大学物理参考答案 白少民 第 章 波动学基础

合集下载

大学物理(第四版)课后习题及答案 波动

大学物理(第四版)课后习题及答案 波动

第十四章动摇之阳早格格创做14-1 一横波再沿绳子传播时得动摇圆程为[]x m t s m y )()5.2(cos )20.0(11---=ππ.(1)供波得振幅、波速、频次及波少;(2)供绳上量面振荡时得最大速度;(3)分别绘出t=1s 战t=2s 时得波形,并指出波峰战波谷.绘出x=处量面得振荡直线并计划其与波形图得分歧.14-1 ()[]x m t s m y )(5.2cos )20.0(11---=ππ 分解(1)已知动摇圆程(又称波函数)供动摇的特性量(波速u 、频次ν、振幅A 及彼少 等),常常采与比较法.将已知的动摇圆程按动摇圆程的普遍形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书籍写,而后通过比较决定各特性量(式中前“-”、“+”的采用分别对付应波沿x 轴正背战背背传播).比较法思路浑晰、供解烦琐,是一种常常使用的解题要领.(2)计划动摇问题,要明白振荡物理量与动摇物理量之间的内正在通联与辨别.比圆区别量面的振荡速度与波速的分歧,振荡速度是量面的疏通速度,即dt dy v =;而波速是波线上量面疏通状态的传播速度(也称相位的传播速度、波形的传播速度或者能量的传播速度),其大小由介量的本量决断.介量稳定,彼速脆持恒定.(3)将分歧时刻的t 值代人已知动摇圆程,即不妨得到分歧时刻的波形圆程)(x y y =,进而做出波形图.而将决定的x 值代进动摇圆程,即不妨得到该位子处量面的疏通圆程)(t y y =,进而做出振荡图.解(1)将已知动摇圆程表示为 与普遍表白式()[]0cos ϕω+-=u x t A y 比较,可得 则 m v u Hz v 0.2,25.12====λπω(2)绳上量面的振荡速度则1max 57.1-⋅=s m v(3) t=1s 战 t =2s 时的波形圆程分别为波形图如图14-1(a )所示.x =处量面的疏通圆程为振荡图线如图14-1(b )所示.波形图与振荡图虽正在图形上相似,但是却有着真量的辨别前者表示某决定时刻波线上所有量面的位移情况,而后者则表示某决定位子的时间变更的情况.14-2 波源做简谐疏通,其疏通圆程为t s m y )240cos()100.4(13--⨯=π,它所产死得波形以30m/s 的速度沿背去线传播.(1)供波的周期及波少;(2)写出波的圆程.14-2 t s m y )240cos()100.4(13--⨯=π分解 已知彼源疏通圆程供动摇物理量及动摇圆程,可先将疏通圆程与其普遍形式()0cos ϕω+=t A y 举止比较,供出振幅天角频次ω及初相0ϕ,而那三个物理量与动摇圆程的普遍形式()[]0cos ϕω+-=u x t A y 中相映的三个物理量是相共的.再利用题中已知的波速U 及公式T /22ππνω==战uT =λ即可供解.解(1)由已知的疏通圆程可知,量面振荡的角频次1240-=s πω.根据分解中所述,波的周期便是振荡的周期,故有 波少为(2)将已知的波源疏通圆程与简谐疏通圆程的普遍形式比较后可得故以波源为本面,沿X 轴正背传播的波的动摇圆程为 14-3 以知以动摇圆程为])2()10sin[()05.0(11x m t s m y ---=π.(1)供波少、频次、波速战周期;(2)道明x=0时圆程的意思,并做图表示.14-3])2()10sin[()05.0(11x m t s m y ---=π分解采与比较法.将题给的动摇圆程改写成动摇圆程的余弦函数形式,比较可得角频次.、波速U ,进而供出波少、频次等.当x 决定时动摇圆程即为量面的疏通圆程)(t y y =. 解(1)将题给的动摇圆程改写为与()[]0cos ϕω+-=u x t A y 比较后可得波速 角频次110-=s πω,故有 (2)由分解知x=0时,圆程表示位于坐标本面的量面的疏通圆程(图13—4).14-4 波源做简谐振荡,周期为0.02s ,若该振荡以100m/s 的速度传播,设t=0时,波源处的量面经仄稳位子背正目标疏通,供:(1)距离波源战二处量面的疏通圆程战初相;(2)距离波源战二处量面的相位好.14-4分解(1)根据题意先设法写出动摇圆程,而后代人决定面处的坐标,即得到量面的疏通圆程.并可供得振荡的初相.(2)波的传播也不妨瞅成是相位的传播.由波少A 的物理含意,可知波线上任二面间的相位好为λπϕ/2x ∆=∆.解(1)由题给条件 T =0.02 s ,u =100 m ·s -l ,可得 当t =0时,波源量面经仄稳位子背正目标疏通,果而由转动矢量法可得该量面的初相为)或2/3(2/0ππϕ-=.若以波源为坐标本面,则动摇圆程为距波源为 x 1=15.0m 战 x 2它们的初相分别为πϕπϕ5.55.152010-=-=和(若波源初相与2/30πϕ=,则初相πλπϕϕϕ=-=-=∆/)(21221x x ,.)(2)距波源 16.0 m 战 17.0 m 二面间的相位好×10-2s ,以它经仄稳位子背正目标疏通时为时间起面,若此振荡以u=400m/s 的速度沿直线传播.供:(1)距离波源处量面P 的疏通圆程战初相;(2)距离波源战处二面的相位好.14-5解分解共上题.正在确知角频次1200/2-==s T ππω、波速1400-⋅=s m u 战初相)或2/(2/30ππϕ-=的条件下,动摇圆程 位于 x P =8.0 m 处,量面 P 的疏通圆程为该量面振荡的初相2/50πϕ-=P .而距波源9.0 m 战 10.0 m 二面的相位好为如果波源初相与2/0πϕ-=,则动摇圆程为量面P 振荡的初相也形成2/90πϕ-=P ,但是波线上任二面间的相位好本去不改变. 14-6 有一仄里简谐波正在介量中传播,波速u=100m/s ,波线上左侧距波源O (坐标本面)为处的一面P 的疏通圆程为]2/)2cos[()30.0(1ππ+=-t s m y p .供(1)波背x 轴正目标传播时的动摇圆程;(2)波背x 轴背目标传播时的动摇圆程. 14-6]2/)2cos[()30.0(1ππ+=-t s m y p分解正在已知波线上某面疏通圆程的条件下,修坐动摇圆程常常采与底下二种要领:(1)先写出以波源O 为本面的动摇圆程的普遍形式,而后利用已知面P 的疏通圆程去决定该动摇圆程中各量,进而修坐所供动摇圆程.(2)修坐以面P 为本面的动摇圆程,由它去决定波源面O 的疏通圆程,进而可得出以波源面O 为本面的动摇圆程.解1(1)设以波源为本面O ,沿X 轴正背传播的动摇圆程为将 u =100 m ·s -‘代人,且与x 二75 m 得面 P 的疏通圆程为与题意中面 P 的疏通圆程比较可得 A =0.30m 、12-=s πω、πϕ20=.则所供动摇圆程为(2)当沿X 轴背背传播时,动摇圆程为将 x =75 m 、1100-=ms u 代人后,与题给面 P 的疏通圆程比较得A = 0.30m 、12-=s πω、πϕ-=0,则所供动摇圆程为解2(1)如图14一6(a )所示,与面P 为坐标本面O ’,沿O ’x 轴背左的圆背为正目标.根据分解,当波沿该正目标传播时,由面P 的疏通圆程,可得出以O ’(即面P )为本面的动摇圆程为将 x=-75 m 代进上式,可得面 O 的疏通圆程为由此可写出以面O 为坐标本面的动摇圆程为(2)当波沿河X 轴背目标传播时.如图14-6(b )所示,仍先写出以O ’(即面P )为本面的动摇圆程将 x=-75 m 代人上式,可得面 O 的疏通圆程为则以面O 为本面的动摇圆程为计划对付于仄里简谐波去道,如果已知波线上一面的疏通圆程,供其余一面的疏通圆程,也可用下述要领去处理:波的传播是振荡状态的传播,波线上各面(包罗本面)皆是沉复波源量面的振荡状态,不过初相位分歧而已.正在已知某面初相仄0的前提下,根据二面间的相位好λπϕϕϕ/2'00x ∆=-=∆,即可决定已知面的初相中小14-7 图14-7为仄里简谐波正在t=0时的波形图,设此简谐波的频次为250Hz ,且此时图中量面P 的疏通目标进与.供:(1)该波的动摇圆程;(2)正在距本面O 为处量面的疏通圆程与t=0时该面的振荡速度.14-7'λ、振幅A 战波速λν=u ;2.根据面P 的疏通趋势去推断波的传播目标,进而可决定本面处量面的疏通趋背,并利用转动闭量法决定其初相0ϕ.(2)正在动摇圆程决定后,即可得到波线上距本面O 为X 处的疏通圆程y =y (t ),及该量面的振荡速度v =dy /d t.解(1)从图 15- 8中得知,波的振幅 A = 0.10 m ,波少m 0.20=λ,则波速13100.5-⋅⨯==s m u λν.根据t =0时面P 进与疏通,可知彼沿Ox 轴背背传播,并判决此时位于本面处的量面将沿Oy 轴背目标疏通.利用转动矢量法可得其初相3/0πϕ=.故动摇圆程为(2)距本面 O 为x=7.5 m 处量面的疏通圆程为t=0时该面的振荡速度为 14-8 仄里简谐波以波速u=/s 沿Ox 轴背目标传播,正在t=2s 时的波形图如图14-8(a )所示.供本面的疏通圆程. 14-8分解上题已经指出,从波形图中可知振幅A 、波少λ战频次ν.由于图14-8(a )是t =2s 时刻的波形直线,果此决定 t = 0时本面处量面的初相便成为本题供解的易面.供t =0时的初相有多种要领.底下介绍波形仄移法、波的传播不妨局里天形貌为波形的传播.由于波是沿 Ox 轴背背传播的,所以可将 t =2 s 时的波形沿Ox 轴正背仄移m s s m uT x 0.12)50.0(1=⨯⋅==∆-,即得到t=0时的波形图14-8(b ),再根据此时面O 的状态,用转动闭量法决定其初相位.解由图 15- 9(a )得知彼少m 0.2=λ,振幅 A = 0.5 m.角频次15.0/2-==s u πλπω. 按分解中所述,从图15—9(b )可知t=0时,本面处的量面位于仄稳位子.并由转动矢量图14-8(C )得到2/0πϕ=,则所供疏通圆程为14-9 一仄里简谐波,波少为12m ,沿Ox 轴背目标传播,图14-9(a )所示为x=处量面的振荡直线,供此波的动摇圆程.14-9分解该题可利用振荡直线去获与动摇的特性量,进而修坐动摇圆程.供解的闭键是怎么样根据图14-9(a )写出它所对付应的疏通圆程.较烦琐的要领是转动矢量法(拜睹题13-10).解 由图14-9(b )可知量面振荡的振幅A =0.40 m ,t =0时位于 x =的量面正在A /2处并背Oy 轴正背移动.据此做出相映的转动矢量图14-9(b ),从图中可知30πϕ-='.又由图 14-9(a )可知,t =5 s 时,量面第一次回到仄稳位子,由图14-9(b )可瞅出65πω=t ,果而得角频次16-=s πω. 采与题14-6中的要领,将波速10.12-⋅===s m T u πλωλ代人动摇圆程的普遍形式])(cos[0ϕω++=u x t A y 中,并与上述x =处的疏通圆程做比较,可得20πϕ-=,则动摇圆程为14-10 图14-10中(I )是t=0时的波形图,(II )是t=0.1s 时的波形图,已知T>0.1s ,写出动摇圆程的表白式. 14-10分解 已知动摇圆程的形式为从如图15—11所示的t =0时的波形直线Ⅰ,可知彼的振幅A 战波少λ,利用转动矢量法可决定本面处量面的初相0ϕ.果此,决定波的周期便成为相识题的闭键.从题给条件去瞅,周期T 只可从二个分歧时刻的波形直线之间的通联去得到.为此,不妨从底下二个分歧的角度去分解.(l )由直线(Ⅰ)可知,正在 tzo 时,本面处的量面处正在仄稳位子且背 Oy 轴背背疏通,而直线(Ⅱ)则标明,通过0.1s 后,该量面已疏通到 Oy 轴上的一A 处.果此,可列圆程s T kT 1.04=+,正在普遍情形下,k= 0, 1,2,…那便是道,量面正在 0.1 s 内,不妨经历 k 个周期振荡后再回到A 处,故有)25.0()1.0(+=k s T .(2)从波形的移动去分解.果波沿Ox 轴正目标传播,波形直线(Ⅱ)可视为直线(Ⅰ)背左脚移了T t t u x ∆=∆=∆λ.由图可知,4λλ+=∆k x ,故有t k ∆=+λλλ4,共样也得)25.0)1.0(+=k s T .应当注意,k 的与值由题给条件 T >0.1s 所决断.解 从图中可知波少m 0.2=λ,振幅A =0.10 m.由波形直线(Ⅰ)得知正在t=0时,本面处量面位于仄稳位子且背 Oy 轴背背疏通,利用转动矢量法可得2/0πϕ=.根据上头的分解,周期为由题意知 T >0.1s ,故上式创造的条件为,可得 T =0.4s.那样,动摇圆程可写成14-11 仄里简谐波的动摇圆程为])2()4cos[()08.0(11x m t sm y ---=ππ二处的相位;(2)离波源处及二处的相位.14-11()[]x m t s m y 112)4(cos )08.0(---=ππ 解(1)将t =2.1s 战x=0代人题给动摇圆程,可得波源处的相位将t =2.1s 战x =0.10 m 代人题给动摇圆程,得 0.10 m 处的相位为从动摇圆程可知波少.那样, m 与 m 二面间的相位好14-12 为了脆持波源的振荡稳定,需要消耗4.0W 的功率.若波源收出的是球里波(设介量不吸支波的能量).供距离波源战处的能流稀度.14-12分解波的传播伴伴着能量的传播.由于波源正在单位时间内提供的能量恒定,且介量不吸支能量,敌对付于球里波而止,单位时间内通过任性半径的球里的能量(即仄稳能流)相共,皆等于波源消耗的功率户.而正在共一个球里上各处的能流稀度相共,果此,可供出分歧位子的能流稀度 S P I =.解由分解可知,半径户处的能疏稀度为当 r 1=5.0 m 、r 2=10.0 m 时,分别有×103m ×10-4m ,频次ν×103Hz.若介量的稀度为ρ×102kg/m 3×10-4m 2的总能量.14-1313100.1-⋅⨯=s m u解(1)由能流稀度I 的表白式得2)正在时间隔断s t 60=∆内笔直通过里积 S 的能量为14-14 如图14-14所示,二振荡目标相共的仄里简谐波波源分别位于A 、B 二面.设它们的相位相共,且频次均为ν=30Hz ,波速u=/s ,供正在面P 处二列波的相位好. 14-14 v=30Hz分解正在匀称介量中,二列波相逢时的相位好ϕ∆,普遍由二部分组成,即它们的初出进B A ϕϕ-战由它们的波程好而引起的相位好λπr ∆2.本题果B =ϕϕA ,故它们的相位好只与决于波程好.解正在图14-14的APB ∆中,由余弦定理可得二列波正在面P 处的波程好为BP AP r -=∆,则相位好为14-15 二波正在共一细绳上传播,它们的圆程分别为])4[()cos()06.0(111t s x m m y ---=ππ战])4[()cos()06.0(112t s x m m y --+=ππ.(1)道明那细绳是做驻波式振荡,并供节面战波背的位子;(2)波背处的振幅有多大?正在x=处,振幅多大?14-15分解只需道明那二列波会成后具备驻波圆程 的形式即可.由驻波圆程可决定波背、波节的位子战任性位子处的 振幅.解(l )将已知二动摇圆程分别改写为可睹它们的振幅 A 二0.06 m ,周期 T 二0.5 s (频次.二2 Hi ),波少八二2 m.正在波线上任与一面P ,它距本面为P.则该面的合疏通圆程为k 式与驻波圆程具备相共形式,果此,那便是驻波的疏通圆程由得波节位子的坐标为由得波背位子的坐标为门)驻波振幅,正在波背处A ’二ZA 二0.12 m ;正在x 二 0.12 m 处,振幅为14-16 一弦上的驻波圆程式为t s x m m y )550cos()6.1cos()100.3(112---⨯=ππ×10-3s 时位于x=处量面的振荡速度.14-16分解(1)采与比较法.将本题所给的驻波圆程,与驻波圆程的普遍形式相比较即可供得振幅、波速等.(2)由波节位子的表白式可得相邻波节的距离.(3)量面的振荡速度可按速度定义V一如Nz供得.解(1)将已知驻波圆程 y=(3. 0 X 10-2 m) cos(. 6. ml)-coos(550.s一小与驻波圆程的普遍形式 y= ZAcos (2.x/八).(2.yi)做比较,可得二列波的振幅 A= 1. 5 X 10-‘ m,波少八二 1. 25 m,频次 v二 275 Hi,则波速 u 一如 2343.8 in·SI(2)相邻波节间的距离为(3)正在 t二 3. 0 X 10-3 s时,位于 x= 0. 625 m 处量面的振荡速度为14-17 一仄里简谐波的频次为500Hz,正在气氛中(ρ=/m3)以u=340m×10-6m.试供波正在耳中的仄稳能量稀度战声强.14-17解波正在耳中的仄稳能量稀度声强便是声波的能疏稀度,即那个声强略大于繁闲街讲上的噪声,使人耳已感触不符合.普遍仄常道话的声强约为 1. 0 X 10-6 W·m-2安排*14-18 里积为2的窗户启背街讲,街中噪声正在窗户的声强级为80dB.问有几声功率传进窗内?14-18分解最先要明白声强、声强级、声功率的物理意思,并相识它们之间的相互闭系.声强是声波的能流稀度I,而声强级L是形貌介量中分歧声波强强的物理量.它们之间的闭系为 L一体I/IO),其中 IO二 1. 0 X 10-’2 W·0-‘为确定声强.L的单位是贝我(B),但是常常使用的单位是分贝(dB),且IB=10 dB.声功率是单位时间内声波通过某里积传播的能量,由于窗户上各处的I相共,故有P=IS.解根据分解,由L=ig(I/ IO)可得声强为则传进窗户的声功率为14-19 若正在共一介量中传播的、频次分别为1200Hz战400Hz的二声波有相共的振幅.供:(1)它们的强度之比;(2)二声波的声强级好.14-19解(1)果声强I=puA‘.‘/2,则二声波声强之比(2)果声强级L一回对付几),则二声波声强级好为14-20 一警车以25m/s的速度正在停止的气氛中止驶,假设车上警笛的频次为800Hz.供:(1)停止站正在路边的人听到警车驶近战拜别时的警笛声波频次;(2)如果警车逃赶一辆速度为15m/s的客车,则客车上的人听到的警笛声波的频次是几?(设气氛中的声速u=330m/s)14-20分解由于声源与瞅察者之间的相对付疏通而爆收声多普勒效力,由多普勒频次公式可解得截止.正在处理那类问题时,不但是要分浑瞅察者相对付介量(气氛)是停止仍旧疏通,共时也要分浑声源的疏通状态.解(1)根据多普勒频次公式,当声源(警车)以速度 vs =25 m·s-‘疏通时,停止于路边的瞅察者所交支到的频次为警车驶近瞅察者时,式中Vs前与“-”号,故有警车驶离瞅察者时,式中Vs前与“+”号,故有2)声源(警车)与客车上的瞅察者做共背疏通时,瞅察者支到的频次为14-21 如图14-21所示.一振荡频次为ν=510Hz的振源正在S面以速度v背墙壁交近,瞅察者正在面P处测得拍音频次ν′=3Hz,供振源移动得速度.(声速为330m/s)14-21分解位于面P的瞅察者测得的拍音是振源S直交传递战经墙壁反射后传播的二列波相逢叠加而产死的.由于振源疏通,交支频次.l、12均与振源速度.有闭.根据多普勒效力频次公式战拍频的定义,可解得振源的速度.解根据多普勒效力,位于面P的人直交交支到声源的频次. l战经墙反射后支到的频次分别为由拍额的定义有将数据代进上式并整治,可解得14-22 暂时遍及型晶体管支音机的中波敏捷度(指仄稳电场强度E×10-3×103km近处某电台的广播,该台的收射是各背共性的(以球里形式收射),而且电磁波正在传播时不耗费,问该台的收射功率起码有多大?14-22×1018W/m2,估计其对付应的电场强度战磁场强度的振幅. 14-23。

(完整版)大学物理--波动光学题库及其答案.doc

(完整版)大学物理--波动光学题库及其答案.doc

一、选择题:(每题3 分)1、在真空中波长为的单色光,在折射率为n 的透明介质中从 A 沿某路径传播到B,若A、 B 两点相位差为 3 ,则此路径 AB 的光程为(A) 1.5 .(B) 1.5 n.(C) 1.5 n .(D) 3 .[]2、在相同的时间内,一束波长为的单色光在空气中和在玻璃中(A)传播的路程相等,走过的光程相等.(B)传播的路程相等,走过的光程不相等.(C)传播的路程不相等,走过的光程相等.(D)传播的路程不相等,走过的光程不相等.3、如图, S1、S2是两个相干光源,它们到P 点的距离分别为 r 1 2 1 1 1 和 r .路径 S P 垂直穿过一块厚度为t ,折射率为 n的介质板,路径S2P 垂直穿过厚度为 t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A) (r2 n2t 2 ) (r1 n1t1 ) S1S2[]t1 r1t2Pn1 r2n2(B) [ r2 ( n2 1)t2 ] [ r1 (n1 1)t2 ](C) (r2 n2t 2 ) (r1 n1 t1 )(D) n2 t2 n1t1 []4、真空中波长为的单色光,在折射率为n 的均匀透明媒质中,从 A 点沿某一路径传播到 B 点,路径的长度为l. A、 B 两点光振动相位差记为,则(A) l = 3 / 2,=3.(B) l= 3 / (2n),=3n.(C) l = 3 / (2 n),=3.(D) l= 3n / 2,=3n.5、如图所示,波长为的平行单色光垂直入射在折射率为n2 的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为 e,而且 n1> n2> n3,则两束反射光在相遇点的相位差为(A) 4 n e / .(B) 2 n e / .2 2(C) (4 n2 e / .(D) (2 n2 e / .[]6、如图所示,折射率为n 、厚度为 e 的透明介质薄膜2的上方和下方的透明介质的折射率分别为n1和 n3,已知 n1<n2< n3.若用波长为的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2 n2 e.(B) 2 n2 e-/ 2 .(C) 2 n2 e-.(D) 2 n2 e-/ (2n2).7、如图所示,折射率为n 、厚度为 e 的透明介质薄膜的2上方和下方的透明介质的折射率分别为n1和 n3,已知 n1< n2>n .若用波长为的单色平行光垂直入射到该薄膜上,则从薄膜3上、下两表面反射的光束(用①与②示意 )的光程差是(A) 2 n e.(B) 2 n e- / 2.2 2 []n1n2 e n3① ②n1n2 en3[]① ②n1n2 e[]8 在双缝干涉实验中,两缝间距为d,双缝与屏幕的距离为 D (D>>d ) ,单色光波长为,屏幕上相邻明条纹之间的距离为(A) D/d .(B)d/D .(C) D/(2 d).(D) d/(2D ).[]9、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A)使屏靠近双缝.(B)使两缝的间距变小.(C)把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.[]10、在双缝干涉实验中,光的波长为600 nm ( 1 nm= 10-9 m) ,双缝间距为 2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm .(B) 0.9 mm .(C) 1.2 mm(D) 3.1 mm .[]11、在双缝干涉实验中, 1 2 距离相等,若单色光源 S 到两缝 S 、S则观察屏上中央明条纹位于图中O 处.现将光源 S 向下移动到示意S1图中的S 位置,则S O(A) 中央明条纹也向下移动,且条纹间距不变.S S2(B) 中央明条纹向上移动,且条纹间距不变.(C) 中央明条纹向下移动,且条纹间距增大.(D)中央明条纹向上移动,且条纹间距增大.[]12、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A)向下平移,且间距不变.(B) 向上平移,且间距不变.(C) 不移动,但间距改变.(D)向上平移,且间距改变.[]13、在双缝干涉实验中,两缝间距离为d,双缝与屏幕之间的距离为 D (D >> d).波长为的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2 D / d.(B) d / D.(C) dD /.(D) D /d.[]14 把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d,双缝到屏的距离为D (D >> d) ,所用单色光在真空中的波长为,则屏上干涉条纹中相邻的明纹之间的距离是(A) D / (nd)(B) n D /d.(C) d / (nD ).(D) D / (2 nd).[]15、一束波长为的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A).(B)/ (4 n).(C).(D) / (2n) .[]大学物理波动光学们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为,则反射光形成的干涉条纹中暗环半径r k的表达式为(A) r k =k R .(B) r k =k R / n .(C) r k =kn R .(D) r k =k / nR .[]17、在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为 d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n- 1 ) d.(B) 2 nd.(C) 2 ( n- 1 ) d+ / 2 .(D) nd.(E) ( n- 1 ) d.[]18、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长,则薄膜的厚度是(A) / 2.(B)/ (2 n).(C) / n.(D).[]2 n 119、在单缝夫琅禾费衍射实验中,波长为的单色光垂直入射在宽度为a= 4的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2个.(B) 4个.(C) 6 个.(D) 8个.20、一束波长为的平行单色光垂直入射到一单缝 AB 上,装置如图.在屏幕 D 上形成衍射图样,如果 P 是中央亮纹一侧第一个暗纹所在的位置,则[]L DAPBC 的长度为(A).(B).(C) 3 / 2 .(D) 2.[]BCf屏21、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S,则 S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A)振动振幅之和.(B)光强之和.(C) 振动振幅之和的平方.(D)振动的相干叠加.[]22、波长为的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为 =± / 6,则缝宽的大小为(A) .(B) .(C) 2 .(D) 3 .[]23、在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[]24、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上.所用单色光波长为=500 nm ,则单缝宽度为(A) 2.5 × 10 -m.(B) 1.0 × 10 m.25、一单色平行光束垂直照射在宽度为 1.0 mm 的单缝上, 在缝后放一焦距为 2.0 m 的会聚透镜. 已知位于透镜焦平面处的屏幕上的中央明条纹宽度为 2.0 mm ,则入射光波长约 为 (1nm=10 - 9m)(A) 100 nm (B) 400 nm(C) 500 nm(D) 600 nm[ ]26、在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小. (B) 宽度变大.(C) 宽度不变,且中心强度也不变. (D) 宽度不变,但中心强度增大.[ ]27、在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小; (B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小.[ ]28、在单缝夫琅禾费衍射实验中波长为 的单色光垂直入射到单缝上.对应于衍射角 为 30°的方向上,若单缝处波面可分成 3 个半波带,则缝宽度 a 等于(A) .(B) 1.5 .(C) 2 .(D) 3 .[ ]29、在如图所示的单缝夫琅禾费衍射装置中,设 LC中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的 3,同时使入射的单色光的波长变为原来的 3 /a24,则屏幕 C 上单缝衍射条纹中央明纹的宽度 x 将变为原来的f(A) 3 / 4 倍.(B) 2 / 3 倍. y(C) 9 / 8 倍. (D) 1 / 2 倍.Ox(E) 2 倍.[]30、测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉.(B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射.[] 31、一束平行单色光垂直入射在光栅上,当光栅常数(a + b)为下列哪种情况时(a 代表每条缝的宽度 ), k=3、 6、 9 等级次的主极大均不出现?(A) a + b=2 a .(C) a + b=4 a .(B) a +b=3 a .(A) a + b=6 a . [ ]32、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远 的是(A) 紫光.(B) 绿光.(C) 黄光.(D) 红光.[]使屏幕上出现更高级次的主极大,应该(A)换一个光栅常数较小的光栅.(B)换一个光栅常数较大的光栅.(C)将光栅向靠近屏幕的方向移动.(D) 将光栅向远离屏幕的方向移动.[]34、若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0 × 10 - 1 mm.(B) 1.0 × 10 - 1 mm.(C) 1.0 × 10 - 2 mm.(D) 1.0 × 10 -3 mm .[]35、在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度 a 和相邻两缝间不透光部分宽度 b 的关系为1(B) a=b .(A) a= b.2(C) a= 2b.(D) a= 3 b.[]36、在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A)干涉条纹的间距不变,但明纹的亮度加强.(B)干涉条纹的间距不变,但明纹的亮度减弱.(C)干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹.[]37、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为 I 0 的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8.(B) I 0 / 4.(C) 3 I0 / 8.(D) 3 I 0 / 4 .[]38、一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为(A) I0/ 4 2 .(B) I0 / 4.(C) I 0 / 2.(D) 2 I0/ 2.[]39、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为 I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8.(B) I 0 / 4.(C) 3 I 0 / 8.(D) 3 I 0 / 4.[]40、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A)在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.[]二、填空题:(每题 4 分)41、若一双缝装置的两个缝分别被折射率为n 1和 n2 的两块厚度均为 e 的透明介质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差=_____________________________ .42、波长为的单色光垂直照射如图所示的透明薄膜.膜厚度为 e,两束反射光的光程差=n1 = 1.00__________________________ .n2 = 1.30 en3 = 1.5043、用波长为的单色光垂直照射置于空气中的厚度为 e 折射率为 1.5 的透明薄膜,两束反射光的光程差= ________________________ .44、波长为的平行单色光垂直照射到如图所示的透明薄膜上,膜厚为 e,折射率为 n,透明薄膜放在折射率为n1的媒质中, n1< n,则上下两表面反射的两束反射光在相遇处的相位差= __________________ .45、单色平行光垂直入射到双缝上.观察屏上 P 点到两缝的距离分别为 r1和 r 2.设双缝和屏之间充满折射率为n 的媒质,则 P 点处二相干光线的光程差为________________ .n1ne n1S1r1pdr 2S246、在双缝干涉实验中,两缝分别被折射率为 1 2 的透明nn 和 n薄膜遮盖,二者的厚度均为e.波长为的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差= _______________________ .47、如图所示,波长为的平行单色光斜入射到S1距离为 d 的双缝上,入射角为.在图中的屏中央 O 处( S1O S2 O ),两束相干光的相位差为 dO ________________ .S248、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________.(2) ________________________________________.49 、一双缝干涉装置,在空气中观察时干涉条纹间距为 1.0 mm .若整个装置放在水中,干涉条纹的间距将为____________________ mm. ( 设水的折射率为4/3 )屏的距离 D =1.2 m ,若测得屏上相邻明条纹间距为 x = 1.5 mm ,则双缝的间距 d = __________________________ .51、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距 ___________ ;若使单色光波长减小,则干涉条纹间距_________________ .52、把双缝干涉实验装置放在折射率为 n 的媒质中,双缝到观察屏的距离为 D ,两缝之间的距离为 d (d<<D ),入射光在真空中的波长为 ,则屏上干涉条纹中相 邻明纹的间距是 _______________________ .53、在双缝干涉实验中,双缝间距为 d ,双缝到屏的距离为 D (D >>d),测得中央零级明纹与第五级明之间的距离为 x ,则入射光的波长为 _________________ . 54 、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为 D ,则屏上相邻明纹的间距为 _______________ .55、用 = 600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个 (不计中央暗斑 )暗环对应的空气膜厚度为_______________________ m . (1 nm=10 - 9 m)56、在空气中有一劈形透明膜,其劈尖角 = 1.0×10 -4nm 的单色 rad ,在波长 = 700 光垂直照射下,测得两相邻干涉明条纹间距 l = 0.25 cm ,由此可知此透明材料的折射率n= ______________________ . (1 nm=10 - 9 m)57、用波长为 的单色光垂直照射折射率为 n 2 的劈形膜 (如图 )图中各部分折射率的关系是n 1< n 2< n 3 .观察反射光的干涉条纹, n 1n 2 从劈形膜顶开始向右数第 5 条暗条纹中心所对n 3应的厚度 e = ____________________ .58、用波长为 的单色光垂直照射如图所示的、折射率为n的n 12劈形膜 (n 1 > n 2 , n 3> n 2 ),观察反射光干涉.从劈形膜顶n 2n 3开始,第 2 条明条纹对应的膜厚度e = ___________________ .59、用波长为 的单色光垂直照射折射率为 n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为 l ,则劈尖角 = _______________ .60、用波长为 的单色光垂直照射如图示的劈形膜(n > n > n ),观n 1123察反射光干涉.从劈形膜尖顶开始算起,第 2 条明条纹中心所对应的膜n 2 厚度 e = ___________________________ .n 361 、已知在迈克耳孙干涉仪中使用波长为 的单色光.在干涉仪的可动反射镜移 动距离 d 的过程中,干涉条纹将移动 ________________ 条.62、在迈克耳孙干涉仪的一条光路中,插入一块折射率为n,厚度为 d 的透明薄片.插入这块薄片使这条光路的光程改变了_______________ .63 、在迈克耳孙干涉仪的可动反射镜移动了距离 d 的过程中,若观察到干涉条纹移动了 N 条,则所用光波的波长=______________ .64、波长为 600 nm 的单色平行光,垂直入射到缝宽为a= 0.60 mm 的单缝上,缝后有一焦距 f = 60 cm的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为 __________ ,两个第三级暗纹之间的距离为____________ . (1 nm= 10﹣9 m)65、 He -Ne 激光器发出=632.8 nm (1nm=10 -9 m)的平行光束,垂直照射到一单缝上,在距单缝 3 m 远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是 10 cm,则单缝的宽度 a=________ .66、在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为_________________ 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是______________________________ 纹.67、平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P 点处为第二级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半, P 点处将是 ______________ 级 __________________ 纹.68、波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30 °,单缝处的波面可划分为 ______________ 个半波带.69、惠更斯引入__________________ 的概念提出了惠更斯原理,菲涅耳再用______________ 的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.70、惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P 的 _________________ ,决定了 P 点的合振动及光强.71、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上,所用单色光波长500 nm (1 nm = 10 9 m),则单缝宽度为 _____________________m .72、在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的 2 倍,则中央明条纹边缘对应的衍射角=______________________ .73、在单缝夫琅禾费衍射实验中波长为的单色光垂直入射在宽度为a=2 的单缝上,对应于衍射角为 30 方向,单缝处的波面可分成的半波带数目为________ 个.74、如图所示在单缝的夫琅禾费衍射中波1.5长为 的单色光垂直入射在单缝上.若对应于 A会聚在 P 点的衍射光线在缝宽 a 处的波阵面恰1C 好分成 3 个半波带,图中 AC CD DB ,a2D 则光线 1 和 2 在 P 点的B3 4P相位差为 ______________ .75、在单缝夫琅禾费衍射实验中, 波长为 的单色光垂直入射在宽度 a=5 的单缝上.对应于衍射角 的方向上若单缝处波面恰好可分成 5 个半波带,则衍射角 =______________________________ .76、在如图所示的单缝夫琅禾费衍射装置示意图LC中,用波长为 的单色光垂直入射在单缝上,若P 点是衍射条纹中的中央明纹旁第二个暗条纹的中心,则 A由单缝边缘的 A 、 B 两点分别到Pa达 P 点的衍射光线光程差是__________ .Bf77、测量未知单缝宽度 a 的一种方法是:用已知波长 的平行光垂直入射在单缝上,在距单缝的距离为D 处测出衍射花样的中央亮纹宽度为 l ( 实验上应保证 D ≈ 103a ,或 D 为几米 ),则由单缝衍射的原理可标出 a 与 ,D ,l 的关系为a =______________________ .78、某单色光垂直入射到一个每毫米有 800 条刻线的光栅上,如果第一级谱线的 衍射角为 30°,则入射光的波长应为 _________________ .79、在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的 ____________ 相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称 为 ______________ 晶体.80、光的干涉和衍射现象反映了光的________性质.光的偏振现像说明光波是__________ 波.三、计算题: (每题 10 分)81、在双缝干涉实验中,所用单色光的波长为600 nm ,双缝间距为 1.2 mm 双缝与屏相距 500 mm ,求相邻干涉明条纹的间距.82、在双缝干涉实验中,双缝与屏间的距离 D = 1.2 m ,双缝间距 d = 0.45 mm ,若测 得屏上干涉条纹相邻明条纹间距为 1.5 mm ,求光源发出的单色光的波长 .83、用波长为 500 nm (1 nm=10 - 9 m) 的单色光垂直照射到由两块光学平玻璃构成的空气 劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边 l = 1.56 cm 的 A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角 ;(2) 改用 600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?84、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R= 400 cm.用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第 5 个明环的半径是 0.30 cm .A(1) 求入射光的波长.O(2) 设图中 OA= 1.00 cm ,求在半径为 OA 的范围内可观察到的明环数目.85、用白光垂直照射置于空气中的厚度为 0.50 m 的玻璃片.玻璃片的折射率为 1.50.在可见光范围内 (400 nm ~ 760 nm) 哪些波长的反射光有最大限度的增强?(1 nm=10 -9 m)86、两块长度10 cm 的平玻璃片,一端互相接触,另一端用厚度为0.004 mm 的纸片隔开,形成空气劈形膜.以波长为500 nm 的平行光垂直照射,观察反射光的等厚干涉条纹,在全部10 cm 的长度内呈现多少条明纹?(1 nm=10 -9 m)87、一平面衍射光栅宽 2 cm,共有8000 条缝,用钠黄光可能出现的各个主极大对应的衍射角.(1nm=10 -9m)88、如图,P1、P2为偏振化方向相互平行的两个偏振片.光强为 I 0的平行自然光垂直入射在P1上.(1) 求通过 P 后的光强 I .2 (589.3 nm) 垂直入射,试求出II0P 1P3P 2(2) 如果在 P1、P2之间插入第三个偏振片P3,(如图中虚线所示)并测得最后光强I= I 0 / 32 ,求: P3的偏振化方向与P1的偏振化方向之间的夹角(设为锐角).89、三个偏振片P 、 P 、 P 顺序叠在一起,P 、 P3 的偏振化方向保持相互垂直,P11 2 3 1与 P2的偏振化方向的夹角为,P2可以入射光线为轴转动.今以强度为I0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与角的函数关系式;(2) 试定性画出在P2转动一周的过程中透射光强I 随角变化的函数曲线.90、两个偏振片P1、 P2叠在一起,一束单色线偏振光垂直入射到P1上,其光矢量振动方向与 P1 的偏振化方向之间的夹角固定为30°.当连续穿过 P1、 P2 后的出射光强为最大出射光强的 1 / 4 时, P1 、P2的偏振化方向夹角是多大?91、将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为60 o,一束光强为 I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成 30°角.(1)求透过每个偏振片后的光束强度;(2)若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.92、将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成 45 和 90 角.(1)强度为 I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2)如果将第二个偏振片抽走,情况又如何?93、如图所示,媒质Ⅰ为空气(n1= 1.00) ,Ⅱ为玻璃 (n2= 1.60),两个交界面相互平行.一束自然光由媒质Ⅰ中以ii角入射.若使Ⅰ、Ⅱ交界面上的反射光为线偏振光,Ⅰ(1) 入射角 i 是多大?r(2) 图中玻璃上表面处折射角是多大?Ⅱ(3) 在图中玻璃板下表面处的反射光是否也是线偏振I光?94、在水 (折射率 n1= 1.33) 和一种玻璃 ( 折射率 n2= 1.56 的交界面上,自然光从水中射向玻璃,求起偏角 i 0.若自然光从玻璃中射向水,再求此时的起偏角i0.95、一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为 56°,求这种介质的折射率.若把此种介质片放入水 (折射率为 1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.96、一束自然光以起偏角 i0= 48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为 1.56 ,求:(1)该液体的折射率.(2)折射角.97、一束自然光自空气入射到水(折射率为 1.33)表面上,若反射光是线偏振光,(1)此入射光的入射角为多大?(2)折射角为多大?98、一束自然光自水(折射率为 1.33) 中入射到玻璃表面上(如图 ). 水当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.玻璃99、一束自然光自水中入射到空气界面上,若水的折射率为1.33,空气的折射率为 1.00,求布儒斯特角.100、一束自然光自空气入射到水面上,若水相对空气的折射率为 1.33 ,求布儒斯特角.大学物理 ------波动光学参考答案一、选择题01-05 ACBCA06-10 ABABB11-15 BBDAB16-20 BADBB21-25 DCBCC26-30 ABD DD31-35 BDBDB36-40 BABAC二、填空题41. ( n 1 n 2 )e or (n 2 n 1 )e ; 42. 2.60e ; 43. 3.0e+λ/2 or 3.0e-λ/2;44. (4ne1) or(4ne 1) ; 45. n( r 2r 1 ) ; 46. 2 (n 2n 1 ) e;47. 2 d sin / ; 48. (1) 使两缝间距变小,(2)使屏与两缝间距变大;49. 0.75 ; 50. 0.45mm ; 51. 变小, 变小; 52.D ; 53.dx; 54. D ;dn 5D N55. 1.2 m ; 56. 1.40 ; 57.9; 58. 3; 59.rad ; 60. ;4n 24n 22nl2n 261. 2d / ; 62. 2(n 1)d ; 63. 2d / N ; 64. 1.2mm , 3.6mm ;65. 7.60 10 2 mm ;66. 6,第一级明纹; 67. 4,第一, 暗; 68. 4 ;69. 子波, 子波相干叠加; 70. 相干叠加; 71. 10 6 m ; 72.30 0 ; 73.2 ; 74.;75. 300 ; 76. 2 ; 77. 2D / l ; 78. 625nm ;79. 传播速度, 单轴; 80. 波动, 横波。

《大学物理AII》作业 No.02 波动方程 参考答案

《大学物理AII》作业 No.02 波动方程 参考答案

《大学物理AII 》作业No.02波动方程班级________学号________姓名_________成绩_______-------------------------------------------------------------------------------------------------------****************************本章教学要求****************************1、理解波动产生的条件、传播的特性及波的分类。

2、掌握描述波的特征量:周期、频率、波长、波速的物理意义及其相互关系,并能与振动的特征量相区分。

3、掌握相位传播、波形传播意义,并能根据质点简谐运动方程或振动曲线建立平面简谐波的波函数。

理解波函数与波形曲线、振动曲线和行波的关系。

4、理解波的能量密度、能流、能流密度及波的强度等概念。

行波的传播过程就是能量的传播过程。

5、理解多普勒效应产生的机制及应用。

-------------------------------------------------------------------------------------------------------一、填空题1、波动是振动的传播,其中机械振动在弹性介质中的传播称为机械波,它的传播需要介质(选填:需要,不需要)。

由于带电粒子的运动引起周围空间电磁场交替变化而形成的波称为电磁波,它的传播不需要介质(选填:需要,不需要)。

根据质点振动方向与波的传播方向之间的关系(垂直或平行),波又可以分为横波和纵波。

2、描述波时间周期性的特征量是周期T ,描述波空间周期性的特征量是波长λ振动状态(相位)在介质中传播速度称为波速(相速)u ,三者之间的关系为T u λ=。

3、某时刻t 的波形曲线如图所示,图中B 点的y 坐标By 表示的是t 时刻B x 处质元离开平衡位置的位移,若为纵波,图中A 、C 分别对应纵波的密部中心和疏部中心(填:密部中心或疏部中心)。

大学物理参考答案(白少民)第10章 波动学基础

大学物理参考答案(白少民)第10章 波动学基础
450。已知波速为 15cm/s,试求波的频率和波长。 解:波长可看成是沿波射线相位差 2π 的两点间的距离,则由题知其波长为
3.5 u 15 = 28 cm , 进而可求得波的频率为 ν = = = 0.54 Hz π /4 λ 28 10.14 证 明 y = A cos( kx −ω t ) 可 写 成 下 列 形 式 : y = A cos k ( x − u t ) , x x 1 x y = A cos 2π ( − ν t ) , y = A cos 2π ( − ) ,以及 y = A cos ω( − t ) 。 λ T u λ ω 2πν t ) = k ( x − ut ) 证明 : kx − ω t = k ( x − t ) = k ( x − k 2π / λ 所以波函数可写为: y = A cos k ( x − ut ) 2π x x x − 2πν t = 2π ( −νt ) ,则波函数还可写为 y = A cos 2π ( −ν t ) 又 kx − ω t = λ λ λ 1 x t 由ν = 则还可得: y = A cos 2π ( − ) T λ T k x x kx − ω t = ω( x − t ) = ω( − t ) ,则波函数还可写为 y = A cos ω( − t ) ω u u 10.15 波源 做 简谐振动,位移与时间的关系为 y = ( 4.00 ×10 −3 ) cos 240π t m ,它所 激发的波以 30.0m/s 的速率沿一直线传播。求波的周期和波长,并写出波函数。 解:由波源的振动方程 y = ( 4.00 ×10 −3 ) cos 240πt m 知振动角频率 ω = 240π . 而波的频率就等于波源的振动频率,所以波的频率和周期分别为 ω 1 1 ν= = 120 Hz , T = = = 8.33 ×10 −3 s ν 120 2π u 30.0 = 0.25 m 进一步计算波长为 λ = = ν 120 x x −3 )m 最后可写出波函数为 y = A cos ω(t − ) = ( 4.00 ×10 ) cos 240π (t − u 30 10.16 沿 绳子 行进的 横 波波函数为 y =10 cos(0.01π x − 2π t ) ,式中长度的 单 位是 cm,时间的单位是 s。试求:(1)波的振幅、 频率、传播速率和波长;(2)绳上某质点的最 大横向振动速率。 解:(1)由 y = 10 cos(0.01π x − 2π t ) = 10 cos 2π (t − 5.0 ×10 −3 x ) 知: ω 2π ν= = = 1 Hz ; 波 长 振 幅 A = 10cm = 0.1m ; 频 率 2π 2π

大物b课后题10-第十章波动学基础

大物b课后题10-第十章波动学基础

习题10-5 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是3,,,424λλλλ。

设振源的振动方程为cos 2y A t πω⎛⎫=+⎪⎝⎭,振动周期为T.(1)这4点与振源的振动相位差各为多少(2)这4点的初相位各为多少(3)这4点开始运动的时刻比振源落后多少解 (1) 122,2,2xxπϕπϕππλλ∆∆∆==∆==3432,222x xπϕπϕππλλ∆∆∆==∆==(2)112233440,,2223,222πππϕϕϕϕππϕϕπϕϕπ=-∆==-∆=-=-∆=-=-∆=-(3)1212343411,24223,242t T T t T T t T T t T Tϕϕππϕϕππ∆∆∆==∆==∆∆∆==∆==10-6 波源做谐振动,周期为0.01s ,振幅为21.010m -⨯,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1400u m s -=•的速度沿x 轴的正方向传播,试写出波动方程。

解 根据题意可知,波源振动的相位为32ϕπ=2122200, 1.010,4000.01A m u m s T ππωπ--====⨯=• 波动方程231.010cos 2004002x y t m ππ-⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦10-7 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。

解 (1)比较系数法将波动方程改写成0.05cos10 2.5x y t m π⎛⎫=-⎪⎝⎭与cos x y A t u ω⎛⎫=-⎪⎝⎭比较得1120.05;10;0.21015; 2.5;0.5A m T s v s u m s u T m Tπωππλ--=======•=•=(2)各质元的速度为()10.0510sin 410v x t m s πππ-=⨯-•所以1max 0.0510 1.57()v m s π-=⨯=•各质元的加速度为()220.05(10)cos 410a x t m s πππ-=-⨯-•所以22max 0.05(10)49.3()a m s π-=⨯=•10-8 设在某一时刻的横波波形曲线的一部分如图所示。

2021年大学物理(第四版)课后习题及答案 波动

2021年大学物理(第四版)课后习题及答案 波动

第十四章波动欧阳光明(2021.03.07)14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11---=ππ。

(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷。

画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同。

14-1 ()[]x m t s m y )(5.2cos )20.0(11---=ππ 分析(1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率ν、振幅A 及彼长 等),通常采用比较法。

将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)。

比较法思路清晰、求解简便,是一种常用的解题方法。

(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。

例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。

介质不变,彼速保持恒定。

(3)将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图。

而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图。

解(1)将已知波动方程表示为 与一般表达式()[]0cos ϕω+-=x t A y 比较,可得则 m v u Hz v 0.2,25.1====λπω(2)绳上质点的振动速度则1max 57.1-⋅=s m v(3) t=1s 和 t =2s 时的波形方程分别为波形图如图14-1(a )所示。

x =1.0m 处质点的运动方程为振动图线如图14-1(b )所示。

振动、波动学基础选择题及参考答案

振动、波动学基础选择题及参考答案
(A) 。
(B) 。
(C) 。
13、一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为 , 。其合成运动的运动方程为 。
14、已知一个简谐振动的振幅 ,圆频率 ,以余弦函数表达运动规律时的初相位 ,试画出位移和时间的关系曲线(振动曲线)。
振动学基础 参考答案
选择题:
1C, 2C, 3B, 4C, 5D, ,6D ,7B, 8C, 9E, 10B, 11B, 12B
(A) 。
(B) 。
(C) 。(D)
11、一沿 轴负方向传播的平面简谐波在 时的波形曲线如图所示,则原点 的振动方程为:
(A) 。
(B) 。
(C) 。(D) 。
12、 一列机械横波在 时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元位置是:
(A) , , , 。
(B) , , , 。
(C) , 。 (D) , 。
填空题:
1、; (SI)
2、
3、4(SI);
4、
5、
6、 b和f ;a和e
7、0; (SI)
9、 ; (SI)
10、 ;
12、(A)
(B)
(C)
13、 (SI)
14、 (SI)
波动学基础
一、选择题:
1、一平面简谐波的波函数为 , 时的波形曲线如左下图所示,则:
(A) 点的振幅为 。
(B)波长为 。
(C) 、 两点间的相位差为 。
5、一简谐波沿 轴正向传播。已知 点的振动曲线如下图,试在它右边的图中画出 时的波形曲线。
6、一列强度为 的平面简谐波通过一面积为 的平面,波速 与该平面的法线 的夹角为 ,则通过该平面的能流是。
7、机械波在媒质中传播过程中,当一媒质质元的振动动能的相位是 时,它的弹性势能的相位是。

大学物理参考答案(白少民)第9章 振动学基础

大学物理参考答案(白少民)第9章 振动学基础

+ x 所以有振动方程
1 k1 k 2 ( ) x = 0 ,则 ω = m k1 + k 2
9.8 仿照式(9.15)的推导过程,导出在单摆系统中物体的速度与角位移的关系式. 解:对于单摆系统中的物体 m,其振动动能 系统的势能(重力势能) 而系统的总能量 所以 1 2
Ek =
1 1 2 mυ 2 = ml 2θ 2 2
动能与势能相等,即 E k = E p
( n = 0, 1, 2, ) ,由此得在下式 4 2 nπ / 2 ± π / 4 t= = ( 2n + 1)T / 8 表示的时刻动能和势能相等: ω 9.14 质量为 10g 的物体作简谐振动 ,其振幅为 24cm,周期为 1.0s,当 t=0 时,位移为+24cm,求: (1) t =1/ 8 s 时物体的位置以及所受力的大小和方向;( 2)由起始位置运动到 x=12cm 处 所需要的最少时间;(3)在 x=12cm 处物体的速度、动能、势能和总能量。 解:A=24cm=0.24m, ω = 2πν = 2π / T = 2π rad / s x = 0.24 cos 2π t 由 t=0 时 x=0.24m 得初相 ϕ = 0 . 所以简谐振动为 (1) t =1 / 8 s 时,位移为 x = 0.24 cos 2π ×1 / 8 = 0.24 × 2 / 2 = 0.17 m = −0.01 × ( 2π ) 2 × 0.24 cos 2π / 8 = −6.7 ×10 −2 N . 负号代表方向与位 x 所受力 f = m 移的方向相反。 1 (2)由 0.12 = 0.24 cos 2π t 得最少时间 t = s 6 (3)在 x =12cm处(即t =1 / 6 s) = −2π × 0.24 sin 2πt = −2π × 0.24 sin π / 3 = −1.31m/s 物体的速度 υ = x 1 1 E k = mυ 2 = × 0.01 × ( −1.31) 2 = 8.6 ×10 −3 J 动能 2 2 势 能 1 1 π 1 1 E p = kx 2 = mω 2 A 2 cos 2 = × 0.01 × (2π ) 2 × (0.24) 2 × = 2.8 ×10 −3 J 2 2 3 2 4

北京大学出版社简明大学物理课后答案

北京大学出版社简明大学物理课后答案
(2) ,
(3) , ,
1.7一质点在半径为0.10m的圆周上运动,其角位置为: 。(1)求在 时质点的法向加速度和切向加速度;(2)当切向加速度的大小恰等于总加速度大小的一半时, 值为多少?(3) 为多少时,法向加速度和切向加速度的值相等?
解:
(1)
时:
(2) ,当 时有:
,得:
代入
(3) ,得
1.8竖直上抛一小球,若空气阻力的大小是重力的0.1倍,求小球上升到最高点所用的时间与从最高点落到原位置所需的时间之比。
, , ,
, ,
2.5飞轮质量为 ,半径为 ,转速为 。闸瓦与飞轮之间的摩擦因数为 ,设飞轮质量全部分布在轮的边缘上,如图所示。现用闸瓦制动使其在 内停止转动,求制动力 ,施力位置见图。
根据闸杆的力矩平衡有:

摩擦力矩是恒定的,飞轮做匀角加速转动,有
由 , 和上二式得
2.6有一质量为 、长为 的均匀细棒,静止平放在滑动摩擦因数为 的水平桌面上,可绕过其端点 与桌面垂直的固定光滑轴转动。一个水平运动质量为 的小滑块,从侧面垂直于棒与棒的另一端 相碰撞,碰撞前、后小滑块的速度分别为 和 ,如图所示。求:从碰撞前后细杆开始转动到停止转动所需的时间。
由碰撞时动量守恒后二者粘到一起,并静止,一起的能量为 。
于是有: ,
由此式可见 ,即复合粒子的静止质量大于复合前两粒子的静质量的和。这是因为原来的动能转化为静能,在碰撞中总能量守恒,而静能和静止质量不守恒。
3.13

第四章
4.3
由图知
4.4
由图知弹簧的等效倔强系数 ,
, , ,
, , 。
4.8,
由题意 时,
解:看作一个整体,系统动量守恒,能量守恒,

大学物理参考答案(白少民)第11章 波动光学

大学物理参考答案(白少民)第11章 波动光学

600 2 2 5 7 5 λ = × 600 / = × 600 = 428.6nm 则前一种单色光的波长 2 2 7 11.17 在通常的亮度下,人眼瞳孔直径约为 3mm,问人眼的最小分辨角是多大 ?如果黑板上
解:由题意知
(3 × 2 + 1)
λ
= (2 × 2 + 1)
画有两条平行直线,相距 1cm,问离开多远处可恰能分辨? 解:对于眼睛敏感的光 λ = 550nm 则人眼的最小分辨角
kλ 2 × 600 = = 6000nm = 6 ×10 −6 m sin θ 0.2 (2)因第四级是缺级,则 a + b = 4a (认为 k < 4 再无缺级),所以有 a +b 6 a= = ×10 −6 = 1.5 ×10 −6 m 4 4 a +b =
(3)由光栅方程得
k=
(a + b) sin θ 6 × 10 −6 × 1 = = 10 λ 600 × 10 −9
3
解:(1)由 ∆d = ∆n
λ
解:设到 P 点的光线与光轴的夹角为 θ ,则 (1)由 b sin θ = ±( 2k + 1)
tgθ =
x 1.4 ×10 −3 = = 3.5 ×10 −3 f 0 .4
λ
2
得该入射光的波长
λ=
2b sin θ 2btgθ 2 × 0.6 ×10 −3 × 3.5 ×10 −3 4.2 ×10 −6 4200 ≈ = = m= nm 2k +1 2k +1 2k + 1 2k + 1 2k +1
λ
2
.
λ = kλ (k = 1,2,) 2 4ne 4 ×1.33 × 380 2022 λ= = = nm 由此得 2 k −1 2 k −1 2 k −1 在可见光范围内 k=2 , λ = 674nm (紫色); k=3 , λ = 404nm (红色),故正面是紫红 δ 1 = 2ne +

大学物理练习册习题及答案波动学基础

大学物理练习册习题及答案波动学基础

习题及参考答案第五章 波动学基础参考答案思考题5-1把一根十分长的绳子拉成水平,用手握其一端,维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则(A )振动频率越高,波长越长; (B )振动频率越低,波长越长; (C )振动频率越高,波速越大; (D )振动频率越低,波速越大。

5-2在下面几种说法中,正确的说法是(A )波源不动时,波源的振动周期与波动的周期在数值上是不同的; (B )波源振动的速度与波速相同;(C )在波传播方向上的任二质点振动位相总是比波源的位相滞后; (D )在波传播方向上的任一质点的振动位相总是比波源的位相超前 5-3一平面简谐波沿ox 正方向传播,波动方程为010cos 2242t x y ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦. (SI)该波在t =0.5s 时刻的波形图是( )5-4图示为一沿x 轴正向传播的平面简谐波在t =0时刻的波形,若振动以余弦 函数表示,且此题各点振动初相取-π到π之间的值,则()(A )1点的初位相为φ1=0(B )0点的初位相为φ0=-π/2(m)(A )(m)(m)(B )(C )(D )思考题5-3图思考题5-4图(C )2点的初位相为φ2=0 (D )3点的初位相为φ3=05-5一平面简谐波沿x 轴负方向传播。

已知x=b 处质点的振动方程为[]0cos y A t ωφ=+,波速为u ,则振动方程为( )(A)()0cos y A t b x ωφ⎡⎤=+++⎣⎦(B)(){}0cos y A t b x ωφ⎡⎤=-++⎣⎦(C)(){}0cos y A t x b ωφ⎡⎤=+-+⎣⎦ (D)(){}0cos y A t b x u ωφ⎡⎤=+-+⎣⎦ 5-6一平面简谐波,波速u =5m·s -1,t =3s 时刻的波形曲线如图所示,则0x =处的振动方程为( )(A )211210cos 22y t ππ-⎛⎫=⨯- ⎪⎝⎭ (SI) (B )()2210cos y t ππ-=⨯+ (SI) (C )211210cos 22y t ππ-⎛⎫=⨯+ ⎪⎝⎭ (SI) (D )23210cos 2y t ππ-⎛⎫=⨯- ⎪⎝⎭ (SI) 5-7一平面简谐波沿x 轴正方向传播,t =0的波形曲线如图所示,则P 处质点的振动在t =0时刻的旋转矢量图是( )5-8当一平面简谐机械波在弹性媒质中传播时,下述各结论一哪个是正确的? (A )媒质质元的振动动能增大时,其弹性势能减少,总机械能守恒; (B )媒质质元的振动动能和弹性势能都作周期变化,但两者的位相不相同;(C )媒质质元的振动动能和弹性势能的位相在任一时刻都相同,但两者的数值不相等; (D )媒质质元在其平衡位置处弹性势能最大。

波动学基础练习题及答案

波动学基础练习题及答案

波动学基础练习题及答案一、选择题1、一平面简谐波沿ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是 [ B ]-2、在下面几种说法中,正确的说法是: [ C ] (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的 (B) 波源振动的速度与波速相同(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计)(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前(按差值不大于π计)3、机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 [ B ] (A) 其振幅为3 m (B) 其周期为s 31(C) 其波速为10 m/s (D) 波沿x 轴正向传播4、在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定[ A ](A) 大小相同,而方向相反 (B) 大小和方向均相同 (C) 大小不同,而方向相同 (D) 大小不同,且方向相反 5、横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如图.则该时刻 (A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零[ D ]6、一简谐波沿x 轴正方向传播,t = T /4时的波形曲线如图所示.若振动以余弦函数表示,且此题各点振动的初相取-π 到π 之间的值,则(A) O 点的初相为00=φ(B) 1点的初相为π-=211φ(C) 2点的初相为π=2φ (D) 3点的初相为π-=213φ [ D ]7、图示一简谐波在t = 0时刻的波形图,波速 u = 200 m/s ,则P 处质点的振动速度表达式为(A) )2cos(A 2v πππ--=t (SI). [ A ] (B) )cos(A 2v πππ--=t (SI). (C) )22cos(A 2v πππ-=t (SI).(D) )2/3cos(A 2v πππ-=t (SI).二、 填空题1、A ,B 是简谐波波线上的两点.已知,B 点振动的相位比A 点落后π31,A 、B 两点相距0.5 m ,则该波的波长 λ = __3______ m 。

大学物理参考答案(白少民)第2章 力学中的守恒定律

大学物理参考答案(白少民)第2章 力学中的守恒定律
f = mg ( 4 + 0) = 4mg 与(1)中结果相同。 , 2 (3)因为只有当 H 有足够的值,才能保证在圈顶时,物体具有一定的速度(动能),使得 所需向心力大于物体的重力,而不致使物体掉下来。 2.15 如图 2.22 所示,一质量为 m = 0.10kg 的小球,系在绳的一端,放在倾角 α = 30o 的 光滑斜面上,绳的另一端固定在斜面上的 O 点,绳长 0.2m,当小球在最低点 A 处,若在垂直于
向心力
F心 = m
2 υc = mg sin α(3 + 2 cos θ) l
它由重力分力和绳子的张力共同提供 F心 = −mg sin αcos θ + Tc
∴T
c
= F心 + mg sin αcos θ = 3mg sin α + 2mg sin αcos θ + mg sin αcos θ
(1 + cos θ) =1.47(1 + cos θ)N = 3mg sin α
第二章 力学中的守恒定律 2.1 在下面两种情况中,合外力对物体作的功是否相同 ?(1)使物体匀速铅直地升高 h 。(2) 使 物体匀速地在水平面上移动 h。如果物体是在人的作用下运动的,问在两种情况中对物体作的功 是否相同? 答:合外力对物体做功不同。 2.2 A 和 B 是两个质量相同的小球,以相同的初速度分别沿着摩擦系数不同的平面滚动。 其中 A 球先停止下来,B 球再过了一些时间才停止下来,并且走过的路程也较长,问摩擦力对这两个 球所作的功是否相同? 答:摩檫力对两球做功相同。 2.3 有两个大小形状相同的弹簧:一个是铁做成的,另一个是铜做成的,已知铁制弹簧的倔 强系数比铜大。 (1) 把它们拉长同样的距离,拉哪一个做功较大? (2) 用同样的力来拉,拉哪一个做功较大? 答:(1)拉铁的所做功较大; (2)拉铜的做功较大。 2.4 当你用双手去接住对方猛掷过来的球时,你用什么方法缓和球的冲力。 答:手往回收,延长接球时间。 2.5 要把钉子钉在木板上,用手挥动铁锤对钉打击,钉就容易打进去。如果用铁锤紧压着钉 , 钉就很难被压进去,这现象如何解释? 答:前者动量变化大,从而冲量大,平均冲力也大。 2.6 "有两个球相向运动,碰撞后两球变为静止,在碰撞前两球各以一定的速度运动,即各 具有一定的动量。由此可知,由这两个球组成的系统,在碰撞前的总动量不为零,但在碰撞后, 两球的动量都为零,整个系统的总动量也为零。这样的结果不是和动量守恒相矛盾吗?" 指出上述讨论中的错误。 答:上述说法是错误的,动能守恒是成立的。虽然碰前各自以一定的速度不为零,相应的动 量也不为零,但动量是矢量,系统的总动量在碰前为 0,满足动量守恒定律。 2.7 试问:(1) 一个质点的动量等于零,其角动量是否一定等于零 ?一个质点的角动量等于零, 其动量是否一定等于零? (2) 一个系统对某惯性系来说动量守恒,这是否意味着其角动量也守恒? 答:(1)一个质点的动量等于零,其角动量也一定为零;一个质点的角动量等于零,其动 量不一定为零。 (2)一个系统对某惯性系来说动量守恒,这并不意味其角动量也守恒。 * * * * * * 2 2.8 一蓄水池,面积为 S = 50m ,所蓄的水面比地面低 5.0m,水深 d=1.5m。用抽水机把这 池里的水全部抽到地面上,问至少要作多少功? 解:池中水的重力为 F = mg = ρsdg =1.0 ×10 3 ×50 ×1.5 ×10 = 7.5 ×10 5

02 波动--习题解答

02 波动--习题解答

y0 即
v0 即
0,

或作 t=0时刻的波形图可得

4 T u 330

2 165 T
x y 0.1cos[ (t 165 ) ] 330
4、
0.5
振动动能和弹性势能表达式同
变化是同相位的.
5、
5J
6、
(1) P在S1 , S2之间

2
6、D
7、B
IA
8、B
对波动,质点在平衡点动能势能都最大
9、C
y 在平衡位置最大 x
( 2 2 r2
10、D 11、D

) (1
2 r1

) D
注意振幅是非负数
12、B
2 A cos
2 x

二、填空题 1、
125rad / s;
338m / s;
u S1
3 4.5
u S2 或:波程差
r1 r2 1.5
p
两波源具有相同的初相位
2

(r1 r2 )
2

(3 4.5 ) 3
A1 A2 A
2 A12 A2 2 A1 A2 cos 0
干涉相消
A0
3
4.5
u S2
2:图示一平面简谐波在t=0时刻的波形图。求: (1)该波的波动方程; (2)P处质点的振动方程
y ( m)
u 0.08m / s
x ( m)
O
0.20
0.04
解: 由t 0质点O的振动状态: (1) A y0 0, 0 0 2 1
由图可知:T 5s , v H z u 5

波动学基础答案

波动学基础答案

1、频率为3000Hz 的声波,以1560m/s 的传播速度沿以波线传播,该声波的波长为(0.52m ),同一波线上 相位差为2π的两点间的距离为(0.13m )。

2、机械波的相干条件为( 频率相同)、(振动方向相同)和(相位相等或相位差恒定)。

3、已知平面简谐波的波函数为()bx at A y -=cos (a, b 为正值),则…………(④)①波的频率为a ②波的传播速度为b/a③波长为π/b ④波的周期为2π/a4、关于驻波和行波的说法不正确的是………………………………………………( ②) ①驻波中有些介质点始终不动。

②驻波中相邻两波节的距离是一个波长。

③行波波形随着波的传播向前移动。

④驻波的波形不沿介质前进。

5、(8分)一平面余弦波沿x 轴正向传播,其频率为100Hz ,振幅为1cm ,波速为400m/s ,如果波源位于原点,且以原点处质点经过平衡位置朝y 负方向振动的时刻为计时起点。

(1)写出该余弦波的波动方程;(2)写出该波走2s 后的波形方程。

解:(1)A=0.01m,ππνω2002==,c=400m/s ,根据题意,故可得2πϕ=。

波源的振动方程为[]ϕπ+=t y 200cos 01.0……………………………………(2分) 可得波动方程为⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=2400200cos 01.0ππx t y m …………………… (4分) (2)将t=2s 代入即可得波形方程为⎪⎭⎫⎝⎛=x y 2sin 01.0πm. …………………(2分) 6、平面简谐波的波动方程为)2cos(λππxt A y -=(SI 制),已知x =2.5λ,则波源的振动位相较该点的振动位相………………………………………………………………(④ ) ①、落后2.5π②、落后5π③、超前2.5π④、超前5π7、下面对机械波描述不正确的是……………………………………………………(② ) ①、行波传播过程中,介质中质元的动能和势能是同相变化,而且是相等的。

波动学基本

波动学基本

ππ
π
y1
=
A cos(200π
t
−16 ×
2

2
)
=
A cos( 200π
t

) 2
同理,
y2
=
A cos( 200π
t

20 ×
π 2

π 2
)
=
A cos(200π
t

π) 2
4
自治区精品课程—大学物理学
黄新民、张晋鲁主编《普通物理学》习题解答
初相位分别为:t=0
时, φ1 0
=
−π 2
,φ20

f
(2)
∵平面简谐波的波动方程为: y
=
Acos ω(t −
x )
c
∴绳子上各质点的振动速度为: ν = ∂y = − Aω sin ω(t − x)
∂t
c
绳子上各质点的振动加速度为: a = ∂ 2 y = − Aω 2 cosω(t − x )
∂t 2
c
∴绳子上各质点振动时的最大速度为 vmax = Aω =0.5π=1.57(m/s)
当取波源为原点并且该波沿+X 方向传播时,波动方程为
y
=
0.1cos(4π
t
π −
x)
5
(2) 沿波传播方向距离波源为λ/2 处的振动方程为:
y = 0.1cos(4π t − π ⋅ λ ) = −0.1cos(4π t) 52
(3) 距离波源分别为 λ , λ , 3λ 和λ的各点的振动方程为: 42 4
B

CC
∵ c = λf ,∴ λ = CT = B ⋅ 2π = 2π . CB C

第10章 波动学基础 习题答案

第10章 波动学基础 习题答案

, 周期是T。 y A cos t 2
2 , ,3 2 ,2
(1)这四点与振源的振动相位差各位多少?
(2)这四点的初相位各为多少?
0 , 2 , , 3 2
(3)这四点开始运动的时刻比振源落后多少?
T 4 , T2 ,3 T 4 , T
10-14 两相干波源分别在P,Q两处,它们相距 3 2 ,发 出频率为


2 πx y 0 . 03 cos 1 . 6 x cos 550 t m 0.03cos cos 550 t 1 . 25 1 . 25
10-5 在平面简谐波的波射线上,A,B,C,D 各点距离波
4振动方程
、波长为
的相干波。R为PQ连线上的一
点,求下列两种情况下,两波在R点的合振幅。(1)设两
波源有相同的初相位;(2)两波源的初相位差为 3 2

P
Q
R
x A co 2 s t (1)P点波:y P 1 x 3 2 y A cos 2 t Q点波: Q 2
相位差为 。 2 ,∴R点合振幅为 A 1 A 2
10-15 两个波在一根很长的绳子上传播,它们的方程为
y 0 . 06 cos x 4 t y 0 . 06 cos x 4 t 2 1
2 x 2 x 0 . 06 cos 4 t y 0 . 06 cos 4 t y 2 1 2 2 2 x y y y 0 . 12 c os 4 t c os 1 2 2
10-16 绳子上的驻波由下式表示
y 0 . 08 cos 2 x cos 50 t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.8 为什么在振动过程中振动物体在平衡位置时动能最大,而势能为零;在最大位移处 动能为零,而势能最大?为什么在波动过程中参与波动的质点在振动时 ,却是在平衡位置动能 和势能同时达到最大值,在最大位移处又同时为零?
答 :在振动过程中振动Байду номын сангаас体在平衡位置时其速率最大,位移为零,故动能最大而势能为 零;在最大位移处,由于振动物体位移最大,速率为零,故其动能为零,而势能最大。
10.23 火车汽笛的频率为ν ,当火车以速度 V 通过车站上的静止观察者身边时,观察者
所接受到的笛声频率的变化为多大?已知声速为 u。
解 :火车驶向站台时,波源向着观测者,则频率
ν'
=
u
u −V
当火车驶离站台时,波源背离观测者,则频率
ν
'
'
=
u
u +
V
那么火车通过站台,观擦者所接受到的笛声频率的变化为
在波动过程中参与波动的质点在振动时,在平衡位置,质点的速率最大,同时此处媒质 的弹性形变也最大,故平衡位置处动能和势能同时达到最大值;在最大位移处,质点的速率 为零,同时弹性形变也为零,故动能和势能同时为零。
10.9 在某一参考系中,波源和观察者都是静止的,但传播的介质相对与参考系是运动的. 假设发生了多普勒效应,问接收到的波长和频率如何变化?
第 10 章 波动学基础
10.1 波动与振动有何区别和联系? 答 :振动的传播就是波。振动是一质点(或某一物量)在平衡位置附近的机械运动,而 波是多个质点在平衡位置附近的振动,它是通过媒质的弹性(或场量的相互激发)把波源的
振动状态传递给其他质点。振动中,质点的动能和势能互相交换,其总能量保持不变。而在波
450。已知波速为 15cm/s,试求波的频率和波长。
解:波长可看成是沿波射线相位差 2π 的两点间的距离,则由题知其波长为
λ
= 2π

3.5 π /4
= 28 cm

进而可求得波的频率为
ν
=λu
=
15 28
=
0.54Hz
10.14 证 明 y = A cos(kx −ω t) 可 写 成 下 列 形 式 : y = A cos k(x −u t) ,
10.7(1)为什么有人认为驻波不是波?(2)驻波中,两波节间各个质点均作同相位的简
谐振动,那么,每个振动质点的能量是否保持不变?
答 :(1)有人认为驻波不是波,是因为在驻波中,波腹附近的动能与波节附近的势能
1
之间不断进行互相转换和转移,但没有能量的定向传播,同时也看不到波形的定向移动。 (2)驻波中,两波节各质点虽作同相位简谐振动,但每个振动质点的能量并非保持不变。
点的合振动的振幅。
P
解 :如图取 PQ 连线的延长线方向为 x 轴正向,
Q
3λ / 2
R x
x
4
10.21 题示图
以 P 点为坐标原点,设两振动的初相为ϕ0
自 P 和 Q 发出的波在 R 点引起的振动的相位分别为
ϕp
= ϕ0

t
− 2π
x1 λ
;ϕQ = ϕ0 + ω t − 2π
x2 λ
则相位差
10.22 弦线上的驻波相邻波节的距离为 65cm,弦的振动频率为 2.3 ×102 Hz 。求波的传
播速率 u 和波长 λ 。
解 : 驻 波 相 邻 波 节 的 距 离 为 半 波 长 , 则 λ / 2 = 65cm = 0.65m ,
∴波长 λ = 2 ×0.65 =1.3 m
波速为 u =λν =1.3×2.3×102 =3.0 ×102 m/s
动中动能和势能大小相等,相位相同,都是时间的周期函数。它不断地接受来自波源的能量,
同时也不断地把能量释放出去。
10.2 机械波形成的条件是什么?
答:机械波形式的条件有:1)存在波源(即物体的振动);2) 存在传播机械波的弹性媒
质。
10.3 在同一种介质中传播着两列不同频率的简谐波,它们的波长是否可能相等?为什么?
ν
=
ω 2π
=
2π 2π
= 1 Hz ;


3
(2)振动速率υ
=
∂y ∂t
= −2π ×10 sin(t
−5.0 ×10−3 x)
则绳上某质点的最大恒向振动速率为:υm = 2π ×10 = 63 cm/s = 0.63 m/s
10.17 证明公式ω = ku 证明:ω = 2πν = 2π u = 2π u = ku
=
10.0 ×10 330
−3
= 3.03 ×10−5
J ⋅ m −3
(2)最大能量密度 wmax = 2w = 6.06 ×10−5 J ⋅ m −3
(3)两相邻同相波面之间的距离为: l

=
u ν
=
330 300
=1.1 m
其间的总能量
w
= w ls
=
w

(
d 2
)
2
= 3.03×10−5
×1.1π
10.20 频率为 300Hz、波速为 330m/s 的平面简谐声波在直径为 16.0cm 的管道中传播,能
流密度为10.0 ×10 −3 J ⋅ s −1m −2 。求:(1)平均能量密度;(2)最大能量密度;(3)两
相邻同相位波面之间的总能量。
解:(1)由 I = w u 得平均能量密度
w
=
I u
答:由 u = λν 认为频率高的波传播速度大是错误的。波的传播速度是由介质的性质决定
的,与波的频率无关。
10.6 波传播时,介质质点是否“随波逐流”?“长江后浪推前浪”这句话从物理上说,是否
有根据?
答 :波传播时,介质质点并不“随波逐流”。“长江后浪推前浪”这句话从物理上说是无 根据的,前浪并不因后浪(波)的存在而改变其传播。
y
=
A
cos
2π (
x λ
−ν
t)

y
=
A
cos

(
x λ

1 T
)
,以及
y
=
A
cos
ω(
x u

t)


明:
kx

ω
t
=
k
(
x

ω k
t
)
=
k
(
x

2πν 2π / λ
t)
=
k
(x

ut )
所以波函数可写为: y = A cos k (x −ut)

kx
−ω
t
=
2π λ
x

2πν
t
=
2π ( x λ
330m/s.求波长,并写出此波的波函数。
解:波长为: λ
=νu
=
330 550
= 0.6
m
由于波是沿 x 轴负方向传播的,故在波的一般式中 x 前取正号,则由本题所给数据可写
出波函数为
2
y
=
A
cos ω(t
+
x u
)
=1.0
×10 −2
cos 1.1 ×10 3 π (t
+
x 330
)
+ ϕ
m
10.13 在平面简谐波传播的波射线上有相距 3.5cm 的 A,B 两点,B 点的相位比 A 点落后
1.1
×15.2 ×10 2 ×3.14
2
= 2.66 ×102 m / s
由波的一般形式便可写出此波的波函数为
y
=
A cosω(t

x) u
=1.25 ×10−2
cos1.52 ×103 (t

x) 266
+ ϕ
m
其中 ϕ是初相位。
10.12 一平面简谐波沿 x 轴的负方向行进,其振幅为 1.00cm,频率为 550Hz,波速为
λλ
10.18
用横波的波动方程
∂2 y ∂t2
=
G ρ

∂2 ∂x
y
2
和纵波的波动方程
∂2 y ∂t2
=
Y ρ

∂2 ∂x
y
2
,证明横波
的波速和纵波的波速分别为 u =
G ρ
和u
=
Y。 ρ
证明:任何横波均要满足横波的波动方程 ,现考虑平面简谐波 y = A cos(ω t −kx)
将其代入横波波动方程便得:
如果这两列波分别在两种介质中传播,它们的波长是否可能相等?为什么?
答 :它们的波长不可能相等。因为根据波的叠加原理(独立性原理)可知,一列波的状
态不因其它波的存在与否,故两列不同频率的简谐波在同一种介质中频率仍然不同,但在同
一种介质中,波速是相同的,所以它们的波长也不可能相等。
若这两列波分别在两种介质中传播,它们的波长则可能相等。这是因为,它们的频率和
激发的波以 30.0m/s 的速率沿一直线传播。求波的周期和波长,并写出波函数。
解:由波源的振动方程 y = (4.00 ×10−3 ) cos 240πt m 知振动角频率ω = 240π .
而波的频率就等于波源的振动频率,所以波的频率和周期分别为
ν
=
ω 2π
=120Hz

T
=
1 ν
=
1 120
= 8.33 ×10−3
−νt )
,则波函数还可写为
y
相关文档
最新文档