实验二分治法归并排序

合集下载

分治算法及其典型应用

分治算法及其典型应用

分治算法及其典型应用
分治算法是一种重要的算法设计策略,它将一个大问题分解成若干个规模较小的子问题,然后递归地解决这些子问题,最后将它们的解合并起来,得到原问题的解。

分治算法在计算机科学和算法设计中有着广泛的应用,可以解决许多实际问题,下面将介绍一些典型的应用。

1. 排序算法。

分治算法在排序算法中有着重要的应用。

其中最著名的就是归并排序和快速排序。

在归并排序中,算法将数组分成两个子数组,分别进行排序,然后合并这两个有序的子数组。

而在快速排序中,算法选择一个基准值,将数组分成两个子数组,分别小于和大于基准值,然后递归地对这两个子数组进行排序。

2. 搜索算法。

分治算法也可以用于搜索问题,例如二分搜索算法。

在这种算法中,将搜索区间分成两个子区间,然后递归地在其中一个子区间中进行搜索,直到找到目标元素或者子区间为空。

3. 求解最大子数组问题。

最大子数组问题是一个经典的动态规划问题,也可以用分治算法来解决。

算法将数组分成两个子数组,分别求解左右子数组的最大子数组,然后再考虑跨越中点的最大子数组,最后将这三种情况的最大值作为整个数组的最大子数组。

4. 矩阵乘法。

分治算法也可以用于矩阵乘法。

在矩阵乘法中,算法将两个矩阵分成四个子矩阵,然后递归地进行矩阵乘法,最后将四个子矩阵的结果合并成一个矩阵。

总的来说,分治算法是一种非常重要的算法设计策略,它在许多实际问题中有着广泛的应用。

通过将一个大问题分解成若干个规模较小的子问题,然后递归地解决这些子问题,最后将它们的解合并起来,我们可以高效地解决许多复杂的问题。

分治法解决问题的步骤

分治法解决问题的步骤

分治法解决问题的步骤一、基础概念类题目(1 - 5题)题目1:简述分治法解决问题的基本步骤。

解析:分治法解决问题主要有三个步骤:1. 分解(Divide):将原问题分解为若干个规模较小、相互独立且与原问题形式相同的子问题。

例如,对于排序问题,可将一个大的数组分成两个较小的子数组。

2. 求解(Conquer):递归地求解这些子问题。

如果子问题规模足够小,则直接求解(通常是一些简单的基础情况)。

对于小到只有一个元素的子数组,它本身就是有序的。

3. 合并(Combine):将各个子问题的解合并为原问题的解。

在排序中,将两个已排序的子数组合并成一个大的有序数组。

题目2:在分治法中,分解原问题时需要遵循哪些原则?解析:1. 子问题规模更小:分解后的子问题规模要比原问题小,这样才能逐步简化问题。

例如在归并排序中,不断将数组对半分,子数组的长度不断减小。

2. 子问题相互独立:子问题之间应该尽量没有相互依赖关系。

以矩阵乘法的分治算法为例,划分后的子矩阵乘法之间相互独立进行计算。

3. 子问题与原问题形式相同:方便递归求解。

如二分查找中,每次查找的子区间仍然是一个有序区间,和原始的有序区间查找问题形式相同。

题目3:分治法中的“求解”步骤,如果子问题规模小到什么程度可以直接求解?解析:当子问题规模小到可以用简单的、直接的方法(如常量时间或线性时间复杂度的方法)解决时,就可以直接求解。

例如,在求数组中的最大最小值问题中,当子数组只有一个元素时,这个元素既是最大值也是最小值,可以直接得出结果。

题目4:分治法的“合并”步骤有什么重要性?解析:1. 构建完整解:它将各个子问题的解组合起来形成原问题的解。

例如在归并排序中,单独的两个子数组排序好后,只有通过合并操作才能得到整个数组的有序排列。

2. 保证算法正确性:如果合并步骤不正确,即使子问题求解正确,也无法得到原问题的正确答案。

例如在分治算法计算斐波那契数列时,合并不同子问题的结果来得到正确的斐波那契数是很关键的。

二路归并算法步骤

二路归并算法步骤

二路归并算法步骤在计算机科学中,归并排序是一种常用的排序算法,它的核心思想是将一个大问题分解为多个小问题,然后逐步解决这些小问题,最终得到整体的解决方案。

二路归并算法是归并排序的一种特殊实现方式,它通过将两个有序序列合并为一个有序序列来完成排序操作。

下面我们来详细介绍二路归并算法的步骤。

步骤一:将序列划分为若干子序列首先,我们将待排序的序列划分为若干个长度为1的子序列。

每个子序列都可以看作是一个已排序的序列。

步骤二:两两合并子序列接下来,我们将这些长度为1的子序列两两合并为长度为2的子序列。

在合并的过程中,我们需要比较两个子序列的元素大小,并按照从小到大的顺序将它们合并为一个新的有序子序列。

步骤三:再次两两合并子序列继续进行上述的合并操作,将长度为2的子序列两两合并为长度为4的子序列。

在每次合并的过程中,我们始终保持将两个子序列合并为一个有序子序列的原则。

步骤四:重复合并操作重复进行上述的合并操作,直到所有的子序列都合并为一个完整的有序序列为止。

这个过程可以看作是一个二叉树的构建过程,每次合并操作都会生成一个新的子节点,直到根节点为止。

步骤五:完成排序最终,我们得到的根节点就是一个已排序的序列,这个序列就是我们要求解的排序结果。

总结:二路归并算法通过将序列划分为若干个子序列,并逐步合并这些子序列来完成排序操作。

它的核心思想是利用已排序的子序列,通过比较和合并操作来生成一个更大的有序序列。

这个过程可以看作是一个逐层合并的过程,直到最终得到完整的有序序列。

二路归并算法的时间复杂度为O(nlogn),其中n表示待排序序列的长度。

这是因为在每次合并操作中,我们需要比较和移动每个元素一次,而合并的次数为logn。

因此,总的时间复杂度为O(nlogn)。

与其他排序算法相比,二路归并算法具有较好的稳定性和可扩展性,适用于各种规模的数据集。

总之,二路归并算法是一种高效的排序算法,它通过将待排序序列划分为若干个子序列,并逐步合并这些子序列来完成排序操作。

分治法-合并排序和快速排序

分治法-合并排序和快速排序

分治法-合并排序和快速排序分治法是按照以下⽅案⼯作的:将问题的实例划分为同⼀个问题的⼏个较⼩的实例,最好拥有同样的规模对这些较⼩的实例求解(⼀般使⽤递归⽅法,但在问题规模⾜够⼩的时候,有时会利⽤另⼀种算法以提⾼效率)如果必要的话,合并较⼩问题的解,以得到原始问题的解分治法的流程:4.1 合并排序合并排序是成功应⽤分治技术的⼀个完美例⼦(书上说的)。

对于⼀个需要排序的数组,合并排序把它⼀分为⼆,并对每个⼦数组递归排序,然后把这两个排好序的⼦数组合并为⼀个有序数组。

代码实现:/*** 合并排序* @author xiaofeig* @since 2015.9.16* @param array 要排序的数组* @return返回排好序的数组* */public static int[] mergeSort(int[] array){if(array.length>1){int[] subArray1=subArray(array,0,array.length/2);int[] subArray2=subArray(array,array.length/2,array.length);subArray1=mergeSort(subArray1);subArray2=mergeSort(subArray2);return merge(subArray1,subArray2);}return array;}/*** 返回指定数组的⼦数组* @author xiaofeig* @since 2015.9.16* @param array 指定的数组* @param beginIndex ⼦数组的开始下标* @param endIndex ⼦数组的结束位置(不包括该元素)* @return返回⼦数组* */public static int[] subArray(int[] array,int beginIndex,int endIndex){int[] result=new int[endIndex-beginIndex];for(int i=beginIndex;i<endIndex;i++){result[i-beginIndex]=array[i];}return result;}/*** 根据数值⼤⼩合并两个数组* @author xiaofeig* @since 2015.9.16* @param subArray1 待合并的数组* @param subArray2 待合并的数组* @return返回合并好的数组* */public static int[] merge(int[] subArray1,int[] subArray2){int[] result=new int[subArray1.length+subArray2.length];int i=0,j=0;while(i<subArray1.length&&j<subArray2.length){if(subArray1[i]>subArray2[j]){result[i+j]=subArray2[j];j++;}else{result[i+j]=subArray1[i];i++;}}if(i==subArray1.length){while(j<subArray2.length){result[i+j]=subArray2[j];}}else{while(i<subArray1.length){result[i+j]=subArray1[i];i++;}}return result;}算法分析:当n>1时,C(n)=2C(n-2)+C merge(n),C(1)=0C merge(n)表⽰合并阶段进⾏键值⽐较的次数。

分治法

分治法
分 治 法
顾铁成
1
引例:称硬币
如果给你一个装有16枚硬币的袋子,其中有一
枚是假的,并且其重与真硬币不同。你能不能 用最少的比较次数,找出这个假币?

为了帮助你完成这个任务,将提供一台可用来 比较两组硬币重量的仪器,利用这台仪器,可
以知道两组硬币的重量是否相同。
2
引例:称硬币
常规的解决方法是先将这些硬币分成两
15
当 k = 1 时,各种可能的残缺棋盘
16
三格板的四个不同方向
17
【输入】
第一行输入棋盘 的总行数,第二 行输入残缺棋盘 的格子坐标。
【样例输入】 4
4 1
【样例输出】 2 2 3 3 2 1 1 3 4 4 1 5
【输出】
覆盖的矩阵图。
0 4 5 5
18
问题分析
很明显,当K=0时,是不需要三格板的,而当
24
【样例输入】 5 3 23 8 91 56 4 【样例输出】 1
25
问题分析
对于一组混乱无序的数来说,要找到第k
小的元素,通常要经过两个步骤才能实 现:
第一步:将所有的数进行排序; 第二步:确定第k个位置上的数。
26
问题分析
传统的排序算法(插入排序、选择排序
、冒泡排序等)大家都已经很熟悉了, 但已学过的排序方法无论从速度上பைடு நூலகம்还 是从稳定性方面,都不是最佳的。


将7作为一个参照数;
将这个数组中比7大的数放在7的左边; 比7大的数放在7的右边;

这样,我们就可以得到第一次数组的调整:
[ 4 2 6 6 1 ] 7 [ 10 22 9 8 ]
29

c语言分治法实现合并排序算法

c语言分治法实现合并排序算法

c语言分治法实现合并排序算法在计算机科学中,分治算法是一种将问题划分为较小子问题,然后将结果合并以解决原始问题的算法。

其中,合并排序算法就是一种常见的分治算法。

C语言可以使用分治法实现合并排序算法。

该算法的基本思想是将原始数组递归地分成两半,直到每个部分只有一个元素,然后将这些部分合并起来,直到形成一个完整的已排序的数组。

具体实现过程如下:1.首先,定义一个函数merge,该函数将两个已排序的数组合并成一个已排序的数组。

2.然后,定义一个函数merge_sort,该函数使用递归的方式将原始数组分成两个部分,并对每个部分调用merge_sort函数以进行排序。

3.最后,将已排序的两个数组合并到一起,使用merge函数。

以下是C语言代码:void merge(int arr[], int left[], int left_count, int right[], int right_count) {int i = 0, j = 0, k = 0;while (i < left_count && j < right_count) {if (left[i] < right[j]) {arr[k++] = left[i++];} else {arr[k++] = right[j++];}}while (i < left_count) {arr[k++] = left[i++];}while (j < right_count) {arr[k++] = right[j++];}}void merge_sort(int arr[], int size) { if (size < 2) {return;}int mid = size / 2;int left[mid];int right[size - mid];for (int i = 0; i < mid; i++) {left[i] = arr[i];}for (int i = mid; i < size; i++) {right[i - mid] = arr[i];}merge_sort(left, mid);merge_sort(right, size - mid);merge(arr, left, mid, right, size - mid);}int main() {int arr[] = {3, 8, 1, 6, 9, 4, 5, 7, 2};int size = sizeof(arr) / sizeof(arr[0]);merge_sort(arr, size);for (int i = 0; i < size; i++) {printf('%d ', arr[i]);}return 0;}以上代码可以将数组{3, 8, 1, 6, 9, 4, 5, 7, 2}排序成{1, 2, 3, 4, 5, 6, 7, 8, 9}。

常见算法设计实验报告(3篇)

常见算法设计实验报告(3篇)

第1篇一、实验目的通过本次实验,掌握常见算法的设计原理、实现方法以及性能分析。

通过实际编程,加深对算法的理解,提高编程能力,并学会运用算法解决实际问题。

二、实验内容本次实验选择了以下常见算法进行设计和实现:1. 排序算法:冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。

2. 查找算法:顺序查找、二分查找。

3. 图算法:深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)。

4. 动态规划算法:0-1背包问题。

三、实验原理1. 排序算法:排序算法的主要目的是将一组数据按照一定的顺序排列。

常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等。

2. 查找算法:查找算法用于在数据集中查找特定的元素。

常见的查找算法包括顺序查找和二分查找。

3. 图算法:图算法用于处理图结构的数据。

常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)等。

4. 动态规划算法:动态规划算法是一种将复杂问题分解为子问题,通过求解子问题来求解原问题的算法。

常见的动态规划算法包括0-1背包问题。

四、实验过程1. 排序算法(1)冒泡排序:通过比较相邻元素,如果顺序错误则交换,重复此过程,直到没有需要交换的元素。

(2)选择排序:每次从剩余元素中选取最小(或最大)的元素,放到已排序序列的末尾。

(3)插入排序:将未排序的数据插入到已排序序列中适当的位置。

(4)快速排序:选择一个枢纽元素,将序列分为两部分,使左侧不大于枢纽,右侧不小于枢纽,然后递归地对两部分进行快速排序。

(5)归并排序:将序列分为两半,分别对两半进行归并排序,然后将排序好的两半合并。

(6)堆排序:将序列构建成最大堆,然后重复取出堆顶元素,并调整剩余元素,使剩余元素仍满足最大堆的性质。

2. 查找算法(1)顺序查找:从序列的第一个元素开始,依次比较,直到找到目标元素或遍历完整个序列。

二分归并排序的时间复杂度以及递推式

二分归并排序的时间复杂度以及递推式

一、简介二分归并排序是一种常见的排序算法,它通过将问题分解为子问题,并将子问题的解合并来解决原始问题。

该算法的时间复杂度非常重要,因为它直接影响算法的效率和性能。

在本文中,我们将深入探讨二分归并排序的时间复杂度,并通过递推式来进一步分析算法的性能。

二、二分归并排序的时间复杂度1. 分析在二分归并排序中,时间复杂度可以通过以下三个步骤来分析:- 分解:将原始数组分解为较小的子数组。

- 解决:通过递归调用来对子数组进行排序。

- 合并:将排好序的子数组合并为一个整体有序的数组。

2. 时间复杂度在最坏情况下,二分归并排序的时间复杂度为O(nlogn)。

这是因为在每一层递归中,都需要将数组分解为两个规模近似相等的子数组,并且在每一层递归的最后都需要将这两个子数组合并起来。

可以通过递推式来进一步证明算法的时间复杂度。

3. 递推式分析我们可以通过递推式来分析二分归并排序的时间复杂度。

假设对规模为n的数组进行排序所需的时间为T(n),则可以得到以下递推式:T(n) = 2T(n/2) +其中,T(n/2)表示对规模为n/2的子数组进行排序所需的时间表示将两个子数组合并所需的时间。

根据递推式的定义,我们可以得到二分归并排序的时间复杂度为O(nlogn)。

三、结论与个人观点通过以上分析,我们可以得出二分归并排序的时间复杂度为O(nlogn)。

这意味着该算法在最坏情况下也能保持较好的性能,适用于大规模数据的排序。

我个人认为,二分归并排序作为一种经典的排序算法,其时间复杂度的分析对于理解算法的工作原理和性能至关重要。

通过深入研究递推式,可以更加直观地理解算法的性能表现,为进一步优化算法提供了重要的参考依据。

四、总结在本文中,我们探讨了二分归并排序的时间复杂度,通过分析和递推式的方式深入理解了该算法的性能表现。

通过对时间复杂度的分析,我们对算法的性能有了更深入的认识,并且能够更好地理解算法在实际应用中的表现。

相信通过本文的阅读,读者能够对二分归并排序有更全面、深刻和灵活的理解。

归并排序的优化方法及效率测试

归并排序的优化方法及效率测试

归并排序的优化方法及效率测试归并排序是一种常见的排序算法,它通过将待排序元素分成两个子序列,分别对子序列进行排序,然后将两个有序子序列合并成一个有序序列。

这种算法的时间复杂度为O(nlogn),效率相对较高。

然而,在实际应用中,我们可以进一步优化归并排序的性能,以提升排序的效率。

本文将介绍归并排序的三种常见优化方法,并对它们进行效率测试。

一、优化方法一:插入排序优化在归并排序中,当待排序序列的元素数量减少到一定程度时,可以使用插入排序来代替归并排序,以提高效率。

插入排序是一种简单但效率较高的排序算法,适用于小规模或基本有序的序列。

具体实现方法是,在归并过程中判断子序列的长度,当子序列的长度小于等于某个阈值时,使用插入排序算法进行排序。

该优化方法的关键是选择合适的阈值。

当阈值过大时,插入排序无法体现出优势;当阈值过小时,频繁的切换排序算法反而会增加额外的开销。

因此,我们需要通过实验找到最优的阈值,以达到最佳的性能。

二、优化方法二:自底向上的归并排序传统的归并排序采用递归的方式进行,即不断地将待排序序列划分为两个子序列并进行合并。

然而,递归调用会增加额外的开销,并占用大量的栈空间。

为了优化此问题,可以使用自底向上的归并排序。

自底向上的归并排序不再依赖递归,而是通过迭代来实现。

具体实现方法是,先将待排序序列中的每个元素看作一个独立的有序子序列,然后两两合并相邻的子序列,直至得到一个完全有序的序列。

相比传统的递归归并排序,自底向上的归并排序无需额外的栈空间,并且可以减少递归调用的开销,因此在实际应用中效率更高。

三、优化方法三:优化合并操作归并排序的核心操作是合并两个有序子序列,该操作通常使用一个辅助数组来存储合并结果。

然而,每次进行合并操作时都需要申请和释放额外的内存空间,可能存在性能损耗。

为了优化这一问题,可以在排序过程中创建一个与待排序序列等长的辅助数组,并在合并过程中循环利用该辅助数组。

具体实现方法是,在每次合并操作之前,将待排序序列的元素复制到辅助数组中,然后利用辅助数组进行合并操作。

二叉树的快速排序、归并排序方法

二叉树的快速排序、归并排序方法

二叉树的快速排序、归并排序方法一、快速排序快速排序采用的是分治法策略,其基本思路是先选定一个基准数(一般取第一个元素),将待排序序列抽象成两个子序列:小于基准数的子序列和大于等于基准数的子序列,然后递归地对这两个子序列排序。

1. 递归实现(1)选定基准数题目要求采用第一个元素作为基准数,因此可以直接将其取出。

(2)划分序列接下来需要将待排序序列划分成两个子序列。

我们定义两个指针 i 和 j,从待排序序列的第二个元素和最后一个元素位置开始,分别向左和向右扫描,直到 i 和 j 相遇为止。

在扫描过程中,将小于等于基准数的元素移到左边(即与左侧序列交换),将大于基准数的元素移到右边(即与右侧序列交换)。

当 i=j 时,扫描结束。

(3)递归排序子序列完成划分后,左右两个子序列就确定了下来。

接下来分别对左右两个子序列递归调用快速排序算法即可。

2. 非递归实现上述方法是快速排序的递归实现。

对于大量数据或深度递归的情况,可能会出现栈溢出等问题,因此还可以使用非递归实现。

非递归实现采用的是栈结构,将待排序序列分成若干子序列后,依次将其入栈并标注其位置信息,然后将栈中元素依次出栈并分割、排序,直至栈为空。

二、归并排序归并排序同样采用的是分治思想。

其基本思路是将待排序序列拆分成若干个子序列,直至每个子序列只有一个元素,然后将相邻的子序列两两合并,直至合并成一个有序序列。

1. 递归实现(1)拆分子序列归并排序先将待排序序列进行拆分,具体方法是将序列平分成两个子序列,然后递归地对子序列进行拆分直至每个子序列只剩下一个元素。

(2)合并有序子序列在完成子序列的拆分后,接下来需要将相邻的子序列两两合并为一个有序序列。

我们先定义三个指针 i、j 和 k,分别指向待合并的左侧子序列、右侧子序列和合并后的序列。

在进行合并时,从两个子序列的起始位置开始比较,将两个子序列中较小的元素移动到合并后的序列中。

具体操作如下:- 当左侧子序列的第一个元素小于等于右侧子序列的第一个元素时,将左侧子序列的第一个元素移动到合并后的序列中,并将指针 i 和 k 分别加 1。

分治法实验总结

分治法实验总结

分治法实验总结
分治法是一种重要的算法思想,它的核心思想就是将单个问题划
分为多个相似的子问题,并通过递归思想将这些子问题分别解决,最
终合并起来得到整个问题的解。

在算法设计中,应用分治法能够提高
算法的效率,减少时间复杂度,实现更加高效的计算。

在实验中,我们通过使用分治法,解决了两个典型的问题:二分
查找和归并排序。

在二分查找中,我们将数组一分为二,通过递归思
想分别查找数组左半部分和右半部分,最终得到目标元素在数组中的
位置。

在归并排序中,我们同样将数组一分为二,分别对两个子数组
进行排序,然后通过归并操作将排序好的子数组合并为一个有序数组。

通过实验我们发现,使用分治法可以大大提高算法效率,减少时
间复杂度。

在二分查找算法中,平均时间复杂度为O(log n),比传统
的线性查找算法时间复杂度要低得多。

在归并排序中,时间复杂度为
O(nlogn),比传统的冒泡排序、插入排序更加高效。

总的来说,分治法是一种高效、可拓展的算法思想,能够为我们
解决一些复杂的算法问题提供帮助。

在具体的应用过程中,我们还需
要加强对算法的理解和分析能力,结合具体问题进行灵活的算法设计
和选择,以达到更好的效果。

合并、快速排序实验报告

合并、快速排序实验报告

合并、快速排序一.实验目的:1.理解算法设计的基本步骤及各部的主要内容、基本要求;2.加深对分治设计方法基本思想的理解,并利用其解决现实生活中的问题;3.通过本次试验初步掌握将算法转化为计算机上机程序的方法。

二.实验内容:1.设计和实现递归的合并排序算法、快速排序算法;2.设计和实现消除递归的合并排序算法、快速排序算法;3.设计有代表性的典型输入数据,分析算法的效率;4.对于给定的输入数据,给出算运行结果和运行结果,并给出实验结果分。

三.实验操作:1.合并排序思想:归并排序是建立在归并操作上的一种有效的排序算法。

该算法是采用分治法的思想,是一种稳定的排序方法。

将以有序的子序列合并,得到完全有序的序列;及先使每个字序列有序,再使子序列段间有序。

归并过程:比较数组中两个元素的大小,如比较a[i]和a[j]的大小,若a[i]<=a[j],将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表剩下的元素复制到r中从下标k 到下标t的单元。

如:6,202,100,301,38,8,1第一次归并:{6,202},{100,301},{8,38},{1}第二次归并:{6,100,202,301},{1,8,38}第三次归并:{1,6,8,38,100,202,301}合并排序算法:void merge(int Array[],int low,int high){int i=low,j,k;int mid=(low+high)/2;j=mid+1;k=low;int* list=new int[high+1];while(i<=mid&&j<=high){if(Array[i]<=Array[j]) list[k++]=Array[i++];else list[k++]=Array[j++];}while(i<=mid) list[k++]=Array[i++];while(j<=high) list[k++]=Array[j++];for(int n=low;n<=high;n++)Array[n]=list[n];}void mergeSort(int Array[],int low,int high){ if(low<high){int mid=(low+high)/2;mergeSort(Array,low,mid);mergeSort(Array,mid+1,high);merge(Array,low,high);}}2.快速排序思想:将要排序的数据存入数组中,首先任意去一个元素(通常选用数组的第一个数)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,值得注意的是,快速排序不是一种稳定的排序算法,即多个相同的值的相对位置也许会在算法结束时产生变动。

归并排序求逆序对

归并排序求逆序对

归并排序求逆序对什么是逆序对:设 A 为⼀个有 n 个数字的有序集 (n>1),其中所有数字各不相同。

如果存在正整数 i, j 使得1 ≤ i < j ≤ n ⽽且 A[i] > A[j],则 <A[i], A[j]> 这个有序对称为 A 的⼀个逆序对,也称作逆序数。

如果还是不懂请点怎么求逆序对:求逆序对就需要先介绍⼀种排序⽅法:归并排序:归并排序是利⽤归并的思想实现的排序⽅法,该算法采⽤经典的分治策略分治法将问题分成⼀些⼩的问题然后递归求解.举个例⼦:输⼊n个数,要求从⼤到⼩排序:【思路】:利⽤分治发(⼆分),从中间分开,再把左右依次分开,始终让⼩区间内的数从⼩到⼤,那么这是分治的思想(分⽽治之)图解(来⾃dreamcatcher-cs的博客):让后利⽤⼀个新的数组把数据放过去,让后再放回来代码:#include<iostream>#include<cstdio>#include<algorithm>#include<cmath>#include<queue>#include<stack>#include<vector>#include<map>#include<string>#include<cstring>using namespace std;const int maxn=999999999;const int minn=-999999999;inline int read() {char c = getchar();int x = 0, f = 1;while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f;}int n,a[100152],b[100250];void doit(int l,int mid,int r) {int i,j,k;int n1=mid-l+1;int n2=r-mid;int L[n1],R[n2];for (i=0; i<n1; i++)L[i]=a[l+i];for (j=0; j<n2; j++)R[j]=a[mid+j+1];i=0;j=0;k=l;while(i<n1&&j<n2) {if(L[i]<=R[j]) {a[k]=L[i];i++;} else {a[k]=R[j];j++;}k++;}while(i<n1) {a[k]=L[i];i++;k++;}while(j<n2) {a[k]=R[j];j++;k++;}}void my_sort(int l,int r) { //分if(l<r) {int mid=(l+r)/2;my_sort(l,mid);my_sort(mid+1,r);doit(l,mid,r);}}int main() {cin>>n;for(int i=0; i<n; ++i) {cin>>a[i];}my_sort(0,n-1);for(int i=0; i<n; ++i) {cout<<a[i]<<"";}return0;}接下来终于到逆序对了:放两个题⽬:【题⽬描述】Prince对他在这⽚⼤陆上维护的秩序感到满意,于是决定启程离开艾泽拉斯。

二路归并排序算法

二路归并排序算法

⼆路归并排序算法将两个按值有序序列合并成⼀个按值有序序列,则称之为⼆路归并排序,下⾯有⾃底向上和⾃顶向下的两种排序算法,⾃顶向下的排序在本⽂末讲述,使⽤递归实现,代码较简洁,经供参考。

1. 归并⼦算法:把位置相邻的两个按值有序序列合并成⼀个按值有序序列。

例如把序列 X[s..u] = {3, 12, 23, 32}和序列 X[u+1..v] = {2, 5, 8, 99} 合并成序列Z[s..v] = {2, 3, 5, 8, 12, 23, 32, 99}, 注意合并前的元素都位于同⼀个有序序列的相邻位置,合并后的有序序列的下标与合并前的序列总的起始下标相同。

算法过程中需要三个整型变量,i ⽤来遍历归并的前⼀个有序序列,其初始位置是s;j ⽤来遍历归并的后⼀个有序序列,其初始值是u+1;q ⽤来指出归并后得到的有序序列的末尾元素的位置,其初始值是s。

当遍历完成其中的⼀个有序序列之后,只需把另⼀个未结束有序序列的剩余元素复制到合并后的有序序列的末尾。

看代码:[cpp]1. //将有序的X[s..u]和X[u+1..v]归并为有序的Z[s..v]2. void merge(int X[], int Z[], int s, int u, int v)3. {4. int i, j, q;5. i = s;6. j = u + 1;7. q = s;8.9. while( i <= u && j<= v )10. {11. if( X[i] <= X[j] )12. Z[q++] = X[i++];13. else14. Z[q++] = X[j++];15. }16.17. while( i <= u ) //将X中剩余元素X[i..u]复制到Z18. Z[q++] = X[i++];19. while( j <= v ) //将X中剩余元素X[j..v]复制到Z20. Z[q++] = X[j++];21. }2. ⼀趟归并扫描⼦算法:将参加排序的序列分成若⼲个长度为 t 的,且各⾃按值有序的⼦序列,然后多次调⽤归并⼦算法merge将所有两两相邻成对的⼦序列合并成若⼲个长度为2t 的,且各⾃按值有序的⼦序列。

算法分析与设计第四章2分治法归并分类PPT课件

算法分析与设计第四章2分治法归并分类PPT课件

{
item=a[j];i=j-1;
while(i>=1&&item<a[i])
{
a[i+1]=a[i];i=i-1;
}
a[i+1]=item;
}
}
2008-09-01
i指示的是j之前的一位, 即当前已排序子表的 最末一个元素的下标
4
性能分析
输入数据按非增次序排列,每次内层while循 环执行j次(j=1,2,…, n-1)。
i 1 2 3 4 5 6 7 8 9 10 a[i] 6 7 8 9 2 3 4 5 0 1
i 1 2 3 4 5 6 7 8 9 10 a[i] 2 3 4 5 6 7 8 9 0 1
步骤4:length=8
i 1 2 3 4 5 6 7 8 9 10 a[i] 0 1 2 3 4 5 6 7 8 9
16
public static void MergeSort(int n,int DataLength) { //n为待合并数据个数
int i,t; //循环计数变量 i=1; //还有两段长度为DataLength的list可合并 while(i<=(n-2*DataLength+1)) {
Merge(i, i+DataLength-1, i+2*DataLength-1); i=i+2*DataLength; } if(i+DataLength<n) {//合并两段list,一段长度为DataLength,另一段长度不足DataLength Merge(i, i+DataLength-1, n); } else {//将剩下一段长度不足DataLength的list中的值不变 } }

【精品文档】归并排序实验报告-范文模板 (13页)

【精品文档】归并排序实验报告-范文模板 (13页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==归并排序实验报告篇一:归并排序与快速排序实验报告一、实验内容:对二路归并排序和快速排序对于逆序的顺序数的排序时间复杂度比较。

二、所用算法的基本思想及复杂度分析:1、归并排序1)基本思想:运用分治法,其分治策略为:①划分:将待排序列r1,r2,……,rn划分为两个长度相等的子序列r1,……,rn/2和rn/2+1,……,rn。

②求解子问题:分别对这两个子序列进行排序,得到两个有序子序列。

③合并:将这两个有序子序列合并成一个有序子序列。

2)复杂度分析:二路归并排序的时间代价是O(nlog2n)。

二路归并排序在合并过程中需要与原始记录序列同样数量的存储空间,因此其空间复杂性O(n)。

2、快速排序:1)基本思想:运用分治法,其分治策略为:①划分:选定一个记录作为轴值,以轴值为基准将整个序列划分为两个子序列r1……ri-1和ri+1……rn,轴值的位置i在划分的过程中确定,并且前一个子序列中记录的值均小于或等于轴值,后一个子序列中记录的值均大于或等于轴值。

②求解子问题:分别对划分后的每一个子序列递归处理。

③合并:由于对子序列r1……ri-1和ri+1……rn的排序是就地进行的,所以合并不需要执行任何操作。

2)复杂度分析:快速排序在平均时间复杂性是O(nlog2n)。

最坏的情况下是O(n^2)。

三、源程序及注释:1、归并排序#include<iostream>#include<fstream>#include "windows.h"using namespace std;void Merge(int r[],int r1[],int s,int m,int t )}int MergeSort(int r[],int r1[],int s,int t){}void main()int i=s; int j=m+1; int k=s; while(i<=m&&j<=t) {} if(i<=m)while(i<=m) r1[k++]=r[i++];//第一个没处理完,进行收尾if(r[i]<=r[j])r1[k++]=r[i++];//取r[i]和r[j]中较小的放入r1[k]中 else r1[k++]=r[j++]; else while(j<=t) r1[k++]=r[j++];//第二个没处理完,进行收尾 for(int l=0;l<k;l++) { } r[l]=r1[l];//将合并完成后的r1[]序列送回r[]中 if(s==t)r1[s]=r[s]; else{int m; m=(s+t)/2;MergeSort(r,r1,s,m);//归并排序前半个子序列 MergeSort(r,r1,m+1,t); //归并排序后半个子序列 Merge(r1,r,s,m,t);//合并两个已排序的子序列 }return 0;int a[100000]; int a1[10000];int n,i;int b[3]= {1000,3000,5000};//产生3个数组。

数据结构排序实验报告

数据结构排序实验报告

数据结构排序实验报告一、实验目的本次数据结构排序实验的主要目的是深入理解和掌握常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序和归并排序,并通过实际编程和实验分析,比较它们在不同规模数据下的性能表现,从而为实际应用中选择合适的排序算法提供依据。

二、实验环境本次实验使用的编程语言为 Python 3x,开发环境为 PyCharm。

实验中使用的操作系统为 Windows 10。

三、实验原理1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。

它重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。

2、插入排序(Insertion Sort)插入排序是一种简单直观的排序算法。

它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个数组有序。

3、选择排序(Selection Sort)首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

以此类推,直到所有元素均排序完毕。

4、快速排序(Quick Sort)通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

5、归并排序(Merge Sort)归并排序是建立在归并操作上的一种有效、稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。

四、实验步骤1、算法实现使用 Python 语言分别实现上述五种排序算法。

为每个算法编写独立的函数,函数输入为待排序的列表,输出为排序后的列表。

2、生成测试数据生成不同规模(例如 100、500、1000、5000、10000 个元素)的随机整数列表作为测试数据。

数据结构课程设计--二路归并排序说明书

数据结构课程设计--二路归并排序说明书

前言1.1排序的重要性生活中,无时不刻不充满这排序,比如:班级同学的成绩排名问题,公司产值高低的问题等等,解决这些问题的过程中,都涉及到了一个数据结构的构造思想过程。

数据结构中的排序,也有很多种,如:插入排序、交换排序、选择排序等等,此时我们就要注意选择具有优解的算法,将一个数据元素(或记录)的任意序列,重新排列成一个有序的排列,便于我们查找。

假设含有n个记录的序列为{R1,R2,Rn},其相应的关键字序列为{K1,K2,…,Kn}需确定1,2…n的一种排序P1,P2…Pn,使其相应的关键字满足如下的非递减的关系:Kp1≤Kp2≤…≤Kpn,即按关键字{Rp1,Rp2,…,Rpn}有序的排列,这样的一种操作称为排序。

一般情况下,排序又分为内部排序和外部排序。

而在内部排序中又含有很多排序方法,就其全面性能而言,很难提出一种被认为是最好的方法,因为每一种方法都有它的优缺点,适合在不同的环境下使用。

我们学习的排序有:直接插入排序、折半插入排序、希尔排序、快速排序、基数排序、归并排序等。

本次课题研究中,我主要进行了二路归并排序的研究和学习。

1.2设计的背景和意义排序是计算机领域的一类非常重要的问题,计算机在出来数据的过程中,有25%的时间花在了排序上,有许多的计算机设备,排序用去计算机处理数据时间的一半以上,这对于提高计算机的运行速度有一定的影响。

此时排序算法的高效率显得尤为重要。

在排序算法汇中,归并排序(Merging sort)是与插入排序、交换排序、选择排序不同的另一类排序方法。

归并的含义是将两个或两个以上的有序表组合成一个新的有序表。

归并排序可分为多路归并排序,两路归并排序,既可用于内排序,也可以用于外排序。

这里仅对内排序的两路归并排序进行讨论。

而我们这里所探究学习的二路归并排序,设计思路更加清晰、明了,程序本身也不像堆结构那样复杂,同时时间复杂度仅为0(N),同时在处理大规模归并排序的时候,排序速度也明显优于冒泡法等一些排序算法,提高排序算法的效率。

实验报告

实验报告

实验报告软外122 1213122030 张璐题目1:编程实习常见排序算法,如插入排序、归并排序、快速排序、随机化的快速排序等,并统计不同输入规模下的平均物理执行时间。

(1)基本思想:采用函数生成随机数,随机数的个数由输入的SIZE的值确定,设置时钟,当选择某一种排序算法时,计时。

(2)主要算法1.插入排序1.1基本思想:每次将一个待排序的记录,按其关键字的大小插入到前面已经拍好序的子文件的适当位置,直到全部的记录插入完成为止。

1.2主要程序void InsertSort(int *arr, int SIZEt){ int temp; //一个存储值int pos; //一个存储下标for (int i = 1; i<SIZE; i++) //最多做n-1趟插入{ temp = arr[i]; //当前要插入的元素pos = i - 1;while (pos >= 0 && temp<arr[pos]){arr[pos + 1] = arr[pos]; //将前一个元素后移一位pos--;}arr[pos + 1] = temp;}}1.3性能分析:插入排序算法简单,容易实现。

程序有两层循环嵌套,每个待排数据都要和前面的有序的数据作比较,故时间复杂度为0(n*n);要用到1个额外存储空间来交换数据;该排序总是从后往前依次比较,是稳定的排序算法。

2.快速排序2.1基本思想:快速排序是对冒泡排序的一种本质改进,其主要思想运用了分治法的概念。

从数组中找到一个支点,通过交换,使得支点的左边都是小于支点的元素,支点的右边都是大于支点的元素,而支点本身所处的位置就是排序后的位置,然后把支点左边和支点右边的元素看成两个子数组,再进行如上支点操作直到所有元素有序。

2.2主要程序int Partition(int *a, int left, int right){int i, j, middle, temp; i = left; j = right;middle = a[(left + right) / 2];do{while (a[i]<middle && i<right) //从左扫描大于中值的数i++;while (a[j]>middle && j>left) //从右扫描小于中值的数j--;if (i <= j) //找到了一对值{ temp = a[i]; a[i] = a[j]; a[j] = temp; i++; j--;}}while (i<j); //如果两边的下标交错,就停止(完成一次)if (left < j) //当左半边有值(left<j),递归左半边Partition(a, left, j);if (i < right) //当右半边有值(right>i),递归右半边Partition(a, i, right);return i;}void RecQuick(int *arr, int first, int last){ int pivotLoc;if (first < last){ pivotLoc = Partition(arr, first, last);RecQuick(arr, first, pivotLoc - 1);RecQuick(arr, pivotLoc + 1, last);}}2.3性能分析:在所有同数量级O(nlogn)的排序方法中,快速排序是性能最好的一种方法,在待排序列无序时最好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告专用纸
实验报告专用纸
成绩: 实验报告专用纸
课程
学院
专业
(班级)
姓名 学号 日期 年 月 日 2、算法分析: 设待排序记录个数为n ,
该算法的基本语句是 归并算法的 循环体的 比较语句 “if (b[i]<=b[j]) temp[k++]=b[i++]; else temp[k++]=b[j++]; ”,
其执行次数为: ,即执行一趟 归并算法 的时间复杂度为 。

则 归并排序算法存在以下推式:
所以,归并排序算法 的时间复杂度为 。

另外,归并排序算法递归调用次数为 。

3、结果如下:
n=5
n=8
成绩:
实验报告专用纸
课程学院
专业
(班级)
姓名学号日期年月日
由n = 5,6,…,10等数据的运行结果可知,
随着问题规模n的增加,其时间复杂度(比较次数的执行)也增加,
所以,该算法分析的判断正确。

4、与选择排序的对比(时间复杂度)
平均情况最好情况最坏情况选择排序
归并排序
从时间复杂度上看,归并排序的要小于选择排序,
并且实际上,
在问题规模相同而待排序记录顺序的整齐程度有所差异的情况下,
选择排序是不论待排序记录顺序的整齐程度如何,其时间复杂度都是固定的;
n=10
成绩:。

相关文档
最新文档