热交换器课程设计任务书(补充数据)
换热器课程设计说明书
一 设计任务与条件现试设计一台正戊烷冷凝器,实现正戊烷蒸汽由160C ︒冷却至40C ︒,正戊烷的流量为7200h kg /,操作压力为0.175MPa 。
水蒸气的入口水温为30C ︒,出口水温为40C ︒。
二 设计计算〈一〉 确定设计方案 (1) 选择换热器的类型正戊烷蒸汽: 160C ︒→40C ︒ 冷却水: 30C ︒→40C ︒因为壳体与传热管壁温差大于50C ︒,初步确定选用带有补偿圈的固定管板式换热器。
(2)管程安排考虑到冷却水若走壳程由于流速较低易结垢,确定水蒸气走管程正戊烷饱和蒸汽走壳程。
〈二〉确定物性数据正戊烷蒸汽定性温度: 100240160=+=T )(C ︒ 冷却水定性温度: 3524030=+=t )(C ︒正戊烷蒸汽在100℃,0.175MPa 条件下的有关物性数据如下:06.4)1000273(314.8072.01017531=+⨯⨯⨯==RT PM ρ)/(3m kg)/(1057.131,K kg J c p ⋅⨯= )/(0128..01K m W ⋅=λ s Pa ⋅⨯=-5110874.0μ水在35℃时的有关物性数据如下: 31/7.995m kg =ρ )/(10174.431,C kg J c p ︒⋅⨯=)/(6176.01C m W ︒⋅=λ s Pa ⋅⨯=-511075μ 〈三〉估算传热面积 (1)热流量8.376)40160(57.13600/7200,,=-⨯⨯=∆⋅⋅=T c q Q h p h m T )(kW(2)冷却水用量9.32709)3040(10147.43600108.37633,,=-⨯⨯⨯⨯=∆⋅=t c Q q c p T cm )/(h kg (3)平均传热温差,按逆流算3.44304040160ln)3040()40160(=-----=∆m t )(C ︒(4)初算传热面积 由于在高压力下操作,假设)/(1102C m W K ︒⋅=则估算的传热面积为3.773.44110108.3763=⨯⨯=∆=m T t K Q S 估)(2m 〈四〉工艺结构尺寸 (1)管径和管内流速选用mm mm 5.225⨯φ较高级冷拔传热管(碳钢),取管内流速为s m u i /6.0=。
换热器课程设计文档
换热器课程设计文档一、教学目标本课程的教学目标是让学生掌握换热器的基本原理、类型、结构和计算方法,能够运用所学知识分析和解决实际工程问题。
具体分为以下三个部分:1.知识目标:(1)掌握换热器的基本原理和作用;(2)了解不同类型的换热器及其特点;(3)熟悉换热器的结构组成和计算方法。
2.技能目标:(1)能够分析实际工程中的换热问题,并选择合适的换热器;(2)能够运用换热器计算方法,准确计算换热器的性能参数;(3)具备一定的创新能力和解决问题的能力。
3.情感态度价值观目标:(1)培养学生对能源工程领域的兴趣和热情;(2)培养学生严谨的科学态度和团队协作精神;(3)培养学生关注环保、节能和可持续发展意识。
二、教学内容本课程的教学内容主要包括以下几个部分:1.换热器的基本原理:介绍换热器的工作原理、热传递方式及换热效果的影响因素。
2.换热器的类型:分类介绍不同类型的换热器,如管式换热器、板式换热器、壳管式换热器等,并分析其优缺点。
3.换热器的结构组成:详细讲解换热器的主要组成部分,如壳体、管束、换热管、支架等,以及它们的作用和选型依据。
4.换热器计算方法:介绍换热器的传热计算、阻力计算和面积计算等方面的方法。
5.换热器在实际工程中的应用:分析换热器在能源、化工、环保等领域的应用案例,培养学生解决实际问题的能力。
三、教学方法为了提高教学效果,本课程将采用以下几种教学方法:1.讲授法:通过教师的讲解,使学生掌握换热器的基本原理、类型和计算方法。
2.案例分析法:分析实际工程中的换热器应用案例,使学生能够将理论知识应用于实际问题。
3.实验法:安排实验课程,让学生亲自动手操作,加深对换热器结构和工作原理的理解。
4.讨论法:学生进行小组讨论,培养学生的团队协作能力和创新思维。
四、教学资源为实现教学目标,我们将准备以下教学资源:1.教材:选用权威、实用的换热器教材,为学生提供系统、全面的学习资料。
2.参考书:推荐学生阅读相关领域的参考书籍,丰富学生的知识体系。
换热器设计任务书
过程装备与控制工程专业综合课程设计任务书课程设计名称:换热设备设计学院专业班级姓名指导教师2014年2月换热设备设计设计者姓名:班级:学号:指导教师:日期:年月日一、设计内容管壳式换热设备设计的内容包括工艺设计和机械设计两方面。
本课程设计是把工艺参数、尺寸作为已知条件,在满足工艺条件的前提下,对换热设备进行强度、刚度及稳定性计算,并从制造、安装、检修、使用等方面出发进行结构设计。
二、设计参数和技术特性指标(见后表)三、设计要求在阅读了设计任务书后,按以下步骤进行换热设备的机械设计。
1了解设计条件;2选材;3按设计压力计算壳体和管箱壁厚;4管子与管板连接结构设计;5壳体与管板连接结构设计;6管板厚度计算;7折流板、支持板等零部件的结构设计;8换热管与壳体在温差和流体压力联合作用下的应力计算;9管子拉脱离和稳定性校核;10判断是否需要膨胀节,如需要,则选择膨胀节结构型式并进行有关的计算;11接管、接管法兰、支座等的选择及开孔补强设计等。
换热设备设计任务书简图与说明设计参数及要求接管表过程装备与控制工程专业综合课程设计指导书换热设备设计中国石油大学(北京)化学科学与工程学院过程装备与控制工程系2014年2月修订1 专业综合课程设计的目的专业综合课程设计是专业教学计划中的重要组成部分。
课程设计所涉及到的课程主要有化工原理、工程材料、金属焊接、过程设备设计、过程装备控制技术、过程装备成套技术等。
在课程设计过程中通过综合运用所学到的专业知识独立完成典型化工设备的全部机械设计,包括设计参数的确定、标准和通用零部件的选用、主要零部件的材料选择、结构设计、强度设计及稳定性校核、施工图的绘制和技术要求的编写等,获得一次工程设计的实践训练,了解石油化工设备工程专业设计的一般方法,熟悉有关的设计标准和规范,了解设备的主要结构,熟练掌握化工设备图的基本绘图特点和技巧。
本课程设计以石油炼制过程中主要的工艺设备换热器为设计对象,进行工艺设计和机械设计的全面训练。
毕业设计换热器设计任务书
4.按学院规定的统一规范化要求撰写设计说明书。
时
间
进
度
第1~2周:阅读相关资料,外文文献翻译,;
第3~6周:撰写开题报告,开题报告修改及开题答辩;毕业实习,撰写实习报告;
第7~8周:形成设计思路方案,设计工况确定,设计方案选择与比较,中期答辩;
第9~10周:设计方案的完善及确定,总体结构设计布置及校核;
[19]刘殿宇.双管程液体分布器的设计. [J].化工设备与管道,2011.
[20]尹斌,丁国良.R134a冷水机组干式蒸发器两种模型比较[J].建筑热能通风空调,2006.
院长签字:指导教师签字:
[7]王志远.制冷原理与应用[M].北京:机械工业出版社,2009:190-210.
[8]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998:459-509.
[9]彦启森.制冷技术及其应用[M] .北京:中国建筑工业出版社,2006.
[10]陈沛霖.空调与制冷技术[M] .上海:同济大学出版社,1999.
[15]刘斌.干式蒸发器的应用和优化设计[J].亚洲特灵研发中心,2005.
[16]宋宝.防止干式蒸发器换热管泄漏的优化设计[J].低温与特气.2011.
[17]司少娟,陈亚标.双回路紧凑型干式蒸发器的设计[J].低温与超导,2011.
[18]潘丽君.满液式蒸发器与干式蒸发器的区别[J].制冷技术,2011.
第11~12周:撰写设计说明书,绘制换热器二维、三维图纸;
第13周:修改设计图纸、设计说明书;
第14周:上交设计图纸及设计说明书,指导老师评阅,准备毕业答辩;
第15周:毕业答辩,毕业设计修改。
原
热交换器设计说明书终极
0.00303
79 80 81
Gs tw
Gs
M2 23.16 AS 0.0355
假定
652.4 57
200 .4 10 6
℃ kg/( m•s)
w1
查参考文献 2 附录 9
热交换器课程设计说明书
2
82
壳侧换 热系数
rw
(m2•
K)/W
查参考文献 1 附录 C 查参考文献 2
0.00034 0.00017
氨的污 垢热阻 管壁热 阻
(m2•
K)/W
忽略
K [
72.24
P
P
24
参数 P、 R
R
t1'' t 2' 40 25 ' ' 120 25 t1 t 2
0.16
t1' t1'' 120 90 R '' ' 40 25 t2 t2
—
℃
2 0.98 70.8 1000
25 26 27
温差修 正系数 有效平 均温差 初选传 热系数 估算传 热面积
50
度
120
ls (0.2 ~ 1)D s (0.2 ~ 1) 0.5
51
ls
m
0.1 ~ 0.5m
0.3
ls 0.3m ,ls ,i 0.39m,ls ,o 0.39m
热交换器课程设计说明书
52
折流板 数目 折流板 管孔数 折流板 上管孔 直径 通过折 流板上 管子数 折流板 缺口处 管数
Ds 2h D 2h ) sin[ar cos( s )] DL DL
课程设计模板换热器
课程设计模板换热器一、教学目标本课程的学习目标包括知识目标、技能目标和情感态度价值观目标。
知识目标要求学生掌握换热器的原理、类型和应用;技能目标要求学生能够运用换热器的基本原理进行热交换计算和设计;情感态度价值观目标要求学生培养对换热器技术和节能减排的认识,提高学生的环保意识和社会责任感。
通过本课程的学习,学生将能够:1.描述换热器的基本原理和类型;2.分析换热器的工作过程和性能指标;3.应用换热器的基本原理进行热交换计算和设计;4.探讨换热器技术在节能减排中的应用;5.培养对换热器技术和节能减排的认识,提高环保意识和社会责任感。
二、教学内容本课程的教学内容主要包括换热器的原理、类型和应用。
具体包括以下几个方面的内容:1.换热器的基本原理:热传递方式、换热器的工作过程和性能指标;2.换热器的类型:板式换热器、壳管式换热器、空气冷却器等;3.换热器的应用:热交换计算、设计方法和实例分析;4.换热器技术在节能减排中的应用:热泵技术、余热回收等。
三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:通过教师的讲解,使学生掌握换热器的基本原理和应用;2.讨论法:引导学生进行思考和交流,提高学生的理解和分析能力;3.案例分析法:通过分析实际案例,使学生更好地理解和应用换热器技术;4.实验法:通过实验操作,使学生直观地了解换热器的工作过程和性能。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:《换热器技术》等相关教材;2.参考书:国内外相关论文、技术手册等;3.多媒体资料:PPT课件、视频资料、图片等;4.实验设备:换热器实验装置、热流量计等。
通过以上教学资源的选择和准备,我们将为学生提供全面、丰富的学习资源,帮助学生更好地理解和掌握换热器技术。
五、教学评估本课程的教学评估将采用多种方式,包括平时表现、作业、考试等,以全面、客观、公正地评估学生的学习成果。
换热器课程设计
目录1.设计任务书-------------------32.概述与设计方案简介-----------43.工艺及设备设计计算-----------94.辅助设备的计算及选型--------115.设计结果汇总表--------------156.设计评述--------------------157.参考资料--------------------168.主要符号说明----------------169.致谢------------------------161.设计任务书2.概述与设计方案简介换热器的类型列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。
一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。
管束的壁面即为传热面。
其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。
为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。
折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。
列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。
若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。
2.1换热器换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。
由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。
按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。
根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。
间壁式换热器又称表面式换热器或间接式换热器。
在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。
换热器课程设计任务书指导书_新
山东建筑大学课程设计说明书题目:管壳式油冷却器设计课程:热交换器理论与设计院(部):热能工程学院专业:热能与动力工程(热电方向)班级:学生姓名:学号:指导教师:杨丽钱焕群完成日期:山东建筑大学课程设计任务书院系热能工程学院专业热能与动力工程(热电方向)班级姓名课程设计题目:管壳式油冷却器设计课程设计时间:从2014 年1 月6 日到2014 年1月17 日一、课程的目的换热器课程设计是《热交换器理论与设计》课程的主要教学环节之一。
通过课程设计可以使学生加强了解换热器工艺设计内容、程序和基本原则,掌握换热器设计的基本方法和步骤,提高运算和制图能力。
同时,可以使学生进一步巩固所学的理论知识,并运用这些知识来解决工程实际问题。
二、设计技术参数和要求11号润滑油处理量:20Kg/s11号润滑油入口温度: 90℃11号润滑油出口温度: 45℃冷却水流量: 50Kg/s冷却水入口温度: 26℃冷却水工作压力: P = 0.1 MPa (表压)允许最大压力降:油侧 <0.08 MPa,水侧 <0.06 MPa三、设计内容和步骤根据给定条件,提出设计方案,编写设计说明书,绘制装配图和管板、折流板的零件图。
设计内容和步骤包括:1. 换热器型式、台数及流动方式的选择;2. 换热器流体流动空间的选择;3. 流体流速的选择;4. 管子和壳体材料的选择;5. 热计算。
包括确定流体的出口温度、定性温度,换热器的热负荷及平均温差计算。
6. 结构设计。
包括确定换热管直径和长度,确定壳体直径,确定折流板、拉杆等部件的尺寸及数量;选用分程隔板、纵向隔板、挡管、导流筒、防冲板等部件及其结构尺寸确定;要求长径比在4—10之间。
管壳式换热器属于压力容器,壳体应该进行强度计算,但是由于缺乏压力容器的学习,本次课程设计不要求进行强度计算。
7. 传热计算及阻力计算。
包括对传热系数和壁温的核算以及流通通道的阻力计算.要求实际传热面积比所需传热面积大10%—20%。
2011.6换热器设计任务书
任务书一(一)设计题目:煤油冷却器的设计(二)设计任务及操作条件1:处理能力10600kg/h 煤油2:设备形式列管式换热器3:操作条件(1)煤油:入口温度140℃,出口温度40℃(2)冷却介质:自来水入口温度30℃,出口温度40℃(3)允许压强降:不大于100kpa(4)煤油定性温度下的物性数据:ρ=825Kg/m3,µ=7.15×10-4Pa·sCp=2.22KJ/(Kg·℃),λ=0.14W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)冷却器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:正戊烷蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力3000kg/h 正戊烷饱和蒸汽2:设备形式立式列管冷凝器3:操作条件(1)正戊烷:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(2)冷却介质:井水入口温度32℃,流量7000kg/h(3)允许压强降:不大于150kpa(4)正戊烷定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:吸收塔尾气冷凝器的设计(二)设计任务及操作条件1:处理能力3t/h吸收塔顶部出来的贫气(温度6℃,压强1.2Mpa,其中含C4约2.0%,C6约1.0%,其余组分按氮气处理),将其中未被吸收的C4、C6全部冷凝2:设备形式立式列管冷凝器3:操作条件(6)C4、C6:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(7)冷却介质:盐水(性质按25%的浓度查取)入口温度-4℃,出口温度2℃,流量:自己计算(8)允许压强降:不大于100Kpa(9)C4、C6定性温度下的物性数据:自查(10)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:某吸收操作中富油预热器的设计(二)设计任务及操作条件1:处理能力15t/h富油(C4: 含量8.2%,C6含量91.8%,温度40℃,流量15t/h)2:设备形式列管式换热器3:操作条件(1)富油:入口温度40℃,出口温度80℃(2)加热介质:解析塔出来的贫油(组分近视按全部C6处理),入口温度102℃,出口温度88℃,流量13.2t/h(3)允许压强降:不大于150kpa定性温度下的物性数据:自查(4)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)预热器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:某吸收操作中贫油冷却器的设计(二)设计任务及操作条件1:处理能力13.2t/h解析塔出来的贫油(组分近视按全部C6处理),2:设备形式列管式换热器3:操作条件(1)贫油:入口温度140℃,出口温度40℃(2)冷却介质:盐水(性质按25%的浓度查取)入口温度-4℃,出口温度2℃,流量:自己计算(3)允许压强降:不大于120kpa定性温度下的相关物性数据:自查(4)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)冷却器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:某解吸塔塔顶冷凝器的设计(二)设计任务及操作条件1:处理能力10t/h解析塔顶部出来的常压饱和蒸汽(近似按全部C4计算),全部冷凝,2:设备形式立式列管冷凝器3:操作条件(11)C4 冷凝温度温度自查,冷凝液于饱和温度离开冷凝器(12)冷却介质:自来水入口温度20℃,出口温度30℃,流量:自己计算(13)允许压强降:不大于150kpa(14)C4定性温度下的物性数据:自查(15)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:丁二烯蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力7500kg/h饱和丁二烯蒸汽,2:设备形式立式列管冷凝器3:操作条件(1)饱和丁二烯蒸汽:(温度40℃,冷凝潜热为373kJ/kg),冷凝液于饱和温度离开冷凝器(2)冷却介质:水入口温度15℃,出口温度25℃,流量:自己计算(3)允许压强降:不大于150kpa(4)饱和丁二烯定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:丁二烯蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力7500kg/h饱和丁二烯蒸汽,2:设备形式水平列管冷凝器3:操作条件(1)饱和丁二烯蒸汽:(温度40℃,冷凝潜热为373kJ/kg),冷凝液于饱和温度离开冷凝器(2)冷却介质:水入口温度15℃,出口温度25℃,流量:自己计算(3)允许压强降:不大于150kpa(4)饱和丁二烯定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)水平列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:正戊烷蒸汽冷凝器的设计(三)设计任务及操作条件1:处理能力3000kg/h 正戊烷饱和蒸汽2:设备形式水平列管冷凝器3:操作条件(1)正戊烷:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(2)冷却介质:井水入口温度32℃,流量7000kg/h(3)允许压强降:不大于100kpa(4)正戊烷定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:吸收塔尾气冷凝器的设计(二)设计任务及操作条件1:处理能力3t/h吸收塔顶部出来的贫气(温度6℃,压强1.2Mpa,其中含C4约2.0%C6约1.0%其余组分按氮气处理),将其中未被吸收的C4、C6全部冷凝2:设备形式水平列管冷凝器3:操作条件(1)C4、C6:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(2)冷却介质:盐水(性质按25%的浓度查取)入口温度-4℃,出口温度2℃,流量:自己计算(3)允许压强降:不大于100kpa(4)C4、C6定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)水平列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书十一(一)设计题目:某解吸塔塔顶冷凝器的设计(二)设计任务及操作条件1:处理能力10t/h解析塔顶部出来的常压饱和蒸汽(近似按全部C4计算),全部冷凝,2:设备形式水平列管冷凝器3:操作条件(1)C4 冷凝温度温度自查,冷凝液于饱和温度离开冷凝器(2)冷却介质:自来水入口温度20℃,出口温度30℃,流量:自己计算(3)允许压强降:不大于150kpa(4)C4定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)水平列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书十二(一)设计题目:某有机液冷却器的设计(二)设计任务及操作条件1:处理能力40000kg/h 有机液2:设备形式列管式换热器3:操作条件(1)有机液:入口温度65℃,出口温度50℃(2)冷却介质:自来水20000kg/h 水入口温度25℃,出口温度计算(3)允许压强降:不大于250Kpa(4)有机液定性温度下的物性数据:ρ=1000Kg/m3,µ=10.0×10-4Pa·sCp=2.261KJ/(Kg·℃),λ=0.172W/(m·℃)水定性温度下的物性数据:ρ=950Kg/m3,µ=7.42×10-4Pa·sCp=4.187KJ/(Kg·℃),λ=0.621W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)冷却器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书十三(一)设计题目:某有机液冷却器的设计(二)设计任务及操作条件1:处理能力40100kg/h 有机液2:设备形式列管式换热器3:操作条件(1)有机液:入口温度65℃,出口温度50℃(2)冷却介质:自来水20050kg/h 水入口温度25℃,出口温度计算(3)允许压强降:不大于250kpa(4)有机液定性温度下的物性数据:ρ=1000kg/m3,µ=10.0×10-4Pa·sCp=2.261kJ/(kg·℃),λ=0.172W/(m·℃)水定性温度下的物性数据:ρ=950kg/m3,µ=7.42×10-4Pa·sCp=4.187kJ/(kg·℃),λ=0.621W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)冷却器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书十四(一)设计题目:某有机液冷却器的设计(二)设计任务及操作条件1:处理能力40050kg/h 有机液2:设备形式列管式换热器3:操作条件(1)有机液:入口温度65℃,出口温度50℃(2)冷却介质:自来水20025kg/h 水入口温度25℃,出口温度计算(3)允许压强降:不大于250kpa(4)有机液定性温度下的物性数据:ρ=1000Kg/m3,µ=10.0×10-4Pa·sCp=2.261kJ/(kg·℃),λ=0.172W/(m·℃)水定性温度下的物性数据:ρ=950kg/m3,µ=7.42×10-4Pa·sCp=4.187kJ/(kg·℃),λ=0.621W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)冷却器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:某有机液冷却器的设计(二)设计任务及操作条件1:处理能力40150kg/h 有机液2:设备形式列管式换热器3:操作条件(1)有机液:入口温度65℃,出口温度50℃(2)冷却介质:自来水20075kg/h 水入口温度25℃,出口温度计算(3)允许压强降:不大于250kpa(4)有机液定性温度下的物性数据:ρ=1000Kg/m3,µ=10.0×10-4Pa·sCp=2.261kJ/(Kg·℃),λ=0.172W/(m·℃)水定性温度下的物性数据:ρ=950kg/m3,µ=7.42×10-4Pa·sCp=4.187kJ/(Kg·℃),λ=0.621W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)冷却器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:某有机液冷却器的设计(二)设计任务及操作条件1:处理能力40200kg/h 有机液2:设备形式列管式换热器3:操作条件(1)有机液:入口温度65℃,出口温度50℃(2)冷却介质:自来水20100kg/h 水入口温度25℃,出口温度计算(3)允许压强降:不大于250kpa(4)有机液定性温度下的物性数据:ρ=1000kg/m3,µ=10.0×10-4Pa·sCp=2.261kJ/(Kg·℃),λ=0.172W/(m·℃)水定性温度下的物性数据:ρ=950kg/m3,µ=7.42×10-4Pa·sCp=4.187kJ/(Kg·℃),λ=0.621W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)冷却器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书十七(一)设计题目:某有机液冷却器的设计(二)设计任务及操作条件1:处理能力40250kg/h 有机液2:设备形式列管式换热器3:操作条件(1)有机液:入口温度65℃,出口温度50℃(2)冷却介质:自来水20125kg/h 水入口温度25℃,出口温度计算(3)允许压强降:不大于250Kpa(4)有机液定性温度下的物性数据:ρ=1000Kg/m3,µ=10.0×10-4Pa·sCp=2.261kJ/(kg·℃),λ=0.172W/(m·℃)水定性温度下的物性数据:ρ=950kg/m3,µ=7.42×10-4Pa·sCp=4.187kJ/(Kg·℃),λ=0.621W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)冷却器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书十八(一)设计题目:正戊烷蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力3050kg/h 正戊烷饱和蒸汽2:设备形式立式列管冷凝器3:操作条件(1)正戊烷:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(2)冷却介质:井水入口温度32℃,流量7100kg/h(3)允许压强降:不大于150kpa(4)正戊烷定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:正戊烷蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力3050kg/h 正戊烷饱和蒸汽2:设备形式水平列管冷凝器3:操作条件(1)正戊烷:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(2)冷却介质:井水入口温度32℃,流量7100kg/h(3)允许压强降:不大于150kpa(4)正戊烷定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:正戊烷蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力29500kg/h 正戊烷饱和蒸汽2:设备形式立式列管冷凝器3:操作条件(1)正戊烷:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(2)冷却介质:井水入口温度32℃,流量6900kg/h(3)允许压强降:不大于150kpa(4)正戊烷定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十一(一)设计题目:正戊烷蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力29500kg/h 正戊烷饱和蒸汽2:设备形式立式列管冷凝器3:操作条件(1)正戊烷:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(2)冷却介质:井水入口温度32℃,流量6900kg/h(3)允许压强降:不大于150kpa(4)正戊烷定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十二(一)设计题目:正戊烷蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力29500kg/h 正戊烷饱和蒸汽2:设备形式水平列管冷凝器3:操作条件(1)正戊烷:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(2)冷却介质:井水入口温度32℃,流量6900kg/h(3)允许压强降:不大于150kpa(4)正戊烷定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)水平列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十三(一)设计题目:原油预热器的设计(二)设计任务及操作条件1:处理能力44000Kg/h 有机液2:设备形式列管式换热器3:操作条件(1)原油:入口温度70℃,出口温度110℃(2)加热介质:柴油34000Kg/h 水入口温度175℃,出口温度计算(3)允许压强降:不大于250Kpa(4)原油定性温度下的物性数据:ρ=815Kg/m3,µ=30.0×10-4Pa·sCp=2.20KJ/(Kg·℃),λ=0.128W/(m·℃)柴油定性温度下的物性数据:ρ=715Kg/m3,µ=6.4×10-4Pa·sCp=2.48KJ/(Kg·℃),λ=0.133W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)预热器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十四(三)设计题目:原油预热器的设计(四)设计任务及操作条件1:处理能力44050Kg/h 有机液2:设备形式列管式换热器3:操作条件(6)原油:入口温度70℃,出口温度110℃(7)加热介质:柴油34075Kg/h 水入口温度175℃,出口温度计算(8)允许压强降:不大于250Kpa(9)原油定性温度下的物性数据:ρ=815Kg/m3,µ=30.0×10-4Pa·sCp=2.20KJ/(Kg·℃),λ=0.128W/(m·℃)柴油定性温度下的物性数据:ρ=715Kg/m3,µ=6.4×10-4Pa·sCp=2.48KJ/(Kg·℃),λ=0.133W/(m·℃)(10)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)预热器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十五(一)设计题目:原油预热器的设计(二)设计任务及操作条件1:处理能力43950Kg/h 有机液2:设备形式列管式换热器3:操作条件(1)原油:入口温度70℃,出口温度110℃(2)加热介质:柴油33925Kg/h 水入口温度175℃,出口温度计算(3)允许压强降:不大于250Kpa(4)原油定性温度下的物性数据:ρ=815Kg/m3,µ=30.0×10-4Pa·sCp=2.20KJ/(Kg·℃),λ=0.128W/(m·℃)柴油定性温度下的物性数据:ρ=715Kg/m3,µ=6.4×10-4Pa·sCp=2.48KJ/(Kg·℃),λ=0.133W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)预热器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十六(一)设计题目:原油预热器的设计(二)设计任务及操作条件1:处理能力44100Kg/h 有机液2:设备形式列管式换热器3:操作条件(1)原油:入口温度70℃,出口温度110℃(2)加热介质:柴油34150Kg/h 水入口温度175℃,出口温度计算(3)允许压强降:不大于250Kpa(4)原油定性温度下的物性数据:ρ=815Kg/m3,µ=30.0×10-4Pa·sCp=2.20KJ/(Kg·℃),λ=0.128W/(m·℃)柴油定性温度下的物性数据:ρ=715Kg/m3,µ=6.4×10-4Pa·sCp=2.48KJ/(Kg·℃),λ=0.133W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)预热器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十七(一)设计题目:原油预热器的设计(二)设计任务及操作条件1:处理能力44150Kg/h 有机液2:设备形式列管式换热器3:操作条件(1)原油:入口温度70℃,出口温度110℃(2)加热介质:柴油34225Kg/h 水入口温度175℃,出口温度计算(3)允许压强降:不大于250Kpa(4)原油定性温度下的物性数据:ρ=815Kg/m3,µ=30.0×10-4Pa·sCp=2.20KJ/(Kg·℃),λ=0.128W/(m·℃)柴油定性温度下的物性数据:ρ=715Kg/m3,µ=6.4×10-4Pa·sCp=2.48KJ/(Kg·℃),λ=0.133W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)预热器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十八(一)设计题目:原油预热器的设计(二)设计任务及操作条件1:处理能力44200Kg/h 有机液2:设备形式列管式换热器3:操作条件(1)原油:入口温度70℃,出口温度110℃(2)加热介质:柴油34300Kg/h 水入口温度175℃,出口温度计算(3)允许压强降:不大于250Kpa(4)原油定性温度下的物性数据:ρ=815Kg/m3,µ=30.0×10-4Pa·sCp=2.20KJ/(Kg·℃),λ=0.128W/(m·℃)柴油定性温度下的物性数据:ρ=715Kg/m3,µ=6.4×10-4Pa·sCp=2.48KJ/(Kg·℃),λ=0.133W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)预热器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十九(一)设计题目:原油预热器的设计(二)设计任务及操作条件1:处理能力43900Kg/h 有机液2:设备形式列管式换热器3:操作条件(1)原油:入口温度70℃,出口温度110℃(2)加热介质:柴油33850Kg/h 水入口温度175℃,出口温度计算(3)允许压强降:不大于250Kpa(4)原油定性温度下的物性数据:ρ=815Kg/m3,µ=30.0×10-4Pa·sCp=2.20KJ/(Kg·℃),λ=0.128W/(m·℃)柴油定性温度下的物性数据:ρ=715Kg/m3,µ=6.4×10-4Pa·sCp=2.48KJ/(Kg·℃),λ=0.133W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)预热器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书三十(一)设计题目:脱丁烷塔塔顶蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力160000Kg/h 正丁烷饱和蒸汽2:设备形式水平列管冷凝器3:操作条件(1)正丁烷:冷凝温度按绝压为1atm查取,冷凝液于饱和温度离开冷凝器(2)冷却介质:井水入口温度32℃,流量7100Kg/h(3)允许压强降:不大于150Kpa(4)正丁烷定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料。
化工原理课程设计-换热器设计任务书
题目一:用水冷却煤油产品的列管式换热器设计任务书《处理量为XXX吨/年XXXXXXXX的工艺设计》设计任务书一、设计名称用水冷却煤油产品的多程列管式换热器设计二、设计条件使煤油从140℃冷却到40℃,压力1bar ,冷却剂为水,水压力为3bar,处理量为10t/h,进口温度20 ℃,出口温度40 ℃三、设计任务1 合理的参数选择和结构设计2 传热计算和压降计算:设计计算和校核计算四、设计说明书内容1 传热面积2 管程设计包括:总管数、程数、管程总体阻力校核3 壳体直径4 结构设计包括壁厚5 主要进出口管径的确定包括:冷热流体的进出口管6流程图(以图的形式,并给出各部分尺寸)及结构尺寸汇总(以表的形式)7评价之8参考文献一、设计的目的通过对煤油产品冷却的列管式换热器设计,达到让学生了解该换热器的结构特点,并能根据工艺要求选择适当的类型,同时还能根据传热的基本原理,选择流程,确定换热器的基本尺寸,计算传热面积以及计算流体阻力。
总之,通过设计达到让学生自己动手进行设计的实践,获取从事工程技术工作的能力。
二、设计的指导思想1 结构设计应满足工艺要求2 结构简单合理,操作调节方便,运行安全可靠3 设计符合现行国家标准等4 安装、维修方便三、设计要求1 计算正确,分析认证充分,准确2 条理清晰,文字流畅,语言简炼,字迹工整3 图纸要求,图纸、尺寸标准,图框,图签字规范4 独立完成四、设计课题工程背景在石油化工生产过程中,常常需要将各种石油产品(如汽油、煤油、柴油等)进行冷却,本设计以某厂冷却煤油产品为例,让学生熟悉列管式换热器的设计过程。
五、参考文献1 化工过程及设备设计,华南工学院,19862 传热设备及工业炉,化学工程手册第8篇,19873 化工设备设计手册编写组. 金属设备,19754 尾范英郎(日)等,徐忠权译,热交换设计物册,19815 谭天恩等. 化工原理(上、下册)化学工业出版社.六、设计思考题1设计列管式换热器时,通常都应选用标准型号的换热器,为什么?2 为什么在化工厂使用列管式换热最广泛?3 在列管式换热器中,壳程有挡板和没有挡板时,其对流传热系数的计算方法有何不同?4 说明列管式换热器的选型计算步骤?5 在换热过程中,冷却剂的进出口温度是按什么原则确定的?6 说明常用换热管的标准规格(批管径和管长)。
换热器设计任务书
热交换器设计任务书
一、目的:学习热交换器设计的基本方法和步骤,掌握换热器的计算和结
构设计步骤和方法。
二、要求:根据给定的问题,提出设计方案,编写设计说明书,绘制装配
图和管板、折流板的零件图。
三、问题:下列两种流体欲通过换热器进行换热,为此设计出一种管壳式
换热器,满足运行参数要求。
四、时间:16周~18周。
参考书目:
1.热交换器设计手册(上、下),[日]尾花英朗著,徐忠权译,石油工业出
版社,1981.
2.化工设备设计手册(1),材料与零部件(上),《化工设备设计手册》编写
组编,上海人民出版社,1973.10
3.换热器设计手册,钱颂文主编,北京:化学工业出版社,2002.8
4.机械设计手册
5.热交换器原理与设计(5版),史美中主编,南京:东南大学出版社,2014.7
6.GB/T151-2014,《热交换器》
7.JB/T4700~4707-2000,《压力容器法兰》
8.GB/T25198-2010,《压力容器封头》
9.HG20592~20635-2009,《钢制管法兰、垫片、紧固件》
10.G B150-2011,《压力容器》。
换热器设计任务书
换热器设计任务书任务背景在工业生产和生活中,换热器被广泛应用于能源转换、冷却、加热和回收等工艺中。
设计一个高效、可靠的换热器对于提高能源利用率、减少能源浪费具有重要意义。
本任务旨在探讨换热器的设计原理、设计要求及设计方法,为实际工程中的换热器设计提供指导和参考。
二级标题1:换热器的定义与分类三级标题1:换热器的定义换热器是一种能够在两个或多个流体之间实现热量传递的设备。
通过换热器,两个流体可以在不直接接触的情况下进行热量交换,从而实现冷却、加热或能量回收等需求。
三级标题2:换热器的分类换热器可以根据传热方式、结构形式和应用领域进行分类。
四级标题1:传热方式分类换热器根据传热方式可以分为对流换热器和传导换热器。
对流换热器主要通过流体的流动进行热量传递,而传导换热器则通过固体间的热传导进行热量传递。
四级标题2:结构形式分类换热器根据结构形式可以分为管壳换热器和板式换热器。
管壳换热器由一系列管子和外壳组成,而板式换热器则由一系列平板和密封结构组成。
四级标题3:应用领域分类换热器根据应用领域可以分为蒸汽换热器、液体换热器、气体换热器等。
不同领域的换热器在设计和性能上可能存在差异。
二级标题2:换热器设计要求三级标题1:换热效果要求换热器的设计目标是实现高效的热量传递。
因此,换热器设计需要满足以下要求:- 实现高热效率:热量传递过程中尽量减少热量损失,提高热效率。
- 尺寸紧凑:在满足换热要求的前提下,尽量减小换热器的体积和重量,节省空间和材料成本。
- 低压降:减少流体流过换热器时的压力损失,提高能源利用效率。
三级标题2:流体流动要求换热器设计需要考虑流体在换热器内的流动情况,以保证热量传递的均匀与充分。
流动性能要求包括以下几个方面: - 流速均匀:尽量避免流体的速度分布不均匀导致热量传递不均。
- 流动阻力小:减小流体在换热器内的阻力损失,降低能耗。
- 防止结垢和堵塞:设计合理的冷却系统,避免结垢和堵塞问题的发生。
换热器课程设计书
换热器课程设计书一、教学目标本课程的教学目标是让学生掌握换热器的基本原理、类型、设计方法和应用。
具体包括:1.知识目标:(1)理解换热器的基本概念和作用;(2)掌握换热器的分类和特点;(3)熟悉换热器的设计方法和计算公式;(4)了解换热器在工程中的应用。
2.技能目标:(1)能够分析换热器的工作原理和性能;(2)具备换热器选型和设计的基本能力;(3)学会使用相关软件进行换热器的设计和模拟;(4)能够撰写换热器设计报告。
3.情感态度价值观目标:(1)培养学生的创新意识和团队合作精神;(2)增强学生对工程实践的兴趣和责任感;(3)培养学生关注社会发展和环保意识。
二、教学内容根据课程目标,教学内容主要包括以下几个方面:1.换热器的基本概念和作用:介绍换热器的定义、分类和应用领域,理解换热器在工程中的重要性。
2.换热器的类型:讲解不同类型的换热器,如管壳式、板式、螺旋板式等,分析各种换热器的特点和适用范围。
3.换热器的设计方法:学习换热器的设计原理,掌握传热计算公式,了解换热器材料的选择和工艺要求。
4.换热器的应用:通过案例分析,了解换热器在热力系统、化工、空调等领域中的应用,熟悉换热器在不同行业中的重要性。
三、教学方法为了实现课程目标,我们将采用以下教学方法:1.讲授法:通过教师的讲解,让学生掌握换热器的基本概念、设计和应用知识。
2.案例分析法:通过分析实际案例,让学生了解换热器在不同领域中的应用,提高学生的应用能力。
3.实验法:安排实验室实践,让学生亲自动手进行换热器实验,培养学生的实践能力和实验技能。
4.讨论法:学生进行小组讨论,分享学习心得和经验,提高学生的沟通能力和团队合作精神。
四、教学资源为了支持课程的实施,我们将准备以下教学资源:1.教材:选用权威、实用的换热器教材,作为学生学习的主要参考资料。
2.参考书:提供相关的专业书籍,丰富学生的知识体系。
3.多媒体资料:制作精美的PPT课件,直观地展示换热器的工作原理和设计方法。
热交换器原理与设计课程设计参考资料
第一章 绪论1.1 换热器基本概况使热量从热流体传递到冷流体的设备称为换热设备,它是化工、炼油、动力、食品、轻工、原子能、制药、机械及其他许多工业部门广泛使用的一种通用设备。
在这种设备内,至少有两种温度不同的流体参与传热。
一种流体温度较高,放出热量;一种流体温度较低,吸收热量。
换热器的应用广泛,日常生活中的取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。
它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。
对于迅速发展的化工、石油、和石油化学工业来说,换热器尤为重要。
例如常压、减压蒸馏装置中,换热器约占总投资的20%。
催化重整及加氢脱硫装置中约占15%。
通常,在化工厂的建设中,换热器约占总投资的11%。
换热器即可是一种单独的设备,如加热器、冷凝器和凝汽器等;也可是某一工艺设备的组成部分,如氨合成塔内的热交换器。
在制冷工业中,以食品冷藏业常用的以氨为制冷的蒸汽压缩制冷装置为例,进过压缩后的气态氨在冷凝器中被冷凝为液体;液化后的高压液态氨在膨胀机或节流阀中绝热膨胀,使温度下降到远低于周围环境的温度;这种低温氨流体在流经蒸发器时(布置在冷藏管中)吸热蒸发而回复到原先进入压缩机是的氨气状态,然后再重复心得循环。
在其他各种制冷装置中,都存在冷凝器和蒸发器等换热器。
在火力发电厂中装有空气预热器、燃油加热器、给水加热器、蒸汽冷凝器等一系列的换热器。
实际上蒸汽锅炉本身就可以看作是一个大型复杂的换热器。
燃料在炉膛中燃烧产生的热量,通过炉膛受热面、对流蒸发受热面、过热器及省煤器加热介质,使工质汽化、过热称为能输往蒸汽轮机的符合要求的过热蒸汽。
换热器在节能技术改造中具有很重要的作用。
表现在两个方面:一是在生产工艺流程中使用着大量的换热器,提高这些换热器的效率,显然可以减少能源的消耗;另一方面用换热器来回收工业余热,可以显著提高设备的热效率。
工业余热数量大,分布广,各国均已把余热回收列为节能工作的一个重要方面。
管壳式换热器课程设计任务书.
河南理工大学管壳式换热器课程设计姓名 :李钦博学号 :311204000210学院 :机械与动力机械学院专业 :热能与动力工程班级 :热动 1201指导老师 :王华河南理工大学机械与动力工程学院能源与动力工程系 2016.3 管壳式换热器课程设计任务书一、设计题目:设计一台煤油冷却的换热器二、操作条件:1、煤油:入口温度 140℃,出口温度 40℃。
2、冷却介质:循环水,入口温度 40℃。
3、允许压强降:不大于 100kPa 。
三、设备型式:管壳式换热器四、处理能力:14t/h五、设计要求:1、选定管壳式换热器的种类和工艺流程。
2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。
3、设计结果概要或设计结果一览表。
4、设备简图。
(要求按比例画出主要结构及尺寸5、对本设计的评述及有关问题的讨论。
目录一. 设计概述 .............................................3 1.1热量传递的概念与意 .....................................3 1.2换热器的概念及意义 .....................................5 1.3管壳式换热器的简介 ....................................5 二 . 试算并初选换热器规格 ...............................6 2.1. 流体流动途径的确定 ...................................6 2.2. 物性参数及其选型 .....................................6 2.3. 计算热负荷及冷却水流量 . (7)2.4. 计算两流体的平均温度差 ...............................7 2.5. 初选换热器的规格 .....................................8 三 . 工艺计算 ..........................................9 3.1. 核算总传热系数 ......................................9 3.2. 核算压强降 ..........................................11 3.3经验公式 ..............................................12 四 . 设计评述 .........................................13 参考文献 (13)一 . 设计概述1.1热量传递的概念与意义1. 热量传递的概念热量传递是指由于温度差引起的能量转移,简称传热。
热交换器的课程设计任务书
题1某工厂要求设计一台换热器以回收工艺废水的余热,用于生活热水供应。
已知:废水的流量为60t/h,入口温度为80℃,工作压力0.3MPa。
生活热水用量为35t/h,工作压力0.3MPa;市政供水温度为13℃,水压0.1MPa。
若夏季生活热水的供水温度为50℃,换热器的允许压降为0.03MPa。
题2某工厂要求设计一台换热器以回收工艺废水的余热,用于生活热水供应。
已知:废水的流量为100t/h,入口温度为95℃,工作压力0.3MPa。
生活热水用量为70t/h,工作压力0.3MPa;市政供水温度为10℃,水压0.1MPa。
生活热水的供水温度是40℃,换热器的允许压降为0.03MPa。
题3某工厂要求设计一台换热器以回收工艺废水的余热,用于生活热水供应。
已知:废水的流量为21.65t/h,入口温度为95℃,工作压力0.3MPa。
生活热水用量为27.5t/h,工作压力0.3MPa;市政供水温度为13℃,水压0.1MPa。
若夏季生活热水的供水温度为50℃,换热器的允许压降为0.03MPa。
题4某工厂要求设计一台换热器以回收工艺废水的余热,用于生活热水供应。
已知:废水的流量为20.65t/h,入口温度为95℃,工作压力0.3MPa。
生活热水用量为26.57t/h,工作压力0.3MPa;市政供水温度为4℃,水压0.1MPa。
生活热水的供水温度是40℃,换热器的允许压降为0.03MPa。
题5某工厂要求设计一台换热器以回收工艺废水的余热,用于生活热水供应。
已知:废水的流量为40t/h,入口温度为95℃,工作压力0.3MPa。
生活热水用量为35t/h,工作压力0.3MPa;市政供水温度为5℃,水压0.1MPa。
若夏季生活热水的供水温度为50℃,换热器的允许压降为0.03MPa。
热交换器课程设计
原始数据及物性确定 壳体、管子材料选定 流动方式、 流动空间的选定 计算平均温差
折流板数及间距尺寸 管程换热及阻力计算 N
壁温核算 tw=t’w? Y
N
αt>>K’且 Δpt<[Δpt]? Y 壳程换热计算 N
壳程阻力计算
Δps<[Δps] ? Y 热应力校核、 热补偿及振动 问题考虑
假定K’,初算F’ 管程结构设计 确定传热面积F” 传热系数K和 传热面积F计算
热交换器课程设计
任务书及设计过程
热交换器设计任务书
目的:学习热交换器设计的基本方法和步骤,掌握 换热器的计算和结构设计步骤和方法。 要求:根据给定的问题,提出设计方案,编写设计 说明书,绘制装配图和管板、折流板的零件图。 问题:下列两种流体欲通过换热器进行换热,为此 设计出一种管壳式换热器,满足运行参数要求。 时间:17周~19周。
设计过程及注意事项
定性参数选取 流动方式、流动空间的选择 结构设计:管子、折流板、分程隔板、排 气管及排液管、是否进行热补偿?管板、 法兰、支座具体结构 压力校核、强度校核
设计步骤
(1)根据设计任务搜集有关的原始资料,并选定热交换器的型式等。 原始资料应包括:流体的物理化学性质(如结垢性、腐蚀性、爆 炸性、化学作用等),流体的流量、压力、温度、热负荷,设备 安装场所的限制,材质的限制,压降的限制等等。 (2)确定定性温度,并查取物性数据; (3)由热平衡计算热负荷及热流体或冷流体的流量; (4)选择壳体和管子的材料; (5)选定流动方式、确定流体的流动空间; (6)求出平均温差; (7)初选传热系数K,并初算传热面积F;初选传热系数应尽量选择 准确,以减少计算的重复次数。传热系数的选择可参考课本中附 录1。但需要注意的是:一定要注意推荐值的适用条件,注意流 动空间和流态条件。
换热器课程设计
目录第一章课程设计任务书 (2)第二章概述与设计方案的选择 (5)1 概述 (5)2 设计方案的选择 (9)第三章工艺设计计算 (12)1 确定物性数据 (12)2 热负荷及传热面积的确定 (12)3 换热器概略尺寸的确定 (13)4 面积和总传热系数的核算 (14)5 压降校核 (16)第四章换热器结构设计 (18)1 冷凝器的安装 (18)2 管子的设计 (18)3 管心距的设计 (19)4 管板的设计 (19)5 折流板的设计 (20)6 壳体的设计 (21)7 壳程接管的设计 (21)8 封头的设计 (22)9 法兰的设计 (22)10 支座的设计 (22)11 其他 (22)第五章设计结果汇总表 (23)第六章设计评述 (25)第七章个人小结 (26)第八章参考文献 (27)湘潭大学化工学院专业课程设计任务书设计题目:换热器设计系列——10万吨/年乙醇冷凝器的设计学号:2007650526 姓名:肖义专业:制药工程2班指导教师:谢放华系主任:番浪胜一、主要内容及基本要求(一)设计原始资料1.设备类型:精馏塔顶产品全凝器2.操作条件:(1)产品:乙醇纯度95%,其它为水(质量分数,下同),常压饱和温度下冷凝;(2)冷却介质:井水,入口压强0.3MPa,入口温度30℃,出口温度40℃;(3)允许压强降:不大于30kPa;(4)换热器损失的热负荷:以总传热量的3%计;(5)生产地区为湖南岳阳,每年按330天计算,每天24小时连续运行。
(二)设计任务及要求1.设计方案的选择及流程说明根据任务设计书的要求,确定设计方案和工艺流程。
2.工艺设计计算选择适宜的换热器并进行核算,主要包括物料衡算和热量衡算、热负荷及传热面积的确定、换热器概略尺寸的确定、总传热系数的校核等。
(注明公式及数据来源)3.结构设计计算选择适宜的结构方案,进行必要的结构设计计算。
主要包括管程和壳程分程、换热管尺寸确定、换热管的布置、管板形式及连接方式、管板与壳体的链接、折流板的设置、封头与壳程接管、壳体直径及厚度等。
河北工业大学热交换器课程设计
河北⼯业⼤学热交换器课程设计⼀、设计题⽬及参数1.1设计题⽬:管壳式热交换器。
1.2设计参数:流体流量(t/h) 进⼝温度(℃)出⼝温度(℃)运⾏压⼒(bar)R-12 75 0 25 10⽔- 40 25 2⼆:⽅案确定根据已知条件,暂定两台<1-2>型管壳式热交换器串联⼯作,采⽤逆流⽅式,由于R12压⼒⾼使其在管内流动。
三:设计计算3.1 原始数据1.⽔的进⼝温度:t1’=40℃2. ⽔的出⼝温度:t1’’=25℃3.R12的进⼝温度:t2’=0℃4.R12的出⼝温度:t2’’=25℃5.⽔的⼯作表压⼒:0.2Mpa6.R12的⼯作表压⼒:1.0Mpa7.R12的质量流量:20.83kg/ss kg t t C Q M P /83.2097.0)2540(174.48.496)('1''1112=?-?=-=ηKW t t C M Q p 8.496)025(9539.0360075000)('2''222=-??=-= 3.2流体的物性参数8.⽔的定性温度:C t t t ?=+='254021119.⽔的⽐热:Cp1=4.174 kJ/kg ℃ 10.⽔的密度:ρ1=994.8 kg/m3 11.⽔的粘度:µ1=7.64×10-412.⽔的导热系数:λ1=0.622 W/m ℃ 13.⽔的普朗特数:Pr1=5.14 14.R12的定性温度:C t t t ?=+=''+'=5.122250222215.R12的⽐热:Cp2=0.9539 kJ/kg ℃ 16.R12的密度:ρ2=1355.77 kg/m3 17.R12的粘度:µ2=2.74×10-4 18.R12的导热系数:λ2=0.0726 W/m ℃ 19.R12的普朗特数:Pr2=3.5753.3传热量及平均温差20.热量损失系数:η=0.97 21.传热量:22.冷却⽔流量:23.逆流时对数平均温差:C t t t t t c m ?=-=-?=?6.191525ln 1525)ln(minmax min max ,1625.0040025'2''2''1'1=--=--=t t t t P 6.00252540'2''2''1'1=--=--=t t t t R24.参数P 及R :25.温差修正系数:975.0=?,由<2-4>型公式计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热交换器课程设计任务书
(补充数据10组)
一、对流管式换热器设计:
第一组:
(1) 预热空气量:7500 m3/h;
(2) 预热空气温度:330 ℃;
(3) 冷空气温度:20 ℃;
(4) 处理烟气量:8600 m3/h;
(5) 换热器进口烟气温度:650 ℃;
(6) 烟气成分(体积%):
CO2SO2H2O O2N2
16.2 2.38.4 2.071.1第二组:
(1) 预热空气量:8300 m3/h;
(2) 预热空气温度:350 ℃;
(3) 冷空气温度:20 ℃;
(4) 处理烟气量:9800 m3/h;
(5) 换热器进口烟气温度:650 ℃;
(6) 烟气成分(体积%):
CO2SO2H2O O2N2
15.9 2.68.8 1.571.2第三组:
(1) 预热空气量:10000 m3/h;
(2) 预热空气温度:350 ℃;
(3) 冷空气温度:20 ℃;
(4) 处理烟气量:12500 m3/h;
(5) 换热器进口烟气温度:680 ℃;
(6) 烟气成分(体积%):
CO2SO2H2O O2N2
16.4 3.27.8 1.671.0第四组:
(1) 预热空气量:11500 m3/h;
(2) 预热空气温度:360 ℃;
(3) 冷空气温度:20 ℃;
(4) 处理烟气量:14200 m3/h;
(5) 换热器进口烟气温度:700 ℃;
(6) 烟气成分(体积%):
CO2SO2H2O O2N2
16.8 3.17.6 1.271.3第五组:
(1) 预热空气量:12500 m3/h;
(2) 预热空气温度:380 ℃;
(3) 冷空气温度:20 ℃;
(4) 处理烟气量:15000 m3/h;
(5) 换热器进口烟气温度:700 ℃;
(6) 烟气成分(体积%):
CO2SO2H2O O2N2
16.5 3.07.7 1.871.0第六组:
(1) 预热空气量:13500 m3/h;
(2) 预热空气温度:330 ℃;
(3) 冷空气温度:20 ℃;
(4) 处理烟气量:16500 m3/h;
(5) 换热器进口烟气温度:650 ℃;
(6) 烟气成分(体积%):
CO2SO2H2O O2N2
16.7 2.87.6 1.871.1第七组:
(1) 预热空气量:15800 m3/h;
(2) 预热空气温度:350 ℃;
(3) 冷空气温度:20 ℃;
(4) 处理烟气量:19000 m3/h;
(5) 换热器进口烟气温度:665 ℃;
(6) 烟气成分(体积%):
CO2SO2H2O O2N2
16.4 3.27.8 1.671.0第八组:
(1) 预热空气量:18000 m3/h;
(2) 预热空气温度:360 ℃;
(3) 冷空气温度:20 ℃;
(4) 处理烟气量:21500 m3/h;
(5) 换热器进口烟气温度:675 ℃;
(6) 烟气成分(体积%):
CO2SO2H2O O2N2
16.2 2.38.4 2.071.1第九组:
(1) 预热空气量:20000 m3/h;
(2) 预热空气温度:400 ℃;
(3) 冷空气温度:20 ℃;
(4) 处理烟气量:24200 m3/h;
(5) 换热器进口烟气温度:680 ℃;
(6) 烟气成分(体积%):
CO2SO2H2O O2N2
16.2 2.38.4 2.071.1第十组:
(1) 预热空气量:21500 m3/h;
(2) 预热空气温度:430 ℃;
(3) 冷空气温度:20 ℃;
(4) 处理烟气量:26000 m3/h;
(5) 换热器进口烟气温度:720 ℃;
(6) 烟气成分(体积%):
CO2SO2H2O O2N2
15.8 2.58.8 1.871.1
二、环缝式辐射换热器设计:(略)
三、设计参考资料:
(1)《传热学》,杨世铭、陶文铨主编,高等教育出版社;
(2)《热交换原理与设计》,史美中、王中铮主编,东南大学出版社;
(3)《换热器原理与设计》余建祖编著,北京航空航天大学出版社;
(4)《热质交换原理与设备》,连之伟、陈宝明编著,建筑工业出版社;
(5)《重有色冶金炉设计参考资料》(重点第三、第四章),资料编写组编,冶金工业出版社。
四、设计具体要求:
(1) 收集和消化课程设计参考资料,确定设计方案,可进行必要的方案论证。
(2) 完成换热器的传热计算、参数验算、冷热流体阻力计算,以及结构设计与计算,编制技术性能表等。
在进行结构设计时,要求换热器结构紧凑、外形美观,便于安装与维护。
另外,所有的计算数据全部采用国际单位。
(3) 完成换热器本体及部件的材料选型。
(4) 绘制换热器本体总装图图纸(1#图或0#图)一套。
附注:上述每组数据最多只可供三人使用,但每人的烟气流速及空气流速取值应不同,可按以下数据选取:
(1) 对流管式换热器每组的烟气流速分别取:2.8 Nm/s;3.2 Nm/s,3.5 Nm/s。
空气流速分别取:9.0 Nm/s;9.5 Nm/s;10.0 Nm/s。
(2) 环缝式辐射换热器每组的烟气流速分别取:0.85 Nm/s;0.90 Nm/s,0.95 Nm/s。
空气流速分别取:24.0 Nm/s;25.0 Nm/s;26.0 Nm/s。