(完整)八年级数学全等三角形练习题含答案(2),推荐文档

合集下载

人教版八年级数学上册第十二章《全等三角形》测试卷(含答案)

人教版八年级数学上册第十二章《全等三角形》测试卷(含答案)

人教版八年级数学上册第十二章《全等三角形》测试卷(含答案)班级_______________姓名_________________分数________________一、选择题(每小题5分,共25分)1.如图,已知AC =BD ,AD =BC ,则△ABC ≌△BAD 的依据是( ) A .SAS B .ASA C .AAS D .SSS2.如图,AC 和BD 相交于点O, AO =CO ,BO =DO ,若∠A =25°,则∠C =( )A.25°B.35°C.45°D.55°3. 如图所示,∠ACB =∠DFE ,BC =EF ,如果要使得△ABC ≌△DEF ,则还须补充的一个条件 可以是( )A .∠ABC =∠DEFB .∠ACE =∠DFBC .BF =ECD .AB =DE4.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与 书上完全重合的三角形,那么这两个三角形完全重合的依据是( ) A.SSS B.SAS C. ASA D. AAS5.如图,已知在△ABC 中,∠A=90°,AB=AC ,CD 平分∠ACB ,DE ⊥BC 于E ,若BC=18cm , 则△DEB 的周长为( )A.16cmB.17cmC.18cmD.19cm二、填空题(每小题5分,共25分)6.已知:△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B=∠B ′,∠C=70°,AB=15cm ,则 ∠C ′=_________,A ′B ′=__________。

7.在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形___对.D O CBA 第1题 第4题ACBDO第2题ADBCEF第3题第5题8.如图,△ABC ≌△ADE ,若∠BAE =120°,∠BAD =42°,则∠D AC 的度数为 .9.如图,在Rt △ABC 中,∠C=90°, AD 是△ABC 的角平分线,AB=6cm, CD=2cm,则△ABD 的面积是____. 10. 如图,6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .三、解答题(每小题10分,共50分) 11.如图,AB ,CD 相交于点O ,OA =OC ,OB =OD.求证:∠A=∠C.12.如图,AC ⊥CB ,DB ⊥CB ,垂足分别为C,B,AB=DC.求证:∠ABD=∠ACD.第10题图CBAED第8题A BCD第9题第7题13.如图,点B,C,D,E在同一直线上,AB∥EF,∠A=∠F, BD=CE.求证:(1)△ABC ≌△FED;(2)AC∥DF14.如图,在△ABC中,D是BC的中点,DE⊥AB, DF⊥AC, 垂足分别为E,F,BE=CF. 求证:AD平分∠BAC.AE F15.如图,已知△ABC中,∠ABC=∠BAC, D是BC边上的一点。

(完整版)人教版八年级数学上册第12章全等三角形证明50题(含答案),推荐文档

(完整版)人教版八年级数学上册第12章全等三角形证明50题(含答案),推荐文档

D1. 已知:AB=4,AC=2,D 是 BC 中点,111749AD 是整数,求 ADAB CD 解:延长 AD 到 E,使 AD=DE∵D 是 BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即 4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是 AB 中点,∠ACB=90°,求证: CD 1AB 2AC B延长 CD 与 P ,使 D 为 CP 中点。

连接 AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形 ACBP 为矩形∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是 CD 中点,求证:∠1=∠2A 12BE CF D证明:连接BF 和EF∵BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED。

∴ ∠ABE=∠AEB。

∴ AB=AE 。

在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。

∴ ∠BAF=∠EAF (∠1=∠2) 。

4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点GCG∥EF,可得,∠EFD=CGDDE=DC∠FDE=∠GDC(对顶角)∴△EFD➴△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD 平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB 取点E,使AE=AC,连接DE∵AD 平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC 平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC 平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE7.已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求ADAB CD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCDBD=DC∴△ACD ➴△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=28. 已知:D 是 AB 中点,∠ACB=90°,求证: CD 1AB 2AC B解:延长 AD 到 E,使 AD=DE∵D 是 BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ➴△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=29. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是 CD 中点,求证:∠1=∠2A12B EC F D证明:连接BF 和EF。

八年级数学:全等三角形的判定测试题(含答案)

八年级数学:全等三角形的判定测试题(含答案)

八年级数学:全等三角形的判定测试题(含答案)一、选择题1.下列说法中,错误的有()个(1)周长相等的两个三角形全等。

(2)周长相等的两个等边三角形全等。

(3)有三个角对应相等的两个三角形全等。

(4)有三边对应相等的两个三角形全等A、1B、2C、3D、4【答案】B.【解析】(1)周长相等的两个三角形不一定全等,故该说法错误;(2)周长相等的两个等边三角形全等,该说法正确;(3)有三个角对应相等的两个三角形不一定全等,故该说法错误;(4)有三边对应相等的两个三角形全等,此说法正确.共有两个说法正确.故选B.2.工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA、OB上分别取OM=ON,移动角尺,使角尺的两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL【答案】A.【解析】做法中用到的三角形全等的判定方法是SSS证明如下∵OM=ONPM=PNOP=OP∴△ONP≌△OMP(SSS)所以∠NOP=∠MOP故OP为∠AOB的平分线.故选A.3. 如图1所示,在△ABC中,AB=AC,EB=EC,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△EBD≌△ECDD、以上答案都不对【答案】B.【解析】∵在△ABE和△ACE中AB ECEB ACAE AE=⎧⎪=⎨⎪=⎩,∴△ABE≌△ACE(SSS),故选B.4. 如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF【答案】D.【解析】A、△EHD与△ABC全等,故此选项不合题意;B、△EGF与△ABC全等,故此选项不合题意;C、△EFH与△ABC不全等,但是面积也不相等,故此选项不合题意;D、△HDF与△ABC不全等,面积相等,故此选项符合题意;故选D.5. 在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.4【答案】D.【解析】以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个,共3+0+1=4个,故选D.6. 如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【答案】C.【解析】要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C.二、填空题7.如图,已知AB=AD,需要条件(用图中的字母表示),可得△ABC≌△ADC,根据是.【答案】BC=DC,SSS.【解析】添加条件BC=DC,∵在△ABC和△ADC中AB ADBC CDAC AC=⎧⎪=⎨⎪=⎩,∴△ABC≌△ADC(SSS),8.如图,已知B、E、F、C在同一直线上,BF=CE,AF=DE,则添加条件,可以判断△ABF≌△DCE.【答案】AB=DC.【解析】由条件可再添加AB=DC,在△ABF和△DCE中,AB DCBE CFAF DE=⎧⎪=⎨⎪=⎩,∴△ABF≌△DCE(SSS).9.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).【答案】ABD;SSS.【解析】∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).10.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,∠D=60°,∠ABE=28°,则∠ACB= .【答案】46°【解析】在△ABC和△DEB中,AC BDAB EDBC BE=⎧⎪=⎨⎪=⎩,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=12∠AFB=46°.11.如图,已知AE=DF、EC=BF,添加,可得△AEC≌△DFB.【答案】AC=DB【解析】AC=DB,在△AEC和△DFB中,AE DFAC BDEC BF=⎧⎪=⎨⎪=⎩,∴△AEC≌△DFB(SSS).12.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结AD,CD.则△ABC≌△ADC的依据是.【答案】SSS【解析】由作图可知:AB=AD,CD=CB,∵在△ABC和△ADC中AB ADAC ACCB CD=⎧⎪=⎨⎪=⎩∴△ABC≌△ADC(SSS),三、解答题13.如图,点B、E、C、F在同一直线上,且AB=DE,AC=DF,BE=CF,请将下面说明ΔABC≌ΔDEF的过程和理由补充完整。

八年级全等三角形专题练习(解析版)

八年级全等三角形专题练习(解析版)

一、八年级数学全等三角形解做题压轴题〔难〕1. 〔1〕如图〔1〕,:在△ ABC中,N BAC=90.,AB二AC,直线m经过点A, 8口,直线m, CE J_直线m,垂足分别为点D、E.证实:DE=BD+CE.〔2〕如图〔2〕,将〔1〕中的条件改为:在△ ABC中,AB=AC, D、A、E三点都在直线m 上,并且有N BDA=Z AEC=Z BAC=.,其中.为任意锐角或钝角.请问结论DE=BD+CE是否成立? 如成立,请你给出证实;假设不成立,请说明理由.〔3〕拓展与应用:如图〔3〕 , D、E是D、A、E三点所在直线m上的两动点〔D、A、E 三点互不重合〕,点F为N BAC平分线上的一点,且△ ABF和^ ACF均为等边三角形,连接BD、CE,假设N BDA=Z AEC=Z BAC,试判断△ DEF 的形状.【答案】(1)见解析(2)成立(3) 4DEF为等边三角形【解析】解:(1)证实:BDL直线m, CEJ_直线m,,N BDA=N CEA=900.: Z BAC=90°, /. Z BAD+Z CAE=90°.•/ Z BAD+Z ABD=90°, /. Z CAE=Z ABD.又AB二“AC〞,「・△ ADB合△ CEA (AAS) . /. AE=BD, AD=CE./. DE=,,AE+AD=H BD+CE.(2)成立.证实如下:: Z BDA =Z BAC=a , /. Z DBA+Z BAD=Z BAD+Z CAE=180°-O r . /. Z DBA=Z CAE.Z BDA=Z AEC=., AB=AC,「・△ AD於△ CEA (AAS). /. AE=BD, AD=CE.DE二AE+AD=BD+CE.(3)△ DEF为等边三角形.理由如下:由(2)知,△ ADB合△ CEA, BD=AE, Z DBA =Z CAE,: △ ABF 和^ ACF 均为等边三角形,J Z ABF=Z CAF=60°.・•, Z DBA+Z ABF=Z CAE+Z CAF. /. Z DBF=Z FAE.; BF=AF,,•・丛DBF合△ EAF (AAS) . /. DF=EF, Z BFD=Z AFE.・•, Z DFE=Z DFA+z AFE=Z DFA+Z BFD=60°.・•.A DEF为等边三角形.(1)由于DE=DA+AE,故由AAS证△ ADB合4 CEA,得出DA=EC, AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证实△ ADB2 J CEA,得出BD=AE, AD=CE,所以DE=DA+AE=EC+BD.(3)由△ ADB2△ CEA得BD=AE, NDBA=N CAE,由△ ABF和△ ACF均等边三角形,得Z ABF=Z CAF=60°, FB=FA,所以N DBA+N ABF=N CAE+N CAF,即N DBF二N FAE,所以△ DBF^ △ EAF,所以FD=FE, Z BFD=Z AFE,再根据N DFE=Z DFA+Z AFE=Z DFA+Z BFD=60°得到△ DEF是等边三角形.2.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE, PE 交CD 于 F〔1〕证实:PC=PE;〔2〕求N CPE的度数:〔3〕如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当N ABC=12〔T时,连接【答案】(1)证实见解析(2) 90° (3) AP=CE【解析】【分析】(1)、根据正方形得出AB=BC, ZABP=ZCBP=45%结合PB=PB得出aABP g^CBP,从而得出结论:⑵、根据全等得出NBAP=NBCP, ZDAP=ZDCP,根据PA=PE得出NDAP=NE,即ZDCP=ZE,易得答案;(3)、首先证实4ABP和^CBP全等,然后得出PA=PC, NBAP=NBCP,然后得出NDCP二NE,从而得出NCPF=NEDF=60°,然后得出AEPC是等边三角形,从而得出AP=CE.【详解】⑴、在正方形ABCD 中,AB=BC, ZABP=ZCBP=45%在ZkABP 和4CBP 中,XV PB=PB AAABP^ACBP (SAS) , ,PA=PC, VPA=PE>:.PC=PE;⑵、由(1)知,A ABP^ACBP,.\ZBAP=ZBCP, JNDAP=NDCP,VPA=PE, .\ZDAP=ZE> /. ZDCP=ZE. VZCFP=ZEFD (对顶角相等), A180° - ZPFC - ZPCF=1800 - ZDFE - NE, BPZCPF=ZEDF=90<>:⑶、AP = CE理由是:在菱形ABCD 中,AB=BC, NABP二NCBP,在2\ABP ^lACBP 中,XV PB=PB /.△ABP^ACBP (SAS),,PA二PC, NBAP=NDCP,VPA=PE,,PC=PE,,NDAP=NDCP, V PA=PC,/DAP=NE, A ZDCP=ZE V ZCFP=ZEFD (对顶角相等),A180°- ZPFC - ZPCF=180° - ZDFE - NE, RPZCPF=ZEDF=180° - ZADC=180° - 120°=60°, AAEPC 是等边三角形,,PC=CE, AAP=CE考点:三角形全等的证实3.如图,在AA8C中,NAC8为锐角,点£>为射线8C上一动点,连接AO.以AO为直角边且在AD的上方作等腰直角三角形ADF.图①图②图③〔1〕假设A3 = AC, ABAC = 90°①当点.在线段BC上时〔与点3不重合〕,试探讨CF与8.的数量关系和位置关系:②当点O在线段C的延长线上时,①中的结论是否仍然成立,请在图2中而出相应的图形并说明理由;〔2〕如图3,假设ABwAC, ABAC90° , ZBC4 = 45°,点.在线段8C上运动,试探究CF与8.的位置关系.【答案】〔1〕①CF_LBD,证实见解析:②成立,理由见解析:〔2〕 CF1BD,证实见解析.【解析】【分析】〔1〕①根据同角的余角相等求出NCAF=NBAD,然后利用"边角边"证实4ACF和4ABD全等,②先求出NCAF=NBAD,然后与①的思路相同求解即可:〔2〕过点A作AE_LAC交BC于E,可得4ACE是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE, NAED=45.,再根据同角的余角相等求出NCAF=NEAD,然后利用“边角边〞证实4ACF 和4AED全等,根据全等三角形对应角相等可得NACF=NAED,然后求出ZBCF=90°,从而得到CFJ_BD.【详解】解:〔1〕①•••NBAC=90°, 4ADF是等腰直角三角形,.\ZCAF+ZCAD=90% ZBAD+ZACD=90°,.\ZCAF=ZBAD,在4ACF和4ABD中,VAB=AC, ZCAF=ZBAD, AD=AF,.,.△ACF^AABD〔SAS〕,.・.CF=BD, ZACF=ZABD=45",ZACB=45",AZFCB=90°,.-.CF±BD:②成立,理由如下:如图2:VZCAB=ZDAF=90%,ZCAB+ ZCAD= ZDAF+ ZCAD, 即NCAF=NBAD,在aACF和AABD中,VAB=AC, ZCAF=ZBAD, AD=AF, AAACF^AABD(SAS), ACF=BD, NACF=NB,VAB=AC, ZBAC=90%AZB=ZACB=45%/. Z BCF= ZACF+ ZACB=45o+45o=90°,ACF1BD:(2)如图3,过点A作AE_LAC交BC于E,•/ ZBCA=45",••.△ACE是等腰直角三角形,,AC=AE, NAED=45°, VZCAF+ZCAD=90°, ZEAD+ZCAD=90%,NCAF=NEAD,在4ACF和4AED中,VAC=AE, NCAF=NEAD, AD=AF,.•.△ACF^AAED(SAS), /. ZACF=ZAED=45\,ZBCF= ZACF+ ZBCA=45o+45°=90°, ACF1BD.【点睛】此题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.4.如图〔1〕,在△A3C中,ZA = 90°, A3 = AC,点.是斜边8C的中点,点E, 产分别在线段A3, 4c上,且NEDF = 90..〔1〕求证:△.所为等腰直角三角形:〔2〕假设△ABC的面积为7,求四边形AEDF•的面积:〔3〕如图〔2〕,如果点E运动到A8的延长线上时,点尸在射线C4上且保持ZEDF = 90°,△.石尸还是等腰直角三角形吗.请说明理由.【答案】〔1〕证实见解析;〔2〕 3.5:〔3〕是,理由见解析.【解析】【分析】〔1〕由题意连接AD,并利用全等三角形的判定判定△ BD年△ ADF〔ASA〕,进而分析证得△.瓦'为等腰直角三角形;〔2〕由题意分析可得S网边形AEDF=S MDF+S AADE=S ABDE+S ACDF,以此进行分析计算求出四边形AEDF的面积即可;〔3〕根据题意连接AD,运用全等三角形的判定判定△ BDE^ △ ADF〔ASA〕,进而分析证得△.所为等腰直角三角形.【详解】解:〔1〕证实:如图①,连接AD.「N BAC=90°,AB=AC,点D是斜边BC的中点,/. AD±BC , AD=BD,・•, Z 1=Z B=45°,Z EDF=90% Z 2+Z 3=90%又,Z 3+Z 4=90°,/. Z 2=Z 4,在^ BDE 和^ ADF 中,Z 1=Z B, AD=BD,Z 2=Z 4,/. △ BDE合 , ADF(ASA),・•, DE二DF,又;Z EDF=90\・•・ ADEF为等腰直角三角形.(2)由(1)可知DE=DF, NON 6=45., 又「N 2+N 3=90°, Z 2+Z 5=90%J Z 3=Z 5,A ADE级△ CDF,・' S N边H,AEDF=S AADF+S CADE二S ABDE+S^CDF,S MBC=2 S 网边毛AEDF,S wijn;AEDF=3.5.(3)是,如图②,连接AD.•/ Z BAC=90\ AB=AC, D 是斜边BC 的中点,/. AD±BC Z AD=BD ,「・Z 1=45°,Z DAF=180°-Z l=180°-45°=135% Z DBE=180°-Z ABC=180°-45°=135%/. Z DAF=Z DBE,「Z EDF=90\/. Z 3+Z 4=90%又;Z 2+Z 3=90°,「・Z 2=Z 4,在仆BDE 和a ADF 中,Z DAF=Z DBE, AD=BD,N 2=Z 4,△ BDE合△ ADF(ASA),・•.DE=DB又:Z EDF=90\.•.A DEF为等腰直角三角形.【点睛】此题考查等腰直角三角形的性质以及全等三角形的判定与性质,根据题意作辅助线构造出全等三角形是解题的关键.5.如图,在MBC中,ZC = 90°, AC = 3, BC = 7,点.是8c边上的动点,连接AD,以AO为斜边在A.的下方作等腰直角三角形AO石.(1)填空:AABC的面积等于—;(2)连接CE,求证:CE是NAC3的平分线;(3)点.在6C边上,且CO = 1,当.从点.出发运动至点3停止时,求点E相应的运动路程.王O 1 _【答案】〔I〕—:〔2〕证实见解析:〔3〕 3点【解析】【分析】〔1〕根据直角三角形的面积计算公式直接计算可得:〔2〕如下图作出辅助线,证实△AEM名ADEN 〔AAS〕,得至I] ME=NE,即可利用角平分线的判定证实:〔3〕由〔2〕可知点E在NACB的平分线上,当点D向点B运动时,点E的路径为一条直线,再根据全等三角形的性质得出CN=!〔AC + C.〕,根据CD的长度计算出CE的长度即可.【详解】解:〔1〕 ZC = 90°, AC = \ BC = 7= -ACxBC = -x3x7 = — ,故答案为:—2〔2〕连接CE,过点E作EMLAC于点M,作EN_LBC于点N,AZEMA=Z END=90°,XVZACB=90SAZMEN=90%AZMED+Z DEN=90°,•••△ADE是等腰直角三角形AZAED=90\ AE=DEA ZAEM+Z MED=90%, ZAEM=Z DEN,在△AEM 与ZkDEN 中,ZEMA=Z END=90% ZAEM=Z DEN, AE=DEAAAEM^ADEN 〔AAS〕/. ME=NE,点E 在NACB 的平分线上, 即CE 是NAC3的平分线工(3)由(2)可知,点E 在NACB 的平分线上,・•・当点D 向点B 运动时,点E 的路径为一条直线,VAAEM^ADEN,AM=DN,即 AC-CM=CN-CD在 RtZiCME 与 RtZkCNE 中,CE=CE, ME=NE,ARtACME^RtACNE (HL)ACM=CN.,.CN=;(AC + CO),又YNMCE 二NNCE=45°, ZCME=90\・,. CE= y/2CN = —(AC + CD).2当 AC=3, CD=CO=1 时,CE=](3 + 1) = 2&当 AC=3, CD=CB=7 时,5CE=r (3 + 7) = 5 虚,点E 的运动路程为:50-20 = 30,£【点睛】此题考查了全等三角形的综合证实题,涉及角平分线的判定,几何中动点问题,全等三角 形的性质与判定,解题的关键是综合运用上述知识点.6.如图1,在长方形ABCD 中,AB=CD=5 cm, BC=12 cm,点P 从点B 出发,以2cm/s 的 速度沿BC 向点C 运动,设点P 的运动时间为ts.(1) PC=—cm :(用含t 的式子表示)■I) I)(2)当t 为何值时,△ABPg^DCP?.(3)如图2,当点P从点B开始运动,此时点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得某时刻4ABP与以P, Q, C为顶点的直角三角形全等?假设存在,请求出v的值:假设不存在,请说明理由.【答案】(1) (12-2/); (2)1 = 3;(3)存在,P = 2或忏1【解析】【分析】(1)根据P点的运动速度可得BP的长,再利用BC的长减去BP的长即可得到PC的长:(2)先根据三角形全等的条件得出当BP=CP,列方程求解即得;(3)先分两种情况:当BP=CQ, AB=PC 时,△ABPgZ\PCQ:或当BA=CQ, PB=PC 时,△ABPgaQCP,然后分别列方程计算出t的值,进而计算出v的值.【详解】解:(1)当点P以2cm/s的速度沿BC向点C运动时间为ts时3P = 2/57•・• BC = \2cin:.PC = BC-BP = (n-2i)cm故答案为:(12—27)(2) MBP = ^DCP・•. BP = CP・•・ 2/= 12-2/解得1 = 3.(3)存在,理由如下:①当BP=CQ, AB=PC 时,ZiABP名△PCQ,1. PC=AB=5.•.BP=BC-PC=12-5=7•・• BP = Item:.2t=7解得t=3.5.\CQ=BP=7,那么 3.5v=7解得y = 2.②当B4 = C.,PB = PC 时,MBP = \QCP,: BC = ncm,BP = CP = -BC = 6c7〃 2V BP = Item:.2t = 6解得/ = 3CQ = 3vcm,: AB = CQ = 5cm, 3v = 5解得U3综上所述,当u = 2或i,=,时,A48尸与以P, Q,C为顶点的直角三角形全等.【点睛】此题考查全等三角形的判定及性质和矩形的性质,解题关键是将动态情况化为某一状态情况,并以这一状态为等量关系建立方程求解.7.:在MBC中,AB = AC,ZBAC = 90° ,尸Q为过点4的一条直线,分别过B、C两点作8M_LP0,CN_L尸.,垂足分别为M、N.(1)如图①所示,当P.与BC边有交点时,求证:MN = CN — BM ;(2)如图②所示,当与6C边不相交时,请写出线段8M、CN和MN之间的数量关系,并说明理由. 【答案】(1)见解析:(2) MN = BM + CN (或BM = MN — CN或CN = MN-BM ),理由见解析【解析】【分析】(1)根据条件先证AAA/i运ACN4,得到AM = CN,BM = AN,即可证得MN = CN — BM: (2)由(1)知AAMBYACNA,得到4M =CN,8M = AN,即可确定MN = BM + CN.【详解】证实:・・・BM_LPQ,CN_LP0,・•. ZAMB=ZCAN=90°,V ZBAC=90 ° ,AZCAN+ZACN=90°,ZCAN+ZBAM=90°(或NCW + NAC/V = NC4N+NMM)・•. ZBAM = ZACN,在AAMB和ACN4中,'ZAMB = 4CNA・.• ZBAM = AACN , AB = CA:.AAM“ACN4(A4S),.・.AM =CN,BM =AN,,: MN = AM-AN,:.MN = CN — BM.(2) MN = BM + CN (或BM=MN-CN或CN = MN-BM) .理由:•.・BM_LPQ,CN_LP.,・•・ ZAMB=ZCAN=90°,V ZBAC=90 ° ,.\ZCAN+ZACN=90°,ZCAN+ZBAM=90°(或NCW + NAC/V = NC4N+NBAM ),:.ZBAM = ZACN,在AAMB和ACNA中,'AAMB = ZCNAZ.B\M = ZACN , AB = CA:.AAM*ACNA( AAS),.・.AM =CN,BM =AN,:.MN = AN + AM = BM+CN.【点睛】此题考察三角形全等的应用,正确确定全等三角形是解题关键,由此得到对应相等的线段,确定它们之间的和差关系得到80、CN和MN之间的关系式.8.操作发现:如图,己知"配和"DE均为等腰三角形,AB=AC, AD=AE,将这两个三角形放置在一起,使点8, D, E在同一直线上,连接CE.(1)如图1, ZABC= ZACB= ZADE= ZAED=55Q,求证:△BADgZkCAE;(2)在(1)的条件下,求N8EC的度数:拓广探索:(3)如图2,假设NC48=NEAD=120.,8D=4, CF为aBCE中8E边上的高,请直接写出讦的长度.【答案】(1)见解析:(2) 70°; (3) 2【解析】【分析】(1)根据SAS证实△BADg/kCAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证4BAD丝ZkCAE,推出EC=BD=4,由NBEC=NBAC=12O0,推出NFCE=30°即可解决问题.(1)证实:如图1中,图1Z ABC=^ ACB = Z ADE=N AED, /. Z EAD=Z CAB,:.Z EAC=A DAB,AE=AD. AC=AB9:.△ BAD^ & CAE (SAS).(2)解:如图1中,设AC交8E于O. •「N A8C=N4C8 = 55°,/. Z 84c=180° - 110° = 70°,BAD^△ CAE,Z ABO=Z ECO,Z EOC=ZAOB,・•, Z CEO = Z 840=70°,即 N BEC= 70°.(3)解:如图2中,A图2Z C48 = N EAD=120\•. Z BAD=A CAE,:AB=AC, AD=AE.△ BAD^ 4 CAE 〔SAS〕,•. Z BAD=A ACE. 8D=EC=4,同理可证N BEC- 8AC=120°,Z F£C=60%CFLEF,Z F=90",•. Z FCE=30\1•. EF=-EC=2. 2此题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.9.在等边aABC中,点.是边8C上一点.作射线AO,点3关于射线AO的对称点为点E.连接CE并延长,交射线AO于点〔1〕如图,连接AE,①AE与AC的数量关系是;②设NBA尸=a,用.表示NBCF的大小;〔2〕如图,用等式表示线段A尸,CF.所之间的数量关系,并证实.【答案】⑴①AB二AE;②NBCF=.:(2)AF-EF=CF,理由见详解.【解析】【分析】(1)①根据轴对称性,即可得到答案;②由釉对称性,得:AE二AB, NBAF=NEAF=.,由△A3C是等边三角形,得AB=AC, ZBAC=ZACB=60° ,再根据等腰三角形的性质和三角形内角和等于180°,即可求解:(2)作NFCG=60°交AD于点G,连接BF,易证AFCG是等边三角形,得GF=FC,再证△ACG会ABCF(SAS),从而得AG=BF,进而可得至lj结论.【详解】(1)①•・•点4关于射线的对称点为点E , AAB和AE关于射线AD的对称,AAB=AE.故答案是:AB=AE;②•.•点3关于射线的对称点为点E , ,AE二AB, NBAF=NEAF=.,•二△A3c是等边三角形,AAB=AC, ZBAC=ZACB=60" ,:.ZEAC=60° -2a, AE=AC,ZACE=1[180 - (60 - 2a)] = 60 +6?,A ZBCF=ZACE-ZACB=60 +a-60°=a .(2) AF-EF=CF,理由如下:作NFCG=60.交AD于点G,连接BF,•••NBAF=NBCF=a , NADB=NCDF,A ZABC=ZAFC=60c ,••.△FCG是等边三角形,AGF=FC,•二△A3c是等边三角形,ABC=AC, ZACB=60° , AZACG=ZBCF=« .在AACG和ABCF中,CA = CBZACG = ABCF , CG = CF,AACG 仝ABCF(SAS),.,.AG=BF,•・•点4关于射线AO的对称点为点E , .\AG=BF=EF,VAF-AG=GF,.\AF-EF=CE【点睛】此题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.10.如图,AA8C是等边三角形,点.在边4c上〔“点D不与A,C重合〕,点石是射线5c上的一个动点〔点E不与点8,C重合〕,连接OE,以OE为边作作等边三角形hDEF,连接CF.〔1〕如图1,当.石的延长线与A3的延长线相交,且CF在直线OE的同侧时,过点D 作DG//AB, DG 交BC 于点、G ,求证:CF = EG ;〔2〕如图2,当.石反向延长线与A8的反向延长线相交,且.,尸在直线OE的同侧时,求证:CD = CE+CF;〔3〕如图3,当OE反向延长线与线段A8相交,且.,厂在直线O石的异侧时,猜测CD、CE、CP之间的等量关系,并说明理由.【答案】〔1〕证实见详解;〔2〕证实见详解:〔3〕 CF = CO-CE,理由见详解.【解析】【分析】(1)由AABC 是等边三角形,DG//AB,得NCDG=NA=60° , NACB=60.,ACDG 是等边三角形,易证AGDE仝ACDF(SAS),即可得到结论:(2)过点D作DG〃AB交BC于点G,易证A GDE仝△ CDF(SAS),即可得到结论;(3)过点D作DG〃AB交BC于点G,易证A GDE仝A CDF(SAS),即可得到结论.【详解】(1)•・• AA3C是等边三角形,DG//AB, :.ZCDG=ZA=60° , ZACB=60° , ・•. ACQG是等边三角形,.\DG=DC.是等边三角形, .,.DE=DF, ZEDF=60° , A ZCDG-ZGDF=ZEDF-ZGDF,即:ZGDE=ZCDF, 在4 GDE和八CDF中,DE = DFNGDE = NCDF ,DG = DC.,.△GDE^A CDF(SAS),:.CF = EG ;(2)过点D作DG〃AB交BC于点G,如图2,•・• AABC是等边三角形,DG//AB、:.ZCDG=ZA=60° , ZACB=60" ,••・ACDG是等边三角形,:.DG=DC.•••ADE/是等边三角形,,DE=DF, ZEDF=60c ,A ZCDG-ZCDE=ZEDF-ZCDE> 即:ZGDE=ZCDF, 在4 GDE和^ CDF中,DE = DFNGDE = ZCDF ,DG = DC.,.△GDE^ACDF(SAS),:・CF = GE,••. CD = CG = CE+GE = CE+CF(3)CF = CD + CE,理由如下:过点D作DG〃AB交BC于点G,如图3,•・・AA8C是等边三角形,DGUAB, .,.ZCDG=ZA=60° , ZACB=60" ,,ACDG是等边三角形, ADG=DC=GC.•・• ADEF是等边三角形, ,DE=DF, ZEDF=60° ,A ZCDG+ZCDE=ZEDF+ZCDE,即:NGDE=NCDF, 在A GDE和4 CDF中,DE = DFNGDE = ZCDF , DG = DCAAGDE^ACDF(SAS),,CF = G£=GC+CE=CD+CE.【点睛】此题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.。

人教版八年级数学上册第十二章《全等三角形》测试题(含答案)

人教版八年级数学上册第十二章《全等三角形》测试题(含答案)

人教版八年级数学上册第十二章《全等三角形》测试题(含答案)一、选择题:1、如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC2、如图,点C在∠DAB的内部,CD⊥AD于D,CB⊥AB于B,CD=CB那么Rt△ADC ≌Rt△ABC的理由是()A.SSS B. ASA C. SAS D. HL3、下列说法正确的有()①角平分线上任意一点到角两边的距离相等②到一个角两边的距离相等的点在这个角的平分线上③三角形三个角平分线的交点到三个顶点的距离相等④三角形三条角平分线的交点到三边的距离相等A、1个B、2个C、3个D、4个4、在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠A=∠D D.AB=DE5、如图,D、E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=48度,则∠ADP等于()度。

A.42 B.48 C .52 D.586、如图,△AEC≌△BED,点D在AC边上,∠1=∠2,AE和BD相交于点O.下列说法:(1)若∠B=∠A,则BE∥AC;(2)若BE=AC,则BE∥AC;(3)若△ECD≌△EOD,∠1=36°,则BE∥AC.其中正确的有()个.A.3个B.2个C.1个D.0个7、如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15°B.20°C.25°D.30°8、如图所示,AD、BC相交于点O,已知∠A=∠C,要根据“ASA”证明△AOB≌△COD,还要添加一个条件是()A. AB=CDB. AO=COC.BO=DOD.∠ABO=∠CDO9、如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD 的面积为()A.15 B.12.5 C.14.5 D.1710、如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°11、如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是()A.∠C=∠ABC B.BA=BGC.AE=CE D. AF=FD12、如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个二、填空题:13、点O是△ABC内一点,且点O到三边的距离相等,∠BAC=60°,则∠BOC的度数为 .14、如图:在△ABC中,∠B=∠C=50°,D是BC的中点,DE⊥AB,DF⊥AC,则∠BAD= 。

人教版八年级数学上册《第十二章全等三角形》单元练习题(含答案)

人教版八年级数学上册《第十二章全等三角形》单元练习题(含答案)

第十二章《全等三角形》单元练习题一、选择题1.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是()A. 4B. 3C. 6D. 52.如图所示,若DE⊥AB,DF⊥AC,则对于∠1和∠2的大小关系下列说法正确的是()A.一定相等B.一定不相等C.当BD=CD时相等D.当DE=DF时相等3.如图,P是∠AOB平分线上一点,CD⊥OP于P,并分别交OA、OB于C,D,则点P到∠AOB两边距离之和()A.小于CDB.大于CDC.等于CDD.不能确定4.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A. 40°B. 35°C. 30°D. 25°5.已知,如图,AC=BC,AD=BD,下列结论中不正确的是()A.∠ACD=∠BDCB.∠ACO=∠BCOC.CD平分∠ACD和∠ADBD.AB平分∠CAD和∠CBD6.如图所示,△ABC≌△DEC,则边AB的对应边是()A.DEB.DCC.ECD.BC7.如图所示,Rt△ABE≌Rt△ECD,点B、E、C在同一直线上,则结论:①AE=ED;②AE⊥DE;③BC=AB+CD;④AB∥DC中成立的是()A.仅①B.仅①③C.仅①③④D.仅①②③④8.△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,∠A=40°,则∠BOC的大小为().A. 110°B. 120°C. 130°D. 140°二、填空题9.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是.10.如图:已知∠1=∠2,要根据SAS判定△ABD≌△ACD,则需要补充的条件为.11.如图,若D为BC中点,那么用“SSS”判定△ABD≌△ACD需添加的一个条件是 ___________.12.下列条件中,能判定两个直角三角形全等的个数有________个.①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一条直角边对应相等;④面积相等.13.如图,△ABC中,AB=AC,AE=CF,BE=AF,则∠E=________,∠CAF=__________.14.如图,已知AB=AD,∠BAE=∠DAC,要用SAS判定△ABC≌△ADE,可补充的条件是.15.如图,在△ABD和△CDB中,AD=CB,AB、CD相交于点O,请你补充一个条件,使得△ABD≌△CDB.你补充的条件是________________.16.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是____________.三、解答题(共5小题,每小题分,共0分)17.已知△ABC≌△DFE,∠A=100°,∠B=50°,DF=12cm,求∠E的度数及AB的长.18.如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:(1)∠D=∠B;(2)AE∥CF.19.如图,A、D、E三点在同一直线上,且△BAD≌△ACE,试说明:(1)BD=DE+CE;(2)△ABD满足什么条件时,BD∥CE?20.如图所示,已知AE⊥AB,△ACE≌△AFB,CE、AB、BF分别交于点D、M.证明:CE⊥BF.21.如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗、⊗,那么⊗”)(2)选择(1)中你写出的一个命题,说明它正确的理由.第十二章《全等三角形》单元练习题答案解析1.【答案】B【解析】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC=×4×2+AC×2=7,解得AC=3.故选B.2.【答案】D【解析】已知有点到∠BAC的两边的距离,根据角平分线性质的逆定理:到角的两边距离相等的点在角的平分线上,要满足∠1=∠2,须有DE=DF,于是答案可得.3.【答案】A【解析】如图,过点P作PE⊥OA于E,PF⊥OB于F,则PE、PF分别为点P到∠AOB两边的距离,∵PE<PC,PF<PD,∴PE+PF<PC+PD,∴PE+PF<CD,即点P到∠AOB两边距离之和小于CD.故选A.4.【答案】B【解析】∵∠B=80°,∠C=30°,∴∠BAC=180°-80°-30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE-∠DAC,=70°-35°,=35°.故选B.5.【答案】A【解析】在△ACD和△BCD中,∴△ACD≌△BCD,∴∠ACD=∠BCD,∠ADC=∠BDC,∴故选项B、C、D不符合要求;根据已知不能推出∠ACD=∠BDC,故本选项正确;故选A.6.【答案】A【解析】根据全等三角形中互相重合的边是对应边,则可得到结论.7.【答案】D【解析】∵Rt△ABE≌Rt△ECD,∴AE=ED,①成立;∵Rt△ABE≌Rt△ECD,∴∠AEB=∠D,又∠DEC+∠D=90°,∴∠DEC+∠ABE=90°,即∠AED=90°,∴AE⊥DE,②成立;∵Rt△ABE≌Rt△ECD,∴AB=EC,BE=CD,又BC=BE+EC,∴BC=AB+CD,③成立;∵∠B+∠C=180°,∴AB∥DC,④成立,故选D.8.【答案】A【解析】∵O到三角形三边距离相等,∴AO,BO,CO都是三角形的角平分线,∴有∠CBO=∠ABO=∠ABC,∠BCO=∠ACO=∠ACB,∴∠ABC+∠ACB=180-40=140,∴∠OBC+∠OCB=70,∴∠BOC=180-70=110°.9.【答案】全等三角形的对应角相等【解析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',利用全等三角形的对应角相等,得到∠A′O′B′=∠AOB.10.【答案】BD=CD【解析】如图,∵在△ABD与△ACD中,∠1=∠2,AD=AD,∴添加BD=CD时,可以根据SAS判定△ABD≌△ACD,故答案是BD=CD.11.【答案】AB=AC【解析】由题中点定义可知BD=CD,图中公共边AD=AD,要想用SSS判定△ABD≌△ACD,只要添加AB=AC即可.12.【答案】3【解析】①两条直角边对应相等,利用SAS,故本选项正确;②斜边和一锐角对应相等,符合判定AAS或ASA,故本选项正确;③斜边和一条直角边对应相等,符合判定HL;④面积相等不一定全等,故本选项错误.故答案为3.13.【答案】∠F;∠ABE【解析】∵AB=AC,AE=CF,BE=AF,∴△AEB≌△CFA(SSS),∴∠E=∠F,∠CAF=∠ABE.14.【答案】AC=AE【解析】可补充的条件是:当AC=AE,△ABC≌△ADE(SAS).15.【答案】∠ADB=∠CBD【解析】∠ADB=∠CBD,理由是:∵在△AOD和△COB中,∴△ABD≌△CDB(SAS),故答案为∠ADB=∠CBD.16.【答案】(-2,0)【解析】∵△AOB≌△COD,∴OD=OB,∴点D的坐标是(-2,0).故答案为(-2,0).17.【答案】解:∵△ABC≌△DFE,∴∠D=∠A=100°,∠F=∠B=50°,DF=AB∴∠E=180°-100°-50°=30°,∵DF=12cm,∴AB=12cm.【解析】根据全等三角形性质得出∠D=∠A=100°,∠F=∠B=50°,利用三角形内角和定理即可求出∠E的度数,再根据DF=AB,即可求出AB的长.18.【答案】解:(1)∵在△ADE和△CBF中,∴△ADE≌△CBF(SSS),∴∠D=∠B.(2)∵△ADE≌△CBF,∴∠AED=∠CFB,∵∠AED+∠AEO=180°,∠CFB+∠CFO=180°,∴∠AEO=∠CFO,∴AE∥CF.【解析】(1)根据SSS推出△ADE≌△CBF,根据全等三角形的性质推出即可;(2)根据全等三角形的性质推出∠AED=∠CFB,求出∠AEO=∠CFO,根据平行线的判定推出即可.19.【答案】(1)解:∵△BAD≌△ACE,∴BD=AE,AD=CE,∴BD=AE=AD+DE=CE+DE,即BD=DE+CE.(2)解:△ABD满足∠ADB=90°时,BD∥CE,理由是:∵△BAD≌△ACE,∴∠E=∠ADB=90°(添加的条件是∠ADB=90°),∴∠BDE=180°-90°=90°=∠E,∴BD∥CE.【解析】(1)根据全等三角形的性质求出BD=AE,AD=CE,代入求出即可;(2)根据全等三角形的性质求出∠E=∠BDA=90°,推出∠BDE=90°,根据平行线的判定求出即可.20.【答案】证明:∵AE⊥AB,∴∠BAE=90°,∵△ACE≌△AFB,∴∠CAE=∠BAF,∠ACE=∠F,∴∠CAB+∠BAE=∠BAC+∠CAF,∴∠CAF=∠BAE=90°,而∠ACE=∠F,∴∠FMC=∠CAF=90°,∴CE⊥BF.【解析】先利用垂直定义得到∠BAE=90°,再利用三角形全等的性质得∠CAE=∠BAF,∠ACE=∠F,则∠CAF=∠BAE=90°,然后根据三角形内角和定理易得∠FMC=∠CAF=90°,然后根据垂直的定义即可得到结论.21.【答案】解:(1)如果①②,那么③;如果①③,那么②;(2)若选择如果①②,那么③,证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴CE=BF;若选择如果①③,那么②,证明:∵AE∥DF,∴∠A=∠D,在△ACE 和△DBF中,,∴△ACE≌△DBF(AAS),∴AC=DB,∴AC-BC=DB-BC,即AB=CD.【解析】(1)如果①②作为条件,③作为结论,得到的命题为真命题;如果①③作为条件,②作为结论,得到的命题为真命题,写成题中要求的形式即可;(2)若选择(1)中的如果①②,那么③,由AE与DF平行,利用两直线平行内错角相等得到一对角相等,再由AB=DC,等式左右两边都加上BC,得到AC=DB,又∠E=∠F,利用AAS即可得到三角形ACE与三角形DBF全等,根据全等三角形的对应边相等得到CE=BF,得证;若选择如果①③,那么②,由AE与FD平行,利用两直线平行内错角相等得到一对角相等,再由∠E=∠F,CE=BF,利用AAS可得出三角形ACE与三角形DBF全等,根据全等三角形的对应边相等可得出AC=BD,等式左右两边都减去BC,得到AB=CD,得证.。

(完整版)全等三角形经典题型50题(含答案),推荐文档

(完整版)全等三角形经典题型50题(含答案),推荐文档

E
∵∠ABD+∠ADB=90°,∠ACF+∠CDE=90°
又∵∠ADB=∠CDE
D
∴∠ABD=∠ACF 在△ABD 和△ACF 中 ∠ABD=∠ACF, AB=AC,
∠BAD=∠CAF=90° ∴△ABD≌△ACF(ASA) ∴BD=CF ∴BD=2CE
B
C
25、(10 分)如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△
BFC。
D
EF
C
A
26、(10 分)如图:AE、BC 交于点 M,F 点在 AM 上, BE∥CF,BE=CF。 求证:AM 是△ABC 的中线。 证明: ∵BE‖CF ∴∠E=∠CFM,∠EBM=∠FCM ∵BE=CF
B
ቤተ መጻሕፍቲ ባይዱB A
F
M
C
E
∴△BEM≌△CFM
∴BM=CM ∴AM 是△ABC 的中线.
C
B
D
2. 已知:AC 平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE
6. 如图,四边形 ABCD 中,AB∥DC,BE、CE 分别平分∠ABC、∠BCD,且点 E 在 AD 上。求证:BC=AB+DC。
.
7.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C
D
AC 是公共边,所以 AAS==>三角形 ADC 全等于三角形
ABC. 所以 BC 等于 DC,角 3 等于角 4,EC=EC 三角形
A
1 2
5 E6
3 4
C
DEC 全等于三角形 BEC 所以∠5=∠6
13.已知:如图,DC∥AB,且 DC=AE,E 为 AB 的中点,

人教版八年级数学上册第十二章全等三角形专项测试题(二)含答案解析

人教版八年级数学上册第十二章全等三角形专项测试题(二)含答案解析

八年级数学人教版第十二章全等三角形专项测试题(二)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,在四边形中,,,若连接、相交于点,则图中全等三角形共有()A. 对B. 对C. 对D. 对【答案】B【解析】解:在和中,,,,在和中,,,,和中,,.故答案为:对2、如图,,,要使,需要添加下列选项中的()A.B.C.D.【答案】D【解析】解:,,,,在和中,,故答案为:3、如图,,若,,,则等于( ).A. 不能确定B.C.D.【答案】B【解析】解:....,....故正确答案是:.4、如图:将沿方向平移得到,若的周长为,则四边形的周长为______.A.B.C.D.【答案】A【解析】解:根据题意得:,,,,,,,,故正确答案是:.5、已知的三个内角三条边长如图所示,则甲、乙、丙三个三角形中,和全等的图形是( ).A. 只有丙B. 只有乙C. 乙和丙D. 甲和乙【答案】C【解析】解:甲图与只有两边对应相等,角不是两边的夹角,故甲与不全等.而乙根据与全等,丙根据与全等.故答案应选:乙和丙.6、如图,已知,,有下列结论:①;②;③;④.其中正确的有( ).A. 个B. 个C. 个D. 个【答案】A【解析】解:,,,,,,.,.故答案应选:个.7、如图,在平面直角坐标系中,以为圆心,适当长为半径画弧,交袖于点,交轴于点,再分别以点、为圆心,大于的长为半径画弧,两弧在第二象限交于点.若点的坐标为(,),则与的数量关系为()A.B.C.D.【答案】C【解析】解:根据作图方法可得点在第二象限角平分线上,则点横纵坐标的和为,故,整理得:8、如图,在中,,则()是的角平分线.A.B.C.D.【答案】B【解析】解:,,,是的角平分线.故答案为:.9、如图,在和中,已知,还需添加两个条件才能使,不能添加的一组条件是()A. ,B. ,C. ,D. ,【答案】B【解析】解:,,,根据可判定两三角形全等,故本选项不符合;,,,根据可判定两三角形全等,故本选项不符合;,,,由于不能判定两三角形全等,故本选项符合;,,,根据可判定两三角形全等,故本选项不符合.故正确答案是:,.10、下列条件中,能判定两个直角三角形全等的是()A. 两条直角边对应相等B. 一条边对应相等C. 两锐角对应相等D. 一锐角对应相等【答案】A【解析】解:两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,故可排除“一锐角对应相等”、“一条边对应相等”;而“两锐角对应相等”构成了,不能判定全等;“两条直角边对应相等”构成了,可以判定两个直角三角形全等.11、在如图中,,于,于,、交于点,则下列结论中不正确的是()A. 点是的中点B.C. 点在的平分线上D.【答案】A【解析】解:,于,于,,,故本选项正确;,,,,,,点在的平分线上,故本选项正确;,,,,,,正确;是的中点,无法判定,故本选项错误.12、如图,,,,则()A.B.C.D.【答案】C【解析】解:,在和中,.13、下列各组图形中,一定是全等图形的是()A. 两个直角边相等的等腰直角三角形B. 两个斜边相等的直角三角形C. 两个面积相等的长方形D. 两个周长相等的等腰三角形【答案】A【解析】解:两个周长相等的等腰三角形,不一定是全等图形,故“两个周长相等的等腰三角形”不符合题意;两个面积相等的长方形,不一定是全等图形,故“两个面积相等的长方形”不符合题意;两个斜边相等的直角三角形,不一定是全等图形,故“两个斜边相等的直角三角形”不符合题意;两个直角边相等的等腰直角三角形,一定全等,故“两个直角边相等的等腰直角三角形”符合题意.故正确答案是:两个直角边相等的等腰直角三角形14、下列说法正确的是()A. 形状相同的两个三角形全等B. 面积相等的两个三角形全等C. 完全重合的两个三角形全等D. 所有的等边三角形全等【答案】C【解析】解:形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;面积相等的两个三角形全等,说法错误;完全重合的两个三角形全等,说法正确;所有的等边三角形全等,说法错误.15、如图,在下列选项中的四个图案中,与下面图案全等的图案是()A.B.C.D.【答案】B【解析】解:能够完全重合的两个图形叫做全等形,旋转后与题干中的图形重合.故正确答案是:二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,已知,,,则____,理由是_____.【答案】,两边及其夹角相等的两个三角形是全等三角形.【解析】解:,,,在和中,,,,.故答案为:,两边及其夹角相等的两个三角形是全等三角形.17、解决难以测量或无法测量的线段(或角)的关键:构建三角形,得到线段相等或角相等.【答案】全等【解析】解:解决难以测量或无法测量的线段(或角)的关键:构建全等三角形,得到线段相等或角相等.故答案为:全等.18、如图所示,,且,则.【答案】30【解析】解:即:故正确答案为19、如图,在中,,.按以下步骤作图:以点为圆心,小于的长为半径画弧,分别交、于点、;分别以点、为圆心,大于的长为半径画弧,两弧相交于点作射线交边于点.则的度数为.【答案】65【解析】解:根据已知条件中的作图步骤知,是的平分线,,在中,(直角三角形中的两个锐角互余);故答案是:.20、如图,,其中,则.【答案】130【解析】解:由,得,,所以.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,已知,,求证:.【解析】证明:在和中.,,..22、如图,若通过平移得到,你能找出图中的等量关系吗?【解析】解:相等的线段有:,,;相等的角有:,,.故正确答案是:,.23、如图所示,已知点在上,点在上,、交于点,,,试判断和有什么关系?说明你的理由.【解析】解:在和中,,又故正确答案为:。

人教版数学八年级上册第十二章《全等三角形》测试题含答案

人教版数学八年级上册第十二章《全等三角形》测试题含答案

人教版数学八年级上册第十二章《全等三角形》测试题一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.参考答案及试题解析一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠ECF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EB C=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。

八年级数学-全等三角形的判定练习(含答案)

八年级数学-全等三角形的判定练习(含答案)

八年级数学-全等三角形的判定练习(含答案)一、选择题1.如图,点E、F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.AD∥BC B.DF∥BE C.∠D=∠B D.∠A=∠C 【答案】C.【解析】∠D=∠B,理由是:∵在△ADF和△CBE中AD BCD BDF BE=⎧⎪∠=∠⎨⎪=⎩∴△ADF≌△CBE(SAS),即选项C正确;具备选项A、选项B,选项D的条件都不能推出两三角形全等,故选C.2.如图,若已知AE=AC,用“SAS”说明△ABC≌△ADE,还需要的一个条件是()A.BC=DE B.AB=AD C.BO=DO D.EO=CO【答案】B.【解析】在△ABC与△ADE中AE ACA AAB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△ADE(SAS),故选B.3.如图,AB=CD,AB∥CD,判定△ABC≌△CDA的依据是()A.SSS B.SAS C.ASA D.HL 【答案】B.【解析】∵AB∥CD,∴∠BAC=∠DCA,在△ABC与△CDA中,AB CDBAC DCAAC CA=⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△CDA(SAS).故选B.4.如图所示,AB=BD,BC=BE,要使△ABE≌△DBC,需添加条件()A.∠A=∠D B.∠C=∠E C.∠D=∠ED.∠ABD=∠CB E【答案】D.【解析】∵AB=BD,BC=BE,∴要使△ABE≌△DBC,需添加的条件为∠ABE=∠DBC,又∠ABE﹣∠DBE=∠DBC﹣∠DBE,即∠ABD=∠CBE,∴可添加的条件为∠ABE=∠DBC或∠ABD=∠CBE.综合各选项,D选项符合.故选D.5.如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是()A.SSS B.SAS C.ASA D.AAS【答案】B.【解析】∵△ABD和△A CE都是等边三角形,∴AD=AB,AC=AE,又∵∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,∴△ADC≌△ABE(SAS).故选B.6.如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD,则∠ECA的度数为()A.30° B.35° C.40° D.45°【答案】C.【解析】在BC上截取BF=AB,连DF,则有△ABD≌△FBD(SAS),∴DF=DA=DE,又∵∠ACB=∠ABC=40°,∠DFC=180°﹣∠A=80°,∴∠FDC=60°,∵∠EDC=∠ADB=180°﹣∠ABD﹣∠A=180°﹣20°﹣100°=60°,∴△DCE≌△DCF(SAS),故∠ECA=∠DCB=40°.故选C.7.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=40°,则∠DEF的度数是()A.75° B.70° C.65° D.60°【答案】B.【解析】∵AB=AC,∴∠B=∠C=12(180°﹣∠A)=70°,在△BDE和△CEF中,BD CEB CBE CF=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CEF(SAS),∴∠BDE=∠CEF,∵∠CED=∠B+∠BDE,即∠CEF+∠DEF=∠B+∠BDE,∴∠DEF=∠B=70°;故选B.8.如图,AD∥BC,AD=CB,要使△ADF≌△CBE,需要添加的下列选项中的一个条件是()A.AE=CF B.DF=BE C.∠A=∠C D.AE=EF 【答案】A.【解析】只有选项A正确,理由是:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵AD∥BC,∴∠A=∠C,在△ADF和△CBE中,AD BCA CAF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CBE(SAS),故选A.二、填空题9.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,AD=EC,AE=10,AC=6,则CD 的长为.【答案】2.【解析】∵AB∥EF,∴∠A=∠E,∵AD=EC,∴AD+DC=EC+DC,即AC=ED,在△ABC和△EFD中AB EFA EAC ED=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△EFD(SAS),∴AC=ED=6,∴CD=AC+ED﹣AE=6+6﹣10=2,10.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件.(只要填一个)【答案】AC=DF.【解析】补充AC=DF.∵∠1=∠2,BC=EF,AC=DF∴△ABC≌△DEF,11.如图,△ABC中,AB=AC,点D,E在BC边上,当时,△ABD≌△ACE.(添加一个适当的条件即可)【答案】BD=CE.【解析】BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中AB ACB CBD CE=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△ACE(SAS).12.如图,已知AC=AE,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个).【答案】AB=AD.【解析】AB=AD,理由是:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,在△ABC和△ADE中,AB ADBAC DAEAC AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△ADE(SAS),13.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D,下列结论:①∠EAB=∠FAC;②∠C=∠EFA;③AD=AC;④AF=AC.其中正确的结论是(填写所有正确结论的序号).【答案】①②④.【解析】在△ABC与△AEF中,AB AEB EBC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△AEF(SAS),∴∠EAB=∠FAC,∠C=∠EFA,AF=AC,∴①②④正确;由已知条件不能得出AD=AC,③不正确.三、解答题14.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.【答案】证明见解析.【解析】∵∠1=∠2,∴∠ACB=∠DCE,在△ABC和△DE C中,CA CDACB DCEBC EC=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEC(SAS).15.如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.【答案】证明见解析.【解答】证明:∵BC=DE,∴BC+CD=DE+CD,即BD=CE,在△ABD与△FEC中,AB EFB EBD EC=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△FEC(SAS),∴∠ADB=∠FCE.16.已知:如图,在△ABC、△AD E中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E 三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【答案】(1)证明见解析;(2)BD⊥CE.【解析】(1)∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.。

初二数学 全等三角形测试题含答案

初二数学 全等三角形测试题含答案

3 4E12全等三角形一.填空题(每题 3 分,共 30 分)1. 如图,△ABC≌△DBC,且∠A 和∠D,∠ABC 和∠DBC 是对应角,其对应边:.2. 如图,△ABD≌△ACE,且∠BAD 和∠CAE,∠ABD 和∠ACE,∠ADB 和∠AEC 是对应角,则对应边.3. 已知:如图,△ABC≌△FED,且 BC=DE.则∠A=,A D= .4. 如图,△ABD≌△ACE,则 AB 的对应边是,∠BAD 的对应角是.5. 已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=,AE= .6. 已知:如图 , AC⊥BC 于 C , DE⊥AC 于 E , AD⊥AB 于 A , BC=AE .若 AB=5 , 则 AD=.7. 已知:△ABC≌△A’B’C’, △A’B’C’的周长为 12cm ,则△ABC 的周长为 .8. 如图, 已知:∠1=∠2 , ∠3=∠4 , 要证 BD=CD , 需先证△AEB≌△A EC , 根据是再证△BDE≌△, 根据是 .BA1 2A'DD ABBCC9. 如图,∠1=∠2,由 AAS 判定△ABD≌△ACD,则需添加的条件是 .10.如图,在平面上将△ABC 绕 B 点旋转到△A’BC’的位置时,AA’∥BC,∠ABC=70°,则∠CBC’为度.C'AC二.选择题(每题 3 分,共 30 分)11、下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和一角对应相等C.两角的其中一角的对边对应相等D.两角和它们的夹边对应相等12.如果两个三角形全等,则不正确的是()A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等13.如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE14.图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ15.下列说法中不正确的是()A.全等三角形的对应高相等B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等16.AD=AE , AB=AC , BE、CD 交于 F , 则图中相等的角共有(除去∠DFE=∠BFC)()A.5 对B.4 对C.3 对D.2 对CDO17.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED的度数是( )A.70°B. 85°C. 65°D. 以上都不对18.已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()EABA.AC=DFB.AD=BEC.DF=EFD.BC=EF19.如图, ∠A=∠D , OA=OD ,∠DOC=50°,求∠DBC的度数为()A.50°B.30°C.45°D.25°20. 如图, ∠ABC=∠DCB=70°,∠ABD=40°, AB=DC ,则∠BAC=()A.70°B.80°C.100°D.90°三.解答题(每题 8 分,共 40 分)21.已知:如图 , 四边形 ABCD 中 , AB∥CD , AD∥BC.求证:△ABD≌△CDB.22.如图,有一池塘,要测池塘两端 A、B 的距离,可先在平地上取一个可以直接到达 A 和B 的点 C,连结AC 并延长到 D,使 CD=CA.连结 BC 并延长到 E,使 EC=CB,连结 DE,量出 DE 的长,就是 A、B 的距离.写出你的证明.23.已知:如图,点 B,E,C,F 在同一直线上,AB∥DE,且 AB=DE,BE=CF.求证:AC∥DF.24.如图,已知: AD 是BC 上的中线 ,且 DF=DE.求证:BE∥CF.25.如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求证:AC=EF.FAGB E D CFEC21E答案1.BC 和BC,CD 和CA,BD 和AB2.AB 和AC,AD 和AE,BD 和CE3. ∠F,CF4.AC, ∠CAE5. ∠ADC,AD6.57.128.ASA DEC SAS9. ∠B=∠C10.40℃ 11.B 12.C 13.D 14.D 15.D 16.B 17. A 18.C 19.D 20.B 21.由 ASA 可证 22. 因为 AC=CD EC=BC ∠ACB=∠ECD所以△ABC≌△CED AB=ED 23.证△ABC≌△FED得∠ACB=∠F所以AC∥ DF 24.证△BED≌△CFD得∠E=∠CFD所以CF∥BE 25.由 AAS 证△ABC≌△CED AC=EF.第三章全等三角形 B 卷(考试时间为 90 分钟,满分 100 分)一.填空题:(每题 3 分,共 30 分)1.如图1,AD⊥BC,D 为BC 的中点,则△ABD≌.图1图 22.如图2,若AB=DE,BE=CF,要证△ABF≌△DEC,需补充条件或.3.如图3,AB=DC,AD=BC,E.F 是DB 上两点且BE=DF,若∠AEB=100°,∠ADB=30 ,则∠BCF=.AADB CBDA9.若△ABC≌△A′B′C′,AD 和 B′C′的高,则△ABD≌△A′B′D′,理图 3图 44. 如图 4,△ABC≌△AED,若 AB = AE ,∠1 = 27︒ ,则∠2 = . 5. 如图 5,已知 AB∥CD,AD∥BC,E.F 是 BD 上两点,且 BF =DE ,则图中共有对全等三角形.图 5图 66. 如图 6,四边形 ABCD 的对角线相交于 O 点,且有 AB∥DC,AD∥BC,则图中有___对全等三角形.7. “全等三角形对应角相等”的条件是.8.如图 8,AE =AF ,AB =AC ,∠A=60°,∠B=24°,则∠BOC= .BEOAFC 图 8 由是.10. 在 Rt△ABC 中,∠C=90°,∠A.∠B 的平分线相交于 O ,则∠AOB=.二.选择题:(每题 3 分,共 24 分)11. 如图 9,△ABC≌△BAD,A 和 B.C 和 D 分别是对应顶点,若 AB =6cm ,AC =4cm ,BC =5cm ,则 AD 的长为 ( ) A.4cmB.5cmC.6cmD.以上都不对12. 下列说法正确的是( )A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等13.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C14.下列条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=ED,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EF C.∠B=∠E,∠A=∠D,AC=EFD.∠B=∠E,∠A=∠D,AB=DE15.AD 是△ABC中BC 边上的中线,若AB=4,AC=6,则AD 的取值范围是()A.AD>1B.AD<5C.1<AD<5D.2<AD<1016.下列命题正确的是()A.两条直角边对应相等的两个直角三角形全等;B.一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等D.有两条边对应相等的两个直角三角形全等17.如图10.△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD 和CE 交于点O,AO 的延长线交BC 于F,则图中全等直角三角形的对数为()A.3 对B.4 对C.5 对D.6 对ACOD B图10 图1118.如图11,在CD 上求一点P,使它到OA,OB 的距离相等,则P 点是()A.线段CD 的中点B. OA 与OB 的中垂线的交点C. OA 与CD 的中垂线的交点D. CD 与∠AOB的平分线的交点三.解答题(共46 分)19.(8 分)如图,△ABN≌△ACM,∠B和∠C是对应角,AB 与AC 是对应边,写出其他对应边和对应角.20.(7 分)如图, ∠AOB是一个任意角,在边 OA,OB 上分别取 OM=ON,移动角尺,使角尺两边相同的刻度分别与 M,N 重合,过角尺顶点C 的射线 OC 便是∠AOB的平分线,为什么?21.(7 分)如图,已知 AB=DC,AC=DB,BE=CE,求证:AE=DE.A DB E CDO E F22.(8 分)如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段 CE 与DE 的大小与位置关系,并C证明你的结论.A E B23.(8 分)已知如图,E.F 在BD 上,且 AB=CD,BF=DE,AE=CF,求证:AC 与BD 互相平分.AB DC24.(8 分)如图,∠ABC=90°,AB=BC,D 为AC 上一点,分别过 A.C 作BD 的垂线,垂足分别为 E.F, 求证:EF=CF-AE.答案1.△ADC2. ∠B=∠C或AF=DC3.704.27°5.36.37.两个三角形全等8.72°9.HL 10.135°11.B 12.D 13.A 14.D 15.C 16.A 17.D 18.D 19. 对应边:AB AC,AN,AM,BN,CM 对应角:∠BAN=∠CAM,∠ANB=∠AMC20. △AMC≌△CON21.先证△ABC≌△DBC 得∠ABC=∠DCB,再证△ABE≌△ CED 22.垂直23. 先证△ABE≌△DFC得∠B=∠D,再证△ABO≌△COD24.证△ABF≌△BCF人教课标版八年级(上)数学检测试卷第三章全等三角形C 卷(考试时间为 90 分钟,满分 100 分)一.填空题:(每题 3 分,共 30 分)1.如图1,若△ABC≌△ADE,∠EAC=35°,则∠BAD=度.BECAD图1A DMB N C图22.如图2,沿AM 折叠,使D 点落在BC 上的N 点处,如果AD=7cm,DM=5cm,∠DAM=300,则AN= cm,NM= cm,∠NAM=.3.如图3,△ABC≌△AED,∠C=85°,∠B=30°,则∠EAD=.4.已知:如图 4,∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,(1)若以“SAS”为依据,还须添加的一个条件为.(2)若以“ASA”为依据,还须添加的一个条件为.(3)若以“AAS”为依据,还须添加的一个条件为.5.如图5,在△ABC中,∠C=90°,AD 平分∠BAC,DE⊥AB于E,则△≌△.图 56. 如图6,AB=AC,BD=DC,若∠B = 28︒,则∠C = .AB CDFEAFC图 6图 77. 如图 7,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有对.8. 如图 8,在∆ABC 中,AB=AC ,BE 、CF 是中线,则由 可得∆AFC ≅ ∆AEB .ABC图 8图 99. 如图 9,AB=CD ,AD=BC ,O 为 BD 中点,过O 点作直线与 DA 、BC 延长线交于 E 、F ,若∠ADB = 60︒ ,EO=10,则∠DBC=,FO= .EB10.如图 10,△DEF≌△ABC,且 AC >BC >AB则在△DEF 中,<<.图 10二.选择题(每题 3 分,共 30 分)11.在∆ABC 和∆A 'B 'C '中,下列各组条件中,不能保证:∆ABC ≅ ∆A 'B 'C ' 的是( )① AB = A 'B '④ ∠A = ∠A '② BC = B 'C ' ⑤ ∠B = ∠B '③ AC = A 'C ' ⑥ ∠C = ∠C 'A. 具备①②③B. 具备①②④C. 具备③④⑤D. 具备②③⑥12.两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( )A. 两角和一边B. 两边及夹角C. 三个角D. 三条边13. 如果两个三角形两边对应相等,且其中一边所对的角也相等,那么这两个三角形( )B2 A FC1D EA. 一定全等B. 一定不全等C. 不一定全等D. 面积相等14.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A. 相等B. 不相等C. 互余或相等D. 互补或相等15.如图,已知AB=DC,AD=BC,E.F 在DB 上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠ BCF= ( )A. 150°B.40°C.80°D. 90°A D CF EE DB C AB16.如图AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A. ∠1=∠EFDB. BE=ECC. BF=DF=CDD. FD∥BC17.下列说法正确是()A . 三边对应平行的两个三角形是全等三角形B . 有一边相等,其余两边对应平行的两个三角形是全等三角形C . 有一边重合,其余两边对应平行的两个三角形是全等三角形D.有三个角对应相等的两个三角形是全等三角形18.下列说法错误的是()A.全等三角形对应边上的中线相等B.面积相等的两个三角形是全等三角形C.全等三角形对应边上的高相等D.全等三角形对应角平分线相等19.已知:如图,O 为AB 中点,BD ⊥CD ,AC ⊥CD,OE ⊥CD,则下列结论不一定成立的是()1A.CE=EDB. OC=ODC. ∠ACO=∠ODBD. OE= CD2EF20. 如图,已知在△ABC 中,AB =AC ,D 为 BC 上一点,BF =CD ,CE =BD ,那么∠EDF 等于( )A..90°-∠AB. 90°- 1 2三.解答题(共 40 分)∠A C. 180°-∠A D. 45°- 1∠A221.(8 分)如图,△ABC≌△ADE,∠E 和∠C 是对应角,AB 与 AD 是对应边,写出另外两组对应边和对应角;22.(8 分)如图,A 、E 、F 、C 在一条直线上,△AED≌△CFB,你能得出哪些结论?ADBC23.(7 分)如图,已知∠1=∠2,∠3=∠4,AB 与 CD 相等吗?请你说明理由.AD.12 34BC24.(8 分)如图,AB∥CD,AD∥BC,那么 AD=BC,AB=BC,你能说明其中的道理吗?B25.(9 分)如图,已知:E 是∠AOB 的平分线上一点,EC⊥OB,ED⊥OA,C,D 是垂足,连接 CD,求证: (1)∠ECD=∠EDC;(2)OD=OC;(3)OE 是CD 的中垂线.D AO EC B答案1.35°2.7,5,30°3.504.BC=EF, ∠ACB=∠F, ∠A=∠D5.ACD,AED6.28°7.58.SAS9.60°,1010.ED,EF,DF11.B 12.C 13.C 14.A 15.D 16.D 17.C 18.B 19.D 20.B21.AE 和AC,ED 和BC, ∠B和∠D, ∠BAC和∠DAE22.AD=BC,AE=CF,DE=BF,AD∥BC, △ACD≌△ACB,AB∥CD等23.相等, △AOB≌△DOC24.连 AC,证△ADC≌△ABC25.(1)证DE=EC (2) 设BE 与CD 交于F,通过全等证DF=CF.。

八年级数学上册--全等三角形练习题(含答案)

八年级数学上册--全等三角形练习题(含答案)

八年级数学上册--全等三角形练习题(含答案)八年级数学上册--全等三角形练题(含答案)一、选择题(每题3分,共30分)1.下列判断不正确的是()A。

形状相同的图形是全等图形B。

能够完全重合的两个三角形全等C。

全等图形的形状和大小都相同D。

全等三角形的对应角相等2.如图,△ABC≌△XXX,∠BAC=85°,∠B=65°,则∠CAD度数为()A。

85°B。

65°C。

40°D。

30°3.如图,XXX做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线。

此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE。

则说明这两个三角形全等的依据是()A。

SASB。

ASAC。

AASD。

SSS4.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB,垂足为E。

若AB=10cm,AC=6 cm,则BE的长度为()A。

10 cmB。

6 cmC。

4 cmD。

2 cm5.如图所示,AB=CD,∠ABD=∠CDB,则图中全等三角形共有()A。

5对B。

4对C。

3对D。

2对6.点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,则下列选项正确的是()A。

PQ>5B。

PQ≥5C。

PQ<5D。

PQ≤57.在△ABC中,∠B=∠C,与△ABC全等的△DEF中有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A。

∠AB。

∠BC。

∠CD。

∠B或∠C8.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,则不正确的是()A。

AB=ACB。

∠BAE=∠CADC。

BE=DCD。

AD=DE9.如图,直线a,b,c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A。

人教版八年级上册数学第12章《全等三角形》测试题【含答案】

人教版八年级上册数学第12章《全等三角形》测试题【含答案】

一、选择题(每小题3分,共24分)1.如图1,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD及△APE全等的理由是()A.SSS B.SASC.SSA D.AAS2.装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图2),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A.①B.②C.③ D.④3.有下列条件:①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一直角边对应相等;④直角边和一锐角对应相等.其中能判定两直角三角形全等的有()A.1个B.2个C.3个D.4个4.用直尺和圆规作一个角等于已知角的示意图如图3,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SASC.ASA D.AAS5.如图4,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形共有()A.1对B.2对C.3对D.4对6.如图5,点P是AB上任意一点,∠ABC=∠ABD,补充下列条件中的一个,不能得出△APC≌△APD的是()A.BC=BD B.AC=ADC.∠ACB=∠ADB D.∠CAB=∠DAB7.如图6,△ABC≌△EFD,则()A.AB=DE,AC=EF,BC=DFB.AB=DF,AC=DE,BC=EFC.AB=EF,AC=DE,BC=DFD.AB=EF,AC=DF,BC=DE8.如图7,用“AAS”直接判定△ACD≌△ABE,需要添加的条件是()A.∠ADC=∠AEB,∠C=∠BB.∠ADC=∠AEB,CD=BEC.AC=AB,AD=AED.AC=AB,∠C=∠B二、填空题(每小题4分,共32分)9.已知△ABC≌△DEF,BC=EF=6厘米,△ABC的面积为9平方厘米,则EF边上的高是__________厘米.10.如图8,已知AB=CD,∠ABD=∠CDB,则图中共有__________对全等三角形.11.在Rt△ABC和Rt△DEF中,AB=DE,∠A=∠D=90°,再补充一个条件__________,便可得Rt△ABC≌Rt△DEF.12. 如图9,如果△ABC≌△DEF,△DEF的周长是32 cm,DE=12 cm,EF=13 cm,则AC=__________.13.如图10,在△ABC中,∠C=90°,CB=4,延长CB至点D,使BD=AC,作∠BDE=90°,∠DBE=∠A,两角的另一边相交于点E,则DE的长为__________.14.如图11,点P到∠AOB两边的距离相等,若∠POB=30°,则∠AOB=__________.15.如图12,点D在AB上,点E在AC上,CD及BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=__________.16.如图13,已知△ABC,且点A(0,1),点C(4,3),如果要使△ABD及△ABC全等,则点D 的坐标是__________.三、解答题(共64分)17.(10分)如图14,已知AB=AE,∠1=∠2,∠B=∠E,BC及ED相等吗说明理由.18.(10分)如图15,若BE=CD,∠1=∠2,则BD及CE相等吗为什么19.(10分)如图16,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.△BEC及△CDA全等吗请说明理由.20.(10分)如图17,CF⊥AB于点F,BE⊥AC于点E,且CF,BE交于点D,BD=CD.求证:AD平分∠BAC.21.(12分)如图18,已知△ABC≌△ADE,BC及DE相交于点F,连接CD,EB.请你找出图中其他的全等三角形,并说明理由.22.(12分)如图19,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并说明理由.第十二章全等三角形测试题一、1.D 2.A 3.D 4.A 5.C 6.B 7.C 8.B二、9.3 10.311.答案不唯一,如AC=DF等12.7 cm 13.4 14.60° 15.20°16.(4,-1)或(-1,3)或(-1,-1)三、17.解:BC=ED.理由:因为∠1=∠2,所以∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD.在△BAC及△EAD中,∠B=∠E,AB=AE,∠BAC=∠EAD,所以△BAC≌△EAD.所以BC=ED.18.解:相等.理由:因为∠1=∠2,所以180°-∠1=180°-∠2,即∠ADC=∠AEB.又BE=CD,∠A=∠A,所以△ABE≌△ACD.所以AB=AC,AE=AD.所以AB-AD=AC-AE,即BD=CE.19.解:△BEC≌△CDA.理由:因为BE⊥CE,AD⊥CE,所以∠BEC=∠CDA=90°.因为∠BCE+∠CBE=90°,∠BCE+∠ACD=90°,所以∠CBE=∠ACD.在△BEC和△CDA中,∠BEC=∠CDA,∠CBE=∠ACD,CB=AC,所以△BEC≌△CDA. 20.解:因为CF⊥AB,BE⊥AC,所以∠CED=∠BFD=90°.又∠CDE=∠BDF, CD=BD,所以△ECD≌△FBD.所以DE=DF.又DF⊥AB,DE⊥AC,所以AD平分∠BAC.21.解:△ACD≌△AEB,△DCF≌△BEF.理由:因为△ABC≌△ADE,所以AC=AE,AB=AD,∠CAB=∠EAD.所以∠CAB-∠BAD=∠EAD-∠BAD,即∠CAD=∠EAB.所以△ACD≌△AEB(SAS).所以∠ACD=∠AEB,CD=EB.因为△ABC≌△ADE,所以∠ACB=∠AED.所以∠ACB-∠ACD=∠AED-∠AEB,即∠DCF=∠BEF.又∠DFC=∠BFE,所以△DCF≌△BEF(AAS).22.解:OE⊥AB.理由:在△ABC和△BAD中,AC=BD,∠BAC=∠ABD,AB=BA,所以△ABC≌△BAD.所以∠CBA=∠DAB,∠C=∠D.在△AOC和△BOD中,∠AOC=∠BOD,∠C=∠D,AC=BD,所以△AOC≌△BOD.所以OA=OB.在△AOE和△BOE中,OA=OB,∠OAE=∠OBE,AE=BE,所以△AOE≌△BOE.所以∠OEA=∠OEB=90°,即OE⊥AB.。

2024-2025学年八年级数学上册 第十二章 全等三角形 单元测试题(含答案)

2024-2025学年八年级数学上册 第十二章 全等三角形 单元测试题(含答案)

第十二章全等三角形考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有( )①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个2.下列各组图形中,是全等形的是()A.B.C.D.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cm B.2.5cm C.3cm D.5cm4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是( )A.SSS B.ASA C.SAS D.HL5.如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DB C.∠A=∠DEF D.∠ABC=∠D6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在()处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点8.如图,在△ABC中,CD平分∠ACB,DE⊥BC于点E,S△ABC=30,DE=4,BC=10,则AC 的长是( )A.5B.6C.7D.89.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列五个结论:①DE=DF;②BC=2DB;③AD⊥BC;④AB=3BF;⑤S△ADB=2S△BDF;其中正确的结论共有()A.4个B.3个C.2个D.1个10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()m2B.2m2C.5m2D.4m2A.52二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.12.如图,四边形ABCD≌四边形A′B′C′D′.若∠B=90°,∠C=60°,∠D′=105°,则∠A的大小为度.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A′B′C′的位置,使B′和C重合,连接AC′交A′C于D,则△C′DC的面积为.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒(t>0),则当t=秒时,△DEB与△BCA全等.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.22.问题提出:如图1,在四边形ABCD中,∠BAD与∠BCD互补,∠B与∠D互补,AB=AD,∠BAD=x°(0<x<180),∠ACB=y°,数学兴趣小组在探究y与x的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x…304050607080β130y757065α555040θ这里α= ,β= ,θ= .猜想证明:(2)根据表格,猜想:y与x之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB到E,使BE=DC,连接AE,…,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x+y=135,AC=10,求四边形ABCD的面积.23.(1)【问题解决】如图①,∠AOB=∠DFE=90°,OC平分∠AOB,点F在OC上,∠DFE的两边分别与OA,OB交于点D,E.当FE⊥OB,FD⊥OA时,则FD与FE的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F作两条相互垂直的射线FM,FN,分别交OA,OB于点M,N,判断FM与FN的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD,如图③所示,∠DAB=∠DCB=90°,AC是∠DAB的平分线,AB=50m,AD=30m,直接写出该空地的面积.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE 的面积.【深入探究】(3)如图3,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接BC 、DE ,且BC ⊥AF 于点F ,DE 与直线AF 交于点G .①求证DG =GE ;②若BC =21,AF =12,求△ADG 的面积.参考答案:1.B2.B3.C4.B5.B6.C7.B8.A9.A10.A11.130°12.10513.∠BAD=∠CAE14.1215.52°16.3或7或1017.证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠EAD=∠BAC,在△EAD和△BAC中,{∠C=∠D∠BAC=∠EAD,AB=AE∴△ABC≌△AED(AAS),∴BC=ED.18.(1)证明:∵AB∥CD,∴∠BAC=∠ACD,在△ABC与△CDA中,{AB=CD∠BAC=∠ACD,AC=CA∴△ABC≌△CDA(SAS);(2)解:BC∥AD,理由如下:∵△ABC≌△CDA,∴∠BCA=∠CAD,∴BC∥AD.19.(1)解:有4对全等三角形,分别为:△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF,(2)证明:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO(ASA),∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF(SAS),∴AE=CF,∵OE=OF,OM=ON,∴OE−OM=OF−ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF(SSS),∴∠MAE=∠NCF.20.(1)证明∶∵AC∥DE,∴∠ACD=∠CDE,∠ACB=∠CED,∵∠ACD=∠B,∴∠B=∠CDE,∵AC=CE,∴△ABC≌△CDE (AAS).(2)解:∵ ∠A =55°,∵△ABC≌△CDE ,∴∠A =∠ECD =55°,∴ ∠BCD =180°−∠ECD =180°−55°=125°.21.(1)解:∵∠ACB =106°,∴∠ACD =180°−106°=74°,∵EH ⊥BD ,∴∠CHE =90°,∵∠CEH =53°,∴∠ECH =90°−53°=37°,∴∠ACE =∠ACD−∠ECH =74°−37°=37°.(2)证明:如图:过E 点分别作EM ⊥BF 于M ,EN ⊥AC 与N ,∵BE 平分∠ABC ,∴EM =EH ,∵∠ACE =∠ECH =37°,∴CE 平分∠ACD ,∴EN =EH ,∴EM =EN ,∴AE 平分∠CAF .(3)解:∵AC +CD =16,S △ACD =24,EM =EN =EH ,∴ S △ACD =S △ACE +S △CED =12AC ⋅EN +12CD ⋅EH =12(AC +CD)⋅EM =24,即12×16⋅EM =24,解得EM =3,∵AB =10,∴ S △ABE =12AB ⋅EM =15.22.(1)观察表格发现:x每增加10,y减小5,∴α=65−5=60,β=80+2×10=100,θ=40−3×5=15.故答案为:60,100,15,x.(2)根据表格猜想:y=90−12证明:如图2,延长CB到E,使BE=DC,连接AE,则∠ABC+∠ABE=180°,又∵∠ABC+∠D=180°,∴∠ABE=∠D,又∵AB=AD,∴△ABE≌△ADE(SAS),∴AE=AC,∠EAB=∠CAD,∴∠E=∠ACB=y°,∠EAC=∠EAB+∠BAC=∠CAD+∠BAC=∠BAD=x°.在△AEC中,∠EAC+∠E+∠ACE=180°,∴x°+2y°=180°,x.y=90−12(3)如图,延长CB到E,使BE=DC,连接AE.由(2)得△ABE≌△ADE,∴S△ABE=S△ADE,∴S四边形ABCD=S△ACD+S△ABC=S△ABE+S△ABC=S△AEC,x,∵x+y=135,y=90−12∴x +90−12x =135,解得x =90,y =45,∴∠EAC =90°,∠AEC =∠ACE =45°,∴AE =AC =10,∴S △AEC =12×10×10=50,∴S 四边形ABCD =50.23.(1)解:∵OC 平分∠AOB , 点 F 在OC 上,且FE ⊥OB , FD ⊥OA ,∴FD =FE .(2)解:FD =FE ,理由如下:∵FD ⊥OA ,FE ⊥OB ,∴∠FDO =∠FEO =∠FEN =90°,∵四边形DOEF 中,∠FDO =∠FEO =∠AOB =90°,∴∠DFE =360°−∠FDO−∠FEO−∠AOB =90°,∴∠DMF +∠MFE =90°,又∵FM ⊥FN ,∴∠FMN =90°,∴∠DFM =∠EFN ,在△DFM 和△EFN 中,{∠FDM =∠FEN FD =FE ∠DFM =∠EFN,∴△DFM≌△EFN(ASA),∴FM =FN .(3)解:如图,过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点,由(2)得△CFD≌△CEB ,∴FD =EB ,S △CFD =S △CEB ,∴S 四边形ABCD =S 四边形AECF,∵AC是∠DAB的平分线,∴∠DAC=∠CAB,又∵∠CFB=∠CEA=90°,AC=AC,∴△ACF≌△ACE(AAS),∴AF=AE,又∵AE=AB−BE,AF=AD+DF,∴AB−BE=AD+DF,∴50−BE=30+BE,解得BE=10,∴AF=AE=40,∴S四边形AECF=40×40=1600m2,∴S四边形ABCD=1600m2,答:该空地的面积为1600m2.24.解:(1)∵OC=OD,∠DOE=∠COF,OE=OF,∴CE=DF,△DOE≌△COF(SAS),∴∠PEC=∠PFD,∵∠CPE=∠DPF,CE=DF,∴△CPE≌△DPF(AAS),∴PE=PF,∵OE=OF,PE=PF,OP=OP,∴△OPE≌△OPF(SSS),∴∠POE=∠POF,即∠POA=∠POB,∴射线OP平分∠AOB;(2)∵CF⊥OA,DE⊥OB,∴∠OCF=∠ODE=90°,∴∠COF=∠DOE,OC=OD,∴△OCF≌△ODE(ASA),∴OF=OE,由(1)可得OP平分∠AOB;(3)补全图形如下,过点P 分别作PM ⊥OA 于M ,PN ⊥OB 于N ,∵OP 是∠AOB 的平分线,∴PM =PN ,∠PMC =∠PND =90°,当PC =PD 1时,在Rt △PMC 和Rt △PND 1中,{PC =PD 1PM =PN ,∴Rt △PMC≌Rt △PND 1(HL),∴∠PCO =∠PD 1O ;当PC =PD 2时,同理得Rt △PMC≌Rt △PND 2(HL),∴∠PCM =∠PD 2N ;∵∠PD 2N +∠PD 2O =180°,∴∠PCO +∠PD 2O =180°,综上所述,∠PCO 与∠PDO 的数量关系为∠PCO =∠PDO 或∠PCO +∠PDO =180°;25.解:(1)证明:∵∠BAD =90°,∴∠BAC +∠DAE =90°,∵BC ⊥CA ,DE ⊥AE ,∴∠ACB =∠DEA =90°,∴∠BAC +∠ABC =90°,∴∠ABC =∠DAE ,在△ABC 和△DAE 中,{∠ACB =∠DEA ∠ABC =∠DAE BA =AD∴△ABC≌△DAE (AAS),∴BC =AE .(2)由模型呈现可知,△AEP≌△BAG ,△CBG≌△DCH ,∴AP =BG =3,AG =EP =6,CG =DH =4,CH =BG =3,则S 实线围成的图形=12×(4+6)×(3+6+4+3)−12×3×6−12×3×6−12×3×4−12×3×4=50.(3)①过点D 作DP ⊥AG 于P ,过点E 作EQ ⊥AG 交AG 的延长线于Q .图3由【模型呈现】可知,△AFB≌△DPA ,△AFC≌△EQA ,∴DP =AF ,EQ =AF∴DP =EQ ,∵DP ⊥AG ,EQ ⊥AG∴∠DPG =∠EQG =90°,在△DPG 和△EQG 中,{∠DPG =∠EQG ∠DGP =∠EGQ DP =EQ∴△DPG≌△EQG (AAS),∴DG =GE .②由①可知,BF =AP ,FC =AQ ,∴BC =BF +FC =AP +AQ ,∵BC =21,∴AP +AQ =21,∴AP +AP +PG +GQ =21,由①△DPG≌△EQG 得∴PG =GQ ,∴AP +AP +PG +PG =21,∴AP+PG=10.5,∴AG=10.5,×10.5×12=63.∴S△ADG=12。

(完整)全等三角形经典例题(含答案),推荐文档

(完整)全等三角形经典例题(含答案),推荐文档

全等三角形证明题精选一.解答题(共30小题)1.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.4.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.13.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.14.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.15.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.16.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.18.已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.19.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是: ;(2)证明: .20.如图,AB=AC,AD=AE.求证:∠B=∠C.21.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.22.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.23.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设: ;结论: .(均填写序号)证明:24.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)25.如图,已知AB=DC,AC=DB.求证:∠1=∠2.26.如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是 和 ,命题的结论是 和 (均填序号);(2)证明你写出的命题.27.如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.28.如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.29.如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.30.已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.全等三角形证明题精选参考答案与试题解析一.解答题(共30小题)1.(2016•连云港)四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.【分析】(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.【解答】证明:(1)∵BE=DF,∴BE﹣EF=DF﹣EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,∴AO=CO.【点评】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.2.(2016•曲靖)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【分析】(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.【点评】此题主要考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.3.(2016•孝感)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.【分析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.【解答】证明;∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.【点评】本题考查全等三角形的判定和性质,解题的关键是明确题意,找出所求问题需要的条件.4.(2016•湘西州)如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.【分析】(1)由点O是线段AB和线段CD的中点可得出AO=BO,CO=DO,结合对顶角相等,即可利用全等三角形的判定定理(SAS)证出△AOD≌△BOC;(2)结合全等三角形的性质可得出∠A=∠B,依据“内错角相等,两直线平行”即可证出结论.【解答】证明:(1)∵点O是线段AB和线段CD的中点,∴AO=BO,CO=DO.在△AOD和△BOC中,有,∴△AOD≌△BOC(SAS).(2)∵△AOD≌△BOC,∴∠A=∠B,∴AD∥BC.【点评】本题考查了全等三角形的判定与性质以及平行线的判定定理,解题的关键是:(1)利用SAS证出△AOD≌△BOC;(2)找出∠A=∠B.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等,结合全等三角形的性质找出相等的角,再依据平行线的判定定理证出两直线平行即可.5.(2016•云南)如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.6.(2016•宁德)如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.【分析】根据平行线的性质找出∠ADE=∠BAC,借助全等三角形的判定定理ASA证出△ADE≌△BAC,由此即可得出AE=BC.【解答】证明:∵DE∥AB,∴∠ADE=∠BAC.在△ADE和△BAC中,,∴△ADE≌△BAC(ASA),∴AE=BC.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题的关键.7.(2016•十堰)如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.【分析】欲证明AF=DF只要证明△ABF≌△DEF即可解决问题.【解答】证明:∵AB∥CD,∴∠B=∠FED,在△ABF和△DEF中,,∴△ABF≌△DEF,∴AF=DF.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握全等三角形的判断和性质,熟练掌握平行线的性质,属于基础题,中考常考题型.8.(2016•武汉)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【分析】证明它们所在的三角形全等即可.根据等式的性质可得BC=EF.运用SSS证明△ABC与△DEF全等.【解答】证明:∵BE=CF,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的性质和判定.全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等.9.(2016•昆明)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.【解答】证明:∵FC∥AB,∴∠A=∠ECF,∠ADE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AE=CE.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理SSS、SAS、ASA、AAS、HL是解题的关键.10.(2016•衡阳)如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.【分析】求出AD=BC,根据ASA推出△AED≌△BFC,根据全等三角形的性质得出即可.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(ASA),∴DE=CF.【点评】本题考查了全等三角形的性质和判定的应用,能求出△AED≌△BFC是解此题的关键,注意:全等三角形的对应边相等.11.(2016•重庆)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.12.(2016•南充)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.【分析】(1)由SAS证明△ABD≌△ACE,得出对应边相等即可(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.【解答】(1)证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)证明:∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,∴∠B=∠C,在△ACM和△ABN中,,∴△ACM≌△ABN(ASA),∴∠M=∠N.【点评】本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.13.(2016•恩施州)如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.【分析】通过全等三角形(Rt△CBE≌Rt△BCD)的对应角相等得到∠ECB=∠DBC,则AB=AC.【解答】证明:∵BE⊥AC,CD⊥AB,∴∠CEB=∠BDC=90°.∵在Rt△CBE与Rt△BCD中,,∴Rt△CBE≌Rt△BCD(HL),∴∠ECB=∠DBC,∴AB=AC.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.14.(2016•重庆)如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.【分析】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC 和△CED全等,然后根据全等三角形对应角相等证明即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠B=∠E.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并找出两边的夹角是解题的关键.15.(2016•湖北襄阳)如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.【分析】(1)先证明△DEB≌△DFC得∠B=∠C由此即可证明.(2)先证明AD⊥BC,再在RT△ADC中,利用30°角性质设CD=a,AC=2a,根据勾股定理列出方程即可解决问题.【解答】(1)证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠DEB=∠DFC=90°,在RT△DEB和RT△DFC中,,∴△DEB≌△DFC,∴∠B=∠C,∴AB=AC.(2)∵AB=AC,BD=DC,∴AD⊥BC,在RT△ADC中,∵∠ADC=90°,AD=2,∠DAC=30°,∴AC=2CD,设CD=a,则AC=2a,∵AC2=AD2+CD2,∴4a2=a2+(2)2,∵a>0,∴a=2,∴AC=2a=4.【点评】本题考查全等三角形的判定和性质、直角三角形30°性质、勾股定理等知识,解题的关键是正确寻找全等三角形,记住直角三角形30°角所对的直角边等于斜边的一半,属于中考常考题型.16.(2016•吉安校级一模)如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.【分析】根据全等三角形的性质得到CD=AF,证明∴△DGC≌△AGF,根据全等三角形的性质和角平分线的判定得到∠CBG=∠FBG,根据三角形内角和定理计算即可.【解答】解:∵Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∴BC=BF,BD=BA,∴CD=AF,在△DGC和△AGF中,,∴△DGC≌△AGF,∴GC=GF,又∠ACB=∠DFB=90°,∴∠CBG=∠FBG,∴∠GBF=(90°﹣28°)÷2=31°.【点评】本题考查的是全等三角形的性质角平分线的判定,掌握全等三角形的对应边相等、对应角相等是解题的关键.17.(2016•武汉校级四模)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.【分析】由垂直的定义可得到∠C=∠D,结合条件和公共边,可证得结论.【解答】证明:∵AC⊥BC,BD⊥AD,∴∠C=∠D=90,在Rt△ACB和Rt△BDA中,,∴△ACB≌△BDA(HL).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.18.(2016•济宁二模)已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.【分析】求出BC=FE,∠ACB=∠DFE,根据SAS推出全等即可.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=FE,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).【点评】本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.19.(2016•诏安县校级模拟)已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是: ∠MAB=∠NCD ;(2)证明: 在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA). .【分析】判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL,所以可添加条件为∠MAB=∠NCD,或BM=DN或∠ABM=∠CDN.【解答】解:(1)你添加的条件是:①∠MAB=∠NCD;(2)证明:在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA),故答案为:∠MAB=∠NCD;在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA).【点评】本题考查三角形全等的性质和判定方法,判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL(在直角三角形中).判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.(2016•屏东县校级模拟)如图,AB=AC,AD=AE.求证:∠B=∠C.【分析】要证∠B=∠C,可利用判定两个三角形全等的方法“两边和它们的夹角对应相等的两个三角形全等”证△ABE≌△ACD,然后由全等三角形对应边相等得出.【解答】证明:在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C.【点评】本题主要考查了两个三角形全等的其中一种判定方法,即“边角边”判定方法.观察出公共角∠A是解决本题的关键.21.(2016•沛县校级一模)如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.【分析】易证△BED≌△CFD,根据全等三角形对应边相等的性质即可解题.【解答】解:∵BE⊥AE,CF⊥AE,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴BE=CF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中找出全等三角形并证明是解题的关键.22.(2016•福州)一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.23.(2012•漳州)在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设: 可以为①②③ ;结论: ④ .(均填写序号)证明:【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS 定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,此题为开放性题目,需要同学们有较强的综合能力,熟练应用全等三角形的全等判定才能正确解答.24.(2009•大连)如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)【分析】因为BE=CF,利用等量加等量和相等,可证出BC=EF,再证明△ABC≌△DEF,从而得出AC=DF.【解答】证明:∵BE=CF,∴BE+EC=CF+EC(等量加等量和相等).即BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠1,BC=EF,∴△ABC≌△DEF(SAS).∴AC=DF(全等三角形对应边相等).【点评】解决本题要熟练运用三角形的判定和性质.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.25.(2006•平凉)如图,已知AB=DC,AC=DB.求证:∠1=∠2.【分析】探究思路:因为△ABO与△DCO有一对对顶角,要证∠1=∠2,只要证明∠A=∠D,把问题转化为证明△ABC≌△DCB,再围绕全等找条件.【解答】证明:在△ABC和△DCB中∵,∴△ABC≌△DCB.∴∠A=∠D.又∵∠AOB=∠DOC,∴∠1=∠2.【点评】本题是全等三角形的判定,性质的综合运用,可以由探究题目的结论出发,找全等三角形,再寻找判定全等的条件.26.(2006•佛山)如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O 点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是 ① 和 ③ ,命题的结论是 ② 和 ④ (均填序号);(2)证明你写出的命题.【分析】本题实际是考查全等三角形的判定,根据条件可看出主要是围绕三角形ABE和ACD全等来求解的.已经有了一个公共角∠A,只要再知道一组对应角和一组对应边相等即可得出三角形全等的结论.可根据这个思路来进行选择和证明.【解答】解:(1)命题的条件是①和③,命题的结论是②和④.(2)已知:D,E分别为△ABC的边AB,AC上的点,且AB=AC,∠ABE=∠ACD.求证:OB=OC,BE=CD.证明如下:∵AB=AC,∠ABE=∠ACD,∠BAC=∠CAB,∴△ABE≌△ACD.∴BE=CD.又∠BCD=∠ACB﹣∠ACD=∠ABC﹣∠ABE=∠CBE,∴△BOC是等腰三角形.∴OB=OC.【点评】本题主要考查了全等三角形的判定,要注意的是AAA和SSA是不能判定三角形全等的.27.(2005•安徽)如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.做题时从已知结合全等的判定方法开始思考,做到由易到难,不重不漏.【解答】解:此图中有三对全等三角形.分别是:△ABF≌△DEC、△ABC≌△DEF、△BCF≌△EFC.证明:∵AB∥DE,∴∠A=∠D.又∵AB=DE、AF=DC,∴△ABF≌△DEC.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.28.(2004•昆明)如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.【分析】利用已知条件易证△AEB≌△DEC,从而得出AE=DE.【解答】证明:∵AD∥BC,∠B=∠C,∴梯形ABCD是等腰梯形,∴AB=DC,在△AEB与△DEC中,,∴△AEB≌△DEC(SAS),∴AE=DE.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.29.(2004•淮安)如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.【分析】可以有三个真命题:(1)②③⇒①,可由ASA证得△ADE≌△BCE,所以DE=EC;(2)①③⇒②,可由SAS证得△ADE≌△BCE,所以∠1=∠2;(3)①②⇒⑧,可由ASA证得△ADE≌△BCE,所以AE=BF,∠3=∠4.【解答】解:②③⇒①证明如下:∵∠3=∠4,∴EA=EB.在△ADE和△BCE中,∴△ADE≌△BCE.∴DE=EC.①③⇒②证明如下:∵∠3=∠4,∴EA=EB,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠1=∠2.①②⇒⑧证明如下:在△ADE和△BCE中,∴△ADE≌△BCE.∴AE=BE,∠3=∠4.【点评】本题考查了全等三角形的判定和性质;题目是一道开放型的问题,选择有多种,可以采用多次尝试法,证明时要选择较为简单的进行证明.30.(2011•通州区一模)已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.【分析】根据AE⊥CD,BF⊥CD,求证∠BCF+∠B=90°,可得∠ACF=∠B,再利用(AAS)求证△BCF≌△CAE即可.【解答】证明:∵AE⊥CD,BF⊥CD∴∠AEC=∠BFC=90°∴∠BCF+∠B=90°∵∠ACB=90°,∴∠BCF+∠ACF=90°∴∠ACF=∠B在△BCF和△CAE中∴△BCF≌△CAE(AAS)∴CE=BF.【点评】此题主要考查全等三角形的判定与性质这一知识点,解答此题的关键是利用(AAS)求证△BCF≌△CAE,要求学生应熟练掌握.。

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( )3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) B.∠BAE=∠CADA.AB=AC C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是( )A .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE都是等边三角形,则下列结论不一定成立的是( )A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE ,使A,C,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) 第3题图第5题图 第2题图第6题图AB C DA.边角边B.角边角C.边边边D.边边角7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠2C .△ABC ≌△CED D .∠1=∠28. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定这两个三角形全等,还需要条件( ) A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于 点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ; ②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④10、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( ) A 、3个 B 、2个 C 、1个 D 、0个二、填空题(每题3分,共21分)11.如图6,AC=AD,BC=BD,则△ABC≌ ;应用的判定方法是 .12.如图7,△ABD≌△BAC,若AD=BC,则∠BAD的对应角为 .13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm ,则点D到AC的距离为 .B C DA 图6 D O CBA 图8 A D CB图7 第9题图 第7题图14.如图8,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据 可得△AOD≌△COB,从而可以得到AD= .15.如图9,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“HL”说明 ≌ 得到AB=DC,再利用“ ”证明△AOB≌ 得到OB=OC. 16.如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角的关系是 .17.如图10,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 . 三、解答题(共29分)18. (6分)如右图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.解: ∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义)在△ABD 和△ACD 中⎪⎪⎩⎪⎪⎨⎧∴△ABD ≌△ACD ( ) 19. (8分)如图,已知△≌△是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm ,FH=1.1 cm ,HM=3.3 cm ,求MN和HG 的长度.第19题图图10 DCBA20.(7分)如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.21.(8分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.四、解答题(共20分)22.(10分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DAE;②DF⊥BC.B C EF A23.(10分)如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.12章·全等三角形(详细答案)一、选择题 CBDCD BDCDC二、填空题 11、△ABD SSS 12、∠ABC 13、3cm 14、∠COB SAS CB 15、△ABC △DCB AAS △DOC 16、相等 17、○3 两角和它们的夹边分别相等的两个三角形全等三、解答题18、AD CAD AB=AC ∠BAD=∠CAD AD=AD SAS19、B 解:(1)EF=MN EG=HN FG=MH ∠F=∠M ∠E=∠N ∠EGF=∠MHN (2)∵△EFG ≌△NMH ∴MN=EF=2.1cm∴GF=HM=3.3cm ∵FH=1.1cm ∴HG=GF -FH=3.3-1.1=2.2cm 20、解:∵DE ∥AB ∴∠A=∠E在△ABC 与△CDE 中∠A=∠E BC=CD∠ACB=∠ECD∴△ABC ≌△CDE(ASA)∴AB=DE21、证明:∵AB ∥DE∴∠A=∠EDF∵BC ∥EFCA∴∠ACB=∠F∵AD=CF∴AC=DF在△ABC与△DEF中∠A=∠EDFAC=DF∠ACB=∠F△ABC≌△DEF(ASA)四、解答题22、证明:①∵BE⊥CD∴∠BEC=∠DEA=90°在Rt△BEC与Rt△DEA中BC=DABE=DE∴Rt△BEC≌Rt△DEA(HL)②∵Rt△BEC≌Rt△DEA∴∠C=∠DAE∵∠DEA=90°∴∠D+∠DAE=90°∴∠D+∠C=90°∴∠DFC=90°∴DF⊥BC23、证明:在△ABC与△ADC中1=∠2AC=AC3=∠4∴△ABC≌△ADC(ASA)∴CB=CD在△ECD与△ECB中CB=CD∠3=∠4CE=CE∴△ECD≌△ECB(SAS)∴∠5=∠6第十二章全等三角形一、填空题(每小题4分,共32分).1.已知:///ABC A B C ∆∆≌,/A A ∠=∠,/B B ∠=∠,70C ∠=︒,15AB cm =,则/C ∠=_________,//A B =__________.2.如图1,在ABC ∆中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形_______对.图1 图2 图33. 已知△ABC ≌△A ′B ′C ′,若△ABC 的面积为10 cm 2,则△A ′B ′C ′的面积为______ cm 2,若△A ′B ′C ′的周长为16 cm ,则△ABC 的周长为________c m . 4. 如图2所示,∠1=∠2,要使△ABD ≌△ACD ,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F 、C 在线段BE 上,且∠1=∠2,BC =EF ,若要使△ABC ≌△DEF ,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部. 7.如图4,两平面镜α、β的夹角 θ,入射光线AO 平行于β,入射到α上,经两 次反射后的出射光线CB 平行于α,则角θ等于________.8.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分) 9.如图6,AE =AF ,AB =AC ,E C 与B F 交于点O ,∠A =600,∠B =250,则∠E OB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( ) A .35 cm B .30 cm C .45 cm D .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD= BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC , 得到ED=AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )NAMC B图7 图8 图9 图10A.边角边公理 B.角边角公理; C.边边边公理 D.斜边直角边公理13.如图9,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3C.2:3 D.1:414.如图10,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.图11第十二章全等三角形。

(常考题)人教版初中数学八年级数学上册第二单元《全等三角形》测试题(包含答案解析)(2)

(常考题)人教版初中数学八年级数学上册第二单元《全等三角形》测试题(包含答案解析)(2)

一、选择题1.MAB ∠为锐角,AB a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC x =,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是( )A .x d =或x a ≥B .x a ≥C .x d =D .x d =或x a > 2.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .43.如图,在ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,AD 与CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.下列添加的条件不正确的是( )A .EF EB = B .EA EC = C .AF CB =D .AFE B ∠=∠ 4.如图所示,下面甲、乙、丙三个三角形和ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有丙D .只有乙 5.如图,在ABC 中,90C ∠=︒,AD 是BAC ∠的角平分线,E 是边AB 上一点,若6CD =,则DE 的长可以是( )A .1B .3C .5D .76.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ 7.对于ABC 与DEF ,已知∠A=∠D ,∠B=∠E ,则下列条件:①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )A .①②B .①③C .②③D .③④8.如图,AB =AC ,点D 、E 分别是AB 、AC 上一点,AD =AE ,BE 、CD 相交于点M .若∠BAC =70°,∠C =30°,则∠BMD 的大小为( )A .50°B .65°C .70°D .80°9.如图,AD 是ABC 的高,AD BD 8==,E 是AD 上的一点,BE AC 10==,AE 2=,BE 的延长线交AC 于点F ,则EF 的长为( )A .1.2B .1.5C .2.5D .310.下列命题,真命题是( )A .全等三角形的面积相等B .面积相等的两个三角形全等C .两个角对应相等的两个三角形全等D .两边和其中一边的对角对应相等的两个三角形全等11.如图,已知AE 平分∠BAC ,BE ⊥AE 于E ,ED ∥AC ,∠BAE =34°,那么∠BED =( )A .134°B .124°C .114°D .104°12.已知,如图,OC 是∠AOB 内部的一条射线,P 是射线OC 上任意点,PD ⊥OA ,PE ⊥OB ,下列条件中:①∠AOC =∠BOC ,②PD =PE ,③OD =OE ,④∠DPO =∠EPO ,能判定OC 是∠AOB 的角平分线的有( )A .1个B .2个C .3个D .4个二、填空题13.如图,AC=BC ,请你添加一个条件,使AE=BD .你添加的条件是:________.14.如图,已知四边形,90,3,4,5,ABCD B AB BC AC ︒∠====180BAD CAD ︒∠+∠=,180BCD ACD ︒∠+∠=,则四边形ABCD 的面积是_________.15.如图,在△ABC 中,∠ABC 的平分线与外角∠ACE 的平分线交于点D ,若∠D =20°,则∠A =_____.16.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M 是射线OC 上一动点,则PM 的最小值为__.17.如图所示,己知ABC ∆的周长是22,,OB OC 分别平分ABC ∠和ACB OD BC D ∠⊥,于,且3OD =,则ABC ∆的面积是__________.18.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的最小值为_______.19.如图,∠1=∠2,要使△ABC ≌△ADC ,还需添加条件:_____.(填写一个你认为正确的即可)20.如图,在△ABC 中,∠C =90°,∠A 的平分线交BC 于D ,若20ABD S ∆=cm 2,AB =10cm ,则CD 为__________cm .三、解答题21.如图,在△ABC 中,∠BAC 的平分线AD 交BC 于点D ,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,连接EF .写出两个结论(∠BAD =∠CAD 和DE =DF 除外),并选择一个结论进行证明.(1)____________;(2)____________.22.如图,Rt △ABC 中,∠ACB=90°,D 是AB 上的一点,过D 作DE ⊥AB 交AC 于点E ,CE=DE .连接CD 交BE 于点F .(1)求证:BC=BD ;(2)若点D 为AB 的中点,求∠AED 的度数.23.如图,A 、D 、F 、B 在同一直线上,EF ∥CD ,AE ∥BC ,且AD =BF .求证:AE =BC24.如图,在△ABD 中,∠ABC=45°,AC ,BF 为△ABD 的两条高,CM//AB ,交AD 于点M ;求证:BE=AM+EM .25.如图,∠ACB 和∠ADB 都是直角,BC =BD ,E 是AB 上任意一点.(1)求证:△ABC ≌△ABD .(2)求证:CE =DE .26.如图,点E ,F 在BC 上,A D ∠=∠,AF DE =,AFC DEB ∠=∠.求证:BE CF =.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】当x =d 时,BC ⊥AM ,C 点唯一;当x ≥a 时,能构成△ABC 的C 点唯一,可确定取值范围.【详解】解:若△ABC 的形状、大小是唯一确定的,则C 点唯一即可,当x =d 时,BC ⊥AM ,C 点唯一;当x >a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有一个交点,x =a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有两个交点,一个与A 重合, 所以,当x ≥a 时,能构成△ABC 的C 点唯一,故选为:A .【点睛】本题考查了三角形的画法,根据题意准确作图并且能够分类讨论是解题关键.2.B解析:B【分析】根据EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠,经推到得EAF BAC ∠=∠;再结合全等三角形判定的性质分析,即可得到答案.【详解】∵EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠ ∴EAF BAC ∠=∠E B ∠=∠,即E B EAF BAC EA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()ASA ,故②符合题意;AF AC =,即AF AC EAF BAC EA BA =⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()SAS ,故③符合题意;①和④不构成三角形全等的条件,故错误;故选:B .【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的性质,从而完成求解.3.D解析:D【分析】根据垂直关系,可以判断△AEF 与△CEB 有两对角相等,就只需要添加一对边相等就可以了.【详解】解:∵AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,∴∠AEF=∠CEB=90°,∠ADB=∠ADC=90°,∴∠EAF+∠B=90°,∠BCE+∠B=90°,∴∠EAF=∠BCE .A.在Rt △AEF 和Rt △CEB 中AEF CEB EAF BCE EF EB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ≌CEB △(AAS ),故正确;B.在Rt △AEF 和Rt △CEB 中 AEF CEB EA ECEAF BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEF ≌CEB △(ASA ),故正确;C.在Rt △AEF 和Rt △CEB 中 AEF CEB EAF BCE AF CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ≌CEB △(AAS ),故正确;D.在Rt △AEF 和Rt △CEB 中 由AEF CEB EAF BCE AFB B ∠=∠⎧⎪∠=∠⎨⎪∠=∠⎩不能证明AEF ≌CEB △,故不正确; 故选D .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.4.B解析:B【分析】甲只有2个已知条件,缺少判定依据;乙可根据SAS 判定与△ABC 全等;丙可根据AAS 判定与△ABC 全等,可得答案.【详解】解:甲三角形只知道两条边长无法判断是否与△ABC 全等;乙三角形夹50°内角的两边分别与已知三角形对应相等,故乙与△ABC 全等;丙三角形72°内角及所对边与△ABC 对应相等且均有50°内角,可根据AAS 判定乙与△ABC 全等;则与△ABC 全等的有乙和丙,故选:B .【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.5.D解析:D【分析】过点D 作DF AB ⊥于点F ,根据角平分线的性质定理得6CD DF ==,而DE 的长一定是大于等于点D 到AB 的距离也就是DF 的长,即可得出结果.【详解】解:如图,过点D 作DF AB ⊥于点F ,∵AD 平分BAC ∠,DF AB ⊥,90C ∠=︒,∴6CD DF ==,∵DE DF ≥,∴6DE ≥,则只有D 选项符合.故选:D .【点睛】本题考查角平分线的性质,解题的关键是掌握角平分线的性质定理.6.B解析:B【分析】根据角平分线上的点到角的两边距离相等可得点P 到OB 的距离为5,再根据垂线段最短解答.【详解】∵点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,∴点P 到OB 的距离为5,∵点Q 是OB 边上的任意一点,∴PQ≥5.故选:B .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.7.A解析:A【分析】根据已知条件,已知两角对应相等,所以要证两三角形全等,可以根据角边角、角角边、边角边判定定理添加条件,再根据选项选取答案即可;【详解】题意已知:∠A=∠D ,∠B=∠E ,∴①根据“ASA”可添加AB=DE ,故①正确;②根据“AAS” 可添加AC=DF ,故②正确;③根据“AAS” 可添加BC=EF ,故③错误;④根据“ASA”可添加AB=DE ,故④错误;所以补充①②可判定两三角形全等;故选:A .【点睛】本题主要考查了三角形全等的判定,根据不同的判定方法可选择不同的条件,所以对三角形全等的判定定理要熟练掌握并归纳总结;8.A解析:A【分析】根据题意可证明ABE ACD ≅,即得到B C ∠=∠.再利用三角形外角的性质,可求出DME ∠,继而求出BMD ∠.【详解】根据题意ABE ACD ≅(SAS ),∴30B C ∠=∠=︒∵DME B BDC ∠=∠+∠,BDC C A ∠=∠+∠∴307030130DME B A C ∠=∠+∠+∠=︒+︒+︒=︒∴180********BMD DME ∠=︒-∠=︒-︒=︒故选A .【点睛】本题考查三角形全等的判定和性质,三角形外角的性质.利用三角形外角的性质求出DME B A C ∠=∠+∠+∠是解答本题的关键.9.A解析:A【分析】先证明Rt ACD ≌()Rt BED HL ,得CD ED AD AE 6==-=,CAD EBD ∠∠=,再证BE AC ⊥,然后由三角形面积关系求出BF 11.2=,则EF BF BE 1.2=-=.【详解】解:AD 是ABC 的高,AD BC ∴⊥,ADC BDE 90∠∠∴==︒,在Rt ACD 和Rt BED 中,AC BE AD BD =⎧⎨=⎩, Rt ACD ∴≌()Rt BED HL ,CD ED AD AE 826∴==-=-=,CAD EBD ∠∠=,C CAD 90∠∠+=︒,C EBD 90∠∠∴+=︒,BFC 90∠∴=︒,BE AC ∴⊥, ABC 的面积ABD =的面积ACD +的面积,111AC BF AD BD CD AD 222∴⨯=⨯+⨯, AC BF AD BD CD AD ∴⨯=⨯+⨯,即10BF 8886112=⨯+⨯=,BF 11.2∴=,EF BF BE 11.210 1.2∴=-=-=,故选:A .【点睛】本题考查了全等三角形的判定和性质、直角三角形的性质以及三角形面积等知识;证明三角形全等是解题的关键.10.A解析:A【分析】根据全等三角形的性质、全等三角形的判定定理判断即可.【详解】解:A 、全等三角形的面积相等,本选项说法是真命题;B 、面积相等的两个三角形不一定全等,本选项说法是假命题;C 、两个角对应相等的两个三角形相似,但不一定全等,本选项说法是假命题;D 、两边和其中一边的对角对应相等的两个三角形不一定全等,本选项说法是假命题; 故选:A .【点睛】本题考查全等三角形的应用,熟练掌握三角形全等的定义、性质及判定是解题关键. 11.B解析:B【分析】根据角平分线的性质和平行线的性质计算即可;【详解】∵AE 平分∠BAC ,∠BAE =34°,∴34EAC ∠=︒,∵ED ∥AC ,∴18034146AED ∠=︒-︒=︒,∵BE ⊥AE ,∴90AEB =︒∠,∴36090146124BED ∠=︒-︒-︒=︒;故答案选B .【点睛】本题主要考查了角平分线的性质和平行线的性质,结合周角的定理计算是解题的关键 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形复习练习题
一、选择题 1. 如图,给出下列四组条件:
① AB DE,,C EF AC DF ;② AB DE,,B E BC EF ;
③ B E,,C EF C F ;④ AB DE,AC DF B E .
其中,能使 △≌AB△C DEF 的条件共有( )
A.1 组
BC=8 厘米,DC=6 厘米,则点 D 到直线 AB 的距离是
厘米。
5.观察图中每一个大三角形中白色三角形的排列规律,则第 5 个大三角形中白
色三角形

个.
第1个
第2个
第3个
6.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=
度.
O
B
A
E
D
C
B
D O
PQ
A
C
E
7 如图,C 为线段 AE 上一动点(不与点 A,E 重合),在 AE 同侧分别作正三角形
4.如图,D 是等边△ABC 的边 AB 上的一动点,以 CD 为一边向上作等边△EDC,
连接 AE,找出图中的一组全等三角形,并说明理由.
A
E
D
B
C
5.如图,在△ABC 和△DCB 中,AB = DC,AC = DB,AC 与 DB 交于点M.
(1)求证:△ABC≌△DCB ;(2)过点 C 作 CN∥BD,过点 B 作 BN∥AC,CN 与
点 D ,交 BC 于点 E .已知 BAE 10 ,则 C 的度数为( )
A
DAΒιβλιοθήκη 3B. 40C. 50
D. 60
0 9.如图, △≌AC△B
B
ACB , BCB=30°,则 ACA 的度数为( )
E
C
A.20°
B.30°
A
A
C.35°
D.40°
C
B
A
B
B
C
D
10. 如图,AC=AD,BC=BD,则有( )
(A)∠B=∠E,BC=EF (B)BC=EF,AC=DF
(C)∠A=∠D,∠B=∠E (D)∠A=∠D,BC=EF
5. 如图,△ABC中,∠C = 90°,AC = BC,AD是∠BAC的平分线, DE⊥AB 于 E,若 AC = 10cm,则△DBE 的周长约等于( )
C D
A. 4cm B.10cm C.6cm D.9cm
C
B
D
O
B
12. 如图,OP 平分 AOB , PA OA, PB OB ,垂足分别为 A,B.下列结论
中不一定成立的是( )
A. PA PB
B. PO 平分APB
D
C. OA OB
D. AB 垂直平分OP
13. 如图,已知 AB AD 那么添加下列一个条件后,仍无法判定(
A

C
A.CB CD B. ∠BAC DAC
ADE,则需要添加的条件是
.
三、解答题
1.如图,已知 AB=AC,AD=AE,求证:BD=CE.
A
BD
EC
2.如图,在△ABC 中, AB AC,° BAC 40 ,分别以 AB,AC 为边作两个等 腰直角三角形 ABD 和 ACE ,使BAD CAE 90° . (1)求DBC 的度数;(2)求证: BD CE .
ABC 和正三角形 CDE、AD 与 BE 交于点 O,AD 与 BC 交于点 P,BE 与 CD 交于点
Q,连结 PQ.以下五个结论:
①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的结论有
(把你认为正确的序号都填上)。
8.如图所示,AB = AD,∠1 = ∠2,添加一个适当的条件,使△ABC ≌ △
A
BE
E B
CD
D
C
A
2. 如图,在△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交 BC 于 D,DE⊥AB 于 E,且
AB=5cm,则△DEB 的周长为
3.如图, BAC ABD ,请你添加一个条件:
,使 OC OD (只
添一个即可).
D
C
O
A
B
4.如图,在 ΔABC 中,∠C=90°∠ABC 的平分线 BD 交 AC 于点 D,若 BD=10 厘米,
6. 如图所示,表示三条相互交叉的公路,现要建一个货物中
转站,要求它到三条公路的距离相等,则可供选择的地址有(
A.1 处
B.2 处
C.3 处
D.4 处
A


E
B

① ④
7. 某同学把一块三角形的玻璃打碎了 3 块,现在要到玻璃店去配
一块完全一样的玻璃,那么最省事的方法是( )
A. 带①去 B.带②去 C.带③去 D.带①②③去 8. 如图,在Rt△ABC 中, B 90 , ED 是 AC 的垂直平分线,交 AC 于
A.AB 垂直平分 CD
B.CD 垂直平分 AB
C.AB 与 CD 互相垂直平分 D.CD 平分∠ACB
11. 如图, ∠C=90°,AD 平分∠BAC 交 BC 于 D,若 BC=5cm,BD=3cm,则点 D 到 AB 的
距离为( )
A. 5cm B. 3cm C. 2cm D. 不能确定
A
A
P
BN 交于点 N,试判断线段 BN 与 CN 的数量关系,并证明你的结论.
A
D
M
B
C
N
9. 如图,△ABC 中,∠BAC=90 度,AB=AC,BD 是∠ABC 的平分线,BD 的延长线
垂直于过 C 点的直线于 E,直线 CE 交 BA 的延长线于 F. 求证:BD=2CE.
B
C. ∠∠CA DCA
D. ∠∠ D 90
14. 观察下列图形,则第 n 个图形中三角形的个数是( )
……
第1个
第2个
第3个
A. 2n 2
B. 4n 4
C. 4n 4
D. 4n
二、填空题
1.如图,已知 AB AD , BAE DAC ,要使 △ABC ≌△ADE ,可补充的
条件是
(写出一个即可).
B
P
A
充一个条件,才能推出 △≌AP△C APD .从下列条件中补充
一个条件,不一定能推出 △≌AP△C APD 的是( ) A. BC BD B. AC AD C. ACB ADB D. CAB DAB
D 图(四)
4.如图,在△ABC 与△DEF 中,已有条件 AB=DE,还需添加两
个条件才能使△ABC≌△DEF,不能添加的一组条件是( )
B.2 组 C.3 组 D.4 组
2.如图, D,E 分别为△ABC 的 AC , BC 边的中点,将此三
角形沿 DE 折叠,使点C 落在 AB 边上的点 P 处.若CDE 48°,
则 APD 等于( )
A. 42°
B. 48°
C . 52°
D. 58°
C
3.如图(四),点 P 是 AB 上任意一点, ABC ABD ,还应补
相关文档
最新文档