全国中考二次函数压轴题集锦(附详细答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,

抛物线y=x2+bx+c经过A,B两点.

(1)求抛物线的解析式;

(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于

点F,当线段EF的长度最大时,求点E、F的坐标;

(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.

2.如图,关于x的二次函数y=x2+b x+c的图象与x轴交于点A(1,0)和点B,与y轴交于点

C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;

(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;

(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.

3.如图,已知二次函数y=ax2+b x+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)

三点.

(1)求该二次函数的解析式;

(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;

(3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.

4.如图1,已知二次函数y=ax2+b x+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A (4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.

(1)求二次函数的解析式;

(2)直线l沿x轴向右平移,得直线l,′l与′线段O A相交于点B,与x轴下方的抛物线相交

于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l的′解析式;

(3)在(2)的条件下,l与′y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON,′P

为l′上的动点,当△PB′N为′等腰三角形时,求符合条件的点P的坐标.

5.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.

(1)求抛物线的解析式;

(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD

沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;

(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.

6.如图1,在平面直角坐标系中,O是坐标原点,抛物线y=﹣x2﹣x+8与x轴正半轴

交于点A,与y轴交于点B,连接AB,点M,N分别是OA,AB的中点,Rt△CDE≌Rt△ABO,

且△CDE始终保持边ED经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交

于点G.

(1)填空:OA的长是,∠ABO的度数是度;

(2)如图2,当DE∥AB,连接HN.

①求证:四边形AMHN是平行四边形;

②判断点D是否在该抛物线的对称轴上,并说明理由;

(3)如图3,当边CD经过点O时,(此时点O与点G重合),过点D作DQ∥OB,交AB延长线上于点Q,延长ED到点K,使DK=DN,过点K作KI∥OB,在KI上取一点P,使得∠PDK=4°5(点P,Q在直线ED的同侧),连接PQ,请直接写出PQ的长.

7.如图,抛物线y=x2+x+c与x轴的负半轴交于点A,与y轴交于点B,连结A B,点C(6,)在抛物线上,直线AC与y轴交于点D.

(1)求c的值及直线AC的函数表达式;

(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO

并延长交AB于点N,若M为PQ的中点.①求证:△APM∽△AON;

②设点M的横坐标为m,求AN的长(用含m的代数式表示).

8.抛物线y=4x2﹣2ax+b与x轴相交于A(x1,0),B(x2,0)(0<x1<x2)两点,与y轴交于

点C.

(1)设AB=2,tan∠ABC=4,求该抛物线的解析式;

(2)在(1)中,若点D为直线BC下方抛物线上一动点,当△BCD的面积最大时,求点 D 的坐标;

(3)是否存在整数a,b使得1<x1<2和1<x2<2同时成立,请证明你的结论.

9.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线

交于A,C两点,其中点C的横坐标为2.

(1)求A,B两点的坐标及直线AC的函数表达式;

(2)P是线段A C上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,

求△ACE面积的最大值;

(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M 为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.

(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.

10.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好

经过点O,C,A三点.

(1)求该抛物线的解析式;

(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.

(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成

以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.

11.如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=x2+bx+c

经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=x2+bx+c

交于第四象限的F点.

(1)求该抛物线解析式与F点坐标;

(2)如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒个单位长度的速度向终点E运动.过点P

作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.

①问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由.

②若△PMH是等腰三角形,请直接写出此时t的值.

相关文档
最新文档