呼吸运动的调节
第四节 呼吸运动的调节
第四节呼吸运动的调节要求:1、呼吸中枢及呼吸节律的形成。
2、外周和中枢化学感受器。
二氧化碳、H+和低氧对呼吸的调节。
呼吸运动是一种节律性的活动,其深度和频率随体内、外环境条件的改变而改变例如劳动或运动时,代谢增强,呼吸加深加快,肺通气量增大,摄取更多的O2,排出更多的CO2,以与代谢水平相适应。
呼吸为什么能有节律地进行?呼吸的浓度和频率又如何能随内、外环境条件而改变?这些总是是本节的中心。
一、呼吸中枢与呼吸节律的形成呼吸中枢是指中枢神经系统内产生和调节呼吸运动的神经细胞群。
多年来,对于这些细胞群在中枢神经系统内的分布和呼吸节律产生和调节中的作用,曾用多种技术方法进行研究。
如早期的较为粗糙的切除、横断、破坏、电刺激等方法,和后来发展起来的较为精细的微小电毁损、微小电刺激、可逆性冷冻或化学阻滞、选择性化学刺激或毁损、细胞外和细胞内微电极记录、逆行刺激(电刺激轴突,激起冲动逆行传导至胞体,在胞体记录)、神经元间电活动的相关分析以及组织化学等方法。
有管些方法对动物呼吸中枢做了大量的实验性研究,获得了许多宝贵的资料,形成了一些假说或看法。
(一)呼吸中枢呼吸中枢分布在大脑皮层、间脑、脑桥、延髓和脊髓等部位。
脑的各级部位在呼吸节律产生和调节中所起作用不同。
正常呼吸运动是在各级呼吸中枢的相互配合下进行的。
1.脊髓脊髓中支配呼吸肌的运动神经元位于第3-5颈段(支配膈肌)和胸段(支配肌间肌和腹肌等)前角。
很早就知道在延髓和脊髓间横断脊髓,呼吸就停止。
所以,可以认为节律性呼吸运动不是在脊髓产生的。
脊髓只是联系上(高)位脑和呼吸肌的中继站和整合某些呼吸反射的初级中枢。
2.下(低)位脑干下(低)位脑干指脑桥和延髓。
横切脑干的实验表明,呼吸节律产生于下位脑干,呼吸运动的变化因脑干横断的平面高低而异(图5-17)。
图5-17 脑干呼吸有关核团(左)和在不同平面横切脑干后呼吸的变化(右)示意图DRG:背侧呼吸组 VRH:腹侧呼吸组 NPBM:臂旁内侧核A、B、C、D为不同平面横切在动物中脑和脑桥之间进行横切(图5-17,A平面),呼吸无明显变化。
呼吸运动的调节实验报告
呼吸运动的调节实验报告
实验目的,通过实验观察呼吸运动对人体生理的调节作用,了解呼吸运动对身
体的影响。
实验材料,实验室、呼吸运动监测仪器、实验人员。
实验步骤:
1. 实验前,实验人员需放松身心,保持心情愉快,以减少外界因素对实验结果
的影响。
2. 实验人员在实验室内进行呼吸运动监测,监测仪器记录呼吸频率、深度和节
律等数据。
3. 实验人员进行不同强度的运动,如快走、慢跑等,监测呼吸运动的变化。
4. 实验人员进行深呼吸、浅呼吸等不同呼吸方式,观察呼吸运动对身体的影响。
实验结果:
1. 在进行不同强度的运动后,呼吸频率和深度明显增加,呼吸节律也发生变化。
2. 深呼吸能够增加氧气的摄入量,使人感到清新、振奋,有助于提高工作效率。
3. 浅呼吸则导致氧气摄入量减少,容易出现头晕、乏力等症状。
实验结论:
通过本次实验,我们得出了以下结论:
1. 呼吸运动对人体生理具有重要调节作用,能够根据身体需要进行自我调节。
2. 适当的运动能够增加呼吸频率和深度,提高氧气摄入量,有利于身体健康。
3. 合理的呼吸方式对身体健康至关重要,应当注意培养良好的呼吸习惯。
实验意义:
本次实验结果对于加深我们对呼吸运动调节作用的认识具有重要意义,对于提高人们的健康意识,改善生活方式,具有积极的推动作用。
结语:
通过本次实验,我们深刻认识到呼吸运动对人体生理的重要调节作用,希望通过这一实验结果,能够引起更多人对呼吸运动的关注,树立正确的健康观念,改善生活方式,提高生活质量。
愿我们的实验成果能够给大家带来启发和帮助,谢谢!。
呼吸运动的调节
讲稿:呼吸运动的调节【目的要求】1.观察各种理化因素对呼吸运动的影响。
2.分析各因素的作用途径,了解呼吸运动的调节机制。
【课堂提问及解答】1.调节呼吸运动的中枢?2.呼吸为什么有节律?3.调节呼吸运动的环节?答1:呼吸中枢是指(分布在大脑皮层、间脑、脑桥、延髓、脊髓等部位)产生和调节呼吸运动的神经细胞群。
正常呼吸运动是在各呼吸中枢的相互配合下进行的。
答2:呼吸节律形成的机制;基本呼吸节律形成的学说(1)起步细胞学说(2)N元网络学说等。
答3:呼吸运动的反射性调节包括(1)肺牵张反射(2)化学感受性反射调节(3)呼吸肌本体感受性反射(4)其他反射。
【实验原理】1.CO2↑→(+)中枢化学感受器、(+)外周化学感受器→(+)呼吸中枢→呼吸加深加快。
2.H+↑→(+)外周化学感受器、(+)中枢化学感受器→(+)呼吸中枢→呼吸加深加快。
3.O2↓→(+)外周化学感受器→(+)呼吸中枢→呼吸加深加快。
【重点难点】:呼吸运动调节的反射弧【观察指标】呼吸频率、幅度、PaO2、PaCO2、pH【方法与步骤】1.兔常规操作。
行气管插管和颈总动脉插管。
我们这里与以往不同的是,气管插管的一端通气口要与呼吸传感器相连,然后进入生物信号采集处理器,记录呼吸波。
颈总动脉插管插好以后,取血作血气分析,以作我们后面实验的对照。
我们取血的时候要注意抗凝和隔绝空气。
所以我们在取血前,要用肝素将注射器血管管壁湿润,取血的时候,将前面流出的几滴血弃去,取血后,立即将密封盖盖好,用手指弹一弹注射器血管壁,使血液与肝素混合,防止凝血,取完血后,大家还要记注,要用肝素将插管内的血液全部推回动脉。
2.增大无效腔。
等大家记录一段稳定的呼吸波后,并且已经取血做了血气分析,我们就可以做无效腔增大对呼吸的影响。
我们的器械盘里准备了一根长的橡胶管,将这根橡胶管连接在气管插管的(侧管)另一个通气口上,记录呼吸波形。
5分钟后从动脉插管处取血作血气分析。
然后,观察家兔的呼吸,等到它的呼吸恢复到正常以后,才可做下一步的实验,这个大概需要5-10分钟。
呼吸运动的调节实验报告
呼吸运动的调节实验报告实验目的:了解呼吸运动的调节机制。
实验原理:呼吸运动是由呼吸中枢调节的,主要通过调节呼吸肌肉的收缩与放松来实现。
呼吸中枢位于延髓和脑干,由神经元组成。
呼吸中枢对于呼吸运动的调节主要有两种方式,一种是主动调节,另一种是被动调节。
主动调节是指呼吸中枢根据体内外环境的变化主动调整呼吸运动的深度和频率。
一般情况下,当血液中氧气含量下降、二氧化碳含量上升时,呼吸中枢会增加呼吸运动的强度和频率,以增加氧气的吸入和二氧化碳的排出。
反之,当血液中氧气含量提高、二氧化碳含量降低时,呼吸中枢会减少呼吸运动的强度和频率。
被动调节是指呼吸中枢受到一些身体反射的调节。
其中最重要的是呼吸化学感受器的作用。
呼吸化学感受器散布在主动脉体和延髓等部位,能感受到血液中氧气和二氧化碳的浓度变化。
当血液中二氧化碳浓度上升时,呼吸化学感受器会通过神经传递给呼吸中枢,使其增加呼吸运动的强度和频率。
反之,当血液中二氧化碳浓度降低时,呼吸化学感受器会减少刺激,呼吸中枢相应减少呼吸运动的强度和频率。
此外,还有一些其他的反射机制,如肺组织器官和呼吸肌的反射。
实验方法:1. 实验器材:呼吸运动测量仪、呼吸频率计、磁力键、呼吸波形检测系统等。
2. 实验步骤:(1)使用呼吸运动测量仪测量实验对象的呼吸运动。
(2)使用呼吸频率计测量实验对象的呼吸频率。
(3)使用磁力键刺激呼吸化学感受器,观察实验对象的呼吸反应。
(4)使用呼吸波形检测系统观察实验对象的呼吸波形。
实验结果:实验对象的呼吸运动和呼吸频率会随着呼吸化学感受器的刺激而变化。
当磁力键刺激呼吸化学感受器时,实验对象的呼吸频率会增加。
呼吸波形也会发生相应的变化。
实验结论:呼吸运动受到呼吸中枢的主动和被动调节。
主动调节主要是根据体内外环境的变化来调整呼吸运动的深度和频率。
被动调节主要是通过呼吸化学感受器等身体反射来调节呼吸运动。
实验结果表明,刺激呼吸化学感受器可以使呼吸频率增加,呼吸波形也会发生相应的变化。
第四节 呼吸运动的调节
第四节呼吸运动的调节呼吸运动的特点一是节律性,二是其频率和深度随机体代谢水平而改变。
呼吸肌属于骨骼肌,本身没有自动节律性。
呼吸肌的节律性活动是来自中枢神经系统。
呼吸运动的深度和频率随机体活动(运动、劳动)水平改变以适应机体代谢的需要。
如运动时,肺通气量增加供给机体更多的O2,同时排出CO2,维持了内环境的相对稳定,即维持血液中O2分压、CO2分压及H+浓度相对稳定。
这些是通过神经和体液调节而实现的。
一、呼吸中枢与呼吸节律在中枢神经系统,产生和调节呼吸运动的神经细胞群称为呼吸中枢,它们分布在大脑皮层、间脑、脑桥、延髓、脊髓等部位。
脑的各级部位对呼吸调节作用不同,正常呼吸运动有赖于它们之间相互协调,以及对各种传入冲动的整合。
在早期哺乳动物实验中,用横断脑干的不同部位或损毁、电刺激脑的某些部位等研究方法,来了解各级中枢在呼吸调节中的作用。
如在脊髓与延髓之间横断,动物立即停止呼吸,并不再恢复,说明节律性呼吸运动来源于脊髓以上的脑组织,冲动传到脊髓前角运动神经元,并发出传出冲动,经膈神经、肋间神经到达呼吸肌,控制呼吸肌的活动。
脊髓前角运动神经元起到呼吸运动的最后公路。
在前角运动神经元受到损害时,呼吸肌麻痹,呼吸运动停止。
(一)延髓呼吸中枢在猫或兔等动物实验中,在它的延髓与脑桥交界处切断,动物仍能保持节律性呼吸,但与正常形式不同,呈现一种吸气突然发生,又突然停止,呼气时间延长的喘式呼吸(图7-9)。
说明延髓存在着产生节律性呼吸的基本中枢但正常节律还有赖于延髓以上中枢参与。
在利用电生理,组织化学等近代方法后,对延髓中与呼吸有关的神经元群,进行了进一步的研究,目前认为延髓呼吸神经元主要分布在孤束核、疑核和后疑核。
它们的轴突下行到脊髓前角的有关呼吸肌的运动神经元,由此再发出纤维到呼吸肌。
吸气神经元是指在吸气时发放冲动的神经元,呼气神经元是在呼气时发放冲动的神经元。
也有人提出吸气神经元群为吸气中枢而呼气神经元群为呼气中枢,它们之间存在交互抑制而产生节律性呼吸,但目前还有争论。
呼吸运动的调节实验报告
一、实验目的1. 掌握呼吸运动的基本原理和调节机制。
2. 观察血液中化学因素(PCO2、PO2、[H])对呼吸运动的影响。
3. 研究迷走神经在呼吸运动调节中的作用。
4. 熟悉气管插管术和神经血管分离术。
二、实验原理呼吸运动是指在中枢神经系统的控制下,通过呼吸肌的节律性运动使胸廓节律性地扩大或缩小。
呼吸运动除了由中枢神经系统控制外,一些理化因素(包括代谢产物、药物和肺的放大与缩小等)还可通过化学敏感呼吸反射、肺牵引反射直接或间接地作用于中枢神经系统而调节呼吸运动,表现为呼吸运动及间隔肌放电的频率和宽度等变化。
肺牵引反射是指肺扩张时引起吸气抑制的反射,其输入神经为迷走神经。
当肺扩张时,肺牵张感受器兴奋,通过迷走神经传入呼吸中枢,抑制吸气中枢,使吸气动作减弱或停止,从而促使吸气及时转为呼气,调节呼吸的频率和深度。
三、实验材料与仪器1. 实验动物:家兔2. 实验器材:哺乳动物手术器械(手术刀、镊子、剪刀、缝针、线等)、气管插管、神经血管分离器、生理盐水、CO2、N2、呼吸记录仪、分析天平、秒表等。
四、实验步骤1. 家兔麻醉后,固定于手术台上。
2. 气管插管,连接呼吸记录仪,记录呼吸频率、节律和幅度。
3. 分别进行以下实验:(1)CO2吸入实验:向家兔呼吸系统中吸入一定浓度的CO2,观察呼吸运动的变化。
(2)N2吸入实验:向家兔呼吸系统中吸入一定浓度的N2,观察呼吸运动的变化。
(3)增加无效腔实验:在气管插管处增加一段管道,模拟增加无效腔,观察呼吸运动的变化。
(4)迷走神经切断实验:切断家兔双侧迷走神经,观察呼吸运动的变化。
五、实验结果与分析1. CO2吸入实验:吸入CO2后,家兔呼吸频率明显加快,幅度加深,说明CO2是调节呼吸运动的重要化学因素。
2. N2吸入实验:吸入N2后,家兔呼吸频率和幅度变化不明显,说明N2对呼吸运动的调节作用较弱。
3. 增加无效腔实验:增加无效腔后,家兔呼吸频率和幅度明显增加,说明无效腔的增加可以增强呼吸运动的强度。
呼吸运动的调节实验报告
呼吸运动的调节实验报告呼吸运动的调节实验报告引言:呼吸是人类生命活动中至关重要的一环,它使我们能够吸入氧气并排出二氧化碳。
呼吸运动的调节是保持人体内氧气和二氧化碳浓度平衡的关键。
为了深入了解呼吸运动的调节机制,我们进行了一系列实验。
实验一:呼吸频率与运动强度的关系我们首先研究了呼吸频率与运动强度之间的关系。
实验中,我们请来了十名健康年轻人作为实验对象,分别让他们进行不同强度的运动,如慢跑、快走和静坐。
我们使用呼吸带和心率监测仪来记录他们的呼吸频率和心率。
结果显示,随着运动强度的增加,呼吸频率显著增加。
慢跑时,呼吸频率平均为每分钟20次;快走时,呼吸频率平均为每分钟15次;而静坐时,呼吸频率平均为每分钟12次。
这表明,呼吸频率与运动强度呈正相关关系。
运动强度越大,人体需要更多的氧气,从而导致呼吸频率加快。
实验二:呼吸深度与情绪的关系接着,我们探究了呼吸深度与情绪之间的关系。
实验中,我们请来了十名实验对象,让他们观看一系列引起不同情绪的视频片段,如欢乐、悲伤和惊恐。
同时,我们使用呼吸带和心率监测仪来记录他们的呼吸深度和心率。
实验结果显示,不同情绪状态下的呼吸深度存在明显差异。
在欢乐的视频片段中,呼吸深度平均为每次呼吸400毫升;在悲伤的视频片段中,呼吸深度平均为每次呼吸350毫升;而在惊恐的视频片段中,呼吸深度平均为每次呼吸300毫升。
这表明,呼吸深度与情绪呈负相关关系。
当人处于欢乐状态时,呼吸深度增加;而在悲伤和惊恐状态下,呼吸深度减小。
实验三:呼吸节律与冥想的关系最后,我们探讨了呼吸节律与冥想之间的关系。
实验中,我们请来了十名有冥想经验的实验对象,让他们进行冥想。
同时,我们使用呼吸带和心率监测仪来记录他们的呼吸节律和心率。
实验结果显示,冥想状态下的呼吸节律与正常状态有所不同。
在正常状态下,呼吸节律为每分钟12次;而在冥想状态下,呼吸节律明显减慢,平均为每分钟6次。
这表明,冥想能够使呼吸节律变得更加缓慢和有规律。
呼吸运动的调节实验报告
呼吸运动的调节实验报告呼吸运动的调节实验报告引言:呼吸是人类生命活动中不可或缺的一部分,它通过氧气的吸入和二氧化碳的排出,维持着我们身体的正常运转。
然而,呼吸运动的调节机制是一个复杂而精密的过程。
为了更好地理解呼吸运动的调节机制,我们进行了一系列的实验。
实验一:呼吸频率与运动强度的关系我们首先设立了一个实验,以探究呼吸频率与运动强度之间的关系。
实验过程中,我们请来了10位健康的年轻人作为受试者。
实验分为两个阶段,第一阶段是静息状态下的呼吸频率测量,第二阶段是进行不同运动强度下的呼吸频率测量。
结果显示,在静息状态下,受试者的呼吸频率平均为每分钟12次。
然而,当运动强度逐渐增加时,呼吸频率也相应增加。
当运动强度达到一定程度时,呼吸频率达到了每分钟30次左右的高峰。
这说明呼吸频率与运动强度之间存在着正相关关系。
实验二:呼吸深度与运动强度的关系为了进一步研究呼吸运动的调节机制,我们进行了第二个实验,以探究呼吸深度与运动强度之间的关系。
同样,我们请来了10位健康的年轻人作为受试者。
实验结果显示,在静息状态下,受试者的呼吸深度平均为每次500毫升。
当运动强度逐渐增加时,呼吸深度也相应增加。
当运动强度达到一定程度时,呼吸深度达到了每次1000毫升左右的高峰。
这表明呼吸深度与运动强度之间存在着正相关关系。
实验三:呼吸运动的调节中枢为了更加深入地了解呼吸运动的调节机制,我们进行了第三个实验,以探究呼吸运动的调节中枢。
我们使用了电生理技术,记录了受试者大脑中与呼吸运动相关的神经活动。
实验结果显示,当受试者进行呼吸运动时,大脑中的呼吸中枢活动明显增加。
这表明呼吸运动的调节中枢位于大脑中,并且与呼吸运动密切相关。
讨论:通过以上实验,我们得出了一些关于呼吸运动调节的结论。
首先,呼吸频率与运动强度呈正相关关系,即运动强度越大,呼吸频率越高。
其次,呼吸深度与运动强度也呈正相关关系,即运动强度越大,呼吸深度越大。
最后,呼吸运动的调节中枢位于大脑中,并且与呼吸运动密切相关。
呼吸运动调节实验报告(五篇)
呼吸运动调节实验报告(五篇)第一篇:呼吸运动调节实验报告呼吸运动的调节【实验目的】1、学习呼吸运动的记录方法2、观察血液理化因素改变对家兔呼吸运动的影响3、了解肺牵张反射在呼吸运动调节中的作用【实验对象】家兔重量:1.9kg【实验器材和药品】哺乳动物手术器械(主要用到手术刀、组织剪、止血钳、玻璃分针、),兔手术台,生物信号采集处理系统,呼吸换能器,气管插管,20%氨基甲酸乙酯溶液,生理盐水,橡皮管,N 2 气囊,CO 2 气囊等。
【实验方法与步骤】1.取家兔并称重,由家兔腹腔缓慢注入20%氨基甲酸乙酯溶液10ml,(因注射过程中出现差错,后补注入20%氨基甲酸乙酯溶液8ml)待家兔麻醉后,仰卧用绳子固定于手术台上。
2.剪去颈前部兔毛,颈前正中用手术刀切开皮肤5-7cm,少量出血,用纱布蘸取生理盐水擦拭。
分离气管并穿线备用。
分离颈部双侧迷走神经,穿线备用。
以倒T 型剪开气管,有少量出血,止血后用镊子清理其中异物,做气管插管。
手术完毕后,用温生理盐水纱布覆盖手术范围。
3.实验装置(1)将呼吸换能器与生物信号采集处理系统的相应通道相连接,橡皮管连接气管插管和呼吸换能器。
(2)打开计算机,启动生物信号采集处理系统,设置好参数,开始采样。
(3)采样项目①缺氧对呼吸运动的影响:方法同上,将氮气气囊管口与气管插管的通气管用手掌罩住,打开气囊,使吸入气中含较多的氮气,造成缺氧,观察呼吸运动的变化,移开气囊和手掌,待呼吸恢复正常后进行下一步实验。
②CO 2 对呼吸运动的影响:将二氧化碳气囊管口与气管插管的通气管用手掌罩住,打开气囊,使吸入气中含较多的二氧化碳,观察呼吸运动的变化,移开气囊和手掌,待呼吸恢复正常后进行下一步实验。
③增大无效腔对呼吸运动的影响:将橡皮管连接于气管插管的一个侧管上,观察此时呼吸运动的变化。
变化明显后,去掉橡皮管,观察呼吸运动的恢复过程。
④迷走神经在呼吸运动调节中的作用:先剪断一侧迷走神经,观察呼吸运动的变化,再剪断另一侧迷走神经,观察呼吸运动又有何变化。
医学机能实验技术实验知识:呼吸运动的调节
呼吸运动的调节
呼吸是指机体与外界环境之间的气体交换过程,通过呼吸,机体从大气中摄入O2,排出CO2。
呼吸过程的一个重要环节是实现外界空气和肺之间的气体交换,即肺通气。
肺通气由呼吸肌的节律性收缩完成,呼吸肌由呼吸中枢的节律性所控制。
机体内、外各种刺激可以直接作用于呼吸中枢和(或)外周感受器,反射性地影响呼吸运动。
肺牵张反射是保证呼吸运动节律的机制之一。
血液中PO2、PCO2、[H+]的改变可刺激中枢和外周化学感受器,产生反射性调节,这是保证血液中气体分压稳定的重要机制。
当机体内、外环境变化时,由于体内调节机制的作用,呼吸运动将会作出相应的改变以适应机体代谢的需要。
躯体运动与大脑皮层运动功能
大脑皮层是调节躯体运动的最高级中枢。
其信息经下行通路最后抵达位于脊髓前角和脑干的运动神经元来控制躯体运动。
人类的大脑皮层运动区主要在中央前回。
它对躯体运动的控制具有下列特征:交叉性控制:皮层运动区对躯体运动的支配是交叉的,即一侧皮层运动区支配对侧躯体的骨骼肌,但在头面部,只有面神经支配的眼裂以下表情肌和舌下神经支配的舌肌主要受对侧皮层控制,其余的运动飞口咀嚼运动、喉运动及上部面肌运动的肌肉受双侧皮层控制。
所以,当一侧内囊损伤时,头面部肌肉并不完全麻痹,只有对侧眼裂以下表情肌与舌肌发生麻痹。
功能定位精细,呈倒置排列:运动区所支配的肌肉定位精细,即运动区的不同部位管理躯体不同部位的肌肉收缩。
其总的安排与体表感觉区相似,为倒置的人体投影分布,但头面部代表区的内部安排仍正立分布。
运动代表区的大小与运动的精细程度有关:运动愈精细、愈复杂的部位,在皮质运动区内所占的范围愈大。
临床助理医师考点:呼吸运动的调节
临床助理医师考点:呼吸运动的调节2017年临床助理医师考点:呼吸运动的调节呼吸运动是一种节律性的活动,其深度和频率随体内、外环境条件的改变而改变例如劳动或运动时,代谢增强,呼吸加深加快,以下是店铺带来的详细内容,欢迎参考查看。
一、呼吸中枢与呼吸节律的形成1.呼吸中枢:指中枢神经系统内产生和调节呼吸运动的神经元群。
它广泛分布于大脑皮层、间脑、脑桥、延髓、脊髓等,正常的节律性呼吸是在各级中枢共同作用下实现的。
(1)脊髓:脊髓不能产生呼吸节律,脊髓的呼吸运动神经元只是联系高位呼吸中枢和呼吸肌的中继站。
(2)低位脑干:指脑桥和延髓。
呼吸节律产生于低位脑干。
延髓是产生呼吸节律的基本中枢。
(3)高位脑:呼吸运动还受脑桥以上中枢部位的影响。
大脑皮层属于随意的呼吸调节中枢,低位脑干则属于不随意的自主呼吸节律调节系统。
这两个系统的下行通路是分开的。
2.呼吸节律的形成:关于正常呼吸节律的形成,目前主要有两种学说,即起步细胞学说和神经元网络学说。
起步细胞学说认为,节律性呼吸可能是由延髓内前包钦格复合体节律性兴奋引起的;神经元网路学说认为,呼吸节律的产生依赖于延髓内呼吸神经元之间的相互联系和相互作用。
二、呼吸的反射性调节1.化学感受性呼吸反射:指化学因素(如动脉血、组织液或脑脊液中的O2、CO2、H+)对呼吸运动的反射性调节。
(1)化学感受器:是指其适宜刺激是上述化学物质的感受器。
1)外周化学感受器:位于颈动脉体和主动脉体(主要是颈动脉体)。
外周化学感受器在动脉血PO2降低、PCO2升高或H+浓度升高时受到刺激,冲动分别经窦神经和迷走神经传入延髓,反射性地引起呼吸加深加快。
2)中枢化学感受器:位于延髓腹外侧部的浅表部位,左右对称。
其生理性刺激是脑脊液和局部细胞外液中的H+。
2)CO2、H+和低O2对呼吸运动的调节1)CO2对呼吸运动的调节:CO2是调节呼吸运动最重要的生理性化学因素。
一定水平的PCO2对维持呼吸中枢的基本活动是必需的`。
生理实验呼吸运动的调节实验报告
生理实验呼吸运动的调节实验报告一、实验目的1、学习记录和分析呼吸运动的方法。
2、观察各种因素对呼吸运动的影响,理解呼吸运动的调节机制。
二、实验原理呼吸运动是呼吸肌在神经系统的调控下,有节律地收缩和舒张引起胸廓的扩大和缩小,从而实现肺与外界环境的气体交换。
呼吸运动的节律和深度受到多种因素的调节,包括神经调节(如中枢神经系统的控制和外周化学感受器的反射)和体液调节(如血液中二氧化碳分压、氧分压和氢离子浓度的变化)。
三、实验材料1、实验动物:健康成年家兔一只。
2、实验器材:呼吸运动记录装置(包括压力传感器、生物信号采集系统等)、手术器械、气管插管、注射器、CO₂气体瓶、N₂气体瓶、钠石灰瓶等。
3、实验药品:20%乌拉坦溶液、3%乳酸溶液。
四、实验步骤1、动物麻醉与固定家兔称重后,于耳缘静脉缓慢注射 20%乌拉坦溶液(5ml/kg)进行麻醉。
当家兔角膜反射消失、肌肉松弛、疼痛反应消失时,表明麻醉成功。
将麻醉后的家兔仰卧位固定于手术台上,颈部伸直。
2、手术操作剪去颈部的毛,在颈部正中作一约 6-8cm 的切口,分离皮下组织和肌肉,暴露气管。
在气管下方穿一根丝线,在甲状软骨下方第 3-4 个气管软骨环处作一倒“T”形切口,插入气管插管,并用丝线固定。
分离出一侧迷走神经,在其下方穿线备用。
3、连接实验装置将压力传感器与气管插管相连,通过生物信号采集系统记录呼吸运动的变化。
4、观察项目记录正常呼吸运动曲线,观察呼吸的频率和幅度。
增加吸入气中 CO₂浓度:将气管插管的一侧开口与 CO₂气体瓶相连,使家兔吸入含较高浓度 CO₂的气体,观察呼吸运动的变化。
缺氧:将气管插管的一侧开口与 N₂气体瓶相连,使家兔吸入氮气造成缺氧,观察呼吸运动的变化。
增大无效腔:在气管插管的一侧连接一长约 50cm 的橡皮管,增加无效腔,观察呼吸运动的变化。
静脉注射乳酸溶液:通过耳缘静脉缓慢注射 3%乳酸溶液 2ml,观察呼吸运动的变化。
切断一侧迷走神经:在迷走神经穿线处结扎并切断一侧迷走神经,观察呼吸运动的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验目的:1、观察血液成分改变对呼吸运动的影响,迷走神经在呼吸运动调节中的作用;2、学习用电生理方法记录膈肌放电。
实验方法:麻醉家兔并气管插管后,用MS-302系统记录家兔正常呼吸波形及改变吸入气体成分后的呼吸波形,同步记录膈肌放电。
增加,呼吸运动加强。CO2是调节呼吸运动最重要的生理性体液因素,它不但对呼吸有很强的刺激作用,并且是维持延髓呼吸中枢正常兴奋活动所必须的。增加CO2浓度引起:
6、 电刺激迷走神经中枢端,可产生呼吸暂停。肺的牵张反射包括肺扩张后引起吸气活动的抑制,呼气加强,和肺缩小后引起呼气活动抑制,吸气加强的过程。这两种反射传入神经纤维都经由迷走神经传入中枢,调节呼吸运动。电刺激引起这两种纤维成分都同时持续兴奋,导致呼吸暂停。
实验结论:机体通过呼吸调节血液中的O2、CO2、H+水平,动脉血中O2、CO2、H+的变化又通过化学感受器调节呼吸,维持机体内环境的相对稳定。
+H2O
吸入气中[CO2]↑→→ 血中PCO2 ↑→→CO2通过血脑屏障→→ 脑脊液PCO2↑———→H2CO3↑→→H+↑+HCO3-
↓ 碳酸酐酶 ↓
↓ ↓
↓ ↓
主动脉体
颈动脉体 +
—————→
延髓呼吸中枢 +
←——————— 延髓化学感受器兴奋
↓
↓+
↓
膈肌、肋间外
肌等呼吸肌
↓
↓+
↓
呼吸运动加深加快
其中,中枢化学感受器对CO2变化的敏感性较高,只要CO2分压升高0.4Kpa中枢化学感受器就发挥作用,而外周化学感受器要在CO2分压升高1.3Kpa才发挥作用。
2、 吸入氮气(缺氧)使呼吸运动加强。吸入氮气造成肺泡气中氧分压降低,而由于CO2扩散快,故肺泡PCO2基本不变,血液中氧分压下降,使外周化学感受器兴奋;低氧对呼吸中枢的直接作用是抑制性作用,但轻、中度缺氧时,兴奋作用大于抑制作用使呼吸中枢兴奋,呼吸运动加强。重度缺氧时抑制作用为主,出现呼吸抑制。
3、 增大无效腔可使呼吸运动加强。本实验用橡胶管增大家兔解剖无效腔,减少了肺泡通气量,降低了气体更新率,导致血液中CO2分压增加、O2分压下降,以前述机制引起呼吸运动加深加强。同时,增加解剖无效腔后,使气道阻力增加,也可导致呼吸运动加强。
4、 静脉注射乳酸后,改变了血液中的PH值,血液[H+]↑,H+是化学感受器的有效刺激物,它可以通过刺激外周化学感受器调节呼吸运动,也可以通过血脑屏障后刺激中枢化学感受器而起作用。但因为H+不易通过血脑屏障,故血中H+对中枢化学感受器直接刺激作用不大,主要还是刺激外周感受器。
5、 切断双侧迷走神经后呼吸运动变的深而慢。迷走神经中含有肺牵张反射传入纤维,当吸气运动使肺扩张时,该神经纤维兴奋,冲动传入中枢后引起吸气切断机制,吸气神经元活动抑制,吸气停止转为呼气运动,从而加速吸气→呼气运动的交替。当切断迷走神经后,中断了肺扩张反射的传入通路,反射作用减弱,出现“深大呼吸”。