*)n n S a n n N =-≥∈,,则数列{}n na 前5项和为 A .126 B .127 C .128D .129【试题来源】江苏省苏州市星海中学2020-2021学年高二上学期期中 【答案】D【分析】利用已知n S 和n a 的关系,求{}n a 的通项公式,即可求解. 【解析】当1n =时,11121S a a =-=,解得11a = 当2n ≥时,1122n n n n n a S S a a --=-=- ,即12n n a a -=, 所以{}n a 是首项为1,公比为2的等比数列,12n na ,所以{}n na 前5项和为012341222324252129⨯+⨯+⨯+⨯+⨯=,故选D . 【名师点睛】本题考查已知n S 和n a 的关系,求{}n a 的通项公式,分三步: 当1n =时,11S a =,当2n ≥时,1n n n a S S -=-,检验1a 是否满足()12n n n a S S n -=-≥,即可得{}n a 的通项公式.38.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大212,则该数列的项数是 A .8 B .4 C .12D .16【试题来源】安徽省蚌埠市第三中学2019-2020学年高一下学期5月月考 【答案】A【分析】设项数为2n ,由题意可得()21212n d -⋅=,及6S S nd -==奇偶可求解. 【解析】设等差数列{}n a 的项数为2n ,末项比首项大212,()212121;2n a a n d ∴-=-⋅=①24S =奇,30S =偶,30246S S nd ∴-=-==奇偶②.由①②,可得32d =,4n =,即项数是8,故选A .39.已知公差不为0的等差数列{a n }的前n 项和为S n ,a 1=2,且a 1,a 3,a 4成等比数列,则S n 取最大值时n 的值为 A .4 B .5 C .4或5D .5或6【试题来源】湖南省五市十校2020-2021学年高二上学期第一次联考 【答案】C【分析】由等比数列的性质及等差数列的通项公式可得公差12d =-,再由等差数列的前n 项和公式即可得解.【解析】设等差数列{}n a 的公差为,0d d ≠,134,,a a a 成等比数列,2314a a a ∴=即2(22)2(23)d d +=+,则12d =-,()()211119812244216n n n n n S a n d n n --⎛⎫∴=+=-=--+ ⎪⎝⎭,所以当4n =或5时,n S 取得最大值.故选C .40.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于 A .1 B .2 C .3D .4【试题来源】江苏省苏州市吴中区2020-2021学年高二上学期期中 【答案】C【分析】利用等差数列的下标和性质以及基本量运算,可求出1a . 【解析】设等差数列{}n a 的公差为d ,则3856522a a a a a +=+=+,解得652d a a =-=,212112228S a a a d a =+=+=+=,解得13a =,故选C .41.若数列{}n a 满足121()2n n a a n N *++=∈,且11a =,则2021a = A .1010 B .1011 C .2020D .2021【试题来源】四川省遂宁市2021届高三零诊考试(理) 【答案】B【解析】由121()2n n a a n N *++=∈,则11()2n n a a n N *+=+∈,即112n n a a +-=,所以数列{}n a 是以1为首项,12为公差的等差数列,所以()()11111122n n a a n d n +=+-=+-⨯=,所以2021a =2021110112+=.故选B . 42.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S = A .7 B .12 C .14D .21【试题来源】广东省东莞市第四高级中学2020-2021学年高二上学期期中 【答案】C【分析】判断出{}n a 是等差数列,然后结合等差数列的性质求得7S .【解析】因为212n n n a a a ++=-,所以211n n n n a a a a +++-=-,所以数列{}n a 为等差数列. 因为534a a =-,所以354a a +=,所以173577()7()1422a a a a S ++===.故选C . 43.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于 A .8 B .10 C .12D .14【试题来源】北京市第三中学2021届高三上学期期中考试 【答案】C【解析】{a n }为等差数列,S 3=12,即1232312a a a a ++==,解得24a =.由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=.故选C .44.已知{}n a 是正项等比数列且1a ,312a ,22a 成等差数列,则91078a a a a +=+ A1 B1 C.3-D.3+【试题来源】福建省莆田第二十五中学2020-2021学年高二上学期期中考试 【答案】D【分析】根据1a ,312a ,22a 成等差数列可得3121222a a a ⨯=+,转化为关于1a 和q 的方程,求出q 的值,将91078a a a a ++化简即可求解.【解析】因为{}n a 是正项等比数列且1a ,312a ,22a 成等差数列, 所以3121222a a a ⨯=+,即21112a q a a q =+,所以2210q q --=,解得1q =1q =,2229107878783a a a q a q q a a a a ++===+++D . 45.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项D .无最大项,无最小项【试题来源】北京市铁路第二中学2021届高三上学期期中考试 【答案】B【解析】设等比数列{}n a 为q ,则等比数列的公比414141328a qa -===,所以12q =, 则其通项公式为116113222n n n n a a q ---⎛⎫=⋅=⨯= ⎪⎝⎭,所以()()5611542212622222nn +n n n n n T a aa ---==⨯==,令()11t n n =-,所以当5n =或6时,t 有最大值,无最小值,所以n T 有最大项,无最小项.故选B .46.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为 A .825两 B .845两 C .865两 D .885两 【试题来源】吉林省通榆县第一中学2020-2021学年高三上学期期中考试(文) 【答案】C【分析】设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,数列{}n a 是等差数列,8106100a S =⎧⎨=⎩利用等差数列的通项公式和前n 项和公式转化为关于1a 和d 的方程,即可求得长兄可分得银子的数目1a .【解析】设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,由题意可得 设数列{}n a 的公差为d ,其前n 项和为n S ,则由题意得8106100a S =⎧⎨=⎩,即1176109101002a d a d +=⎧⎪⎨⨯+=⎪⎩,解得186585a d ⎧=⎪⎪⎨⎪=-⎪⎩. 所以长兄分得865两银子.故选C . 【名师点睛】本题的关键点是能够读懂题意10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子构成公差0d <的等差数列,要熟练掌握等差数列的通项公式和前n 项和公式. 47.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S = A .16 B .-16 C .4D .-4【试题来源】吉林省通榆县第一中学2020-2021学年高三上学期期中考试(文)【答案】A 【解析】由()()18458884816222a a a a S +⨯+⨯⨯====.故选A .48.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a = A .1n - B .n C .21n -D .2n【试题来源】贵州省遵义市2020~2021学年度高二上学期数学期中联合考试 【答案】B【解析】因为3518a S +=,633a a =+,所以11161218523a d a d a d +=⎧⎨+=++⎩,所以111a d =⎧⎨=⎩,所以()111n a n n =+-⨯=,故选B .49.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为A .34000米B .36000米C .38000米D .40000米【试题来源】江苏省无锡市锡山高级中学2020-2021学年高二上学期期中 【答案】B【解析】根据题意:小李同学每天跑步距离为等差数列,设为n a ,则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故143600a =,则()()11521411151********n S a a a a =+⨯=+⨯=.故选B . 50.在等差数列{a n }中,a 3+a 7=4,则必有 A .a 5=4 B .a 6=4 C .a 5=2D .a 6=2【试题来源】湖北省宜昌市秭归县第一中学2020-2021学年高二上学期期中 【答案】C【解析】因为a 3+a 7=2a 5=4,所以a 5=2.故选C .51.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是 A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列D .S 2,S 4+S 2,S 6+S 4必成等差数列【试题来源】湖北省宜昌市秭归县第一中学2020-2021学年高二上学期期中 【答案】D【分析】根据等差数列的性质,可判定A 、B 正确;当首项与公差均为0时,可判定C 正确;当首项为1与公差1时,可判定D 错误.【解析】由题意,数列{}n a 为等差数列,n S 为前n 项和,根据等差数列的性质,可得而51051510,,S S S S S --,和24264,,S S S S S --构成等差数列,所以,所以A ,B 正确;当首项与公差均为0时,5101510,,S S S S +是等差数列,所以C 正确;当首项为1与公差1时,此时2426102,31,86S S S S S =+=+=,此时24264,,S S S S S ++不构成等差数列,所以D 错误.故选D .52.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为 A .24- B .3- C .3D .8【试题来源】甘肃省张掖市第二中学2020-2021学年高二第一学期期中考试(文) 【答案】A【分析】根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和.【解析】设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2326a a a =,即2(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)661(2)2422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A . 53.已知数列{}n a 满足11a =,+121nn n a a a =+,则数列{}1n n a a +的前n 项和n T =A .21nn - B .21nn + C .221nn + D .42nn +【试题来源】吉林省长春市长春外国语学校2020-2021学年高三上学期期中考试 【答案】B【分析】利用倒数法求出数列{}n a 的通项公式,进而利用裂项相消法可求得n T . 【解析】已知数列{}n a 满足11a =,+121nn n a a a =+,在等式+121n n n a a a =+两边同时取倒数得112112n n n n a a a a ++==+,1112n na a +∴-=, 所以,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,且首项为111a ,公差为2,则()112121n n n a =+-=-,121n a n ∴=-,()()11111212122121n n a a n n n n +⎛⎫∴==- ⎪-+-+⎝⎭,因此,1111111111111112323525722121221n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21nn =+.故选B . 【名师点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.54.已知等差数列{}n a 的前n 项和为n S ,且2n S n =.定义数列{}m b 如下:()*1m m b m m+∈N 是使不等式()*n a m m ≥∈N 成立的所有n 中的最小值,则13519b b b b ++++=A .25B .50C .75D .100【试题来源】河南省商丘市虞城高级中学2020~2021学年高三11月质量检测(理) 【答案】B【分析】根据2n S n =先求出21n a n =-;由题意,得出21m k =-,得出()()11212m m m mk m b m m +===++,即21212k k b --=,根据等差数列的性质,即可得出结果. 【解析】由2n S n =,可得()1212n n n a S S n n -=-=-≥,当1n =时,111a S ==满足21n a n =-,所以21n a n =-,n ∈+N ; 由n a m ≥,得21n m -≥,解得12m n +≥.当21m k =-,(*k N ∈)时,1m m b k m+=, 即()()11212m m m mk m b m m +===++,即21212k k b --=, 从而()()13519111351951195022b b b b +++⋅⋅⋅+=+++⋅⋅⋅+=⨯⨯+=.故选B . 【名师点睛】求解本题的关键,在于根据()*1m m b m m+∈N 是使不等式()*n a m m ≥∈N 成立的所有n 中的最小值,求出21m k =-,得出21212k k b --=,根据等差数列的性质求解. 55.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为 A .32 B .33 C .34D .35【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (理) 【答案】D【分析】设年纪最小者年龄为n ,年纪最大者为m ,由他们年龄依次相差一岁得出(1)(2)(28)1520n n n n m ++++++++=,结合等差数列的求和公式得出111429m n =-,再由[]90,100m ∈求出n 的值.【解析】根据题意可知,这30个老人年龄之和为1520,设年纪最小者年龄为n ,年纪最大者为m ,[]90,100m ∈, 则有(1)(2)(28)294061520n n n n m n m ++++++++=++=,则有291114n m +=,则111429m n =-,所以90111429100m ≤-≤, 解得34.96635.31n ≤≤,因为年龄为整数,所以35n =.故选D .56.设等差数列{}n a 的前n 项和为n S ,10a <且11101921a a =,则当n S 取最小值时,n 的值为 A .21 B .20 C .19D .19或20【试题来源】甘肃省永昌县第一中学2020-2021学年高三上学期第一次月考数学理试题 【答案】B【分析】由题得出1392a d =-,则2202n dS n dn =-,利用二次函数的性质即可求解.【解析】设等差数列{}n a 的公差为d ,由11101921a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392a d =-,10a <,0d ∴>,()211+2022n n n dS na d n dn -∴==-,对称轴为20n =,开口向上, ∴当20n =时,n S 最小.故选B .57.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为 A .4S B .5S C . 6SD . 7S【试题来源】云南省玉溪第一中学2020-2021学年高二上学期期中考试(理) 【答案】B【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值.【解析】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S .故选 B . 58.若等差数列{a n }的前n 项和为S n ,且S 2=132,a 8+a 9=272,则S 3=A .35B .78C .98D .127【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (文) 【答案】B【解析】设数列{}n a 的公差为d ,则212891327,22S a a a a =+=+=,两式相减得14d =7,故12d =,代入12132a a +=,得13a =,所以13131211337822S ⨯=⨯+⨯=,故选 B . 59.已知数列{}n a 的前n 项和n S 满足:n m n m S S S ++=,且110a =,那么10a = A .1 B .9 C .10D .55【试题来源】宁夏银川市北方民族大学附属中学2020-2021学年度(上)高二10月月考 (理) 【答案】C【分析】首先赋值令1m =,利用n a 与n S 的关系求通项公式. 【解析】令1m =,则11n n S S S ++=, 则11110n n S S S a +-===,所以110n a +=, 所以数列{}n a 是常数列,则1010a =.故选C .60.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,则此数列的第20项与21项的和为A .380B .410C .420D .462【试题来源】湖北省随州市2019-2020学年高二下学期期末 【答案】C【分析】由前10项,可得奇数项和偶数项的通项公式,再求2021a a +.【解析】由数列的前10项可知,数列的偶数项的通项公式222n a n =,220210200a ∴=⨯=, 奇数项的通项公式()2121n a n n -=-,21211121011220a a ⨯-∴==⨯⨯=,2021200220420a a ∴+=+=.故选C .61.已知在数列{}n a 中,112,1n n na a a n +==+,则2020a 的值为 A .12020 B .12019C .11010D .11009【试题来源】江苏省苏州市相城区陆慕高级中学2020-2021学年高二上学期期中 【答案】C 【解析】11n n na a n +=+,即11n n a n a n +=+,12321123211232121232n n n n n n n a a a a a n n n a a a a a a a n n n --------∴=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⨯--2n=, 20202120201010a ∴==.故选C . 62.数列{}n a 满足1111,(2)2n n n a a a n a --==≥+,则5a 的值为A .18 B .17 C .131D .16【试题来源】安徽省马鞍山市和县第二中学2019-2020学年高一下学期期中(文) 【答案】C【解析】因为1111,(2)2n n n a a a n a --==≥+,所以211123a ==+,31131723a ==+,411711527a ==+,51115131215a ==+,故选C . 63.定义12nn p p p +++为n 个正数12,,,n p p p 的“均倒数”,若已知数列{}n a 的前n 项的“均倒数”为12n,又2n n a b =,则1223910111b b b b b b +++= A .817B .1021C .1123D .919【试题来源】安徽省马鞍山市和县第二中学2019-2020学年高一下学期期中(文) 【答案】D【解析】设数列{}n a 的前n 项和为n S ,由题意可得12n n S n=,则:22n S n =, 当1n =时,112a S ==,当2n ≥时,142n n n a S S n -=-=-, 且14122a =⨯-=,据此可得 42n a n =-,故212nn a b n ==-,()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭, 据此有1223910111111111112189191933517192b b b b b b ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++-=⨯= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选D .64.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且S n +1=3S n -2n +2,则[lg(a 100-1)]= A .45 B .46 C .47D .48【试题来源】湖北省宜昌市秭归县第一中学2020-2021学年高二上学期期中 【答案】C【分析】利用数列的递推式,得到a n +1=3a n -2,进而得到a n =3n -1+1,然后代入[lg(a 100-1)]可求解.【解析】当n ≥2时,S n =3S n -1-2n +4,则a n +1=3a n -2,于是a n +1-1=3(a n -1),当n =1时,S 2=3S 1-2+2=6,所以a 2=S 2-S 1=4.此时a 2-1=3(a 1-1),则数列{a n -1}是首项为1,公比为3的等比数列.所以a n -1=3n -1,即a n =3n -1+1,则a 100=399+1,则lg(a 100-1)=99lg3≈99×0.477=47.223,故[lg(a 100-1)]=47.故选C .65.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为 A .23B .13C .2-D .3-【试题来源】河南省焦作市2020-2021学年高二(上)期中(理)【答案】B【解析】因为111n n n n a a a a ++-=+,且113a =,所以111n n na a a ++=-,21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯,4n n a a +∴=. 123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=.故选B .【名师点睛】已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.66.已知数列{}n a 的前n 项和221n S n n =+-,则13525a a a a ++++=A .350B .351C .674D .675【试题来源】安徽省马鞍山市和县第二中学2020-2021学年高一上学期期中联考(理) 【答案】A【分析】先利用公式11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,再利用通项公式求出13525a a a a ++++的值.【解析】当1n =时,21112112a S ==+⨯-=;当2n ≥时,()()()22121121121n n n a S S n n n n n -⎡⎤=-=+---+--=+⎣⎦.12a =不适合上式,2,121,2n n a n n =⎧∴=⎨+≥⎩.因此,()()3251352512127512235022a a a a a a ⨯+⨯+++++=+=+=;故选A .【名师点睛】利用前n 项和n S 求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,但需要验证1a 是否满足()2n a n ≥.67.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.下图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,⋅⋅⋅构成的数列{}n a 的第n 项,则15a 的值为A .210B .150C .120D .118【试题来源】内蒙古呼和浩特市2021届高三质量普查调研考试(理) 【答案】C【分析】通过观察可得()11n n a a n n N *+=++∈,通过累加法可得211,22n a n n n N *=+∈,从而可求出15a .【解析】由题意知,()11n n a a n n N *+=++∈,即()11n n a a n n N *+-=+∈,所以2132123...1n n a a a a a a n +-=⎧⎪-=⎪⎨⎪⎪-=+⎩ ,则()21111323..12222n n n a a n n n n +--=++++=+=+,即2211131312222n a a n n n n +=++=++,当2n ≥时,()()2213111112222n a n n n n =-+-+=+,当1n =时,111122a =+=,所以211,22n a n n n N *=+∈,则21511151512022a =⨯+⨯=.故选C .68.已知定义在R 上的函数()f x 是奇函数,且满足3()(),(1)32f x f x f -=-=,数列{}n a 满足11a =,且21n nS a n n=-,(n S 为{}n a 的前n 项和,*)n N ∈,则56()()f a f a += A .1 B .3 C .-3D .0【试题来源】云南省玉溪第一中学2020-2021学年高二上学期期中考试(理) 【答案】C【分析】判断出()f x 的周期,求得{}n a 的通项公式,由此求得56()()f a f a +.【解析】依题意定义在R 上的函数()f x 是奇函数,且满足3()()2f x f x -=,所以()333332222f x f x f x fx ⎛⎫⎛⎫⎛⎫⎛⎫+=---=--=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()32f x f x f x ⎛⎫=---=--= ⎪⎝⎭,所以()f x 是周期为3的周期函数.由21n n S a n n=-得2n n S a n =-①, 当1n =时,11a =,当2n ≥时,()1121n n S a n --=--②, ①-②得11221,21n n n n n a a a a a --=--=+(2n ≥),所以21324354213,217,2115,2131a a a a a a a a =+==+==+==+=,652163a a =+=.所以56()()f a f a +=()()()()()()()316331013211013f f f f f f f +=⨯++⨯=+=--=-,故选C .69.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n n n S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 【试题来源】河南省焦作市2020-2021学年高二(上)期中(理) 【答案】D【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【解析】(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅,又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确; 因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错.故选D .【名师点睛】由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力.70.已知1()()32g x f x =+-是R 上的奇函数,1(0)()n a f f n=++1()(1)n f f n-++,n *∈N ,则数列{}n a 的通项公式为A .1n a n =+B .31n a n =+C .33n a n =+D .223n a n n =-+【试题来源】江苏省扬州中学2020-2021学年高二上学期期中 【答案】C【分析】由()132F x f x ⎛⎫=+- ⎪⎝⎭在R 上为奇函数,知11622f x f x ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,令12t x =-,则112x t +=-,得到()()16f t f t +-=.由此能够求出数列{}n a 的通项公式. 【解析】由题已知()132F x f x ⎛⎫=+- ⎪⎝⎭是R 上的奇函数,故()()F x F x -=-, 代入得()11622f x f x x R ⎛⎫⎛⎫-++=∈ ⎪ ⎪⎝⎭⎝⎭, 所以函数()f x 关于点132⎛⎫⎪⎝⎭,对称, 令12t x =-,则112x t +=-,得到()()16f t f t +-=, 因为()()1101n n a f f f f n n -⎛⎫⎛⎫=++++⎪ ⎪⎝⎭⎝⎭,()()1110n n a f f f f n n -⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭,。

2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析

2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析

三校联考高考数学模拟试卷(文科)(解析版)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()A.2 B.C.1 D.34.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=5.执行如图所示的程序框图,则输出的S的值为()A.7 B.8 C.9 D.106.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A .在[,]上是增函数B .其图象关于直线x=﹣对称C .函数g (x )是奇函数D .当x ∈[0,]时,函数g (x )的值域是[﹣1,2]7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .8.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是(单位:m 2).( )A .B .C .D .9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]10.已知双曲线C :﹣=1的左、右焦点分别是F 1,F 2,正三角形△AF 1F 2的顶点A在y 轴上,边AF 1与双曲线左支交于点B ,且=4,则双曲线C 的离心率的值是( )A .+1 B .C .+1 D .11.已知一个平放的棱长为4的三棱锥内有一小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于( ) A .π B .π C .π D .π12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015 B .2016C .4030D .4032二、填空题:本大题共4小题,每小题5分. 13.设i 为虚数单位,则复数= .14.已知函数f (x )=2x 2﹣xf ′(2),则函数f (x )的图象在点(2,f (2))处的切线方程是 . 15.若x ,y 满足若z=x+my 的最大值为,则实数m= .16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列; (2)若b n =log 2a n +3,求数列{}的前n 项和T n .18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a ,b ,c 的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率. 19.如图所示,在四棱锥P ﹣ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB=4,CD=2,侧面PAD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为PA 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A ﹣PBC 的体积.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.21.设函数f (x )=x 2﹣(a+b )x+ablnx (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y=f (x )在点(e ,f (e ))处的切线方程为y=﹣e 2. (1)求b ;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}【分析】根据题意先求出集合M和集合N,再求M∪N.【解答】解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},∴M∪N={x|x≥﹣2},故选A.【点评】本题考查集合的运算,解题时要认真审题,仔细解答.2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】分别判断出p,q的真假,从而判断出复合命题的真假.【解答】解:命题p:∃x∈N,x3<x2,是假命题;命题q:∀a∈(0,1)∪(1,+∞),令x﹣1=1,解得:x=2,此时f(2)=0,(x﹣1)的图象过点(2,0),是真命题;故函数f(x)=loga故¬p∧q真是真命题;故选:C.【点评】本题考查了不等式以及对数函数的性质,考查复合命题的判断,是一道基础题.3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()【分析】根据向量的数量积的运算和向量的模计算即可.【解答】解:∵|+2|=2,∴+4+4=||2+4||||cos+4||2=||2+2||+4=12,解得||=2,故选:A.【点评】本题考查了向量的数量积的运算和向量的模的计算,属于基础题.4.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.执行如图所示的程序框图,则输出的S的值为()【分析】由已知中的程序语句可知该框图的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序框图,由程序框图可知该程序的功能是利用循环结构计算并输出变量S=﹣12+22﹣32+42的值,∵S=﹣12+22﹣32+42=10故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.6.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A.在[,]上是增函数B.其图象关于直线x=﹣对称C.函数g(x)是奇函数D.当x∈[0,]时,函数g(x)的值域是[﹣1,2]【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的图象性质,得出结论.【解答】解:把函数f(x)=2sin(2x+)的图象沿x轴向左平移个单位,得到函数g(x)=2sin[2(x+)+]=2cos2x的图象,显然,函数g(x)是偶函数,故排除C.当x∈[,],2x∈[,π],函数g(x)为减函数,故排除A.当x=﹣时,g (x )=0,故g (x )的图象不关于直线x=﹣对称,故排除B .当x ∈[0,]时,2x ∈[0,],cos2x ∈[﹣,1],函数g (x )的值域是[﹣1,2],故选:D .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,余弦函数的图象性质,属于基础题.7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .【分析】由题意得(1+2d )2=1+12d ,求出公差d 的值,得到数列{a n }的通项公式,前n 项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.【解答】解:∵a 1=1,a 1、a 3、a 13成等比数列, ∴(1+2d )2=1+12d . 得d=2或d=0(舍去), ∴a n =2n ﹣1, ∴S n ==n 2, ∴=.令t=n+1,则=t+﹣2≥6﹣2=4当且仅当t=3,即n=2时,∴的最小值为4.故选:A .【点评】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.8.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.【分析】由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底连长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的连长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可【解答】解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,可求得此两侧面的面积皆为=,故此三棱锥的全面积为2+2++=,故选A.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的全面积,做本题时要注意本题中的规律应用,即四个侧面两两相等,注意到这一点,可以大大降低运算量.三视图的投影规则是主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等.9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]【分析】由题意,方程f (x )=ax 恰有两个不同实数根,等价于y=f (x )与y=ax 有2个交点,又a 表示直线y=ax 的斜率,求出a 的取值范围. 【解答】解:∵方程f (x )=ax 恰有两个不同实数根, ∴y=f (x )与y=ax 有2个交点, 又∵a 表示直线y=ax 的斜率, ∴y ′=,设切点为(x 0,y 0),k=,∴切线方程为y ﹣y 0=(x ﹣x 0),而切线过原点,∴y 0=1,x 0=e ,k=, ∴直线l 1的斜率为, 又∵直线l 2与y=x+1平行, ∴直线l 2的斜率为,∴实数a 的取值范围是[,). 故选:B .【点评】本题考查了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进行解答,是易错题.10.已知双曲线C:﹣=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且=4,则双曲线C的离心率的值是()A.+1 B.C.+1 D.【分析】不妨设△AF1F2的边长为4,求得c=2,由向量共线可得|BF1|=1,在△BF1F2中,由余弦定理求得|BF2|=,再由双曲线的定义和离心率公式计算即可得到所求值.【解答】解:不妨设△AF1F2的边长为4,则|F1F2|=2c=4,c=2.由,可得|BF1|=1,在△BF1F2中,由余弦定理可得|BF2|2=|BF1|2+|F1F2|2﹣2|BF1||F1F2|cos∠BF1F2=1+16﹣2×1×4×=13,|BF2|=,由双曲线的定义可得2a=|BF2|﹣|BF1|=﹣1,解得a=,则e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用双曲线的定义和余弦定理,考查运算能力,属于中档题.11.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于()A.πB.πC.πD.π【分析】先求出没有水的部分的体积是,再求出棱长为2,可得小球的半径,即可求出球的表面积.【解答】解:由题意,没有水的部分的体积是正四面体体积的,∵正四面体的各棱长均为4, ∴正四面体体积为=,∴没有水的部分的体积是,设其棱长为a ,则=, ∴a=2,设小球的半径为r ,则4×r=,∴r=,∴球的表面积S=4=.故选:C .【点评】本题考查球的表面积,考查体积的计算,考查学生分析解决问题的能力,正确求出半径是关键.12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015B .2016C .4030D .4032【分析】特殊值法:令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032.根据条件x >0时,有f (x )<2016,得出函数的单调性,根据单调性求出函数的最值.【解答】解:∵对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,∴令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032. 设x 1<x 2,x 1,x 2∈[﹣2016,2016],则x 2﹣x 1>0,f (x 2﹣x 1)=f (x 2)+f (﹣x 1)﹣2016,∴f(x2)+f(﹣x1)﹣2016<2016.又∵f(﹣x1)=4032﹣f(x1),∴f(x2)<f(x1),即函数f(x)是递减的,∴f(x)max=f(﹣2016),f(x)min=f(2016).又∵f(2016)+f(﹣2016)=4032,∴M+N的值为4032.故选D.【点评】考查了抽象函数中特殊值的求解方法,得出函数的性质.二、填空题:本大题共4小题,每小题5分.13.设i为虚数单位,则复数= i .【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故答案为:i.【点评】本题考查了复数代数形式的乘除运算,是基础题.14.已知函数f(x)=2x2﹣xf′(2),则函数f(x)的图象在点(2,f(2))处的切线方程是4x﹣y﹣8=0 .【分析】求导函数,确定切点处的斜率与切点的坐标,即可求得函数f(x)的图象在点(2,f(2))处的切线方程.【解答】解:∵函数f(x)=2x2﹣xf′(2),∴f′(x)=4x﹣f′(2),∴f′(2)=8﹣f′(2),∴f′(2)=4∴f(2)=8﹣2×4=0∴函数f(x)的图象在点(2,f(2))处的切线方程是y﹣0=4(x﹣2)即4x﹣y﹣8=0故答案为:4x﹣y﹣8=0【点评】本题考查导数知识的运用,考查导数的几何意义,确定切点处的斜率与切点的坐标是关键.15.若x,y满足若z=x+my的最大值为,则实数m= 2 .【分析】画出满足约束条件的可行域,求出目标函数的最大值,从而建立关于m的等式,即可得出答案.【解答】解:由z=x+my得y=x,作出不等式组对应的平面区域如图:∵z=x+my的最大值为,∴此时z=x+my=,此时目标函数过定点C(,0),作出x+my=的图象,由图象知当直线x+my=,经过但A时,直线AC的斜率k=>﹣1,即m>1,由平移可知当直线y=x,经过点A时,目标函数取得最大值,此时满足条件,由,解得,即A(,),同时,A也在直线x+my=上,代入得+m=,解得m=2,故答案为:2.【点评】本题主要考查线性规划的应用,根据目标函数的几何意义确定取得最大值的最优解是解决本题的关键.16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为.【分析】先利用余弦定理求得A ,进而通过正弦定理表示出c ,代入面积公式求得S+cosBcosC 的表达式,利用两角和与差的余弦函数公式化简求得其最大值.【解答】解:∵a 2=b 2+c 2+bc , ∴cosA==﹣,∴A=,由正弦定理 c=a ==2sinC , ∴S===sinBsinC ∴S+cosBcosC=sinBsinC+cosBcosC=cos (B ﹣C )≤,故答案为:.【点评】本题主要考查了正弦定理和余弦定理的应用.求得面积的表达式是解决问题的关键,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列;(2)若b n =log 2a n +3,求数列{}的前n 项和T n .【分析】(1)由题意得2a n =S n +,易求,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n﹣1﹣,两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),由递推式可得结论;(2)由(1)可求=2n ﹣2,从而可得b n ,进而有=,利用裂项相消法可得T n ;【解答】解:(1)证明:由S n ,a n ,成等差数列,知2a n =S n +, 当n=1时,有,∴,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n ﹣1﹣, 两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),即a n =2a n ﹣1, 由于{a n }为正项数列,∴a n ﹣1≠0,于是有=2(n ≥2),∴数列{a n }从第二项起,每一项与它前一项之比都是同一个常数2, ∴数列{a n }是以为首项,以2为公比的等比数列. (2)解:由(1)知==2n ﹣2,∴b n =log 2a n +3==n+1,∴==,∴T n =()+()+…+()==.【点评】本题考查等差数列、等比数列的概念、数列的求和,裂项相消法是高考考查的重点内容,应熟练掌握.18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a,b,c的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率.【分析】(Ⅰ)根据茎叶图能求出甲部门数据的中位数和乙部门数据的中位数,再求出甲部门的成绩在70~80的频率为0.5,由此能求出a,b,c.(Ⅱ)利用列举法求出从“甲、乙两组数据中各任取一个”的所有可能情况和其中所取“两数之差的绝对值大于20”的情况,由此能求出所取两数之差的绝对值大于20的概率.【解答】解:(Ⅰ)根据茎叶图得甲部门数据的中位数是78.5,乙部门数据的中位数是78.5;∵甲部门的成绩在70~80的频率为0.5,∴a=0.05,在80~90的频率为0.2,∴b=0.02在60~70的频率为0.1,∴c=0.01.(Ⅱ)从“甲、乙两组数据中各任取一个”的所有可能情况是:(63,67),(63,68),(63,69),(63,73),(63,75),…,(96,86),(96,94),(96,97)共有100种;其中所取“两数之差的绝对值大于20”的情况是:(63,85),(63,86),(63,94),(63,97),(72,94),(72,97),(74,97),(76,97),(91,67),(91,68),(91,69),(96,67),(96,68),(96,69),(96,73),(96,75)共有16种,故所求的概率为.【点评】本题考查概率的求法,考查频率分布直方图的应用,是基础题,解题时要认真审题,注意列举法的合理运用.19.如图所示,在四棱锥P﹣ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.(1)求证:DE∥平面PBC;(2)求三棱锥A﹣PBC的体积.【分析】(1)(法一)取PB的中点F,连接EF,CF,由已知得EF∥AB,且,从而四边形CDEF是平行四边形,由此能证明DE∥平面PBC.(1)(法二):取AB的中点F,连接DF,EF,由已知得四边形BCDF为平行四边形,从而DF∥BC,由此能证明DE∥平面PBC.(2)取AD的中点O,连接PO,由已知得PO⊥平面ABCD,由此能求出三棱锥A﹣PBC 的体积.【解答】(1)证明:(方法一):取PB的中点F,连接EF,CF.∵点E,F分别是PA,PB的中点∴EF∥AB,且又CD∥AB,且∴EF∥CD,且EF=CD∴四边形CDEF是平行四边形,∴DE∥CF.又DE⊄平面PBC,CF⊂平面PBC∴DE∥平面PBC.(1)证明:(方法二):取AB的中点F,连接DF,EF.在直角梯形ABCD中,CD∥AB,且AB=4,CD=2,所以BF∥CD,且BF=CD.所以四边形BCDF为平行四边形,所以DF∥BC.在△PAB中,PE=EA,AF=FB,所以EF∥PB.又DF∩EF=F,PB∩BC=B,所以平面DEF∥平面PBC.因为DE⊂平面DEF,所以DE∥平面PBC.(2)解:取AD的中点O,连接PO.在△PAD中,PA=PD=AD=2,所以PO⊥AD,PO=又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO就是三棱锥P﹣ABC的高.在直角梯形ABCD中,CD∥AB,且AB=4,AD=2,AB⊥AD,所以.故.【点评】本题考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要注意空间思维能力的培养.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.【分析】(1)通过|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3.列出方程,求出a 、b ,即可求椭圆E 的方程;(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,然后联立直线方程与椭圆方程,设A (x 1,y 1),B (x 2,y 2),结合x 1x 2+y 1y 2=0,即可求圆的方程.(ⅱ)若AB 的斜率不存在,设A (x 1,y 1),则B (x 1,﹣y 1),利用⊥,求出半径,得到结果.【解答】解:(1)由题知2|F 1F 2|=|MF 1|+|MF 2|, 即2×2c=2a ,得a=2c .①又由,得②且a 2=b 2+c 2,综合解得c=1,a=2,b=.∴椭圆E 的方程为+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,r 2=,①消去y ,整理得(3+4k 2)x 2+8kmx+4(m 2﹣3)=0,设A (x 1,y 1),B (x 2,y 2),又∵⊥,∴x1x2+y1y2=0,即4(1+k2)(m2﹣3)﹣8k2m2+3m2+4k2m2=0,化简得m2=(k2+1),②由①②求得r2=.所求圆的方程为x2+y2=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(ⅱ)若AB的斜率不存在,设A(x1,y1),则B(x1,﹣y1),∵⊥,∴=0,得x=.此时仍有r2=|x|=.综上,总存在以原点为圆心的圆x2+y2=满足题设条件.【点评】考查椭圆的方程和基本性质,与向量相结合的综合问题.考查分析问题解决问题的能力.21.设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.【分析】(1)求导,从而求b;(2)由(1)得,,从而①当时,要使得f(x)在上有且只有两个零点,只需=,②当时,求导确定零点个数,③当a>e时,求导确定零点个数.【解答】解:(1),∵f′(e)=0,a≠e,∴b=e;(2)由(1)得,,①当时,由f′(x)>0得x>e;由f′(x)<0得.此时f(x)在上单调递减,在(e,+∞)上单调递增.∵,;∴要使得f(x)在上有且只有两个零点,则只需=,即;②当时,由f′(x)>0得或x>e;由f′(x)<0得a<x<e.此时f(x)在(a,e)上单调递减,在和(e,+∞)上单调递增.此时,∴此时f(x)在[e,+∞)至多只有一个零点,不合题意;③当a>e时,由f′(x)>0得或x>a,由f′(x)<0得e<x<a,此时f(x)在和(a,+∞)上单调递增,在(e,a)上单调递减,且,∴f(x)在至多只有一个零点,不合题意.综上所述,a的取值范围为.【点评】本题考查了导数的综合应用及导数的几何意义的应用,同时考查了分类讨论的思想应用,属于中档题.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F四点共圆即可证得结论;(2)由(1)知,BDBE=BABF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BEBD﹣AEAC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,(1分)又EF⊥AB,∠AFE=90°,(1分)则A,D,E,F四点共圆(2分)∴∠DEA=∠DFA(1分)(2)由(1)知,BDBE=BABF,(1分)又△ABC∽△AEF∴,即ABAF=AEAC(2分)∴BEBD﹣AEAC=BABF﹣ABAF=AB(BF﹣AF)=AB2(2分)【点评】本小题主要考查与圆有关的比例线段、四点共圆的证明方法、三角形相似等基础知识,考查运算求解能力、化归与转化思想.属于中档题.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.【分析】(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得直角坐标方程.把C2的方程化为直角坐标方程为y=a,根据曲线C1关于曲线C2对称,故直线y=a经过圆心解得a,即可得出.(Ⅱ)由题意可得,|OA|,|OB|,|OC|,|OD|,代入利用和差公式即可得出.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,化为直角坐标方程为(x﹣1)2+(y﹣1)2=2.把C2的方程化为直角坐标方程为y=a,∵曲线C1关于曲线C2对称,故直线y=a经过圆心(1,1),解得a=1,故C2的直角坐标方程为y=1.(Ⅱ)由题意可得,,,,,.【点评】本题考查了直角坐标与极坐标的互化、圆的对称性、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.【分析】(Ⅰ)问题等价于|m+1|+|m﹣2|≥5,通过讨论m的范围,求出不等式的解集即可;(Ⅱ)根据绝对值的性质证明即可.【解答】解:(Ⅰ)不等式f(1)+f(﹣2)≥5等价于|m+1|+|m﹣2|≥5,可化为,解得m≤﹣2;或,无解;或,解得m≥3;综上不等式解集为(﹣∞,﹣2]∪[3,+∞)…(5分)(Ⅱ)证明:当x≠0时,,|x|>0,,…(10分)【点评】本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.。

2022-2023学年江苏省泰州市第二中学数学九年级第一学期期末学业质量监测试题含解析

2022-2023学年江苏省泰州市第二中学数学九年级第一学期期末学业质量监测试题含解析

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.在Rt △ABC 中,∠C=90°,如果1sin 3A =,那么sin B 的值是( )A .223 B .22 C .24 D .32.将二次函数y =ax 2的图象先向下平移2个单位,再向右平移3个单位,截x 轴所得的线段长为4,则a =() A .1 B .13 C .29 D .123.一元二次方程x 2+4x =﹣3用配方法变形正确的是( )A .(x ﹣2)2=1B .(x +2)2=1C .(x ﹣2)2=﹣1D .(x +2)2=﹣14.下列事件是随机事件的是( )A .三角形内角和为360度B .测量某天的最低气温,结果为200C -C .买一张彩票,中奖D .太阳从东方升起5.下列事件中,是随机事件的是( )A .任意画两个圆,这两个圆是等圆B .⊙O 的半径为5,OP =3,点P 在⊙O 外C .直径所对的圆周角为直角D .不在同一条直线上的三个点确定一个圆6.有一组数据:2,﹣2,2,4,6,7这组数据的中位数为( )A .2B .3C .4D .67.若0ab >,则一次函数y ax b =-与反比例函数aby x =在同一坐标系数中的大致图象是( )A .B .C.D.8.如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,则乙建筑物的高度为()米.A.303B.303﹣30 C.30 D.3029.如图,△ABC中,∠A=65°,AB=6,AC=3,将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不构成相似的是()A.B.C.D.10.PA,PB是O的两条切线,A,B为切点,直线OP交O于C,D两点,交AB于点E,AF为O的直径,下列结论中不正确的是( )A .AP PB = B .BC BF = C .PE AB ⊥D .ABP AOP ∠=∠二、填空题(每小题3分,共24分)11.在平面直角坐标系中,点P (﹣2,1)关于原点的对称点P′的坐标是_____________.12.一个长方体木箱沿坡度1:3l =坡面下滑,当木箱滑至如图位置时,AB=3m ,已知木箱高BE=3m ,则木箱端点E 距地面AC 的高度EF 为_____m.13.如图,Rt △ABC 中,∠A=90°,∠B=30°,AC=6,以A 为圆心,AC 长为半径画四分之一圆,则图中阴影部分面积为__________.(结果保留π)14.如图,⊙O 为△ABC 的内切圆,D 、E 、F 分别为切点,已知∠C =90°,⊙O 半径长为1cm ,BC =3cm ,则AD 长度为__cm .15.如图,AD 是O 的直径,弦BC 与弦CD 长度相同,已知60A ∠=︒,则DOC ∠=________.16.函数y=x –1的自变量x 的取值范围是 .17.如图,在△ABC 中,∠BAC =60°,将△ABC 绕着点A 顺时针旋转40°后得到△ADE ,则∠BAE =_____.18.抛物线y=9x 2﹣px +4与x 轴只有一个公共点,则p 的值是_____.三、解答题(共66分)19.(10分)如图,AB 是⊙O 的弦,过点O 作OC ⊥OA ,OC 交于AB 于P ,且CP=CB .(1)求证:BC 是⊙O 的切线;(2)已知∠BAO=25°,点Q 是弧A m B 上的一点.①求∠AQB 的度数;②若OA=18,求弧A m B 的长.20.(6分)(阅读)辅助线是几何解题中沟通条件与结论的桥梁.在众多类型的辅助线中,辅助圆作为一条曲线型辅助线,显得独特而隐蔽.性质:如图①,若90ACB ADB ∠=∠=︒,则点D 在经过A ,B ,C 三点的圆上.(问题解决)运用上述材料中的信息解决以下问题:(1)如图②,已知DA DB DC ==.求证:2ADB ACB ∠=∠.(2)如图③,点A ,B 位于直线l 两侧.用尺规在直线l 上作出点C ,使得90ACB ∠=︒.(要求:要有画图痕迹,不用写画法)(3)如图④,在四边形ABCD 中,90CAD ∠=︒,CB DB ⊥,点F 在CA 的延长线上,连接DF ,ADF ABD ∠=∠.求证:DF 是ACD 外接圆的切线.21.(6分)如图,在矩形ABCD 中,E 是边CD 的中点,点M 是边AD 上一点(与点A ,D 不重合),射线ME 与BC 的延长线交于点N .(1)求证:△MDE ≌△NCE ;(2)过点E 作EF//CB 交BM 于点F ,当MB =MN 时,求证:AM =EF .22.(8分)已知:关于x 的方程2x (k 2)x 2k 0-++=,(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长a=1,两个边长b ,c 恰好是这个方程的两个根,求△ABC 的周长.23.(8分)某景区平面图如图1所示,A B C E D 、、、、为边界上的点.已知边界CED 是一段抛物线,其余边界均为线段,且,,3,8AD AB BC AB AD BC AB ⊥⊥===,抛物线顶点E 到AB 的距离7OE =.以AB 所在直线为x 轴,OE 所在直线为y 轴,建立平面直角坐标系.()1求边界CED 所在抛物线的解析式;()2如图2,该景区管理处欲在区域ABCED 内围成一个矩形MNPQ 场地,使得点M N 、在边界AB 上,点P Q 、在边界CED 上,试确定点P 的位置,使得矩形MNPQ 的周长最大,并求出最大周长.24.(8分)已知一次函数4y x =+的图象与二次函数(2)y ax x =-的图象相交于(1,)A b -和B ,点P 是线段AB 上的动点(不与,A B 重合),过点P 作PC x ⊥轴,与二次函数(2)y ax x =-的图象交于点C .(1)求,a b 的值;(2)求线段PC 长的最大值;(3)当PAC ∆为90ACP ︒∠=的等腰直角三角形时,求出此时点P 的坐标.25.(10分)某小型工厂9月份生产的A 、B 两种产品数量分别为200件和100件,A 、B 两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A 、B 两种产品的生产数量和出厂单价,10月份A 产品生产数量的增长率和A 产品出厂单价的增长率相等,B 产品生产数量的增长率是A 产品生产数量的增长率的一半,B 产品出厂单价的增长率是A 产品出厂单价的增长率的2倍,设B 产品生产数量的增长率为x (0x >),若10月份该工厂的总收入增加了4.4x ,求x 的值.26.(10分)在平面直角坐标系xOy 中,抛物线y =x 2+bx +c 交x 轴于A (﹣1,0),B (3,0)两点,交y 轴于点C . (1)如图1,求抛物线的解析式;(2)如图2,点P 是第一象限抛物线上的一个动点,连接CP 交x 轴于点E ,过点P 作PK ∥x 轴交抛物线于点K ,交y 轴于点N ,连接AN 、EN 、AC ,设点P 的横坐标为t ,四边形ACEN 的面积为S ,求S 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,点F 是PC 中点,过点K 作PC 的垂线与过点F 平行于x 轴的直线交于点H ,KH =CP ,点Q 为第一象限内直线KP 下方抛物线上一点,连接KQ 交y 轴于点G ,点M 是KP 上一点,连接MF 、KF ,若∠MFK =∠PKQ ,MP =AE +512GN ,求点Q 坐标.参考答案一、选择题(每小题3分,共30分)1、A【解析】一个角的正弦值等于它的余角的余弦值.【详解】∵Rt △ABC 中, ∠C =90°,sin A =13, ∴cos A 21sin A -211()3-23, ∴∠A +∠B =90°, ∴sin B =cos A 22.故选A.【点睛】本题主要考查锐角三角函数的定义,根据sinA得出cosA的值是解题的关键.2、D【分析】根据题意可以写出平移后的函数解析式,然后根据截x轴所得的线段长为4,可以求得a的值,本题得以解决.【详解】解:二次函数y=ax2的图象先向下平移2个单位,再向右平移3个单位之后的函数解析式为y=a(x﹣3)2﹣2,当y=0时,ax2﹣6ax+9a﹣2=0,设方程ax2﹣6ax+9a﹣2=0的两个根为x1,x2,则x1+x2=6,x1x2=92aa-,∵平移后的函数截x轴所得的线段长为4,∴|x1﹣x2|=4,∴(x1﹣x2)2=16,∴(x1+x2)2﹣4x1x2=16,∴36﹣4×92aa-=16,解得,a=12,故选:D.【点睛】本题考查解二次函数综合题,解题关键是根据题意可以写出平移后的函数解析式.3、B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:∵x2+4x=﹣3,∴x2+4x+4=1,∴(x+2)2=1,故选:B.【点睛】本题考查解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.4、C【分析】一定发生或是不发生的事件是确定事件,可能发生也可能不发生的事件是随机事件,根据定义判断即可. 【详解】A.该事件不可能发生,是确定事件;B. 该事件不可能发生,是确定事件;C.该事件可能发生,是随机事件;D.该事件一定发生,是确定事件.故选:C.【点睛】此题考查事件的分类,正确理解确定事件和随机事件的区别并熟练解题是关键.5、A【分析】随机事件就是可能发生也可能不发生的事件,根据定义即可判断.【详解】A.任意画两个圆,这两个圆是等圆,属于随机事件,符合题意;B.⊙O的半径为5,OP=3,点P在⊙O外,属于不可能事件,不合题意;C.直径所对的圆周角为直角,属于必然事件,不合题意;D.不在同一条直线上的三个点确定一个圆,属于必然事件,不合题意;故选:A.【点睛】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、B【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【详解】解:将这组数据排序得:﹣2,2,2,4,6,7,处在第3、4位两个数的平均数为(4+2)÷2=3,故选:B.【点睛】考查中位数的意义和求法,找一组数据的中位数需要将这组数据从小到大排列后,处在中间位置的一个数或两个数的平均数即为中位数.7、C【分析】根据ab>0,可得a、b同号,结合一次函数及反比例函数的特点进行判断即可.【详解】解:.A.根据一次函数可判断a>0,b<0,即ab<0,故不符合题意,B. 根据反比例函数可判断ab<0,故不符合题意,C. 根据一次函数可判断a<0,b<0,即ab>0,根据反比例函数可判断ab>0,故符合题意,D.根据反比例函数可判断ab<0,故不符合题意.故选:C.【点睛】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质是解决问题的关键.8、B【分析】在Rt△BCD中,解直角三角形,可求得CD的长,即求得甲的高度,过A作AF⊥CD于点F,在Rt△ADF中解直角三角形可求得DF,则可求得CF的长,即可求得乙的高度.【详解】解:如图,过A作AF⊥CD于点F,在Rt△BCD中,∠DBC=60°,BC=30m,∵tan∠DBC=CD BC,∴CD=BC•tan60°=30 3,∴甲建筑物的高度为30 3;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD-DF=(30 3)m,∴乙建筑物的高度为(30 3)m.故选B.【点睛】本题主要考查解直角三角形的应用-仰角俯角问题,构造直角三角形,利用特殊角求得相应线段的长是解题的关键.9、C【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意;B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意;C 、两三角形的对应角不一定相等,故两三角形不相似,故本选项符合题意;D 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项不符合题意.故选:C .【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.10、B【解析】根据切线的性质和切线长定理得到PA=PB ,∠APE=∠BPE ,OA PA ⊥,易证△PAE ≌△PBE ,得到E 为AB 中点,根据垂径定理得PE AB ⊥;通过互余的角的运算可得ABP AOP ∠=∠.【详解】解:∵PA ,PB 是O 的两条切线,∴AP PB =,∠APE =∠BPE ,故A 选项正确,在△PAE 和△PBE 中,PA PB APE BPE PE PE =⎧⎪∠=∠⎨⎪=⎩,∴△PAE ≌△PBE (SAS ),∴AE=BE ,即E 为AB 的中点,∴CD AB ⊥,即PE AB ⊥,故C 选项正确,∴90∠+∠=︒AOP OAE∵A 为切点,∴OA PA ⊥,则90∠+∠=︒PAE OAE ,∴∠PAE =∠AOP ,又∵AP PB =,∴∠PAE =∠ABP ,∴ABP AOP ∠=∠,故D 选项正确,故选B .【点睛】本题主要考查了切线长定理、全等三角形的判定和性质、垂径定理的推论及互余的角的运算,熟练掌握这些知识点的运用是解题的关键.二、填空题(每小题3分,共24分)11、(2,﹣1)【详解】解:点P(﹣2,1)关于原点的对称点P′的坐标是(2,﹣1).故答案为(2,﹣1).【点睛】本题考查了关于原点对称的点的坐标的特点,注意掌握两个点关于原点对称时,它们的坐标符号相反.12、1【分析】连接AE,在Rt△ABE中求出AE,根据∠EAB的正切值求出∠EAB的度数,继而得到∠EAF的度数,在Rt△EAF中,解出EF即可得出答案.【详解】解:连接AE,在Rt△ABE中,AB=1m,BE=3m,则AE=22AB BE=23m,又∵tan∠EAB=BEAB=33,∴∠EAB=10°,在Rt△AEF中,∠EAF=∠EAB+∠BAC=60°,∴EF=AE×sin∠EAF=23×33=1m,答:木箱端点E距地面AC的高度为1m.故答案为:1.【点睛】本题考查了坡度、坡角的知识,解答本题的关键是构造直角三角形,熟练运用三角函数求线段的长度.13、3﹣3π【解析】试题解析:连结AD.∵直角△ABC中,∠A=90°,∠B=30°,AC=6,∴∠C=60°,AB=63,∵AD=AC,∴三角形ACD是等边三角形,∴∠CAD=60°,∴∠DAE=30°,∴图中阴影部分的面积=211306663-633-=93-3 22360ππ⨯⨯⨯⨯⨯14、3【分析】如图,连接OD、OE、OF,由切线的性质和切线长定理可得OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,接着证明四边形OECF为正方形,则CE=OE=CF=OF=1cm,所以BE=BD=2cm,由勾股定理可求AD的长.【详解】解:如图,连接OE,OF,OD,∵⊙O为△ABC内切圆,与三边分别相切于D、E、F,∴OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,∴四边形OECF为矩形而OF=OE,∴四边形OECF为正方形,∴CE=OE=CF=OF=1cm,∴BE=BD=2cm,∵AC2+BC2=AB2,∴(AD+1)2+9=(AD+2)2,∴AD=3cm,故答案为:3【点睛】本题考查了三角形的内切圆与内心,切线的性质,切线长定理,勾股定理,正方形的判定和性质,熟悉切线长定理是本题的关键.15、60︒【分析】连接BD 交OC 与E ,得出90ABD ∠=︒,从而得出30ADB ∠=︒;再根据弦BC 与弦CD 长度相同得出BD OC ⊥,即可得出DOC ∠的度数. 【详解】连接BD 交OC 与EAD 是O 的直径∴90ABD ∠=︒60A ∠=︒∴30ADB ∠=︒弦BC 与弦CD 长度相同∴BD OC ⊥∴DOC ∠=903060︒-︒=︒故答案为60︒.【点睛】本题考查了圆周角定理,辅助线得出90ABD ∠=︒是解题的关键.16、x≥1【解析】试题分析:根据二次根式有意义的条件是被开方数大于等于1,可知x≥1.考点:二次根式有意义17、100°【分析】根据旋转角可得∠CAE=40°,然后根据∠BAE=∠BAC+∠CAE ,代入数据进行计算即可得解.【详解】解:∵△ABC 绕着点A 顺时针旋转40°后得到△ADE ,∴∠CAE=40°,∵∠BAC=60°,∴∠BAE=∠BAC+∠CAE=60°+40°=100°.故答案是:100°.【点睛】考查了旋转的性质,解题的关键是运用旋转的性质(图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等)得出∠CAE=40°.18、±1【解析】试题解析:抛物线与x轴只有一个交点,则△=b2-4ac=0,故:p2-4×9×4=0,解得p=±1.故答案为±1.三、解答题(共66分)19、(1)见解析;(2)①∠AQB=65°,②l弧AmB=23π.【解析】(1)连接OB,根据等腰三角形的性质得到∠OAB=∠OBA,∠CPB=∠CBP,再根据∠PAO+∠APO=90°,继而得出∠OBC=90°,问题得证;(2)①根据等腰三角形的性质可得∠ABO=25°,再根据三角形内角和定理可求得∠AOB的度数,继而根据圆周角定理即可求得答案;②根据弧长公式进行计算即可得.【详解】(1)连接OB,∵CP=CB,∴∠CPB=∠CBP,∵OA⊥OC,∴∠AOC=90°,∵OA=OB,∴∠OAB=∠OBA,∵∠PAO+∠APO=90°,∴∠ABO+∠CBP=90°,∴∠OBC=90°,∴BC是⊙O的切线;(2)①∵∠BAO=25° ,OA=OB ,∴∠OBA=∠BAO=25°,∴∠AOB=180°-∠BAO-∠OBA=130°,∴∠AQB=12∠AOB=65°; ②∵∠AOB=130°,OB=18, ∴l 弧AmB=36013018018π-⨯()=23π. 【点睛】本题考查了圆周角定理,切线的判定等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.20、(1)见解析;(2)见解析;(3)见解析【分析】(1)作以D 为圆心,DA 为半径的圆,根据圆周角性质可得;(2) 作以AB 中点P 为圆心,PA 为半径的圆,根据圆周角定理可得;(3)取CD 的中点O ,则O 是ACD 的外接圆.由90DAC DBC ∠=∠=︒,可得点B 在ACD 的外接圆上.根据切线判定定理求解.【详解】(1)如图,由DA DB DC ==,可知:点A ,B ,C 在以D 为圆心,DA 为半径的圆上.所以,2ADB ACB ∠=∠.(2)如图,点1C ,2C 就是所要求作的点.(3)如图,取CD 的中点O ,则O 是ACD 的外接圆.由90DAC DBC ∠=∠=︒,可得点B 在ACD 的外接圆上.∴ACD ABD ∠=∠.∵ADF ABD ∠=∠,∴ACD ADF ∠=∠.∵90ACD ADC ∠+∠=︒,∴90ADF ADC ∠+∠=︒.∴90CDF ∠=︒.即CD DF ⊥.∴DF 是ACD 外接圆的切线.【点睛】考核知识点:多边形外接圆.构造圆,利用圆周角等性质解决问题是关键.21、(1)见解析;(2)见解析.【分析】(1)由平行线的性质得出∠DME =∠CNE ,∠MDE =∠ECN ,可证明△MDE ≌△NCE (AAS ); (2)过点M 作MG ⊥BN 于点G ,由等腰三角形的性质得出BG =BN =12BN ,由中位线定理得出EF =12BN ,则可得出结论.【详解】解:(1)证明:∵四边形ABCD 为矩形,∴AD//BC ,∴∠DME =∠CNE ,∠MDE =∠ECN ,∵E 为CD 的中点,∴DE =CE ,∴△MDE ≌△NCE (AAS );(2)证明:过点M 作MG ⊥BN 于点G ,∵BM=MN,∴BG=BN=12 BN,∵矩形ABCD中,∠A=∠ABG=90°,又∵MG⊥BN,∴∠BGM=90°,∴四边形ABGM为矩形,∴AM=BG=12 BN,∵EF//BN,E为DC的中点,∴F为BM的中点,∴EF=12 BN,∴AM=EF.【点睛】本题考查了矩形的性质,等腰三角形的性质,中位线定理,全等三角形的判定与性质等知识,熟练掌握矩形的性质是解题的关键.22、(1)证明见解析;(2)△ABC的周长为1.【分析】(1)根据一元二次方程根与判别式的关系即可得答案;(2)分a为底边和a为腰两种情况,当a为底边时,b=c,可得方程的判别式△=0,可求出k值,解方程可求出b、c 的值;当a为一腰时,则方程有一根为1,代入可求出k值,解方程可求出b、c的值,根据三角形的三边关系判断是否构成三角形,进而可求出周长.【详解】(1)∵判别式△=[-(k+2)]²-4×2k=k²-4k+4=(k-2)²≥0,∴无论k取任何实数值,方程总有实数根.(2)当a=1为底边时,则b=c,∴△=(k-2)²=0,解得:k=2,∴方程为x2-4x+4=0,解得:x1=x2=2,即b=c=2,∵1、2、2可以构成三角形,∴△ABC 的周长为:1+2+2=1.当a=1为一腰时,则方程有一个根为1,∴1-(k+2)+2k=0,解得:k=1,∴方程为x 2-3x+2=0,解得:x 1=1,x 2=2,∵1+1=2,∴1、1、2不能构成三角形,综上所述:△ABC 的周长为1.【点睛】本题考查一元二次方程根的判别式及三角形的三边关系.一元二次方程根的情况与判别式△的关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根;三角形任意两边之和大于第三边,任意两边之差小于第三边;熟练掌握根与判别式的关系是解题关键.23、(1)2174y x =-+(44x -≤≤);(2)点P 与点C 重合,l 取最大值22. 【分析】(1)首先由题意得出()()0,7,4,3E C ,然后代入抛物线解析式,即可得解;(2)首先设点P 的坐标为(,)x y ,矩形MNPQ 的周长为l ,然后根据坐标与周长构建二次函数,即可求的最大值.【详解】()1由题意得,()()0,7,4,3E C ,且E 为抛物线的顶点,则设抛物线的解析式为27y ax =+, 代入()4,3C 得:2347a =⨯+,解得14a =-所以边界CED 所在抛物线的解析式是2174y x =-+(44x -≤≤) ()2设点P 的坐标为(,)x y ,矩形MNPQ 的周长为l .则2174y x =-+,04x <≤, 矩形MNPQ 的周长,()()221122222741442l PQ PN x y x x x x =+=+=-+=-+⎫ ⎪⎭+⎛⎝ 化简得()21422042l x x =--+<≤,, 0,12∴-<当4x =时,l 取最大值22.此时点P 与点C 重合. 【点睛】此题主要考查抛物线的性质以及最值问题,熟练掌握,即可解题.24、(1)1,3;(2)最大值为254;(3)()3,7P 【分析】(1)将点(1,)A b -分别代入一次函数解析式可求得b 的值,再将点A 的坐标代入二次函数可求出a 的值;(2)设(,4)P m m +,则()2,2C m m m -,根据平行于y 轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PC 的长关于m 的二次函数,根据二次函数的性质可得答案;(3)同(2)设出点P ,C 的坐标,根据题意可用含m 的式子表示出AC ,PC 的长,根据AC=PC 可得关于m 的方程,求得m 的值,进而求出点P 的坐标.【详解】解:(1)∵(1,)A b -在直线4y x =+上,∴143b =-+=,∴(1,3)A -.又∵(1,3)A -在拋物线(2)y ax x =-上,∴3(12)a =-⋅--,解得1a =.(2)设(,4)P m m +,则()2,2C m m m -, ∴()2(4)2PC m m m =+--234m m =-++232524m ⎛⎫=--+ ⎪⎝⎭, ∴当32m =时,PC 有最大值,最大值为254. (3)如图,∵PAC ∆为90ACP ︒∠=的等腰三角形且PC x ⊥轴,∴连接AC ,AC y ⊥轴,∵()2(,4),2(1,3)P m m C m m m A +--,,,∴(1)1C A AC x x m m =-=--=+, ()22(4)234P C PC y y m m m m m =-=+--=-++.∵AC PC =,∴2134m m m +=-++,化简,得2230m m --=,解得3m =,1m =-(不合题意,舍去).当3m =时,47m +=,∴此时点P 的坐标为()3,7P .【点睛】本题是二次函数综合题,主要考查了求待定系数法求函数解析式,二次函数的最值以及等腰三角形的性质等知识,利用平行于y 轴的直线上两点间的距离建立出二次函数模型求出最值是解题关键.25、5%【分析】根据题意,列出方程即可求出x 的值.【详解】根据题意,得2(12)200(12)(14)100(1)(22001100)(1 4.4)x x x x x +⨯+++⨯+=⨯+⨯+整理,得2200x x -=解这个方程,得15%x =,20x =(不合题意,舍去)所以x 的值是5%.【点睛】此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.26、(1)y =x 2﹣2x ﹣3;(2)S =12t 2+12t ;(3)Q (175,4425). 【分析】(1)函数的表达式为:y =(x +1)(x ﹣3),即可求解;(2)tan ∠PCH =PH CH =222t t t -=12t -,求出OE =32t -,利用S =S △NCE +S △NAC ,即可求解; (3)证明△CNP ≌△KRH ,求出点P (4,5)确定tan ∠QKP = WQ WK =2282m m m -+++=4﹣m =tan ∠QPK =NG NK =12NG ,最后计算KT =MT 2(5166m +),FT =22(56m +16),tan ∠MFT 25125142266m m ⎫+⎪⎝⎭⎛⎫-- ⎪⎝⎭=4﹣m ,即可求解.【详解】(1)函数的表达式为:y =(x +1)(x ﹣3)=x 2﹣2x ﹣3;(2)过点P 作PH ⊥y 轴交于点H ,设点P (t ,t 2﹣2t ﹣3),CN =t 2﹣2t ﹣3+3=t 2﹣2t ,∴tan ∠PCH =PH CH =222t t t -=12t -, 123OE OE t OC ==-,解得:OE =32t -, S =S △NCE +S △NAC =12AE ×CN =12t 2+12t ; (3)过点K 作KR ⊥FH 于点R ,∵KH =CP ,∠NCP =∠H ,∠R =∠PNC =90°,∴△CNP ≌△KRH ,∴PN =KR =NS , ∵点F 是PC 中点,SF ∥NP ,∴PN =KR =NS =12CN ,即t =12(t 2﹣2t ﹣3+3), 解得:t =0或4(舍去0),点P (4,5),点K 、P 时关于对称轴的对称点,故点K (﹣2,5),∵OE ∥PN ,则348OE =,故OE =32,同理AE =52, 设点Q (m ,m 2﹣2m ﹣3),过点Q 作WQ ⊥KP 于点W ,WQ =5﹣(m 2﹣2m ﹣3)=﹣m 2+2m +8,WK =m +2,tan ∠QKP = WQ WK =2282m m m -+++=4﹣m =tan ∠QPK =NG NK =12NG ,则NG=8﹣2m,MP=AE+512GN=55212+(8﹣2m)=﹣56m+356,KM=KP﹣MP=51 66m+,过点F作FL⊥KP于点L,点F(2,1),则FL=LK=4,则∠LKF=45°,∵∠MFK=∠PKQ,tan∠MFK=tan∠QKP=4﹣m,过点M作MT⊥FK于点T,则KT=MT(5166m+),FT=﹣2(5166m+),tan∠MFT51m⎫+⎪=4﹣m,解得:m=11或175(舍去11),故点Q(175,4425).【点睛】考查了二次函数综合运用,涉及到一次函数、三角形全等、图形的面积计算、解直角三角形等,其中(3),运用函数的观点,求解点的坐标.。

江苏省泰州中学2024-2025学年高三上学期开学考试 物理(含答案)

江苏省泰州中学2024-2025学年高三上学期开学考试 物理(含答案)

江苏省泰州中学2024-2025学年度上学期第一次质量检测高三物理试题2024.8.26命题人:庞春生审题人:袁贵年(考试时间:75分钟总分:100分)一、单项选择题:本题共10小题,每小题4分,共40分,每小题只有一个选项符合题意.1.抽制高强度纤维细丝时可用激光监测其粗细.如图所示,观察激光束经过细丝时在光屏上所产生的条纹即可判断细丝粗细的变化.这一过程利用了光的()A.干涉现象B.衍射现象C.折射现象D.色散现象2.关于近代物理知识,下列说法中正确的是( )A.结合能越大的原子核越牢固B.放射性元素发出的射线来自原子核外电子C.光电效应揭示了光的粒子性D.处于基态的氢原子能吸收任意能量的光子而跃迁到激发态3.如图所示,轻质细线上端固定,下端悬挂一小球.在同一竖直平面内对小球施加一个拉力F ,保证细线中拉力的大小不变,缓慢地将细绳向右拉到水平位置.关于拉力F 的大小和与竖直方向夹角的说法正确的是()A .F 一直增大,一直减小B .F 一直增大,一直增大C.F 一直增大,先增大后减小 D.F 一直增大,先减小后增大4.投篮时,篮球出手后在空中运行的轨迹称为投篮抛物线.投篮抛物线有低、中、高三种弧线,如图所示,不计空气阻力,下列说法正确的是()A.低弧线投篮时,篮球从出手到进框的运动时间最长βθθθθθB.高弧线投篮时,篮球从出手到进框,克服重力做功的平均功率最小C.低弧线投篮时,人对篮球做的功一定最大D.中弧线投篮时,人对篮球做的功一定最小5.如图为同一平面内绕地球的三个卫星轨道示意图,I 、I II 为圆轨道,Ⅱ为椭圆轨道,Ⅲ的半径与II 的半长轴相等,且III 与II 相交于M 点,I 与II 相切于N 点.三颗不同的卫星A 、B 、C 正沿轨道I 、Ⅱ、Ⅲ稳定运行,则()A.A 、B 经过N 点时的向心力一定相同B.A 、B 的速度可能等大C.B 、C 在M 点的向心加速度大小相等D.B 、C 与地心的连线在任意相等时间内扫过的面积相等6.如图所示,玻璃半球半径为R ,球心为O ,AB 为水平直径,M 点是半球的最高点.半球内从A 点发出与AB 成的光线从BM 间某点C 平行于AB 射出.光在真空中的传播速度为c .则()A.B.光从A 到CC.若增大,光线不可能在C 与M 间发生全反射D.若为某个不为零的值,光从A 到B 7.如图所示,一轮船在河岸的两码头A 、B 间运送货物,A 、B 连线与河岸夹角为60°.由A 到B 过程中,船头正对河岸,轮船相对静水的速度大小恒为;返回时(即由B 到A )所用时间与去时相同,轮船相对静水的速度大小恒为.水速恒定不变,则()30θ=︒θθ1v 2vA. B. C. D.8.光滑水平面上放有一上表面光滑、倾角为的斜面体A ,斜面体质量为M 、底边长为L ,如图所示,将一质量为m 、可视为质点的滑块B 从斜面的顶端由静止释放,滑块B 经过时间t 刚好滑到斜面底端,此过程中斜面对滑块的支持力大小为,则下列说法中正确的是()A.B.滑块下滑过程中支持力对B 的冲量大小为C.滑块B 下滑的过程中A 、B 组成的系统动量不守恒D.此过程中斜面体向左滑动的距离为9.物体从某一高度做初速度为的平抛运动,为物体重力势能,为物体动能,h 为下落高度,t 为飞行时间,v 为物体的速度大小.以水平地面为零势能面,不计空气阻力,下列图象中反映与各物理量之间关系可能正确的是()A. B. C. D.10.如图所示,一块足够大的粗糙绝缘薄板竖直固定,且与等量异种点电荷连线的中垂面重合.A 、O 、B 为薄板上同一竖直线上的三点,O 在点电荷的连线上,.一个带电小物块(可视为质点)从A 点以初速度竖直向下运动,最后静止在B 点.不考虑物块电荷量的变化,则物块从A 运动到B 的过程中()A.速度一直减小,经过O 21v =21v =21v v =21v =αN F N cos F mg α=N cos F t αML M m+0v p E k E p E AO OB =0v 0B.加速度先减小后增大,经过O 点时加速度最小C.电势能先减小后增大,经过O 点时电势能最小D.机械能一直减小,AO 段损失的机械能比OB 段损失的机械能多二、简答题:本题共1小题,共计15分,每空3分,请将答案填写在答题卡相应的位置.11.某物理兴趣小组用如图甲所示的实验装置测当地的重力加速度,所提供器材均在图中展示,实验原理和主要操作步骤如下:甲 乙(1)按如图安装好实验器材,打点计时器固定在长木板上端,接通电源释放质量为m 的物块,让物块自由滑下,打出前几个计时点的纸带如图乙(a )所示(O 为起始点),打点周期为T ,OB 间距为,CE 间距为,得物块下滑的加速度为______(2)将打点计时器取下固定在长木板的下端,接通电源,给物块一个初速度使之沿长木板从下到上运动,打出最后几个计时点的纸带为图乙(b )中(O 为最终点)的______(填序号),并通过实验获得的纸带计算出加速度.(3)为了测量出当地重力加速度还应测量长木板与地面所构成的斜面高度h 和______(填物理量及物理量字母)(4)通过分析可知当地重力加速度的表达式为g =________[用、、h 和步骤(3)中所测物理量字母表示].(5)通过计算可得物块与倾斜木板之间的摩擦力大小为_____[用、表示,不计纸带与打点计时器的摩擦力及空气阻力].三、计算题:本大题,共4小题,共45分,解答应写出必要的文字说明、方程式和重要演算步骤.有数值计算的题,答案中必须明确写出数值和单位.12.(8分)极紫外线广泛应用于芯片制造行业,如图甲所示,用波长的极紫外线照射光电管,恰好能发生光电效应,已知普朗克常量,,,.1x 2x 1a =2a 1a 2a 1a 2a 110nm λ=346.610J s h -=⨯⋅91nm 10m -=191eV=1.610J -⨯8310m/s c =⨯图甲 图乙 图丙(1)求阴极K 材料的逸出功;(2)图乙是氢原子的能级图,若大量处于激发态的氢原子发出的光照射阴极K ,灵敏电流计G 显示有示数,调整电源和滑动变阻器,测得电流计示数I 与电压表示数U 的关系图像如图丙,则图丙中的大小是多少?13.(9分)如图所示,刚性容器内壁光滑、盛有一定量的气体,被隔板分成A 、B 两部分,隔板与容器右侧用一根轻质弹簧相连(忽略隔板厚度和弹簧体积),容器横截面积为S 、长为2l .开始时系统处于平衡态,A 、B 体积均为Sl ,压强均为,弹簧为原长,现将B 中气体抽出一半,B的体积变为原来的.整个过程系统温度保持不变,气体视为理想气体.求:(1)抽气之后A 、B 的压强、.(2)弹簧的劲度系数k .14.(12分)如图所示,传送带与水平面夹角,以恒定速率沿顺时针方向转动,现在传送带上端A 处无初速度地放一质量的小煤块(可视为质点,忽略滑动过程中的质量损失),小煤块与传送带间的动摩擦因数,已知传送带上A 到B 的长度.取,,重力加速度.求:(1)小煤块刚开始运动时的加速度大小;(2)小煤块从A 运动到B 的时间;(3)从A 到B 的过程中小煤块在传送带上留下的痕迹长度;0W 4n =c U 0p 34A pB p 37θ=︒10m/s v =1kg m =0.5μ=16m L =sin 370.6︒=cos370.8︒=210m/s g =(4)从A 到B 的过程中小煤块和传送带间因摩擦产生的热量.15.(16分)如图甲所示,两块平行正对的金属板水平放置,板间加上如图乙所示幅值为、周期为的交变电压.金属板左侧存在一水平向右的恒定匀强电场,右侧分布着垂直纸面向外的匀强磁场.磁感应强度大小为B 、一带电粒子在时刻从左侧电场某处由静止释放,在时刻从下板左端边缘位置水平向右进入金属板间的电场内,在时刻第一次离开金属板间的电场、水平向右进入磁场,并在时刻从下板右端边缘位置再次水平进入金属板间的电场.已知金属板的板长是板间距离的倍,粒子质量为m .忽略粒子所受的重力和场的边缘效应.甲 乙(1)判断带电粒子的电性并求其所带的电荷量q ;(2)求金属板的板间距离D 和带电粒子在时刻的速度大小v ;(3)求从时刻开始到带电粒子最终碰到上金属板的过程中,电场力对粒子做的功W .0U 0t 0t =0t t =02t t =03t t =3π0t t =0t =高三物理试题参考答案一、单选(4分×10=40分)12345678910BCABBDBCDA二、简答题(3分×5=15分)11.(1)(2)③(3)长木板的长度L (4)(5)三、计算题(8分+9分+12分+16分=45分)12.【答案](1)或11.25eV ;(2)1.5V【详解](1)设波长为110nm 的极紫外线的波长为,逸出功,频率代入数据解得或(4分)(2)处于能级的氢原子向低能级跃迁时产生多种不同能量的光子,产生的光电流是多种光子产生的光电子综合表现,要使光电流全部遏止,必须要截住能最大的光电子.能量最大的光子由光电效应方程可知光电子最大初动能遏止光压必须满足,解得(4分)13【答案】(1),;(2)【详解】(1)设抽气前两体积为,对气体A 分析:抽气后根据玻意耳定律得解得(3分)对气体B 分析,若体积不变的情况下抽去一半的气体,则压强变为原来的一半即,则根据玻意耳定律得解得(3分)(2)由题意可知,弹簧的压缩量为,对活塞受力分析有2126x xT-()122a a Lh+()212m a a -181.810J -⨯c λ0c W h λ=c ccv λ=181.810J c W -=⨯011.25eV W =4n =4112.75eVm hv E E =-=0 1.5eV km m E hv W =-=0km E eU =0 1.5V U =045A p p =023B p p =0815p Sk l=V SL =35244A V V V SL =-=054A p V p VL =054A p p =012p 01324B p V p V =023B p p =4lA B p S p S F=+根据胡克定律得,联立得(3分)14.(12分)(1)设小煤块刚开始运动时的加速度大小为,对小煤块受力分析,由牛顿第二定律得解得(3分)(2)小煤块与传送带共速经过的时间,此时小煤块的位移因为,小煤块继续加速下滑,加速度则有,解得(舍去)故小煤块从A 运动到B 的时间(3分)(3)小煤块先相对传送带向上滑动,相对位移沿传送带向上,大小为共速后,小煤块相对传送带向下滑动,相对位移沿传送带向下,大小为因为,故小煤块在传送带上留下的痕迹长度为(3分)(4)小煤块和传送带间因摩擦产生的热量(3分)15.【答案】(1)正电;;(2);3)【详解】(1)根据带电粒子在右侧磁场中的运动轨迹结合左手定则可知,粒子带正电;(2分)粒子在磁场中运动的周期为,根据,则粒子所带的电荷量(2分)(2)若金属板的板间距离为D ,则板长为,粒子在板间运动时(2分)出电场时竖直速度为零,则竖直方向,其中(2分)在磁场中时,联立解得,(2分)(3)带电粒子在电场和磁场中的运动轨迹如图,由(2)的计算可知金属板的板间距离则粒子在时刻再次进入中间的偏转电场,在时刻进入左侧的电场做减速运动速度为零后反向加速,在时刻再次进入中间的偏转电场,时刻碰到上极板,因粒子在偏转电场中运动时,在时间内电场力做功为零,在左侧电场中运动时,往返一次电场力做功也为零,可知整个过程中只有开始进入左侧电场时电场4l F k=0815p S k l=1a 1sin cos mg mg ma θμθ+=2110m /s a =111v t s a ==2111152x a t m L ==<tan θμ>22sin cos 2m /s mg mg a mθμθ-==22122212x L x vt a t =-=+21t s =211t s =-122t t t s =+=115s vt x m =-=221s x vt m '=-=s s '>5s m =()cos 24J Q mg s s μθ'=⋅+=0mq Bt π=D =v =()2001648mU W Bt ππ+=02T t =2mT qBπ=0m q Bt π=3Dπ03Dvt π=()200120.52U q y t Dm =⨯22mv y r qB==2v qvB m r =v π=D =3D r =03t 04t 06t 06.5t 0t力做功和最后时间内电场力做功,则(6分)00.5t ()2302000001612348348mU D mU mU W mv Eq Bt Bt Bt ππππ+=+⨯=+=。

江苏省泰州市2020-2021学年高二上学期期末调研测试数学试题(word版,含答案)

江苏省泰州市2020-2021学年高二上学期期末调研测试数学试题(word版,含答案)

2020~2021学年度第一学期期末调研测试高二数学试题(考试时间:120分钟;总分:150分)一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题:,10,xp x R e x ∃∈--≤则命题p 的否定为().,10x A x R e x ∀∈--> B.∀x ∉,10xR e x -->.,10x C x R e x ∀∈--≥.,10x D x R e x ∃∈-->2.已知等差数列{}n a 前10项的和是310,前20项的和是1220,则数列{}n a 的通项公式为().62n A a n =+ .62n B a n =- .42n C a n =+ .42n D a n =-3.在空间四边形OABC 中,,,,OA a OB b OC c ===且2,AM MB =则MC =()12.33A a b c --+21.33B a b c --+12.33C a b c +-21.33D a b c +- 4.2020年北京时间11月24日我国嫦娥五号探月飞行器成功发射。嫦娥五号是我国探月工程“绕、落、回”三步走的收官之战,经历发射入轨、地月转移、近月制动、环月飞行、着陆下降、月面工作、月面上升、交会对接与样品转移、环月等待、月地转移、再入回收等11个关键阶段。在经过交会对接与样品转移阶段后,若嫦娥五号返回器在近月点(离月面最近的点)约为200公里,远月点(离月面最远的点)约为8600公里,以月球中心为一个焦点的椭圆形轨道上等待时间窗口和指令进行下一步动作,月球半径约为1740公里,则此椭圆轨道的离心率约为()A.0.32B.0.48C.0.68D.0.825.如果向量()()(2,1,3),1,4,2,1,1,a b c m =-=-=-共面,则实数m 的值是(-) A.-1B.1C.-5D.56.设抛物线28y x =的焦点为F,过点M(1,0)的直线与抛物线相交于A,B 两点,若|BF|=4,则|AF|=()7.2A B.3.7C5.2D 7.已知正项等比数列{}n a 的公比为q,前n 项和为,n S 则"q>1"是“46520S S S +->”的()条件 A.充分不必要 B.必要不充分 C.充分必要D.既不充分也不必要8.若0<x<y<z 且xyz=1,则下列关系式不一定成立的是(() A.lgy+lgz>0.224y z B +> 2.2C x z +>2.2D x z +>二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得3分,有选错的得0分。9.已知双曲线C:221,84x y -=则下列说法正确的是() A.渐近线方程为2y x = B.焦点坐标为(23,0)± C.顶点坐标为(2,0)±D.实轴长为2210.设a,b,c ∈R,则下列结论正确的有() A.若a<b,c<0,则ac>bc1.2B a a+≥ C.若a<b<0,则11a b>222.()22a b a b D ++≤11.任取一个正整数m,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想")。如取正整数m=3,根据上述运算法则得出3→10→5→16→8→4→2→1,共需经过7个步骤首次变成1(简称为7步“雹程”)。则下列叙述正确的是()A.当m=12时,经过9步雹程变成1B.当*2()km k N =∈时,经过k 步雹程变成1 C.当m 越大时,首次变成1需要的雹程数越大D.若m 需经过5步雹程首次变成1,则m 所有可能的取值集合为{5,32}12.已知过抛物线24y x =焦点F 的直线l 与抛物线交于A, B 两点,直线AM ⊥l 交x 轴于点M,直线BN ⊥l 交x 轴于点N,则下列结论正确的有(深) A.|AF|+|BF|=|AF|·|BF| B.|MF|+|NF|=|MF|·|NF| C.|AF|·|BF|的最小值为4D.|MF|·|NF|的最小值为16三、填空题:本题共4小题,每小题5分,共20分。13.已知直三棱柱111ABC A B C -中,1,,AB AC AB AC AA ⊥==点E,F 分别为111,AA A C 的中点,则直线BE 和CF 所成角的余弦值为____.14.已知椭圆22221(0)x y a b a b+=>>的左,右焦点分别为12,,F F 若椭圆上存在一点P 使得12||2||,PF PF =则该椭圆离心率的取值范围是___.15.如图甲是第七届国际数学教育大会(ICME-7)的会徽。它的主题图案是由一连串如图乙所示的直角三角形演化而成的。设其中的第一个直角三角形12OA A 是等腰三角形,且1122334781OA A A A A A A A A ======,它可以形成近似的等角螺线,记1238,,,,OA OA OA OA 的长度组成数列*{}(,18)n a n N n ∈≤≤,且11,n n n b a a +=+则n a =___(n ∈N *,1≤n ≤8),数列{}n b 的前7项和为___.16.已知正实数a,b 满足a+2b=1,则11a ba b+--的最小值为___. 四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。 17.(本题满分10分)已知命题p:实数t 满足227120(0)at a a t -+<<,命题q:实数t 满足曲线221259x y t t+=++为椭圆。 (1)若q 为真,求实数t 的取值范围;(2)若p 是q 的充分条件,求实数a 的取值范围。18.(本题满分12分)在2,n an n b a =⋅①|10|,n n b a =-②21n n n b a a +=③这三个条件中任选一个,补充在下面问题中,并完成问题的解答。问题:已知数列{}n a 是各项均为正数的等差数列,22,a =且1481,,a a a +成等比数列. (1)求数列{}n a 的通项公式;(2)记______,求数列{}n b 的前n 项和.n S注:如果选择多个条件分别解答,按第一个解答计分。19.(本题满分12分)已知点P(x,y)到定点F的距离与它到定直线:l y 点P的轨迹为曲线E.(1)求曲线E的方程;(2)设点Q(m,0)(m>1),若|PQ|求实数m的值。20.(本题满分12分)2020年11月23日,贵州宣布最后9个深度贫困县退出贫困县序列,这不仅标志着贵州省66个贫困县实现整体脱贫,这也标志着国务院扶贫办确定的全国832个贫困县全部脱贫摘帽,全国脱贫攻坚目标任务已经完成,在脱贫攻坚过程中,某地县乡村三级干部在帮扶走访中得知某贫困户的实际情况后,为他家量身定制了脱贫计划,政府无息贷款10万元给该农户种养羊,每万元可创造利润0.15万元,若进行技术指导,养羊的投资减少了x(x>0)万元,且每万元创造的利润变为原来的(1+0.25x)倍。现将养羊少投资的x万元全部投资网店,进行农产品销售,则每万元创造的利润为0.15(a-0.875x)万元,其中a>0.(1)若进行技术指导后养羊的利润不低于原来养羊的利润,求x的取值范围;(2)若网店销售的利润始终不高于技术指导后养羊的利润,求a的最大值。21.(本题满分12分)如图,已知在四棱锥P- ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD=2AB= 2BC=2,PA=1,∠ABC=90°.(1)求直线PB与平面PCD所,成角的正弦值;(2)在线段PB 上是否存在点E,使得二面角E-AC-P 的余弦值33?若存在,指出点E 的位置;若不存在,说明理由.22.(本题满分12分)已知A,B 分别是双曲线E :2214y x -=的左,右顶点,直线l (不与坐标轴垂直)过点N(2,0),且与双曲线E 交于C,D 两点.(1)若3,CN ND =求直线l 的方程;(2)若直线AC 与BD 相交于点P ,求证:点P 在定直线上.2020-2021学年度第一学期期末考试高二数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.求,全部选对的得5分,部分选对的得3分,有选错的得0分.13.2514.1[,1)315,11612四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.解:(1)因为q为真,所以25090259ttt t+>⎧⎪+>⎨⎪+≠+⎩,解得9t>-;……………………4分(2)命题p:由227120t at a-+<得(3)(4)0t a t a--<,因为0a<,所以43a t a<<,设{}|43A t a t a=<<,{}|9B t t=>-,因为p是q的充分条件,所以集合A是集合B的子集,故有49a≥-,解得094a-≤<.……………………10分18.解:(1)因为1481,,a a a+成等比数列,所以2418(1)a a a=+设等差数列{}n a的公差为d,则有2111(3)(1)(7)a d a a d+=++①又22a=,所以12a d+=②联立①②解得111ad=⎧⎨=⎩所以n a n=……………………6分(2)选①,则2nnb n=⋅231222322n n S n =⨯+⨯+⨯++⨯ (1) 23121222(1)22n n n S n n +=⨯+⨯++-⨯+⨯ (2)(1)-(2)得23122222n n n S n +-=++++-⨯化简得1(1)22n n S n +=-⋅+ ……………………12分选②,则10n b n =-当10n ≤时,10n b n =-,(19)2n n n S -= 当10n >时,219180(9810)[12(10)]2n n n S n -+=++++++++-=综上2(19),10219180,102n n n n S n n n -⎧≤⎪⎪=⎨-+⎪>⎪⎩ ……………………12分 选③,则1111()(2)22n b n n n n ==-++1111111111111[()()()()()()]213243546112n S n n n n =-+-+-+-++-+--++ 21111135()212124(1)(2)n nnS n n n n +=+--=++++ ……………………12分19.解:(1|y = 化简得2213y x +=,∴曲线E 的方程为2213y x +=. (6)分(2)PQ ==11)PQ x =-≤≤ ①当12m-<-,即2m >时,min 1PQ m =+=1m =(舍)②当12m -≥-,即12m <≤时,2min 3362PQ m =+=,解得2m = 综上实数m 的值为2. ……………………12分20.解:(1)由题意,得()()0.1510.25100.1510x x +-≥⨯, 整理得260x x -≤,解得06x ≤≤,又0x >,故06x <≤.………………5分(2)由题意知网店销售的利润为()0.150.875a x x -万元, 技术指导后,养羊的利润为()()0.1510.2510x x +-万元, 则()()()0.150.8750.1510.2510a x x x x -≤+-恒成立, 又010x <<,∴5101.58x a x≤++恒成立, 又51058x x+≥,当且仅当4x =时等号成立, ∴0 6.5a <≤,即a 的最大值为5.6.答:(1)x 的取值范围为06x <≤;(2)a 的最大值为5.6.………………12分21.解:(1)以{},,AB AD AP 为正交基底,建立如图所示的空间直角坐标系, 则(0,0,0),(1,0,0),(0,2,0),(1,1,0),(0,0,1)A B D C P(1,1,1),(1,1,0),(1,0,1)CP CD PB =--=-=-不妨设平面PCD 的法向量(,,)m x y z =则有00m CP m CD ⎧⋅=⎪⎨⋅=⎪⎩,即00x y z x y --+=⎧⎨-+=⎩,取(1,1,2)m =设直线PB 与平面PCD 所成的角为α,则3sin cos ,m PB m PB m PB⋅=<>==⋅α 所以直线PB 与平面PCD 所成角的正弦值为36………………6分 (2)假设线段PB 上存在点E ,使得二面角E AC P --的余弦值33设,[0,1]PE PB =∈λλ,则(,0,1)E -λλ 从而(,0,1),(1,1,0),(0,0,1)AE AC AP =-==λλ 设平面ACE 的法向量1111(,,)n x y z =则有1100AE AC n n ⎧⋅=⎪⎨⋅=⎪⎩,即1111(1)00x z x y +-=⎧⎨+=⎩λλ,取1(1,1,)n =--λλλ设平面PAC 的法向量2222(,,)n x y z =则有2200AP A n C n ⎧⋅=⎪⎨⋅=⎪⎩,即22200z x y =⎧⎨+=⎩,取2(1,1,0)n =-121212cos ,2n n n n n n ⋅<>===⋅ 解之得23=λ或2=λ(舍) 故存在点E 满足条件,E 为PB 上靠近点B 的三等分点. ………………12分 22.解:设直线l 的方程为2+=my x ,设()()2211,,,y x D y x C ,把直线l 与双曲线E 联立方程组,⎪⎩⎪⎨⎧=-+=14222y x my x ,可得()012161422=++-my y m ,则1412,1416221221-=--=+m y y m m y y , ………………3分 (1)()()2211,2,,2y x y x -=--=,由3=,可得213y y -=, 即14822-=m m y ①,14123222-=-m y ②, 把①式代入②式,可得14121483222-=⎪⎭⎫ ⎝⎛--m m m ,解得2012=m ,105±=m , 即直线l 的方程为05452=--y x 或05452=-+y x . ………………7分 (2)直线AC 的方程为()1111++=x x y y ,直线BD 的方程为()1122--=x x y y , 直线AC 与BD 的交点为P ,故()1111++x x y ()1122--=x x y ,即()1311++x my y ()1122-+=x my y , 进而得到121221311y y my y y my x x ++=-+,又()212143y y y y +-=,故()()339343343112121121221-=-+-=++-++-=-+y y y y y y y y y y x x ,解得21=x 故点P 在定直线21=x 上. ………………12分。

2024江苏省南通、泰州六市高三第二次联考英语

2024江苏省南通、泰州六市高三第二次联考英语

南通、泰州、扬州、淮安、徐州、宿迁六市2024届高三其次次调研测试英语注意事项考生在答题前请仔细阅读本留意事项及各题答题要求1. 本试卷共14页。

本次考试满分为120分,考试时间为120分钟。

考试结束后,请将答题纸(卡)交回。

2. 答题前,请您务必将自己的姓名、考试号等用书写黑色字迹的0.5毫米签字笔填写在答题纸(卡)上。

3. 请仔细核对答题纸(卡)表头规定填写或填涂的项目是否精确。

4. 作答非选择题必需用书写黑色字迹的0.5毫米签字笔写在答题纸(卡)上的指定位置,在其它位置作答一律无效。

作答选择题必需用2B铅笔把答题纸(卡)上对应题目的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其它答案。

第一部分听力 (共两节,满分20分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1分,满分5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. What makes the girl study harder?A. To get a toy.B. To work as a model.C. To earn money for a car.2. What does the man want to do?A. Stop to ask for directions.B. Drive to the tall building.C. Write down the correct address.3. How much will the woman pay for the skirt?A. $30.B. $70.C. $100.4. What is the woman worried about at first?A. The man’s memory.B. The size of the house.C. The cleanliness of the hotel.5. What does the woman think of the man’s schedule?A. Too flexible.B. Too realistic.C. Too strict.其次节(共15小题;每小题1分,满分15分)听下面5段对话或独白。

江苏省泰州中学2020┄2021学年高二6月月考英语试题+Word版含答案

江苏省泰州中学2020┄2021学年高二6月月考英语试题+Word版含答案

2021届6月(满分120分,考试时间120分)第一卷(选择题,三部分,共85分)第一部分:听力(共两节,每题1分,满分20分)第一节(共5小题;每小题1分,满分20分)听下面5段对话,每段对话后有-个小题,从题中所给的A、B、C三个选项中选出最佳项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. What is the woman probably doing?A. Watching a movie.B. Reading a newspaper.C. Making an advertisetnent2. What are the speakers talking about in general?A.Their best memories of a relaxing holiday.B. Their travelling plans for the summer holiday.C. Their fevorite ways of travelling around the world.3. When will the meeting begin?A.At 3:20.B.At 3:40.C. At 4:00.4.Where are the speakers?A. In a shop.B. In a restaurant.C. In the man's house.5. What does the woman mean?A. She doesn’t need the man’s help.B. She expects the man to move the desk,C. She wants to remove the books from the desk.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。

专题16 数列(解答题)(12月)(人教A版2019)(解析版)

专题16 数列(解答题)(12月)(人教A版2019)(解析版)

专题16 数 列(解答题)1.已知等差数列{}n a 的前n 项和为n S ,10n n a a +->,23a =,且1a ,3a ,712a +成等比数列.(1)求n a 和n S ; (2)设n b =,数列{}n b 的前n 项和为n T ,求证:112n T ≤<. 【试题来源】广东省湛江市2021届高三上学期高中毕业班调研测试题【答案】(1)21n a n =-,2n S n =;(2)证明见解析.【解析】(1)设等差数列{}n a 的公差为d ,首项为1a , 由10n n a a +->,得0d >,则223173,(12),a a a a =⎧⎨=+⎩所以121113,(2)(126).a d a d a a d +=⎧⎨+=++⎩ 解得11a =,2d =,所以21n a n =- ,()21212n n n S n +-==.(2)因为111(1)1n b n n n n ===-++. 所以1111111111112233411n T n n n =-+-+-++-=-<++. 因为111nT n =-+单调递增.所以112n T T ≥=,综上,112T ≤<.【名师点睛】数列求和的方法:(1)倒序相加法:如果一个数列{a n }的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些像可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列:或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如a n =(−1)n f(n)类型,可采用两项合并求解.2.n S 为等差数列{}n a 的前n 项和,已知71a =,432S =-. (1)求数列{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【试题来源】黑龙江省哈尔滨市第三中学2020-2021学年高三上学期期中考试(理)【答案】(1)213n a n =-;(2)212n n S n =-,6n =时,n S 的最小值为36-.【解析】(1)设{}n a 的公差为d ,由71a =,432S =-,即1161434322a d a d +=⎧⎪⎨⨯+=-⎪⎩,解得1112a d =-⎧⎨=⎩, 所以()11213n a a n d n =+-=-. (2)()221111122n n n S na d n n n n n -=+=-+-=-, ()2212636n S n n n =-=--,所以当6n =时,n S 的最小值为36-. 3.已知数列{}n a 的前n 项和为n S ,112a =,且10n n S a +-=(*n N ∈). (1)求数列{}n a 的通项公式; (2)若()21log nn b n a =-+⋅,数列()*N 1n n b ⎧⎫⎬⎭∈⎨⎩的前n 项和为n S ,求证:112n S ≤<.【试题来源】四川省内江市第六中学2020-2021学年高三上学期第三次月考(文) 【答案】(1)12n na =;(2)证明见解析. 【解析】(1)因为10n n S a +-=①,所以()11102n n S a n --+-=≥②,①-②得112n n a a -=,2n ≥; 所以数列{}n a 是首项和公比都为12的等比数列,于是1111222n n n a -⎛⎫=⨯=⎪⎝⎭,*n N ∈.(2)由(1)得()()21log 1n n b n a n n =-+⋅=+,所以()111111n b n n n n ==-++, 所以12111111*********11n n S b b b n n n =+++=-+-++-=-++. 又易知函数()111f x x =-+在[)1,+∞上是增函数,且()1f x <,而112S =, 所以112n S ≤<. 【名师点睛】裂项相消法求数列和的常见类型: (1)等差型111111n n n n a a da a ++⎛⎫=- ⎪⎝⎭,其中{}n a 是公差为()0d d ≠的等差数列; (2=(3)指数型()11nn n a a a a +-=-;(4)对数型11log log log n aa n a n na a a a ++=-. 4.已知数列{}n a 前n 项和n S 满足()2*n S n n N =∈(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【试题来源】甘肃省张掖市第二中学2020-2021学年高二第一学期期中考试(文) 【答案】(1)21n a n =-;(2)n 21nT n =+. 【解析】(1)当1n =时,111a S ==,当2n ≥时,()22121n S n n n =-=-+,121n n n a S S n -=-=-, 当1n =时上式也符合.所以21n a n =-. (2)由题意知,可设111111(21)(21)22121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭n 12111111(1)()()23352121n T b b b n n ⎡⎤=+++=-+-++-⎢⎥-+⎣⎦则n 11122121n T n n ⎛⎫=-= ⎪++⎝⎭. 5.从①前n 项和()2n S n p p R =+∈②611a =且122n n n a a a ++=+这两个条件中任选一个,填至横线上,并完成解答.在数列{}n a 中,11a =,________,其中n *∈N . (1)求数列{}n a 的通项公式;(2)若1a ,n a ,m a 成等比数列,其中m ,n *∈N ,且1m n >>,求m 的最小值. (注:如果选择多个条件分别解答,那么按第一个解答计分)【试题来源】广东省深圳、汕头、潮州、揭阳名校2021届高三上学期联考 【答案】(1)答案见解析;(2)答案见解析.【解析】选择①:(1)当1n =时,由111S a ==,得0p =.当2n ≥时,由题意,得()211n S n -=-,所以()1212n n n a S S n n -=-=-≥.经检验,11a =符合上式,所以()*21n a n n =-∈N .(2)由1a ,n a ,m a 成等比数列,得21nm a a a =, 由(1)得()*21n a n n =-∈N,即()()221121n m -=⨯-.化简,得2211221222m n n n ⎛⎫=-+=-+ ⎪⎝⎭. 因为m ,n 是大于1的正整数,且m n >,所以当2n =时,m 有最小值5. 选择②:(1)由122n n n a a a ++=+,得121 n n n n a a a a +++-=-, 所以数列{}n a 是等差数列.设数列{}n a 的公差为d . 因为11a =,61511a a d =+=,所以2d =. 所以()()*1121n a a n d n n =+-=-∈N .(2)因为1a ,n a ,m a 成等比数列,所以21nm a a a =,即()()221121n m -=⨯-. 化简,得2211221222m n n n ⎛⎫=-+=-+ ⎪⎝⎭.因为m ,n 是大于1的正整数,且m n >,所以当2n =时,m 有最小值5.【名师点睛】()()1112n n n S n a S S n -⎧=⎪=⎨-≥⎪⎩,检验11a =是否符合通项是解题的关键. 6.在数列{}n a 中,12a =,1541n n a a n +=-+,*n N ∈. (1)证明:数列{}n a n -是等比数列; (2)求{}n a 的前n 项和n S .【试题来源】河南省焦作市2020-2021学年高二(上)期中(理) 【答案】(1)证明见解析;(2)()1(1)5142n n n +-+. 【解析】(1)1541n n a a n +=-+,*n N ∈,1(1)5()n n a n a n +∴-+=-.因为111a -=, ∴数列{}n a n -是首项为1,公比为5的等比数列,(2)由(1)可得15n n a n --=,15n n a n -∴=+,{}n a ∴的前n 项和211555(12)n n S n -=+++⋯⋯++++⋯⋯+()115(1)51(1)1(1)(51)15251242nnn n n n n n n ⨯-+-++=+=+=-+-- 7.n S 为等差数列{}n a 的前n 项和,已知410a =-,864S =-. (1)求数列{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【试题来源】黑龙江省哈尔滨市第三中学2020-2021学年高三上学期期中考试(文)【答案】(1)426n a n =-;(2)2224n S n n =-,6n =时,n S 的最小值为72-.【解析】(1)设{}n a 的公差为d ,由410a =-,864S =-得11310878642a d a d +=-⎧⎪⎨⨯+=-⎪⎩, 解得1224a d =-⎧⎨=⎩,所以{}n a 的通项公式为()2241426n a n n =-+-=-;(2)由(1)得()()1244822422n n n a a n n S n n +-===-, 又222242(6)72n S n n n -=--=,所以当6n =时,n S 取得最小值,最小值为72-.8.已知正项等比数列{}n a 的前n 项和为n S ,且满足22S a +是12a 和4a 的等差中项,12a =. (1)求数列{}n a 的通项公式;(2)令222log n n n b a a =+,求数列{}n b 的前n 项和n T .【试题来源】天津市滨海新区大港一中2021届高三(上)第一次月考【答案】(1)2nn a =;(2)12443n n n +-++.【解析】(1)正项等比数列{}n a 的前n 项和为n S ,且满足22S a +是12a 和4a 的等差中项, 设公比为q ,则22142()2S a a a +=+,整理得12142(2)2a a a a +=+,由于12a =,即32(24)42q q +=+,即34q q =,因为0q >,所以解得2q ,所以2nn a =.(2)由于222log 24nn n b a a n =+=+,所以12324446424n n T n =++++++++12(2462)(444)n n =++++++++4(41)(1)41n n n -=++-12443n n n +-=++.9.已知数列{}n a 是公差不为零的等差数列,92a =-,且满足3a ,13a ,8a 成等比数列. (1)求数列{}n a 的通项公式;(2)设12n n n n b a a a ++=,数列{}n b 的前n 项和为n S ,求使得n S 最小的n 的值. 【试题来源】河南省焦作市2020—2021学年高三年级第一次模拟考试(文) 【答案】(1)329n a n =-;(2)7【解析】(1)设数列{}n a 的公差为d ()0d ≠,因为92a =-,3a ,13a ,8a 成等比数列,所以21338a a a =,即()()()224262d d d -+=----,整理得230d d -=, 解得3d =或0d =(舍去).故()99329n a a n d n =+-=-. (2)当19n ≤≤时,0n a <,当10n ≥时,0n a >,因为12n n n n b a a a ++=,当17n ≤≤时,0n b <,当10n ≥时,0n b >, 而且()()8891052110b a a a ==-⨯-⨯=,9910112148b a a a =-⨯⨯==-, 因此97S S >,所以使得n S 最小的n 为7.10.已知各项均为正数的等差数列{}n a 和等比数列{}n b 满足111a b ==,且236a a ⋅=,238b b a ⋅=(1)求数列{}n a ,{}n b 的通项公式. (2)若2221log n n n c a b +=⋅,求12n c c c +++….【试题来源】黑龙江宾县第一中学2020-2021学年高三第一学期第二次月考(理) 【答案】(1)n a n =,12n n b -=;(2)()21nn +.【解析】(1)因为{}n a 为等差数列,且11a =,所以可设公差为d , 则()11n a n d =+-,所以21a d =+,312a d =+. 因为236a a ⋅=,所以()()1126d d ++=,解得1d =或52d =-. 又等差数列{}n a 各项均为正数,所以52d =-不合题意,舍去,所以n a n =. 因为{}n b 为等比数列,且11b =,所以可设公比为(0)q q ≠,则1n n b q -=.因为2388b b a ⋅==,所以128q q ⋅=,解得2q,满足各项均为正数,所以12n n b -=.(2)由(1)知1,2n n n a n b -==,所以2221log n n n c a b +=⋅()121n n =+111=21n n ⎛⎫- ⎪+⎝⎭.所以12n c c c +++111111122231n n ⎛⎫=-+-++- ⎪+⎝⎭11121n ⎛⎫=⋅- ⎪+⎝⎭()21n n =+.11.在等比数列{}n a 中,已知11a =,48a =. (1)求数列{}n a 的通项n a ;(2)在等差数列{}n b 中,若15b a =,82b a =,求数列{}n b 前n 项和n S . 【试题来源】甘肃省临夏州临夏中学2019-2020学年高二(上)第二次月考(文) 【答案】(1)12n na ;(2)217n S n n =-.【解析】(1)设等比数列{}n a 的公比为q ,由题设知3418a q a ==, 2q ∴=,因此12n na ;(2)由(1)可得415216b a ===,822b a ==,∴公差81281b b d -==--,2(1)16(2)172n n n S n n n -∴=+⨯-=-. 12.已知数列{}n a 满足12a =,()121n n n a a n++=.设nn a b n=. (1)求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和为n S .【试题来源】黑龙江省哈尔滨市第三中学2020-2021学年高三上学期期中考试(文) 【答案】(1)证明见解析;(2)()1122n n S n +=-+.【解析】(1)由()121n n n a a n++=,可得121n n a an n+=⋅+,即12n n b b += 则数列{}n b 是以1121a b ==为首项,2为公比的等比数列; (2)由(1)可得,2nn n a b n ==,2n n a n ∴=⋅,23122232...2n n S n =⨯+⨯+⨯++⨯,则有()23412122232 (122)nn n S n n +=⨯+⨯+⨯++-⨯+⨯,两式作差得()231111212222 (22222212)n n n n n n nS n n n ++++--=++++-⨯=-⨯=--⨯-()1122n n S n +∴=-+.13.在数列{}n a 中,11a =,24a =,2134n n n a a a ++=-. (1)求证:数列{}1n n a a +-是等比数列;(2)若数列{}n a 的前n 项和为n S ,且22n S m m ≥-对任意正整数n 恒成立,求实数m 的取值范围.【试题来源】河南省商丘市虞城高级中学2020~2021学年高三11月质量检测(理)【答案】(1)证明见详解;(2)1⎡⎣.【解析】(1)由2134n n n a a a ++=-,得214133n n n a a a ++=-. 则()1112111141113333n n n n n n n n nn n n n a a a a a a a a a a a a a ++++++++----===---,所以数列{}1n n a a +-是以213a a -=为首项,13为公比的等比数列. (2)由(1)得11211333n n n n a a -+-⎛⎫-=⨯=⎪⎝⎭.当2n ≥时,()()()()12132431n n n a a a a a a a a a a -=+-+-+-+⋅⋅⋅+-01231111133333n -=+++++⋅⋅⋅+2111119134122313n n --⎛⎫- ⎪⎛⎫⎝⎭=+=-⨯ ⎪⎝⎭-.当1n =时,11a =适合11191223n n a -⎛⎫=-⨯ ⎪⎝⎭.所以11191223n n a -⎛⎫=-⨯ ⎪⎝⎭,所以1111927111273122432413nnn S n n ⎛⎫- ⎪⎛⎫⎝⎭=-⨯=⨯+-⎪⎝⎭-. 因为11191223n n a -⎛⎫=-⨯ ⎪⎝⎭是关于n 的递增数列,且110a =>,所以n S 也关于n 单调递增,从而n S 的最小值为11S =.因为22n S m m ≥-恒成立.所以212m m ≥-,解得11m ≤≤.即实数m的取值范围是1⎡+⎣.【名师点睛】根据数列不等式恒成立求参数时,一般通过分离参数,得到参数大于某个式子或小于某个式子恒成立的问题,再根据分离后的式子,由函数(或数列)的性质求出最值,即可求解参数范围.14.已知等差数列{}n a 满足323a a -=,2414a a +=. (1)求{}n a 的通项公式;(2)设n S 是公比为正数的等比数列{}n b 的前n 项和,若22b a =,46b a =,求7S . 【试题来源】湖北省荆州市滩桥高级中学2019-2020学年高二下学期期末(文) 【答案】(1)32n a n =-;(2)254. 【解析】(1)设等差数列{}n a 的公差为d ,因为32243,14-=+=a a a a .所以3d =,12414a d +=,解得11a =, 所以()1132n a a n d n =+-=-; (2)设等比数列{}n b 的公比为q ,则2124b b q a ===,341616b b q a ===,解得122b q =⎧⎨=⎩或122b q =-⎧⎨=-⎩, 因为公比为正数,所以122b q =⎧⎨=⎩,所以()7721225412S ⨯-==-. 15.已知数列{}n a 为正项等比数列,12a =,数列{}n b 满足25b =,且11122332(21)2n n n a b a b a b a b n ++++⋅⋅⋅+=+-.(1)求数列{}n a 和{}n b 的通项公式; (2)若11{}n n b b +的前n 项和n T ,求n T 的取值范围. 【试题来源】甘肃省永昌县第一中学2020-2021学年高三上学期第一次月考数学理试题【答案】(1)2nn a =,21n b n =+;(2)[11,)156. 【解析】(1)令1n =,则2112(21)26a b =+-=,所以13b =,令2n =,则112226a b a b +=,所以2220a b =,因为25b =,所以24a =, 设数列{}n a 的公比为q ,则212a q a ==,所以2n n a =. 因为11122332(21)2n n n a b a b a b a b n ++++⋅⋅⋅+=+-,①当2n ≥时,112233112(23)2nn n a b a b a b a b n --+++⋅⋅⋅+=+-,② 由①-②得1[2(21)2][2(23)2](21)2n n nn n a b n n n +=+--+-=+,所以21n b n =+,当1n =时也成立,所以21n b n =+,(2)由(1)可知111111()(21)(23)22123n n b b n n n n +==-++++, 所以1111111[()()()]235572123n T n n =-+-+⋅⋅⋅+-++111()2323n =-+, 因为n T 随着n 的增大而增大,当1n =时,1115T =,当n →+∞时,16n T →, 所以n T 的取值范围是11[,)156. 【名师点睛】数列求和的方法常用的有:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组求和法;(5)倒序相加法.要根据数列通项的特征,灵活选择方法求和. 16.已知数列{}n a 的前n 项和为n S ,且312n n S a =-*()n N ∈. (1)求数列{}n a 的通项公式;(2)在数列{}n b 中,15b =,1n n n b b a +=+,求数列{}n b 的通项公式.【试题来源】安徽省马鞍山市和县第二中学2020-2021学年高一上学期期中联考(理)【答案】(1)123n n a -=⋅;(2)134n n b -=+.【解析】(1)当n =1时,11312a a =-, 所以 a 1=2. 当2n ≥时,因为312n n S a =- ①,1131(2)2n n S a n --=-≥ ②,①-②得133(1)(1)22n n n a a a -=---,即13n n a a -=所以 数列{}n a 是首项为2,公比为3的等比数列,所以123n n a -=⋅.(2)因为1n n n b b a +=+,所以当2n ≥时,2123n n n b b --=+⋅ ,……,13223b b =+⋅,2123b b =+⋅,相加得 12111132(333)523413n n n n b b ----=+⋅+++=+⋅=+-.当n =1时,111345b -+==,所以 134n n b -=+.【名师点睛】递推数列求数列通项公式,对于形如a (n+1)=a n +f (n )或者a (n+1)-a n =f (n )的关系式,其中f (n )可以为常数(此时为等差数列)、也可以是关于n 的函数如一次函数、分式函数、二次函数和指数函数等,此时求解通项公式时均可使用累加法.17.已知正项数列{}n a 的前n 项和为n S ,且满足:11a =,211n n n a S S ++=+.(1)求数列{}n a 的通项公式; (2)设()()121213n n n a n n a b a a +=-+,求数列{}n b的前n 项和n T .【试题来源】湖南省长沙市长郡中学2020-2021学年高三上学期月考(三)【答案】(1)n a n =;(2)()1114213n n T n ⎡⎤=-⎢⎥+⋅⎣⎦.【解析】(1)由211n n n a S S ++=+,又有21n n n a S S -=+,()2n ≥,两式相减得()22112n n n n a a a a n ++-=+≥,因为0n a >,所以()112n n a a n +-=≥,又11a =,22121a a a a =++,解得22a =,满足11n n a a +-=,因此数列{}n a 是等差数列,首项1a 为1,公差d 为1, 所以()11n a a n d n =+-=; (2)()()1121213n n n b n n +=⋅-+()()113111114212134213213n n n n n n n -⎡⎤⎛⎫=-⋅=-⎢⎥ ⎪-+-⋅+⋅⎝⎭⎢⎥⎣⎦,所以 ()()1201121111111111...41333433534213213n n n n T b b b n n -⎡⎤⎛⎫⎛⎫=+++=-+-++-⎢⎥ ⎪ ⎪⋅⋅⋅⋅-⋅+⋅⎝⎭⎝⎭⎣⎦()1114213n n ⎡⎤=-⎢⎥+⋅⎣⎦. 【名师点睛】常见的数列中可进行裂项相消的形式:(1)()11111n n n n =-++;(2)211114122121n n n ⎛⎫=- ⎪--+⎝⎭; (31=-(4)()()1121121212121n n n n n ++=-----. 18.已知数列{}n a 中,11a =,13nn n a a a +=+. (1)求证:112n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求{}n a 的通项公式;(2)数列{}n b 满足()312nn n n nb a =-⋅,数列{}n b 的前n 项和为n T ,若不等式1(1)2n n n nT λ--<+对一切*n ∈N 恒成立,求λ的取值范围. 【试题来源】河南省南阳市第一中学校2020-2021学年高三上学期第四次月考(文) 【答案】(1)证明见解析,231n na =-;(2)23λ-<<. 【解析】(1)由13n n n a a a +=+得13131n n n n a a a a ++==+,即11111322n n a a +⎛⎫+=+ ⎪⎝⎭, 又111322a +=,所以112n a ⎧⎫+⎨⎬⎩⎭是以32是为首项,3为公比的等比数列. 所以111333222n n n a -+=⨯=,即231n n a =-. (2)()12231nnnn n b an n --⋅==, 所以0122111111123(1)22222n n n T n n --=⨯+⨯+⨯+⋯+-⨯+⨯, 211111112(1)22222n n n T n n -=⨯+⨯++-⨯+⨯. 两式相减得121011111222222222n n n n T n n -+=+++⋯+-⨯=-,所以1242n n n T -+=-,所以12(1)42nn λ--<-. 令()()*1242n f n n -=-∈N ,易知()f n 单调递增,若n 为偶数,则()21242f n λ-<-≤,所以3λ<; 若n 为奇数,则()11242f n λ--<-≤,所以2λ-<,所以2λ>-. 综上所述23λ-<<.【名师点睛】利用构造等比数列可求解形如递推关系1n n a pa q -=+的通项公式;根据数列的单调性求数列的最值,可求得参数的取值范围.19.已知n S 为等差数列{}n a 的前n 项和,满足410S =,55a =,n T 为数列{}n b 的前n 项和,满足()4413nn T =-,*n ∈N . (1)求{}n a 和{}n b 的通项公式; (2)设211log n n n n c b a a +=+,若数列{}n c 的前n 项和100n C <,求n 的最大值. 【试题来源】河南省南阳市第一中学校2020-2021学年高三上学期第四次月考(文) 【答案】(1)*n a n n N =∈,,4n nb ,*n N ∈;(2)9.【解析】(1){}n a 为等差数列,因为410S =,55a =,所以14610a d +=,145a d +=,解得11a =,1d =,所以*n a n n N =∈,.因为()4413n n T =-,所以当2n ≥时,()()11444141433n n n n n n b T T --=-=---=; 当1n =时,114b T ==.综上,4n n b ,*n N ∈.(2)()2111log 4211nn c n n n n n ⎛⎫=+=+- ⎪++⎝⎭,所以()12111111212312231n n C c c c n n n ⎛⎫=+++=+++++-+-++- ⎪+⎝⎭()()111111n n n n n n n ⎛⎫=++-=++ ⎪++⎝⎭,所以()11nn C n n n =+++, 因为()11001n nC n n n =++<+, 当1n ≥时,()1111n C n n n =++-+为关于n 的递增数列,8999010010C C <=+<,101011010011C =+>,所以n 的最大值为9. 【名师点睛】已知数列的通项和前n 项和的递推关系,常采用多递推一项再相减的思想;通过研究数列的单调性,进而研究数列项的最值或解不等式,是常用的方法.20.在①112n n a a +=-,②116n n a a +-=-,③a n +1=a n +n -8这三个条件中任选一个,补充在下面的问题中,若问题中的S n 存在最大值,则求出最大值;若问题中的S n 不存在最大值,请说明理由.问题:设S n 是数列{a n }的前n 项和,且a 1=4,_________,求{a n }的通项公式,并判断S n 是否存在最大值.【试题来源】湖北省宜昌市秭归县第一中学2020-2021学年高二上学期期中 【答案】答案不唯一,具体见解析 【解析】选①因为112n n a a +=-,a 1=4,所以{a n }是首项为4,公比为12-的等比数列,所以13114()()22n n n a --=⨯-=-.当n 为奇数时,14[1()]812(1)13212n n nS --==++,因为81(1)32n +随着n 的增加而减少,所以此时S n 的最大值为S 1=4.当n 为偶数时,81(1)32n n S =-,且818(1)4323n n S =-<<.综上,S n 存在最大值,且最大值为4.选②因为116n n a a +-=-,a 1=4,所以{a n }是首项为4,公差为16-的等差数列,所以11254(1)()666n a n n =+--=-+.由125066n -+≥,得n ≤25,所以S n 存在最大值,且最大值为S 25(或S 24),因为2525241254()5026S ⨯=⨯+⨯-=,所以S n 的最大值为50.选③因为a n +1=a n +n -8,所以a n +1-a n =n -8,所以a 2-a 1=-7,a 3-a 2=-6,…,a n -a n -1=n -9,则12132n a a a a a a -=-+-+…21(79)(1)171622n n n n n n a a --+---++-==,又a 1=4,所以217242n n n a -+=.当n ≥16时,a n >0,故S n 不存在最大值.21.已知数列{}n a 中,11a =,1(1)(2)1n n n a n a ++-+=*()n N ∈,n S 为数列{}n a 的前n项和.数列{}n b 满足*1()n nb n N S =∈.(1)证明:数列{}n a 是等差数列,并求出数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和为n T .问是否存在正整数,(3)p q p q <<,使得3,,p q T T T 成等差数列?若存在,求出,p q 的值;若不存在,请说明理由.【试题来源】江苏省无锡市锡山高级中学2020-2021学年高二上学期期中 【答案】(1)证明见解析,n a n =;(2)存在,11,5q p ==或27,6q p == 【解析】(1)1(1)(2)1n n n a n a ++-+=,则()()1111211212n n a a n n n n n n +-==-++++++, 设1n n a c n =+,则112c =,11112n n c c n n +-=-++,1122111111111123211n n n n n nc c c c c c c c n n n n ---=-+-+⋅⋅⋅+-+=-+⋅⋅⋅+-+=-=+++,故11n n a nc n n ==++,n a n =,11n n a a --=,故数列{}n a 为等差数列.(2)()12n n n S +=,()1211211⎛⎫===- ⎪++⎝⎭n nb S n n n n , 故1111122122311n n T n n n ⎛⎫=-+-+⋅⋅⋅+-=⎪++⎝⎭. 3,,p q T T T 成等差数列,则32p q T T T =+,即423112p q p q =+++, 化简整理得到:5730pq p q +--=,即()()7532p q -+=-,3p q <<,故58q +>,且*,p q N ∈,故516q +=或532q +=,故11,5q p ==或27,6q p ==.22.在①123,1,a a a +成等差数列;②430S =;③12364a a a =三个条件中任选一个补充在下面的问题中,并作答.(注:如果选择多个条件分别作答,按第一个解答计分)已知n S 是数列{}n a 的前n 项和.若12()n n S a a n N *=-∈,10a ≠,且满足(1)求数列{}n a 的通项公式;(2)设11b =,*1()n n n b b a n N +-=∈,求数列{}n b 的通项公式. 【试题来源】江苏省无锡市锡山高级中学2020-2021学年高二上学期期中【答案】(1)2nn a =;(2)21n n b =-.【解析】(1)因为12n n S a a =-,所以1112n n S a a ++=-,所以()1111122n n n n n a S S a a a a +++--==--,化简得12n n a a +=,若选择①:因为123,1,a a a +成等差数列,所以()21321a a a +=+即()1112214a a a +=+,解得12a =,所以数列{}n a 是以2为首项,公比为2的等比数列,所以2nn a =;若选择②:因为2413411530a a a a S a =+++==,所以12a =,所以数列{}n a 是以2为首项,公比为2的等比数列,所以2nn a =; 若选择③:因为31231864a a a a ==,所以12a =,所以数列{}n a 是以2为首项,公比为2的等比数列,所以2nn a =; (3)由(1)得2nn a =,则12n n n b b +-=,所以当2n ≥时,()()()()2311213243112222n n n n b b b b b b b b b b --+-+-+-+⋅⋅⋅+-=+++⋅⋅⋅+= ()1122112n n ⋅-==--,当1n =时,11b =满足上式,所以21nn b =-.23.阅读本题后面有待完善的问题,在下列三个关系①1112n n a a +=+,②12n n a a +=+,③21n n S a =-中选择一个作为条件,补充在题中横线标志的__________处,使问题完整,并解答你构造的问题.(如果选择多个关系并分别作答,在不出现逻辑混乱的情况下,按照第一个解答给分)设数列{}n a 的前n 项和为n S ,11a =,对任意的*N n ∈,都有_________;等比数列{}n b 中,对任意的*N n ∈,都有0n b >,2123n n n b b b ++=+,且11b =,问:是否存在*N k ∈,使得对任意的*N n ∈,都有n k k n a b a b ≤?若存在,试求出k 的值;若不存在,试说明理由. 【试题来源】江苏省南京市三校2020-2021学年高三上学期期中联考 【答案】答案见解析【解析】设等比数列{}n b 的公比为q .因为对任意的*n ∈N ,都有2123n n n b b b ++=+,所以223q q =+,解得1q =-或32. 因为对任意的*n ∈N ,都有0n b >,所以0q >,从而32q =. 又11b =,所以132n n b -⎛⎫= ⎪⎝⎭.显然,对任意的*n ∈N ,0n b >.所以,存在*n ∈N ,使得对任意的*n ∈N ,都有n k k n a b a b ≤,即n kn ka ab b ≤. 记nn na cb =,*n ∈N .下面分别就选择①②③作为条件进行研究. ①因为对任意的*n ∈N ,都有1112n n a a +=+,即()11222n n a a +-=-.又11a =,即1210a -=-≠,所以20n a -≠,从而12122n n a a +-=-,所以数列{}2n a -是等比数列,公比为12,得1122n n a -⎛⎫-=- ⎪⎝⎭,即1122n n a -⎛⎫=- ⎪⎝⎭.所以1123n n n n n a c b --==,从而()1112321n n n nc c ++-=-. 由()1121122132n nn n +--≤⇔≥⇔≥,得12c c =,当1n ≥时,1n n c c +<, 所以,当1n =或2时,n c 取得最大值,即nna b 取得最大值. 所以对任意的*n ∈N ,都有2121n n a a a b b b ≤=,即11n n a b a b ≤,22n n a b a b ≤, 所以存在1k =,2,使得对任意的*n ∈N ,都有n k k n a b a b ≤. ②因为对任意的*n ∈N ,都有12n n a a +=+,即12n n a a +-=,所以数列{}n a 是等差数列,公差为2.又11a =,所以12(1)21n a n n =+-=-.所以12(21)03n n n n a c n b -⎛⎫==-> ⎪⎝⎭,从而12(21)3(21)n n c n c n ++=-. 由2(21)51253(21)2n n n n +≤⇔≥⇔≥-,得当2n ≤时,1n n c c +>;当3n ≥时,1n n c c +<,所以,当3n =时,n c 取得最大值,即nna b 取得最大值. 所以对任意的*n ∈N ,都有33n n a a b b ≤,即33n n a b a b ≤. 所以存在3k =,使得对任意的*N n ∈,都有n k k n a b a b ≤. ③因为对任意的*N n ∈,都有21n n S a =-,所以1121n n S a ++=-, 从而()1111212122n n n n n n n a S S a a a a ++++=-=---=-,即12n n a a +=.又110a =>,所以0n a >,且12n na a +=, 从而数列{}n a 是等比数列,公比为2,得12n na .所以1304n n n n a c b -⎛⎫==> ⎪⎝⎭,从而1314n n c c +=<,所以1n n c c +<, 所以,当1n =时,n c 取得最大值,即nna b 取得最大值. 所以对任意的*N n ∈,都有11n n a a b b ≤,即11n n a b a b ≤. 所以存在1k =,使得对任意的*N n ∈,都有n k k n a b a b ≤. 24.已知数列{}n a 的前n 项和为n S ,且21(*)n n S a n N =-∈ (1)求1a 和2a 的值;(2)证明数列{}n a 是等比数列,并求出{}n a 的通项公式;(3)设13log n n b a =,n n n c a b =,求数列{}nc 的前n 项和n T .【试题来源】广东省东莞市第四高级中学2020-2021学年高二上学期期中【答案】(1)113a =;219a =;(2)证明见解析,13n n a =;(3)n T =332443nn +-⨯. 【解析】(1)1121S a =-,得113a =,当2n =时,2221S a =-,所以1222()1a a a +=-,解得219a =.(2)由21n n S a =-,1121(2)n n S a n --=-≥, 两式相减得11(2)3n n a a n -=≥,即11(2)3n n a n a -=≥, 所以数列{}n a 是以首项为13,公比为13的等比数列,得13n n a =. (3)13log n n b a n ==,3n n nnn c a b ==, 则12n n T c c c =+++=21111112(1)3333n n n n -⨯+⨯++-⨯+⨯,得3×n T =21231333n-n++++,上两式相减得 2×n T =1+211113333n n n -+++-=311)233n n n--(, 得n T =13133244323443n n nn n-+--=-⨯⨯⨯. 【名师点睛】已知条件是n S 和n a 的关系的,可用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩来求通项公式.如果一个数列的结构是等差数列乘以等比数列,则数列求和采用错位相减求和法. 25.设数列{}n a 的前n 项和为n S ,且22n n S n a +=-.(1)证明数列{}1n a +是等比数列,并求出数列{}n a 的通项公式;(2)若数列{}n b 中,12b =,12n n b b +=-,求数列{}n n a b +的前n 项和n T . 【试题来源】云南省德宏州2020届高三上学期期末教学质量检测(文)【答案】(1)证明见解析;121n n a +=-;(2)n T 2224n n +=+-.【解析】(1)证明:当1n =时,13a =,当2n ≥时,22n n S n a +=- ①,11(1)22n n S n a --∴+-=- ②, 由①-②得121n n a a -+=, 1221n n a a -∴+=+,即1121n n a a -+=+,故数列{}1n a +是以2为公比,首项为114a +=的等比数列,112n n a +∴+=,得121n n a +=-.(2)由题得12nnb b ,故{}n b 是以2为公差,2为首项的等差数列,2n b n ∴=.()231(242)222n n T n n +∴=++⋅⋅⋅++++⋅⋅⋅+-()412(1)22212n n n n n --=+⨯+--2224n n +=+-.【名师点睛】本题考查数列求通项公式与求和问题,求数列和常用的方法: (1)等差+等比数列:分组求和法;(2)倒序相加法; (3)11n n n b a a +=(数列{}n a 为等差数列):裂项相消法; (4)等差⨯等比数列:错位相减法.26.已知数列{}n a 满足12a =,1(1)2(2)n n n a n a ++=+ (1)求数列{}n a 的通项公式;(2)设n S 是数列{}n a 的前n 项和,求证:2nn S a <.【试题来源】浙江省温州市2020-2021学年高三上学期11月高考适应性测试(一模) 【答案】(1)1(1)2n n a n -=+⋅;(2)证明见解析.【解析】(1)因为1(1)2(2)n n n a n a ++=+,所以12(2)(1)n n a n a n ++=+,则 1123411123134512(1)2(2)234n n n n n a a a a n a a a n n a a a a n ---+⎛⎫=⋅⋅⋅=⋅⋅⨯⨯⨯⨯=+⋅≥ ⎪⎝⎭当1n =时,12a =满足上式,所以1(1)2n n a n -=+⋅.(2)0121223242(1)2n n S n -=⋅+⋅+⋅+⋅+⋅①,123122232422(1)2n n n S n n -=⋅+⋅+⋅++⋅++⋅②,①-②得123122222(1)2n n n S n --=+++++-+⋅,化简得()12122(1)2212---=+-+⋅=-⋅-n nn nS n n ,所以2nn S n =⋅,又2(1)2220nnnn n a S n n -=+⋅-⋅=>,所以2n n S a <.【名师点睛】本题考查根据递推关系式求数列的通项公式,考查错位相减法求和,难度一般.(1)当数列{}n a 满足()1n na f n a +=时,可采用累乘法求通项公式; (2)当数列n n n c ab =⋅,其中{}n a 和{}n b 分别为等差数列与等比数列时,采用错位相减法求和.27.已知数列{}n a 满足122nn n a a a +=+,且12a =,数列{}n b 满足1n n n n b b a b +-=,且12b =,(n *∈N ). (1)求证:数列1na 是等差数列,并求通项n a ; (2)解关于n 的不等式:22n a nb <.【试题来源】江苏省盐城市一中、射阳中学等五校2020-2021学年高二上学期期中联考 【答案】(1)证明见解析,2n a n=;(2){}2,3,4n ∈. 【解析】(1)由122nn n a a a +=+,且12a =知,0n a >, 故有11112n n a a +-=得,所以数列1na 是等差数列, 由于1111,22d a ==,所以12n n a =,即2n a n=; (2)由1n n n n b b a b +-=得,121n n n b n a b n++=+=,由累乘法得,(1)n b n n =+ 则不等式22na nb <可化为2(1)nn n <+,即(1)12nn n +>, 令(1),2n nn n c n N *+=∈,则1n c >. 当1n =时,11c =,不符合;当2n =时,2312c =>,符合;当3n =时,3312c =>,符合;当4n =时,4514c =>,符合; 当5n =时,515116c =<,不符合;而当5,n n N *≥∈时,()()1111(2)1(2)(1)0222n n n nn n n n n n n c c ++++++-+-=-=<故当5,n n N *≥∈不符合;综上所述,{}2,3,4n ∈.28.已知数列1n n a ⎧⎫⎨⎬-⎩⎭的前n 项和为n ,数列{}n b 满足11b =,1n n n b b a +-=,*n N ∈.(1)求数列{}n a ,{}n b 的通项公式; (2)若数列{}n c 满足22nnn a c b =,*n N ∈,求满足126316n c c c +++≤的最大整数n . 【试题来源】浙江省杭州地区重点中学2020-2021学年高三上学期期中 【答案】(1)1n a n =+()n N ∈,(1)2n n nb +=()n N ∈;(2)证明见解析 【解析】(1)因为1212111n nn a a a +++=---①, 2n ≥时,1211211111n n n a a a --+++=----②,由-①②得11n na =-,所以1(2)n a n n =+≥, 当1n =时,1111a =-,12a =符合1n a n =+,所以1n a n =+()n N ∈,因为11n n n b b a n +-==+,所以()()()121321n n n b b b b b b b b -=+-+-++-1121n b a a a -=++++(1)122n nn +=+++=, 当1n =时,11b =也符合,(1)2n n nb +=. (2)因为22224(21)(1)n n n a n c b n n +==+,22224(21)114()(1)(1)n n c n n n n +==-++, 所以,12216341(1)16n c c c n ⎛⎫+++=-≤ ⎪+⎝⎭,21631(1)64n -≤+,211(1)64n ≥+,2(1)64n +≤,所以()18n +≤即7n ≤. 所以满足126316n c c c +++≤的最大整数n 为7. 29.已知数列{a n }中,已知a 1=1,a 2=a ,a n +1=k (a n +a n +2)对任意n ∈N *都成立,数列{a n }的前n 项和为S n .(1)若{a n }是等差数列,求k 的值; (2)若a =1,k =-12,求S n . 【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (文)【答案】(1)12k =;(2)()2,21,,2n n n k S k n n k*-=-⎧=∈⎨=⎩N . 【解析】(1)若{}n a 是等差数列,则对任意*n N ∈,121n n n n a a a a +++-=-, 即122n n n a a a ++=+,所以()1212n n n a a a ++=+,故12k =. (2)当12k =-时,()1212n n n a a a ++=-+,即122n n n a a a ++=--. 所以()211n n n n a a a a ++++=-+,故()32211n n n n n n a a a a a a ++++++=-+=+, 所以,当n 是偶数时,()()()1234112341n n n n n S a a a a a a a a a a a a --=++++++=++++++()122na a n =+=, 当n 是奇数时,()23212a a a a +=-+=-,()()()12341123451n n n n n S a a a a a a a a a a a a a --=++++++=+++++++11(2)22n n -=+⨯-=- 综上,()2,21,,2n n n k S k n n k*-=-⎧=∈⎨=⎩N .30.已知等差数列{}n a 的前n 项和为n S ,918a =,10110S =. (1)求数列{}n a 的通项公式n a ;(2)设1n nb S =,求数列{}n b 的前n 项和n T . 【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (文) 【答案】(1)2n a n =;(2)1n nT n =+. 【解析】(1)设等差数列{}n a 的公差为d ,由911018181045110a a d S a d =+=⎧⎨=+=⎩,解得12a d ==,所以,()112n a a n d n =+-=,故数列{}n a 的通项公式2n a n =; (2)由(1)可得()()2212n n n S n n +==+, 所以()111111n n b S n n n n ===-++, 所以111111111122334111n n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭. 【名师点睛】数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和; (3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法.31.已知等比数列{}()n a n N*∈满足234a aa =,13223a a a +=.(1)定义:首项为1且公比为正数的等比数列为“M -数列”,证明:数列{}n a 是“M -数列”;(2)记等差数列{}n b 的前n 项和记为n S ,已知59b =,864S =,求数列{}21n n b a -的前n 项的和n T .【试题来源】内蒙古呼和浩特市2021届高三质量普查调研考试(理) 【答案】(1)证明见解析;(2)()4727nn T n =-+.【解析】(1)由题意可设公比为q ,则23311a q a q =,得11a =,211123a a q a q +=得1q =或2q,所以数列{}n a 是“M -数列”.(2)设数列{}n b 的公差为d ,易得()458464b b S +==得47b =, 所以542d b b =-=,得21n b n =-,由(1)知若1q =,则2143n n b a n -=-,所以()214322n n n T n n +-==-,若2q,则12n na ,所以()121432n n nb a n --=-⋅,所以()()0221125292472432n n n T n n --=⨯+⨯+⨯+⋅⋅⋅+-+-①, 所以()()2312125292472432n n n T n n -=⨯+⨯+⨯+⋅⋅⋅+-+-②,①-②得()()231125292472432n n n T n n --=⨯+⨯+⨯+⋅⋅⋅+-+-,所以()()1812143212n n nT n ---=+---,所以()4727nn T n =-+.32.在①535S =,②13310a a +=,③113n a n a +=+这三个条件中任选一个,补充在下面问题中并作答.已知{}n a 是各项均为正数的等差数列,其前n 项和为n S ,________,且1a ,412a ,9a 成等比数列.(1)求数列{}n a 的通项公式; (2)设()1nn n b a =-,求1ni i b =∑.【试题来源】江苏省南通市平潮高级中学2020-2021学年高二上学期期中【答案】(1)32n a n =-;(2)13,213,2n i i nn b n n =⎧⎪⎪=⎨-⎪⎪⎩∑是偶数是奇数 【解析】{}n a 是各项均为正数的等差数列,1a ,412a ,9a 成等比数列. 所以241914a a a =⋅,即()()2111348a d a a d +=⋅+,整理可得221132690a a d d +-=,若选①:535S =,则1545352a d ⨯+=,即127a d +=, 由127a d +=可得172a d =-代入221132690a a d d +-=可得2230d d --=,解得3d =或1d =-(舍),所以11a =, 所以()11332n a n n =+-⨯=-,若选②:13310a a +=,即152d a =-,代入221132690a a d d +-=得2111762450a a -+=,即 ()()11117450a a --=解得113a d =⎧⎨=⎩或145175017a d ⎧=⎪⎪⎨⎪=-<⎪⎩不符合题意;若选③:113n a n a +=+,则419a a =+,9124a a =+, 代入241914a a a =⋅可得21126270a a +-= 解得113a d =⎧⎨=⎩或1273a d =-⎧⎨=⎩不符合题意;综上所述:113a d =⎧⎨=⎩,32n a n =-,(2)()()132nn b n =--,()()()()()12311231111111nn nin n i b a a a a a --==-+-+-+-+-∑()()()()114710135132n nn n -=-+-++--+--当n 为偶数时,13322ni i n n b ==⨯=∑,当n 为奇数时,()11131322ni i n nb =--=-+-⨯=∑,所以13,213,2ni i nn b n n =⎧⎪⎪=⎨-⎪⎪⎩∑是偶数是奇数.【名师点睛】本题得关键点是分别由条件①②③结合1a ,412a ,9a 成等比数列计算出1a 和d 的值,由{}n a 是各项均为正数的等差数列,所以10a >,0d >,第二问中()1nn nb a =-正负交错的数列求和,需要用奇偶并项求和,注意分n 为奇数和偶数讨论.33.已知函数f (x )=x a ( a 为常数,a >0且a ≠1 )(1)在下列条件中选择一个条件___ (仅填序号),使得依次条件可以推出数列{a n }为等差数列,并说明理由;①数列{f (n a )}是首项为4,公比为2的等比数列; ②数列{f (n a )}是首项为4,公差为2的等差数列;③数列{f (n a )}是首项为4 ,公比为2的等比数列的前n 项和构成的数列;(2)在(1)的选择下,若a =2,b =12n⎛⎫ ⎪⎝⎭(n ∈*N ),求数列{n a .n b }的前n 项和n S , 【试题来源】江苏省南京师大附中2020-2021学年高三上学期期中 【答案】(1) 选①,理由见解析(2)332n n +-【解析】(1)②③不能推出数列{a n }为等差数列,①能推出数列{a n }为等差数列. 若选①,数列{f (n a )}是首项为4,公比为2的等比数列, 所以f (n a )1+1422n a n n a -==⨯=, 解得1log 2(1)log 2n n a a a n +==+,故数列{a n }为等差数列,若选②,数列{f (n a )}是首项为4,公差为2的等差数列, 所以()42(1)22n f a n n =+-=+,即22na a n =+,解得log 22)a n a n =+(,故数列{a n }不为等差数列,若选③,数列{f (n a )}是首项为4 ,公比为2的等比数列的前n 项和构成的数列,因为首项为4 ,公比为2的等比数列的前n 项和为4(12)4(21)12n n n S -==--,所以()4(21)na n n f a a==-,解得log 4(21)n n a a =-,显然数列{a n }不为等差数列.(2)由(1)及a =2可得1n a n =+,所以11(1)22nn n n n a b n +⎛⎫=+⋅= ⎪⎝⎭, 234345n+112222n n S =+++++,345111345n+1222222n n S +∴=+++++, 两式相减可得23451111111112222222n n n n S ++∴=++++++-。

江苏省泰州市第二中学附属初中2023-2024学年九年级下学期第一次月考道德与法治试题(原卷版)

江苏省泰州市第二中学附属初中2023-2024学年九年级下学期第一次月考道德与法治试题(原卷版)
中共中央、国务院印发了《长江三角洲区域一体化发展规划纲要》,三省一市随后发布了各区域的实施方案。
全国两会期间,来自三省一市的全国政协委员围绕长三角一体化高质量发展畅所欲言、建言献策。
(1)结合进程图,指出我国实行的相关制度并分别概述其优势。
材料二泰州作为长三角一体化发展战略的躬身实践者和充分受益者,既为长三角一体化发展贡献了更多力量,也在一体化发展中更好实现了高质量发展。
江苏省泰州市第二中学附属初中2023-2024学年九年级下学期第一次月考
道德与法治试题
(考试时间:60分钟满分:50分)
第Ⅰ卷共20分
一、单项选择题(以下各题都有四个选项,选出其中最符合题意的一项,每小题1分,共20分)
1.习近平总书记在2023年新年贺词中引用了苏轼的“犯其至难而图其至远”,这启示我们青少年要()
①批判性思维就是敢于向权威挑战,不听取任何意见
②独立思考不是人云亦云,而是有自己的见解
③独立思考要能接纳他人合理的、正确的意见
④“酷”就要穿奇装异服,追求与众不同
A.①④B.①③C.②③D.②④
9.某教师以“如何看待异性交往”为议题组织教学,同学们纷纷发言,以下观点正确的是()
①与异性交往不可取,男女授受不亲
①放弃兴趣爱好,以后不再写小说
②理解物理老师 良苦用心
③放弃物理学习,继续写小说
④正确处理兴趣爱好与物理学习的关系
A.①②B.①③C.②④D.③④
5.车厢里,人们用五湖四海的方言聊着对儿女、对父母的思念,聊着回家过年的打算……列车朝着家的方向飞驰,汇成了2023年春运流动的中国。这说明()
A.浓浓的亲情能有效避免亲子冲突
小霞:老师的说法我很认同,劳动委员竟然说我不好,真叫人生气,我不服气!

江苏省泰州市五校2022-2023学年高二上学期期中联考数学模拟试卷(含答案)

江苏省泰州市五校2022-2023学年高二上学期期中联考数学模拟试卷(含答案)

2022-2023学年江苏省泰州市五校联考期中试卷高二数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、单选题(本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1. 抛物线21:4E y x =的焦点到其准线的距离为( ) A.18B.14C. 2D. 42. 已知直线l 过点,且在y 轴上的截距是在x 轴上的截距的两倍,则直线l 的方程为( )A. 20x y -=B. 280x y +-=C. 20x y -=或2100x y +-=D. 20x y -=或280x y +-=3. 直线1y x =-过抛物线C :22(0)y px p =>的焦点F ,且与C 交于A 、B 两点,则||AB =( )A. 2B. 4C. 6D. 84. 点M ,N 是圆22240x y kx y +++-=上的不同两点,且点M ,N 关于直线10x y -+=对称,则该圆的半径等于( )A. 22B. 2C. 3D. 95. 已知1F 、2F 是双曲线C 的两个焦点,P 为C 上一点,且,则双曲线C 的离心率为( )A.72B.132C. 7D. 136. 如果椭圆221369x y +=的弦被点(4,2)平分,则这条弦所在的直线方程是( )A. 20x y -=B. 280x y +-=C. 23140x y +-=D. 2100x y +-=7. 19世纪法国著名数学家加斯帕尔⋅蒙日,创立了画法几何学,推动了空间几何学的独立发展。

提出了著名的蒙日圆定理:椭圆的两条切线互相垂直,则切线的交点位于一个与椭圆同心的圆上,称为蒙日圆,且该圆的半径等于椭圆长半轴长与短半轴长的平方和的算术平方根.若圆22(2)()9x y b -+-=上有且只有一个点在椭圆2213x y +=的蒙日圆上,则b 的值为( )A. 1±B. 5±C. 21D. 25±8. 已知圆221:430C x y y +++=,圆222:6260C x y x y +-++=,,M N 分别为圆1C 和圆2C 上的动点,P 为直线:1l y x =+上的动点,则的最小值为( )A. 2103B. 2103+C. 103D. 103+二、多选题(本题共4小题,每小题5分,共20分。

江苏名校备战高考12讲专题04 立体几何(学生版)

江苏名校备战高考12讲专题04 立体几何(学生版)

专题04 立体几何 一、单选题1. 【江苏省南通市2020-2021学年高三上学期12月月考模拟】在三棱锥P ABC -中,PA ⊥平面ABC ,23BAC π∠=,3AP =,23AB =,Q 是边BC 上的一动点,且直线PQ 与平面ABC 所成角的最大值为3π,则三棱锥P ABC -的外接球的表面积为( )A .50πB .55πC .57πD .108π2. 【江苏省南通市2020-2021学年高三上学期期中】把与直线l 垂直的向量称为直线l 的法向量.设(,)e A B =是直线l 的一个方向向量,那么(,)n B A =- 就是直线l 的一个法向量.借助直线的法向量,我们可以方便地计算点到直线的距离.已知P 是直线l 外一点,n 是直线l 的一个法向量,在直线l 上任取一点Q ,那么PQ 在法向量n 上的投影向量为()cos n PQ n θ⋅(θ为向量n 与PQ 的夹角),其模就是点P 到直线l 的距离d ,即PQ n d n ⋅=.据此,请解决下面的问题:已知点A (-4,0),B (2,-1),C (-1,3),则点A 到直线BC 的距离是( ) A .215 B .7 C .275 D .83. 【江苏省南通市2021届高三下学期3月模拟】一个正三棱锥(底面积是正三角形,顶点在底面上的射影为底面三角形的中心)的四个顶点都在半径为1的球面上,球心在三棱锥的底面所在平面上,则该正三棱锥的体积是A .334B .33C .34D .3124. 【江苏省南通市海安高级中学2020-2021学年高三上学期12月测试】三棱锥A BCD -中,60ABC CBD DBA ∠=∠=∠=︒,2BC BD ==,ACD △的面积为11,则此三棱锥外接球的体积为( )A .16πB .4πC .163πD .323π 5. 【江苏省南通市海安市实验中学2020-2021学年高三上学期第三次学情检测】如图所示,在正方体1111ABCD A B C D -中,E ,F 分别是11AB BC ,的中点,则异面直线EF 与1C D 所成的角为( )A .30B .45︒C .60︒D .90︒6. 【江苏省南通市如皋市2020-2021学年高三上学期10月第一次教学质量调研】在三棱锥P ABC -中,PA ⊥面ABC ,ABC 是边长为2的正三角形,且3PA =,则二面角P BC A --的大小为( ) A .30 B .45︒ C .60︒ D .无法确定7. 【江苏省南通市如皋市2020-2021学年高三上学期教学质量调研(三)】直三棱柱111ABC A B C -中,侧棱14BB =,2AB =,3AC BC ==,则点C 到平面11A BC 的距离为( )A .22211B .42211C .62211D .1222118. 【江苏省南通市如皋市2020-2021学年高三上学期期中】正三棱锥S ABC -中,2SA =,22AB =,则该棱锥外接球的表面积为( )A .43πB .4πC .12πD .6π9. 【江苏省南通市如皋市2021届高三下学期4月第二次适应性考试】如图,在边长为2的正方形ABCD 中,点M 、N 分别是边CD 、BC 的中点,将ADM △沿AM 翻折到PAM △,在ADM △翻折到PAM △的过程中,tan PND ∠的最大值为( )A .54B .255C .55D .2310. 【江苏省南通市通州区、启东市2020-2021学年高三上学期期末】攒尖是古代中国建筑中屋顶的一种结构形式依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑如图所示,某园林建筑为六角攒尖,它的主要部分的轮廓可近似看作一个正六棱锥,设正六棱锥的侧面等腰三角形的顶角为2θ,则侧棱与底面内切圆半径的比为( )A .33sin θB .33cos θC .12sin θD .12cos θ11. 【江苏省镇江市、南通市如皋2020-2021学年高三上学期教学质量调研(二)】正三棱锥S ABC -中,2SA =,22AB =,则该棱锥外接球的表面积为( )A .43πB .4πC .12πD .6π12. 【江苏省如东高级中学、丹阳高级中学、如皋中学2020-2021学年高三上学期12月三校联考】棱长为6的正四面体ABCD 与正三棱锥E BCD -的底面重合,若由它们构成的多面体ABCDE 的顶点均在一球的球面上,则正三棱锥E BCD -的体积为( )A .92B .242C .362D .722二、多选题1. 【江苏省南通,徐州,淮安,泰州,宿迁,镇江,连云港等七市2021届高三下学期2月第一次调研】已知m ,n 是两条不重合的直线,α,β是两个不重合的平面,则( )A .若//m α,//n α,则//m nB .若//m α,m β⊥,则αβ⊥C .若//αβ,m α⊥,n β⊥,则//m nD .若αβ⊥,//m α,βn//,则m n ⊥ 2. 【江苏省南通市2020-2021学年高三上学期12月月考模拟】已知边长为2的等边ABC ,点D 、E 分别是边AC 、AB 上的点,满足//DE BC 且ADAC λ=(()0,1λ∈),将ADE 沿直线DE 折到A DE '的位置,在翻折过程中,下列结论成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面ACD 'B .存在102λ∈⎛⎫ ⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDE C .若12λ=,当二面角A DE B '--等于60°时,72A B '= D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ的最大值为2393. 【江苏省南通市2020-2021学年高三上学期期中】如图,四棱锥P ABCD -中,平面PAD ⊥底面ABCD ,PAD △是等边三角形,底面ABCD 是菱形,且60BAD ∠=︒,M 为棱PD 的中点,N 为菱形ABCD 的中心,下列结论正确的有( )A .直线PB 与平面AMC 平行B .直线PB 与直线AD 垂直C .线段AM 与线段CM 长度相等D .PB 与AM 所成角的余弦值为24 4. 【江苏省南通市2021届高三下学期3月模拟】已知菱形ABCD 中,∠BAD =60°,AC 与BD 相交于点O .将∠ABD 沿BD 折起,使顶点A 至点M ,在折起的过程中,下列结论正确的是( ) A .BD ∠CMB .存在一个位置,使∠CDM 为等边三角形C .DM 与BC 不可能垂直D .直线DM 与平面BCD 所成的角的最大值为60°5. 【江苏省南通市海安市2020-2021学年高三上学期阶段质量检测(一)】如图所示,在长方体1111ABCD A B C D -,若AB BC =,E 、F 分别是1AB 、1BC 的中点,则下列结论中成立的是( )A .EF 与1BB 垂直B .EF ⊥平面11BDD BC .EF 与1CD 所成的角为45︒ D .//EF 平面1111D C B A6. 【江苏省南通市海安市2020-2021学年高三上学期期末】在棱长为2的正四面体ABCD 中,点E ,F ,G 分别为棱BC ,CD ,DA 的中点,则( )A .//AC 平面EFGB .过点E ,F ,G 的截面的面积为12C .AD 与BC 的公垂线段的长为2D .CD 与平面GBC 所成角的大小小于..二面角G BC D --的大小 7. 【江苏省南通市启东市2020-2021学年高三上学期期中】已知正方体1111ABCD A B C D -的棱长为4,点M ,N 分别是棱11A D ,CD 的中点,点P 在四边形ABCD 内,点Q 在线段BN 上,若25PM =,则( ) A .点P 的轨迹的长度为2π B .线段MP 的轨迹与平面11ADC B 的交线为圆弧C .PQ 长度的最小值为65105-D .PQ 长度的最大值为252+ 8. 【江苏省南通市如东县2020-2021学年高三上学期期末】如图,在棱长为1的正方体1111ABCD A B C D -中,P 为线段11B D 上一动点(包括端点),则以下结论正确的有( )A .三棱锥1P A BD -的体积为定值13B .过点P 平行于平面1A BD 的平面被正方体1111ABCD A BCD -截得的多边形的面积为32C .直线1PA 与平面1A BD 所成角的正弦值的范围为36,33⎡⎤⎢⎥⎣⎦ D .当点P 与1B 重合时,三棱锥1P A BD -的外接球的体积为32π 9. 【江苏省南通市如皋市2020-2021学年高三上学期10月第一次教学质量调研】设α,β是两个相交平面,则下列说法正确的是( )A .若直线m α⊥,则在平面β内一定存在无数条直线与直线m 垂直B .若直线m α⊥,则在平面β内一定不存在与直线m 平行的直线C .若直线m α⊂,则在平面β内一定存在与直线m 垂直的直线D .若直线m α⊂,则在平面β内一定不存在与直线m 平行的直线10. 【江苏省南通市如皋市2020-2021学年高三上学期期末】如图,在边长为2的正方形ABCD 中,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连结PB ,PC ,在ADM △翻折到PAM △的过程中,下列说法正确的是( )A .四棱锥P ABCM -的体积的最大值为255B .当面PAM ⊥平面ABCM 时,二面角PAB C 的正切值为54C .存在某一翻折位置,使得AM PB ⊥D .棱PB 的中点为N ,则CN 的长为定值 11. 【江苏省南通市如皋市2020-2021学年高三上学期期中】在正方体1111ABCD A B C D -中,若E ,F 分别为1B B ,11B C 的中点,则( )A .直线1//A E 平面1ACDB .直线1B D ⊥平面1ACDC .平面1//A EF 平面1ACD D .平面11A B CD ⊥平面1ACD 12. 【江苏省南通市如皋市2021届高三下学期4月第二次适应性考试】在四面体ABCD 中,ABC 是边长为2的正三角形.60ADB ∠=︒,二面角D AB C --的大小为60︒,则下列说法正确的是( )A .AB CD ⊥B .四面体ABCD 的体积V 的最大值为32 C .棱CD 的长的最小值为3D .四面体ABCD 的体积最大时,四面体ABCD 的外接球的表面积为529π 13. 【江苏省镇江市、南通市如皋2020-2021学年高三上学期教学质量调研(二)】在正方体1111ABCD A B C D -中,若E ,F 分别为1B B ,11B C 的中点,则( )A .直线1//A E 平面1ACDB .直线1B D ⊥平面1ACDC .平面1//A EF 平面1ACD D .平面11A B CD ⊥平面1ACD14. 【江苏省如东高级中学、丹阳高级中学、如皋中学2020-2021学年高三上学期12月三校联考】如图,正方体1111ABCD A B C D -的棱长为1,E 为1BA 的中点( )A .直线1EC 与直线AD 是异面直线B .在直线11AC 上存在点F ,使EF ⊥平面1ACDC .直线1BA 与平面1ACD 所成角是6π D .点B 到平面1ACD 的距离是22 15. 【江苏省南通市学科基地2020-2021学年高三上学期第一次联考】如图,在半圆柱中,AB 为上底面直径,DC 为下底面直径,AD ,BC 为母线,AB =AD =2,点F 在AB 上,点G 在DC 上,BF =DG =1,P 为DC 的中点.则( )A .BF ∠PGB .异面直线AF 与CG 所成角为60°C .三棱锥P —ACG 的体积为32D .直线AP 与平面ADG 所成角的正弦值为1510 16. 【江苏省南通市通州区2020-2021学年高三上学期第三次调研考试】下列命题中正确的是( ) A .,,,A B M N 是空间中的四点,若,,BA BM BN 不能构成空间基底,则,,,A B M N 共面B .已知{},,a b c 为空间的一个基底,若m a c =+,则{},,a b m 也是空间的基底C .若直线l 的方向向量为(1,0,3)e =,平面α的法向量为2(2,0,)3n =-,则直线//l αD .若直线l 的方向向量为(1,0,3)e =,平面α的法向量为(2,0,2)n =-,则直线l 与平面α所成角的正弦值为55三、填空题1. 【江苏省南通,徐州,淮安,泰州,宿迁,镇江,连云港等七市2021届高三下学期2月第一次调研】已知在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.过直线12O O 的平面截圆柱得到四边形ABCD ,其面积为8.若P 为圆柱底面圆弧CD 的中点,则平面PAB 与球O 的交线长为___________.2. .【江苏省南通市2020-2021学年高三上学期期中】如图所示,在边长为2的菱形ABCD 中,60BCD ∠=︒,现将ABD △沿对角线BD 折起,得到三棱锥P BCD -.则当二面角P BD C --的大小为23π时,三棱锥P BCD -的外接球的表面积为______.3. 【江苏省南通市海安高级中学2020-2021学年高三上学期1月调研】在三棱锥P ABC -中,ABC 与PBC 均为边长为1的等边三角形,,,,P A B C ,四点在球O 的球面上,当三棱锥P ABC -的体积最大时,则球O 的表面积为______.4. 【江苏省南通市海安高级中学2020-2021学年高三上学期12月测试】《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,书中将四个面均为直角三角形的四面体称为鳖臑.如图,四面体P ABC -为鳖臑,PA ⊥平面ABC ,AB BC ⊥,且1==PA AB ,2BC =,则二面角A PC B --的正弦值为______.5. .【江苏省南通市海安高级中学2020-2021学年高三上学期期中】已知三棱锥P ABC -中,PA ,PB ,PC 两两垂直,且1PA PB PC ===,以P 为球心,22为半径的球面与该三棱锥表面的交线的长度之和为______. 6. 【江苏省南通市海安市2020-2021学年高三上学期阶段质量检测(一)】如图,某种螺帽是由一个半径为2的半球体挖去一个正三棱锥构成的几何体,该正三棱锥的底面三角形内接于半球底面大圆,顶点在半球面上,则被挖去的正三棱锥体积为_______.7. 【江苏省南通市海安市2020-2021学年高三上学期期末】已知某空心圆锥的母线长为5cm ,高为4cm ,记该圆锥内半径最大的球为球O ,则球O 与圆锥侧面的交线的长为________cm .8. 【江苏省南通市海安市实验中学2020-2021学年高三上学期第三次学情检测】某同学在参加《通用技术》实践课时,制作了一个实心..工艺品(如图所示).该工艺品可以看成一是个球体被一个棱长为8的正方体的6个面所截后剩余的部分(球心与正方体的中心重合).若其中一个截面圆的周长为6π,则该球的半径为___;现给出定义:球面被平面所截得的一部分叫做球冠.截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.如果球面的半径是R ,球冠的高是h ,那么球冠的表面积计算公式是2S Rh π= . 由此可知,该实心..工艺品的表面积是____.9. 【江苏省南通市启东市2020-2021学年高三上学期期中】在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”,已知三棱柱111ABC A B C -是一个“堑堵”,其中12AB BB ==,1BC =,5AC =,则这个“堑堵”的外接球的表面积为________.10. 【江苏省南通市如皋市2020-2021学年高三上学期10月第一次教学质量调研】在梯形ABCD 中,//AD BC ,AB BC ⊥,222AD AB BC ===,将ABC 沿对角线AC 翻折到AMC ,连结MD .当三棱锥M ACD -的体积最大时,该三棱锥的外接球的表面积为__________.11. 【江苏省南通市如皋市2020-2021学年高三上学期教学质量调研(三)】如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,三角形PAD 为正三角形,且平面PAD ⊥平面ABCD ,则四棱锥P ABCD -外接球的表面积为_________.12. 【江苏省南通市通州高级中学2020-2021学年高三上学期第五次阶段性测试】我国古代《九章算术》中将上,下两面为平行矩形的六面体称为刍童.如图的刍童ABCD EFGH -有外接球,且26,22,15,5AB AD EH EF ====,平面EFGH 与平面ABCD 的距离为1则,该刍童外接球的体积为______.13. 【江苏省如东高级中学、丹阳高级中学、如皋中学2020-2021学年高三上学期12月三校联考】如图,三棱锥P ABC -中,1BC =,2AC =,3PC =,PA AB =,PA AC ⊥,PB BC ⊥.点Q 在棱PB 上且1BQ =,则直线CQ 与平面ABC 所成的角是__________.14. 【江苏省南通市学科基地2020-2021学年高三上学期第一次联考】某公司周年庆典活动中,制作的“水晶球”工艺品如图所示,底座是用一边长为2m 的正方形钢板,按各边中点连线垂直折起四个小三角形制成,再将一个水晶玻璃球放入其中.若水晶球最高点到底座底面的距离为(2+1)m ,则水晶球的表面积为_______m 2.15. 【江苏省南通市通州区2020-2021学年高三上学期第三次调研考试】正方体1111ABCD A B C D -的棱长为1,E ,F 分别为BC ,1CC 的中点.则平面AEF 截正方体所得的截面面积为______;以点E 为球心,以104为半径的球面与对角面11ACC A 的交线长为______.四、解答题1. 【江苏省南通,徐州,淮安,泰州,宿迁,镇江,连云港等七市2021届高三下学期2月第一次调研】如图,在正六边形ABCDEF 中,将ABF 沿直线BF 翻折至A BF '△,使得平面A BF '⊥平面BCDEF ,O ,H 分别为BF 和A C '的中点.(1)证明://OH 平面A EF ';(2)求平面A BC '与平面A DE 所成锐二面角的余弦值.2. 【江苏省南通市2020-2021学年高三上学期12月月考模拟】如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,//AD BC ,90ABC ∠=︒,45BCD ∠=︒,2BC AD =.(1)求证:BD PC ⊥;(2)若PC BC =,求平面PAD 和平面PBC 所成的角(锐角)的余弦值.3. 【江苏省南通市2020-2021学年高三上学期期末模拟】如图,在四棱锥P -ABCD 中,23,AD =3,AB =3,AP =//AD BC ,AD ⊥平面PAB ,90APB ︒∠=,点E 满足2133PE PA PB =+.(1)证明:PE DC ⊥; (2)求二面角A -PD -E 的余弦值.4. 【江苏省南通市2020-2021学年高三上学期期中】已知四棱锥P ­ABCD ,底面ABCD 为菱形,PD =PB ,H 为PC 上的点,过AH 的平面分别交PB ,PD 于点M ,N ,且BD ∠平面AMHN .(1)证明:MN ∠PC ;(2)当H 为PC 的中点,PA =PC =3AB ,PA 与平面ABCD 所成的角为60°,求AD 与平面AMHN 所成角的正弦值.5. 【江苏省南通市海安高级中学2020-2021学年高三上学期1月调研】如图,平面ABCD ⊥平面DBNM ,且菱形ABCD 与菱形DBNM 全等,且MDB DAB ∠=∠,G 为MC 中点.(1)求证:平面//GBD 平面AMN .(2)求直线AD 与平面AMN 的所成角的正弦值.6. 【江苏省南通市海安高级中学2020-2021学年高三上学期12月测试】如图,在三棱锥P ABC -中,2AB BC ==,2PA PB PC AC ====.(1)证明:平面PAC ⊥平面ABC ;(2)点M 在棱BC 上,且PC 与平面PAM 所成角的正弦值为34,求BM . 7. 【江苏省南通市海安高级中学2020-2021学年高三上学期期中】如图,四棱锥P ABCD -的底面为直角梯形,//AB CD ,AD CD ⊥,1AB AD ==,2CD =,PD ⊥平面ABCD .(1)求证:BC ⊥平面PBD ;(2)已知2PD =,点E 为棱PB 的中点,求直线AE 与平面DCE 所成角的正弦值.8. 【江苏省南通市海安市2020-2021学年高三上学期阶段质量检测(一)】如图,四边形ABCD 与BDEF 均为菱形,FA FC =,且60DAB DBF ∠=∠=︒.(1)求证:AC ⊥平面BDEF ;(2)求直线AD 与平面AEF 所成角的正弦值.9. 【江苏省南通市海安市2020-2021学年高三上学期期末】如图,在四棱锥A BCDE -中,//BC DE ,22BC DE ==,BC CD ⊥,F 为AB 的中点,BC EF ⊥.(1)求证:AC BC ⊥;(2)若AD CD =,2AC =,求直线AE 与平面BDE 所成角的正弦值的最大值.10. 【江苏省南通市海安市实验中学2020-2021学年高三上学期第三次学情检测】如图,四边形ABCD 与BDEF 均为菱形,FA FC =,2AB =,且60DAB DBF ∠=∠=.(1)求证:AC BF ⊥;(2)求二面角E AF B --的余弦值.11. 【江苏省南通市启东市2020-2021学年高三上学期期中】如图,在正三棱柱111ABC A B C -中,233AB =,12A A =,D ,E ,F 分别为线段AC ,1A A ,1C B 的中点.(1)证明://EF 平面ABC ;(2)求直线1C B 与平面BDE 所成角的正弦值.12. 【江苏省南通市启东市2020-2021学年高三上学期期中】如图所示的某种容器的体积为318dm π,它是由半球和圆柱两部分连接而成,半球的半径与圆柱的底面半径都为dm r ,圆柱的高为dm h .已知顶部半球面的造价为3a 元2/dm ,圆柱的侧面造价为a 元2/dm ,圆柱底面的造价为23a 元2/dm .(1)将圆柱的高h 表示为底面半径r 的函数,并求出定义域;(2)当容器造价最低时,圆柱的底面半径r 为多少?13. 【江苏省南通市如东县2020-2021学年高三上学期期末】如图,几何体为圆柱Ω的一半,四边形ABCD为圆柱Ω的轴截面,点E 为圆弧AB 上异于A ,B 的点,点F 为线段ED 上的动点.(1)求证:BE AF ⊥;(2)若2AB =,1AD =,30ABE ∠=︒,且直线CA 与平面ABF 所成角的正弦值为1510,求EF ED 的值. 14. 【江苏省南通市如皋市2020-2021学年高三上学期10月第一次教学质量调研】如图,在六面体1111ABCD A B C D -中,11//AA CC ,底面ABCD 是菱形,且1A D ⊥平面1AA C .(1)求证:平面1AB C ⊥平面1A DB ;(2)求证:11//BB DD .15. 【江苏省南通市如皋市2020-2021学年高三上学期教学质量调研(三)】如图,已知五面体ABCDEF 中,CDEF 为正方形,且平面CDEF ⊥平面ABCD ,120ADC BCD ∠=∠=.(1)证明:ABCD 为等腰梯形;(2)若AD DE =,求二面角F BD C --的余弦值.16. 【江苏省南通市如皋市2020-2021学年高三上学期期末】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AC ,BD 相交于点N ,2DN NB =,已知3PA AC AD ===,33BD =30ADB ∠=︒.(1)求证:AC ⊥平面PAD ;(2)设棱PD 的中点为M ,求平面PAB 与平面MAC 所成二面角的正弦值.17. 【江苏省南通市如皋市2020-2021学年高三上学期期中】如图,在三棱柱111ABC A B C -中,底面ABC 是边长为2正三角形,侧面11ACC A 是菱形,且平面11ACC A ⊥平面ABC ,E ,F 分别是棱11A C ,BC 的中点,12C G GC =.(1)证明://EF 平面11ABB A ;(2)若①三棱锥1C ABC -的体积为1;②1C C 与底面所成的角为60︒;③异面直线1BB 与AE 所成的角为30.请选择一个条件求平面EFG 与平面11ACC A 所成的二面角(锐角)的余弦值.18. 【江苏省南通市如皋市2021届高三下学期4月第二次适应性考试】如图,在多面体ABCDEF 中,底面ABCD 是边长为2的的菱形,60BAD ∠=,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,3BF =,G 和H 分别是CE 和CF 的中点.(∠)求证:平面//BDGH 平面AEF ;(∠)求二面角H BD C --的大小.19. 【江苏省南通市通州高级中学2020-2021学年高三上学期第五次阶段性测试】如图所示,该几何体是由一个直三棱柱ADE BCF 和一个正四棱锥P ABCD -组合而成,AD AF ⊥,2AE AD ==.(∠)证明:平面PAD ⊥平面ABFE ;(∠)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是223. 20. 【江苏省南通市通州区、启东市2020-2021学年高三上学期期末】如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,E 是PD 上的点.(1)当E 是PD 的中点时,求证://PB 平面AEC ;(2)设1==PA AB ,3PC =,若直线PC 与平面AEC 所成角的正弦值为13,求PE 的长. 21. 【江苏省南通市通州区2020-2021学年高三上学期第三次调研考试】如图,在四棱锥P ABCD -中,四边形ABCD 是等腰梯形,//,2,4AB DC BC CD AB ===.M N ,分别是,AB AD 的中点,且PD NC ⊥,平面PAD ⊥平面ABCD .(1)证明:PD ⊥平面ABCD ;(2)已知三棱锥D PAB -的体积为23,求二面角C PN M --的大小. 22. 【江苏省南通市学科基地2020-2021学年高三上学期第一次联考】如图,已知多面体ABCDEF 的底面ABCD 是边长为2的正方体,FA ∠底面ABCD ,AF =2,且DE =AF λ(0<λ<1).(1)求证:CE ∠平面ABF ;(2)若二面角B —CF —E 的大小为56π,求λ的值. 23. 【江苏省如东高级中学、丹阳高级中学、如皋中学2020-2021学年高三上学期12月三校联考】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为梯形,//BC AD ,AB AD ⊥,E 为侧棱PA 上一点,且2AE PE =,3AP =,2AB BC ==,4=AD .(1)证明://PC 平面BDE . (2)求平面PCD 与平面BDE 所成锐二面角的余弦值.24. 【江苏省镇江市、南通市如皋2020-2021学年高三上学期教学质量调研(二)】如图,在三棱柱111ABC A B C -中,底面ABC 是边长为2正三角形,侧面11ACC A 是菱形,且平面11ACC A ⊥平面ABC ,E ,F 分别是棱11A C ,BC 的中点,12C G GC =.(1)证明://EF 平面11ABB A ;(2)若①三棱锥1C ABC -的体积为1;②1C C 与底面所成的角为60︒;③异面直线1BB 与AE 所成的角为30.ACC A所成的二面角(锐角)的余弦值.请选择一个条件求平面EFG与平面11。

江苏省苏州园三2023-2024学年高二上学期12月月考数学试题(解析版)

江苏省苏州园三2023-2024学年高二上学期12月月考数学试题(解析版)

2023-2024学年高二年级12月三校联合调研测试数学试卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知等比数列{}n a 中,11a =,48a=−,则公比q =( )A. 2B. 4−C. 4D. 2−【答案】D 【解析】【分析】根据等比数列的知识求得正确答案.【详解】依题意33418,2a a q q q ===−=−. 故选:D2. 已知过(,2),(,1)A m B m m −−两点的直线的倾斜角是45 ,则,A B 两点间的距离为( )A. 2B.C. D. 【答案】C 【解析】【分析】利用倾斜角求出1m =,然后利用两点间距离公式即可得出答案. 【详解】由题知,12tan 451m m m−−=°=−−, 解得1m =,故(1,2),(1,0)A B −,则,A B 故选:C3. 直线320x my m +−=平分圆C :22220x x y y ++−=,则m =( )A.32B. 1C. -1D. -3【答案】D 【解析】【分析】求出圆心,结合圆心在直线上,代入求值即可.【详解】22220x x y y ++−=变形为()()22112x y ++−=,故圆心为()1,1−,由题意得圆心()1,1−在320x my m +−=上,故320m m −+−=,解得3m =−.故选:D4. 设双曲线()222210,0x y a b a b−=>>的虚轴长为2,焦距为 )A. y =B. 2y x =±C. y x =±D. 12y x =±【答案】C 【解析】【分析】根据题意得到1b =,c =a =.【详解】由题意得22b =,2c =1b =,c =故a故双曲线渐近线方程为b y x x a=±. 故选:C5. 椭圆22192x y +=中以点()21M ,为中点的弦所在直线斜率为( ) A. 49−B.12C.D. −【答案】A 【解析】【分析】先设出弦的两端点的坐标,分别代入椭圆方程,两式相减后整理即可求得弦所在的直线的斜率. 【详解】设弦的两端点为()11A x y ,,()22B x y ,,代入椭圆得22112222192192x y x y += += , 两式相减得()()()()12121212092x x x x y y y y −+−++=,即()()()()1212121292x x x x y y y y −+−+=−,即()()1212121229x x y y y y x x +−−=+−, 即12122492y y x x −×−=×−, 即121249y y x x −=−−,∴弦所在的直线的斜率为49−, 故选:A .6. 已知()1,0F c −,()2,0F c 是椭圆()2222:10x yC a b a b+=>>的左、右焦点,若椭圆C 上存在一点P 使得212PF PF c ⋅=,则椭圆C 的离心率e 的取值范围是( )A.B.C.D.【答案】B 【解析】 【分析】设点P .【详解】设()00,P x y ,则()22002210x ya b a b +=>>,∴2220021x y b a=−, 由212PF PF c ⋅=,∴()()20000,,c x y c x y c −−−⋅−−=, 化为2222x c y c −+=,∴22220212x x b c a+−=, 整理得()2222023a x c a c=−, ∵220x a ≤≤,∴()2222203a c a a c≤−≤,e ≤≤,故选:B7. 过动点(),P a b (0a ≠)作圆C:(223x y +−=的两条切线,切点分别为A ,B ,且60APB ∠=°,则ba的取值范围是( )A.B.C. , −∞+∞D.(),−∞∪+∞【答案】D 【解析】【分析】求出PC =,确定动点(),P a b 的轨迹方程,从而结合ba表示圆(2212x y +−=上的点与坐标原点连线的斜率,利用距离公式列出不等式,即可求得答案. 【详解】由题意知圆C:(223x y +−=因为A ,B 分别为两条切线PA ,PB 的切点,且60APB ∠=°,则30APC BPC ∠=∠=°,所以2PC AC ==,所以动点(),P a b在圆(2212x y +−=上且0a ≠,b a表示圆(2212x y +−=上的点与坐标原点连线的斜率, 设bk a=,则直线y kx =与圆(2212x y +−=有公共点,≤,解得k ≤k ≥,即ba的取值范围是(),−∞∪+∞, 故选:D8. 已知数列{}n a 满足()2123111N 23n a a a n n na n +++++=+∈ ,设数列{}nb 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为n T ,若()N 1n nT n n λ+<∈+恒成立,则实数λ的取值范围为( ) A. 1,4+∞B. 1,4+∞C. 3,8∞+D. 38 +∞,【答案】D 【解析】【分析】首先利用递推关系式求出数列的通项公式,进一步利用裂项相消法求数列的和,最后利用函数的单调性求出结果.【详解】数列{}n a 满足212311123n a a a a n n n++++=+ ,① 当2n ≥时,()2123111111231n n a a a a n n −++++−−=+− ,②①−②得,12n a n n=,故22n a n =, 则()()2222121211114411n n n n n b a a n n n n +++===− ++, 则()()22222211111111114223411n T n n n=−+−++−=− ++,由于()N 1n nT n n λ+<∈+恒成立,故()2111411nn n λ −< ++, 整理得:()21144441n n n λ+>=+++,因()11441n ++随n 的增加而减小, 所以当1n =时,()11441n ++最大,且38, 即38λ>. 故选:D二、选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分.)为9. 下列说法正确的是( )A. 直线20x y −−=与两坐标轴围成的三角形的面积是2 B. 点()0,2关于直线1y x =+的对称点为()1,1 C. 过()()1122,,,x y x y 两点的直线方程为112121y y x x y y x x −−=−− D. 已知点()1,2P,向量()m =,过点P 作以向量m为方向向量的直线为l ,则点()3,1A 到直线l的距离为1【答案】ABD 【解析】【分析】由直线方程,求得在坐标轴上的截距,利用面积公式,可判定A 正确;根据点关于直线的对称的求法,求得对称点的坐标,可判定B 正确;根据直线的两点式方程的条件,可判定C 错误;根据题意,求得直线l 的方程,结合点到直线的距离公式,可判定D 正确.【详解】对于A 中,令0x =,可得=2y −,令0y =,可得2x =,则直线20x y −−=与两坐标轴围成三角形的面积12222S =××=,所以A 正确; 对于B 中,设()0,2关于直线1y x =+对称点坐标为(),m n ,则212122n mn m − =−+ =+ ,解得1,1m n ==,所以B 正确; 对于C 中,直线的两点式使用的前提是1212,x x y y ≠≠,所以C 错误;对于D中,以向量()m =为方向向量的直线l的斜率k =,则过点P 的直线l的方程为)12y x −+,即10x +−−=, 则点()3,1A 到直线l的距离1d −,所以D 正确. 故选:ABD .的10. 已知椭圆221259x y +=上一点P ,椭圆的左、右焦点分别为12,F F ,则( )A. 若点P 的横坐标为2,则1325PF = B. 1PF 的最大值为9C. 若12F PF ∠为直角,则12PF F △的面积为9D. 若12F PF ∠为钝角,则点P的横坐标的取值范围为 【答案】BCD 【解析】【分析】对A ,可直接解出点P 坐标,求两点距离; 对B ,1PF 最大值为a c +对C ,设1PF x =,则210PF x =-,列勾股定理等式,可求面积;对D ,所求点P 在以原点为圆心,4c =为半径的圆内,求出椭圆与该圆的交点横坐标即可判断.【详解】椭圆的长半轴为5a=,半焦距为4=c ,∴()()124,0,4,0F F −对A ,2x =时,代入椭圆方程得,=,1175PF ==,A 错; 对B ,1PF 的最大值为9a c +=,B 对;对C ,12F PF ∠为直角,设1PF x =,则210PF x =-,则有()222210810180x x x x +-=⇒-+=,则12PF F △的面积为()11810922x x −==,C 对; 对D ,以原点为圆心,4c =为半径作圆,则12F F 为圆的直径,则点P 在圆内时,12F PF ∠为钝角,联立2222125916x y x y += +=,消y得x =,故点P的横坐标的取值范围为 ,D 对. 故选:BCD11. 已知数列{}n a 满足12a =,12,2,n n na n a a n ++ = 为奇数,为偶数,设2n n b a =,记数列{}n a 的前2n 项和为2n S ,数列{}n b 的前n 项和为n T ,则( )A. 520a =B. 32nn b =×C. 12632n n T n +=−−+×D. 2261232n n S n +=−−+×【答案】ACD 【解析】【分析】分析1n a +与n a 的递推关系,根据数列{}n a 的奇数项、偶数项以及分组求和法求得2,n n T S .【详解】依题意,2132435424,28,210,220a a a a a a a a =+====+===,A 选项正确. 112432b a ==≠×,所以B 选项错误.当n 为偶数时,2111222n n n n a a a a ++++==+=+,所以()2222n n a a ++=+,而226a +=,所以1122262,622nn nn a a −−+=×=×−,所以12242662622nn nT a a a n − ++++×++×−()16122263212n n n n +−=−=−−+×−,所以C 选项正确.当n 为奇数时,()211122224n n n n n a a a a a ++++++,所以()2424n n a a ++=+,而146a =,所以11122462,624n n nn a a +−−+=×=×−,所以1213521662624n n a a a a n −−+++++×++×−()16124463212n n n n +−=−=−−+×−,所以()()11224632263261232n n n n S n n n +++=−−+×+−−+×=−−+×,所以D 选项正确.故选:ACD【点睛】求解形如()11n n a pa q p +=+≠的递推关系式求通项公式的问题,可考虑利用配凑法,即配凑为()1n n a p a λλ++=+的形式,再结合等比数列的知识来求得n a .求关于奇数、偶数有关的数列求和问题,可考虑利用分组求和法来进行求解.12. 画法几何的创始人——法国数学家蒙日发现:在椭圆()2222:10x y C a b a b+=>>中,任意两条互相垂直的切线的交点都在同一个圆上,它的圆心是椭圆的中心,半径等于长、短半轴平方和的算术平方根,这个圆就称为椭圆C 的蒙日圆,其圆方程为2222x y a b +=+.已知椭圆C,点A ,B 均在椭圆C 上,直线:40l bx ay +−=,则下列描述正确的为( ) A. 点A 与椭圆C 的蒙日圆上任意一点的距离最小值为bB. 若l 上恰有一点P 满足:过P 作椭圆C 的两条切线互相垂直,则椭圆C 的方程为2213x y +=C. 若l 上任意一点Q 都满足0QA QB ⋅>,则01b <<D. 若1b =,椭圆C 的蒙日圆上存在点M 满足MA MB ⊥,则AOB【答案】BCD 【解析】【分析】根据椭圆上点到原点最大距离为a ,蒙日圆上的点到椭圆上点的距离最小值为半径减去a 可判断A ,利用相切列出方程即可求得椭圆的方程,可判断B ,分析可得点Q 应在蒙日圆外,解不等式从而判断C ,依据题意表示出面积表达式并利用基本不等式即可求出面积最大值,可判断D.【详解】由离心率c e a ==,且222a b c =+可得223a b , 所以蒙日圆方程2224x y b +=; 对于A ,由于原点O 到蒙日圆上任意一点的距离为2b ,原点O到椭圆上任意一点的距离最大值为a ,所以椭圆C 上的点A 与椭圆C的蒙日圆上任意一点的距离最小值为(2b −,即A 错误;对于B ,由蒙日圆定义可知:直线:40l bx ay +−=与蒙日圆2224x y b +=相切, 则圆心到直线l422b b=,解得1b =; 所以椭圆C 的方程为2213x y +=,即B 正确;对于C ,根据蒙日圆定义可知:蒙日圆上的点与椭圆上任意两点之间的夹角范围为π0,2,若若l 上任意一点Q 都满足0QA QB ⋅>,可知点Q 应在蒙日圆外,所以此时直线l 与蒙日圆2224x y b +=422b b >,解得11b −<<, 又0a b >>,所以可得01b <<,即C 正确.对于D ,易知椭圆C 的方程为2213x y +=,即2233x y +=,蒙日圆方程为224x y +=, 不妨设()0,Mx y ,因为其在蒙日圆上,所以22004xy +=,设()()1122,,,A x y B x y ,又MA MB ⊥,所以可知,MA MB 与椭圆相切,此时可得直线MA 的方程为1133x x y y +=,同理直线MB 的方程为2233x x y y +=; 将()00,M x y 代入,MA MB 直线方程中可得101020203333x x y y x x y x +=+= ,所以直线AB 的方程即为0033x x y y +=, 联立00223333x x y y x y +=+=,消去y 整理可得()2222000036990x y x x x y +−+−=; 由韦达定理可得200121222220000699,33x y x x x x x y x y −+==++, 所以()20202122y AB y +=+, 原点O 到直线AB的距离为d,因此AOB 的面积()2020********AOBy S AB d y +=⋅=×=+333222==≤=;,即201y =时等号成立, 因此AOBD 正确; 故选:BCD的【点睛】方法点睛:在求解椭圆中三角形面积最值问题时,经常利用弦长公式和点到直线距离公式表示出三角形面积的表达式,再利用基本不等式或函数单调性即可求得结果.三、填空题(本大题共4小圆,每小题5分,共20分)13. 在等差数列{}n a 中,n S 为前n 项和,7825a a =+,则11S =_________. 【答案】55 【解析】【分析】根据下标和性质求出6a ,再根据等差数列前n 项和公式及下标和性质计算可得.【详解】在等差数列{}n a 中7825a a =+,又7862a a a =+,所以65a =, 所以()111611611112115522a a a S a +×====. 故答案为:5514. 已知点P 为椭圆C :22195x y +=上一点,点1F ,2F 分别为椭圆C 的左、右焦点,若122PF PF =,则12PF F △的内切圆半径为_____【解析】【分析】首先求12,PF PF 的值,再求12PF F △的面积,再利用三角形内切圆的半径表示面积,即可求解.【详解】因为12||||26PF PF a +==,12||2||PF PF =,所以12||4,||2PF PF ==, 212954,||24c F F c −====,则121||||4F F PF ==,等腰12PF F △边2PF 上的高h =,所以12122PF F S =×= ,设22PF F 的内切圆半径为r ,则121211(||||||)1022PF PF F F r r ++×=××=所以r =15. 已知圆M经过((()2,,1,0,A C B −.若点()3,2P ,点Q 是圆M 上的一个动点,则MQ PQ ⋅的最小值为__________.【答案】4−【解析】【分析】先利用待定系数法求出圆的方程,再利用数量积的运算律转化结合数量积的定义求出. 【详解】设圆M 的一般方程为220x y Dx Ey F ++++=,由于圆经过(2,A,(B ,()1,0C −,所以有72072010D F D F D F ++=++=−+=,解得203D E F =− = =− , 所以圆M 的一般方程为22230x y x +−−=,即标准方程为()2214x y −+=. 则圆M 的圆心()1,0M ,半径2==r MQ ,且=MP,因为()2424 ⋅=⋅−=−⋅≥−×=−MQ PQ MQ MQ MP MQ MQ MP ,当且仅当MQ 与MP同向时,等号成立,所以MQ PQ ⋅的最小值为4−.故答案为:4−.16. 已知双曲线C :()222210,0x y a b a b−=>>的左、右焦点分别为1F ,2F ,过点1F 作倾斜角为30 的直线l 与C 的左、右两支分别交于点P ,Q ,若()2222220F P F Q F P F Q F P F Q+⋅−=,则C 的离心率为______.【解析】【分析】由()2222220F P F Q F P F Q F P F Q+⋅−=,2PF Q ∠的平分线与直线PQ 垂直,结合图像,根据双曲线的定义,找出各边的关系,列出等式,求解.【详解】依题意,由()2222220F P F Q F P F Q F P F Q+⋅−=, 得22220F P F Q QP F P F Q+⋅=,即2PF Q ∠的平分线与直线PQ 垂直, 如图,设2PF Q ∠的平分线2F D 与直线PQ 交于点D ,则22PF D QF D ∠=∠,2290F DP F DQ ∠=∠= ,又22DF DF =, 所以22PDF QDF ≌△△2QF .由题得()1,0F c −,()2,0F c ,设2DF h =,2QF s =,1PF t =,在12Rt DF F △中,1290F DF ∠=,1230DF F ∠=,则h c =,1DF =,由双曲线的性质可得122122QF QF PQ t s a PF PF s t a −=+−=−=−= ,解得4PQ a =,则2PDQD a ==,所以在2Rt QDF△中,s=又12t DF PD a =−=−,2s t a −=)22a a −−=,,整理得222ac =,所以cea==四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17. 已知数列{}n a 满足:122,4a a ==,数列{}n a n −为等比数列. (1)求数列{}n a 的通项公式;(2)求和:12nn S a a a =++⋅⋅⋅+. 【答案】(1)12n n −+ (2)2112122n n n ++− 【解析】【分析】(1)首先求出11a −,22a −,即可求出等比数列{}n a n −的通项公式,从而求出{}n a 的通项公式;(2)利用分组求和法计算可得. 【小问1详解】因为12a =,24a =,数列{}n a n −为等比数列,所以111a −=,222a −=2=,即{}n a n −是以1为首项,2为公比等比数列, 所以12n n a n −−=,则12n n a n −=+. 【小问2详解】12n n S a a a =++⋅⋅⋅+01211222322n n −=++++++++()()01211232222n n −=+++++++++()2112112121222n n n n n n +−=+=++−−. 18. 已知圆()()22:121M x y ++−=,直线l 过原点()0,0O . (1)若直线l 与圆M 相切,求直线l 的方程;(2)若直线l 与圆M 交于P ,Q 两点,当MPQ 的面积最大时,求直线l 的方程.的【答案】(1)0x =或34y x =− (2)y x =−或7y x =−.【解析】【分析】(1)根据直线l 的斜率是否存在进行分类讨论,结合圆心到直线的距离等于半径来求得直线l 的方程.(2)设出直线l 的方程,由点到直线的距离公式、弦长公式求得三角形PQM 面积的表达式,结合二次函数的性质求得MPQ 的面积最大时直线l 的方程. 【小问1详解】①当直线l 的斜率不存在时,直线l 为0x =,显然符合直线与圆相切, ②当斜率存在时,设直线为y kx =,圆M 的圆心坐标()1,2-,圆心到直线的距离d由题意得:直线l 与圆M1,解得:34k =−,所以直线l 的方程为:34y x =−, 综上所述,直线l 的方程为:0x =或34y x =− 【小问2详解】直线l 的斜率不存在时,直线l 为0x =与圆相切,不符合题意,故直线l 斜率必存在, 设直线l 的方程为:y mx =, 圆心到直线的距离d,弦长PQ ==,所以12PQM S PQ d =⋅⋅=△当212d =时,面积S 最大,12=,整理得2870m m ++=,解得7m =−,或1m =−,所以直线l 的方程:y x =−或7y x =−.19.如图,已知A ,(0,0)B ,(12,0)C,直线:(20l k x y k −−=.(1)证明直线l 经过某一定点,并求此定点坐标; (2)若直线l 等分ABC 的面积,求直线l 的一般式方程;(3)若P ,李老师站在点P 用激光笔照出一束光线,依次由BC (反射点为K )、AC (反射点为I )反射后,光斑落在P 点,求入射光线PK 的直线方程. 【答案】(1)证明见解析,定点坐标为(2,; (2170y +−=; (3)2100x −=. 【解析】【分析】(1)整理得到(2))0k x y −+−=,从而得到方程组,求出定点坐标; (2)求出定点P 在直线AB 上,且||8AM =,由12AMD ABC S S =得到3||||94AD AC ==,设出00(,)D x y ,由向量比例关系得到D 点坐标,得到直线方程;(3)作出辅助线,确定P 关于BC 和AC 的对称点1,P 2P ,得到12P P k =由对称性得PK k =写成直线方程. 【小问1详解】直线:(20l k x y k +−−=可化为(2))0k x y −+−=,令200x y −= −=,解得2x y = = l经过的定点坐标为(2,;【小问2详解】因为A ,(0,0)B ,(12,0)C ,所以||||||12ABAC BC ===, 由题意得直线AB方程为y =,故直线l经过的定点M 在直线AB 上,所以||8AM ==,设直线l 与AC 交于点D ,所以12AMD ABC S S =,即111||||sin ||||sin 222AM AD A AB AC A =××,所以3||||94AD AC ==, 设00(,)D x y ,所以34AD AC = ,即003(6,(6,4x y −−=−,所以0212x =,0y =D ,将D 点坐标代入直线l的方程,解得k =, 所以直线l 170y+−=; 【小问3详解】设P 关于BC 的对称点1(2,P −,关于AC 的对称点2(,)P m n , 直线AC12612x −=−,即)12y x −,直线AC的方程为12)y x −,所以(12122m =−+ =− ,解得14,m n ==2P , 由题意得12,,,P K I P四点共线,12P P k =PK k =, 所以入射光线PK的直线方程为2)y x −−,即2100x +−=.20.已知两定点()()12,2,0F F ,满足条件212PF PF −=的点P 的轨迹是曲线E ,直线1y kx =−与曲线E 交于A ,B (1)求曲线E 的方程; (2)求实数k 的取值范围;(3)若||AB =AB 的方程. 【答案】20. ()2210x y x −=<21. ()1−22.10x y ++= 【解析】【分析】(1)由双曲线的定义得其方程为()2210x y x −=<;(2)由于直线和双曲线相交于左支,且有两个交点,故联立直线的方程和双曲线的方程,消去y 后得到关于x 的一元二次方程的判别式大于零,且韦达定理两根的和小于零,两根的积大于零,由此列不等式组,求解k 的取值范围; (3)由AB =,利用弦长公式,结合韦达定理列出关于k 的方程,解方程即可得结果. 【小问1详解】由双曲线定义可知,曲线E是以()1F,)2F为焦点的双曲线的左支,且c =由2122PF PF a −==,所以1a =,1b ,所以曲线E 的方程为()2210x y x −=<.故曲线E 的方程为:()2210x y x −=<.【小问2详解】设()11,A x y ,()22,B x y ,由题意联立方程组2211x y y kx −= =− ,消去y 得()221220k x kx −+−=, 又因为直线与双曲线左支交于两点,有()()222122122102810201201k k k k x x k x x k −≠ ∆=+−> − +=< −− => −,解得1k <<−. 故k的取值范围为()1−. 【小问3详解】因为2AB x =−====,整理化简得422855250k k −+=,解得257k =或254k =, 因为1k<<−,所以k =AB 10x y ++=. 故直线AB 10x y ++=. 的【点睛】关键点睛:(2)(3)中根据直线与曲线联立后利用韦达定理,再结合弦长公式从而求解. 21. 设数列{}n a 的前n 项和为n S ,且122n n n S a +=−,数列{}n b 满足2log 1nn a b n =+,其中*N n ∈. (1)证明2n n a为等差数列,求数列{}n a 的通项公式;(2)求数列21n a n+的前n 项和为n T ;(3)求使不等式1321111111n m b b b −+⋅+⋅⋅⋅⋅⋅+≥n 都成立的最大实数m 的值.【答案】(1)证明见解析;(1)2nn a n =+⋅ (2)188(4)4339n n T n =+⋅− (3【解析】【分析】(1)根据数列递推式可得122nn n a a −−=,整理变形结合等差数列定义即可证明结论,并求得数列的通项公式;(2)利用错位相减法即可求得答案; (3)将原不等式化为()111111321n+++≥ −调性,将不等式恒成立问题转化为函数最值问题,即可求得答案. 【小问1详解】当1n =时,11124a S a ==−,则14a =, 当2n ≥时,11,22nn n n n n a S S a a −−∴=−−=,即11122n n n n a a −−−=,即2n n a 是以122a =为首项,公差为1的等差数列, 故(1,22)1n n n n a n a n =++⋅∴= 【小问2详解】由(1)可得2(1)41n n a n n =+⋅+, 故22434(1)4n n T n =×+×+++⋅ ,故231424344(1)4n n n T n n +=×+×++⋅++⋅ ,则231324444(1)4n n n T n +−=×++++−+⋅14(14)884(1)4(4)41433n n n n n +−=+−+⋅=−+⋅−, 故188(4)4339n n T n =+⋅−; 【小问3详解】22log log 21n n n a b n n ===+,则1321111111n m b b b − +⋅+⋅⋅⋅⋅⋅+≥即()111111321n+++≥ −即11321n m −≤对任意正整数n 都成立,令()11111?·1321n f n +++−=则()111111?·11321211n n f n  ++++−++故()()11f n f n +=>, 即(),N f n n +∈随着n 的增大而增大,故()()1f n f ≥m ≤, 即实数m【点睛】关键点睛:第三问根据数列不等式恒成立问题求解参数的最值问题时,要利用分离参数法推得111111321n m +++−≤ 对任意正整数n 都成立,之后的关键就在于构造函数,并判断该函数的单调性,从而利用最值求得答案.22. 已知椭圆C 的中心在坐标原点,两焦点12,F F 在x 轴上,离心率为12,点P 在C 上,且12PF F △的周长为6.(1)求椭圆C 的标准方程;(2)过点()4,0M 的动直线l 与C 相交于A ,B 两点,点B 关于x 轴的对称点为D ,直线AD 与x 轴的交点为E ,求ABE 的面积的最大值. 【答案】(1)22143x y += (2【解析】【分析】(1)根据题意得到22212226c a a c a b c = +==+,再解方程组即可. (2)首先设出直线l 的方程,联立直线与椭圆方程,根据韦达定理、点,B D 关于x 轴对称、,,A E D 三点共线得到()1,0E ,从而得到ABES = ,再利用换元法求解最值即可. 【小问1详解】由题知:2221222261c a a a c b a b c c == +=⇒ =+=, 所以椭圆22:143x y C += 【小问2详解】如图所示:设直线():40l x ty t =+≠,()()1122,,,A x y B x y . ()222243424360143x ty t y ty x y =+ ⇒+++= += . ()()2224434360t t ∆−+×>,解得24t >.1222434t y y t −+=+,1223634y y t =+. 因为点,B D 关于x 轴对称,所以()22,D x y −. 设()0,0E x ,因为,,A E D 三点共线,所以AE DE k k =. 即121020y y x x x x −=−−,即()()120210y x x y x x −=−−. 解得()()()12211212122101212124424y ty y ty ty y y y y x y x x y y y y y y ++++++===+++ 2364124t t×=−+=. 所以点()1,0E 为定点,3EM =.1212ABE AME BME S S S EM y y =−=⋅−=令0m =>,则()22181818163163443ABE m m S m m m m===≤++++△ 当且仅当163m m =,即m =时取等号. 所以ABE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省泰州市第二中学2020至2021学年秋学期高二年级三校联考12月第二次月考数 学 试 卷(2020年12月17日)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1. 命题“x x x ≥>∀sin ,0”的否定是 ( )A . x x x ≤<∀sin ,0B .x x x <>∀sin ,0C . x x x <>∃sin ,0D . x x x <≤∃sin ,0 2. 如果,1:,1:2>-<x q x p 则p 是q 的 ( )A.充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3. 抛物线241x y =的焦点坐标是( ) A . )0,1(B .)(10,C .) ⎝⎛081,D .⎝⎛⎪⎭⎫161,0 4. 如图,在四面体OABC 中,D 是BC 的中点,G 是AD 的中点,则OG 等于( )A .111333OA OB OC ++B .111234OA OB OC ++C. 111446OA OB OC ++D .111244OA OB OC ++5. “中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年英国数学家马西森指出此法符合1801年由高斯得到的关于问余式解法的一般性定理,因而西方称之为“中国剩余定理”.此定理讲的是关于整除的问题,现将1到2020这2020个数中,能被2除余1且被3除余1的数按从小到大的顺序排成一列,构成数列{}n a ,则该数列共有 ( ). A .335项 B .336项 C .337项 D .338项 6. 已知向量),,6,7(),3,2,1(),3,1,2(λ=-=-=c b a 若c b a ,,三向量共面,则λ的值为( ) A .9B .-9C .-3D .37. 正数b a ,满足,1=+b a 若不等式m x x ba +++≥+34412对+∈-∈∀R b a x ,]0,3[,恒成立,则实数m 的取值范围是 ( ) A. [)3,+∞ B. (]3,-∞ C. (],6-∞ D. [)6,+∞8. 如图,设1F 、2F 分别是椭圆的左、右焦点,点P 是以12F F 为直径的圆与椭圆在第一象限内的一个交点,延长2PF 与椭圆交于点Q ,若124PF QF =,则椭圆的离心率为( )A.35B.21C.33D.22二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得3分,有选错的得0分,部分选对得2分)9. 十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远。

若实数0a b >>,则下列不等式一定成立的是 ( )A. ab a -<2B. b a <C. b a 11>D. ba ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛212110. 已知等差数列{}n a 是递减数列,且满足,357a a ={}n a 的前n 项和为,n S 下列选项中正确的是 ( ) A. 0<dB. 01>aC. 当5=n 时,n S 最大D.0<n S 时n 的最小值为811. 已知双曲线2222:1(0,0)x y C a b a b-=>>的渐近线方程为3y x =±,右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于,M N 两点,则下列结论一定成立的是 ( ) A.b =3 B.离心率为23C.60MAN ∠=︒D.准线方程为23±=x 12. 在四棱锥P ABCD -中,底面ABCD 为平行四边形,π,22,3DAB AB AD PD PD ∠===⊥底面ABCD ,则下列结论正确的是 ( ) A. BD PA ⊥B. PB 与平面ABCD 所成的角为3πC. 异面直线AB 与PC 所成角的余弦值为552 D. 二面角C PB A --的余弦值为772三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13. 若x 、y R ∈且满足43=-y x ,则22713++yx 的最小值是 . 14. 2020年新冠疫情爆发肆虐期间,江苏某定点医院每天因患疑似新冠肺炎而入院进行核酸检测的人数依次构成数列{}n a ,其前n 项的和为n S 满足82-=n n a S ,*∈N n ,则该医院在前3 天内因患疑似新冠肺炎核酸检测就诊的总人数共 人,数列{}n a 的通项公式为15. 过抛物线)0(22>=p px y 的焦点F 的直线交抛物线于B A ,两点,交其准线l 于点C .若FA CF 2=,且,8=AF 则线段AB 的长为16. 关于x 的不等式0124)104()2(2>-+-+-a x a x a 的解集中至多包含两个整数,则实数a 的取值范围是四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知命题p :方程12422=-++ay a x 表示焦点在x 轴上的椭圆是真命题. (1)求实数a 的取值范围;(2)若q :实数x 满足0)2)((<--a x a x ,其中0>a ,q 是p 的充分不必要条件,求实数a 的取值范围.18. (本题满分12分)已知双曲线C 的标准方程为22136y x -=,12,F F 分别为双曲线C 的左、右焦点. (1)若点P 在双曲线的右支上,且12F PF ∆的面积为6,求点P 的坐标;(2)若斜率为1且经过右焦点2F 的直线l 与双曲线交于,M N 两点,求线段MN 的长度.19.(本小题满分12分)近几年,我国在新能源汽车领域有了长足的发展,新能源车的核心技术是动力总成,而新能源汽车的核心技术是电机和控制器,我国永磁电机的技术已处于国际领先水平。

某公司今年年初用196万元引进一条永磁电机生产线,第一年需要安装、人工费用24万元,从第二年起,包括人工、维修等费用每年所需费用比前一年增加8万元,该生产线每年年产值保持在100万元。

(1)引进该生产线几年后总盈利最大,最大是多少万元? (2)引进该生产线几年后平均盈利最多,最多是多少万元?20. (本小题满分12分)设S n 为等比数列{a n }的前n 项和,已知满足______, (1)求公比q 以及a 12+a 22+…+a n 2. (2)设数列{}n b 满足11()n n n na b n a -+=,n N *∈,求数列{}n b 的前n 项和n T . 从①,9,1361S S a ==①1,14332-=-=a S a S ①,4,32,043521-=+-=>a a a a a 这三组条件中任选一组,补充到上面问题中,并完成解答.21.(本小题满分12分)如图,在几何体ABCD EFGH -中,HD ⊥底面ABCD ,//HD FB ,//AB DC ,AD DC ⊥,1AB =,2DC =,45BCD ∠=︒,2HD =,1FB =,设点M 在棱DC 上,已知AM ⊥平面FBDH .(1)求线段DM 的长度;(2)求直线MF 和平面AHM 所成角. (3)求二面角H AM D --的余弦值.22.(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的焦距与短轴长相等,且过焦点垂直于x 轴的弦长为22. (1)求椭圆C 的标准方程;(2) 过点(2,0)M 的直线l 与椭圆C 交于A ,B 两点,点P 为直线42x =上(不在x轴上)的一动点.①|A B|=4103,求直线AB 的方程;①设直线P A, PB, PM 的斜率分别为123,,,k k k 试探究 : 是否存在常数,λ∈R 使得 123k k k λ+= 恒成立?若存在,求出λ 的值 ;若不存在 ,请说明理由.江苏省泰州市第二中学2020至2021学年秋学期高二年级三校联考12月第二次月考数学试卷答案1.C2.A3.B4.D5.C6. B7.C8. A9. CD 10.ABD 11.BC 12.A C13.20 14. 56 *+∈=N n a n n ,2215.12 16.]34,(-∞17. (1)21<<-a ; (2)10≤<a18. (1))2,5(±P ; (2)3819. ,10,204)10(42=+--=n n y 最大盈利为204万元(2),7,80)1964()(=++-=n nn x f 平均盈利最多,最多是24万元 20. (1)【解答】解:若选①,,即q 3=8,故q =2.因为是以为首项,q 2为公比的等比数列,所以.若选①,S 2=a 3﹣1(*),S 3=a 4﹣1(**)令(**)式减(*)式,得a 3=a 4﹣a 3,即a 4=2a 3,故q =2. 则(*)式中,a 1+a 2=a 3﹣1,即a 1+2a 1=4a 1﹣1,即a 1=1. 因为是以为首项,q 2为公比的等比数列,所以.若选①,则有a 2a 5=a 3a 4=﹣32,故有a 3a 4=﹣32,a 3+a 4=﹣4,解得a 3=4,a 4=﹣8,或a 3=﹣8,a 4=4,即q =﹣2或.因为是以为首项,q 2为公比的等比数列,若q =﹣2,a 1=1,此时;或,a 1=﹣32,不符合题设. ......................................................6分(2)因为数列{a n }是公比为2的等比数列,所以a n +1a n=2,因此b n =n ×2n -1.所以T n =1×20+2×21+3×22+…+n ×2n -1, 则2T n =1×21+2×22+…+(n -1)×2n -1+n ×2n , 两式相减得-T n =1+21+22+…+2n -1-n ×2n=1-2n 1-2-n ×2n =(1-n )2n -1, 所以T n =(n -1)2n +1. ......................................................12分21.解:以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示的空间直角坐标系D xyz -,由//AB DC ,AD DC ⊥,1AB =,2DC =,45BCD ∠=︒,易知1AD =. 则()1,0,0A ,()1,1,0B ,()0,2,0C ,()0,0,0D ,()0,0,2H ,()1,1,1F , (1)设()0,,0M t ,因为AM ⊥平面FBDH ,所以AM BD ⊥,()1,,0AM t =-,()1,1,0BD =--.10AM BD t ⋅=-=,解得1t =,所以线段DM 的长度为1.(2)设()1,,n x y z =是平面HAM 的一个法向量,()1,0,2AH =-,()1,0,1MF =,则1100200n AM x y x z n AH ⎧⋅=-+=⎧⎪⇔⎨⎨-+=⋅=⎩⎪⎩,可取()12,2,1n =,],,0[22233π=⋅=直线MF 和平面AHM 所成角为.4π.(3)31 22. (1)14822=+y x所以直线AB 的方程为).2(-±=x y。

相关文档
最新文档