3 第3讲 合情推理与演绎推理

合集下载

合情推理和演绎推理

合情推理和演绎推理

合情推理与演绎推理1、归纳推理把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳). 简言之,归纳推理是由部分到整体、由特殊到一般的推理。

归纳推理的一般步骤:∙通过观察个别情况发现某些相同的性质;∙从已知的相同性质中推出一个明确表述的一般命题(猜想); ∙证明(视题目要求,可有可无).2、类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比). 简言之,类比推理是由特殊到特殊的推理. 类比推理的一般步骤:∙找出两类对象之间可以确切表述的相似特征;∙用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想; ∙检验猜想。

3、合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.归纳推理和类比推理统称为合情推理,通俗地说,合情推理是指“合乎情理”的推理. 4、演绎推理从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理. 简言之,演绎推理是由一般到特殊的推理.演绎推理的一般模式———“三段论”,包括 ⑴大前提-----已知的一般原理; ⑵小前提-----所研究的特殊情况; ⑶结论-----据一般原理,对特殊情况做出的判断.1.下列表述正确的是( ).①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理. A .①②③; B .②③④; C .②④⑤; D .①③⑤. 2.下面使用类比推理正确的是 A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅” C.“若()a b c ac bc +=+” 类推出“a b a b ccc+=+(c ≠0)”D.“nna ab =n(b )” 类推出“nna ab +=+n(b )” 3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 b ⊆/平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误4.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。

合情推理和演绎推理之间的联系和差异-高中数学知识点讲解

合情推理和演绎推理之间的联系和差异-高中数学知识点讲解

合情推理和演绎推理之间的联系和差异1.合情推理和演绎推理之间的联系和差异【知识点的认识】合情推理:“合乎情理”的推理,包括归纳推理和类比推理.①归纳推理:特殊→一般,部分→整体②类比推理:特殊→特殊演绎推理:又称为“逻辑推理”,从一般性原理出发,推出某个特殊情况下的结论的推理.形式为:一般→特殊区别:(1)合情推理前提为真,结论可能为真,是或然性推理;演绎推理前提为真,结论亦为真,是必然性推理.(2)合情推理中的归纳、类比是“开拓型”和“发散型”的思维方法,虽然结论未必正确,但有创造性,对科学发现有帮助;演绎推理是“收敛型”或“封闭型”的思维方法,虽然结论一定正确,但不能取得突破性进展,形式化程度比合情推理高.联系:合情推理和演绎推理二者相辅相成,就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程,但数学结论、证明思路的发现主要靠合情推理.【命题方向】常以选择、填空题形式出现,属于基础题,注意弄清合情推理和演绎推理之间的区别和联系.例:给出下面几个推理:①由“6=3+3,8=3+5,10=3+7,12=5+7…”得到结论:任何一个不小于 6 的偶数都等于两个奇质数之和;②由“三角形内角和为 180°”得到结论:直角三角形内角和为 180°;③由“正方形面积为边长的平方”得到结论:正方体的体积为边长的立方;④由“a2+b2≥2ab(a,b∈R)”推得 sin2x≤1.其中是演绎推理的序号是.分析:演绎推理的模式是三段论模式,包括大前提,小前提和结论,演绎推理的特点是从一般到特殊,根据上面的特点,判断下面四个结论是否正确,结果①是一个归纳推理,③是一个类比推理,②④是演绎推理.解答:演绎推理的模式是三段论模式,包括大前提,小前提和结论,演绎推理的特点是从一般到特殊,根据上面的特点,判断下面四个结论是否正确,由“6=3+3,8=3+5,10=3+7,12=5+7…”得到结论:任何一个不小于 6 的偶数都等于两个奇质数之和;这是一个归纳推理,故①不选;由“三角形内角和为 180°”得到结论:直角三角形内角和为 180°;是一个演绎推理,故选②由“正方形面积为边长的平方”得到结论:正方体的体积为边长的立方;这是一个类比推理,故不选③由“a2+b2≥2ab(a,b∈R)”推得 sin2x≤1.这是一个演绎推理,故选④总上可知②④符合要求,故答案为:②④点评:本题考查演绎推理的特点,考查归纳推理和类比推理的特点,本题是一个基础题,这种题目不用计算,只要根据几个推理的特点得到正确结论即可.。

合情推理与演绎推理

合情推理与演绎推理

合情推理与演绎推理一、基础知识1.合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).②特点:由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).②特点:由特殊到特殊的推理.类比推理的注意点在进行类比推理时要尽量从本质上去类比,不要被表面现象迷惑,如果只抓住一点表面现象的相似甚至假象就去类比,那么就会犯机械类比的错误.(3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.合情推理的关注点(1)合情推理是合乎情理的推理.(2)合情推理既可以发现结论也可以发现思路与方向.2.演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.↓演绎推理:常用来证明和推理数学问题,解题时应注意推理过程的严密性,书写格式的规范性.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.二、常用结论(1)合情推理的结论是猜想,不一定正确;演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.(2)合情推理是发现结论的推理;演绎推理是证明结论的推理. 考点一 归纳推理考法(一) 与数字有关的推理[典例] 《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:223=223,3 38= 338,4 415= 4415,5 524= 5524,…,则按照以上规律,若99n= 99n具有“穿墙术”,则n =( ) A .25 B .48 C .63 D .80[解析] 由223=223,338=338,4415=4415,5524= 5524,…, 可得若99n = 99n具有“穿墙术”,则n =92-1=80. [答案] D考法(二) 与式子有关的推理[典例] 已知f (x )=xe x ,f 1(x )=f ′(x ),f 2(x )=[f 1(x )]′,…,f n +1(x )=[f n (x )]′,n ∈N *,经计算:f 1(x )=1-x e x ,f 2(x )=x -2e x ,f 3(x )=3-xex ,…,照此规律,则f n (x )=________.[解析] 因为导数分母都是e x,分子为(-1)n(x -n ),所以f n (x )=(-1)n (x -n )e x.[答案] (-1)n (x -n )e x考法(三) 与图形有关的推理[典例] 分形几何学是数学家伯努瓦·曼德尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图(1)所示的分形规律可得如图(2)所示的一个树形图.若记图(2)中第n 行黑圈的个数为a n ,则a 2 019=________.[解析] 根据题图(1)所示的分形规律,可知1个白圈分形为2个白圈1个黑圈,1个黑圈分形为1个白圈2个黑圈,把题图(2)中的树形图的第1行记为(1,0),第2行记为(2,1),第3行记为(5,4),第4行的白圈数为2×5+4=14,黑圈数为5+2×4=13,所以第4行的“坐标”为(14,13),同理可得第5行的“坐标”为(41,40),第6行的“坐标”为(122,121),….各行黑圈数乘2,分别是0,2,8,26,80,…,即1-1,3-1,9-1,27-1,81-1,…,所以可以归纳出第n 行的黑圈数a n =3n -1-12(n ∈N *),所以a 2 019=32 018-12.[答案] 32 018-12[题组训练]1.(2019·兰州实战性测试)观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…,由以上可推测出一个一般性结论:对于n ∈N *,则1+2+…+n +…+2+1=________.解析:由1=12,1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,…,归纳猜想可得1+2+…+n +…+2+1=n 2.答案:n 22.某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120°;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n 级分形图.则n 级分形图中共有________条线段.解析:分形图的每条线段的末端出发再生成两条线段, 由题图知,一级分形图有3=3×2-3条线段, 二级分形图有9=3×22-3条线段, 三级分形图中有21=3×23-3条线段, 按此规律n 级分形图中的线段条数a n =3×2n -3. 答案:3×2n -3考点二 类比推理[典例] 我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若a ,b ,c 为直角三角形的三边,其中c 为斜边,则a 2+b 2=c 2,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O -ABC 中,∠AOB =∠BOC =∠COA =90°,S 为顶点O 所对面△ABC 的面积,S 1,S 2,S 3分别为侧面△OAB ,△OAC ,△OBC 的面积,则下列选项中对于S ,S 1,S 2,S 3满足的关系描述正确的为( )A .S 2=S 21+S 22+S 23B .S 2=1S 21+1S 22+1S 23C .S =S 1+S 2+S 3D .S =1S 1+1S 2+1S 3[解析] 如图,作OD ⊥BC 于点D ,连接AD ,则AD ⊥BC ,从而S 2=⎝⎛⎭⎫12BC ·AD 2=14BC 2·AD 2=14BC 2·(OA 2+OD 2)=14(OB 2+OC 2)·OA 2+ 14BC 2·OD 2=⎝⎛⎭⎫12OB ·OA 2+⎝⎛⎭⎫12OC ·OA 2+⎝⎛⎭⎫12BC ·OD 2=S 21+S 22+S 23. [答案] A[题组训练]1.给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C ,则a -c =0⇒a =c ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比结论正确的个数为( ) A .1 B .2 C .3D .4解析:选B 类比结论正确的有①②.2.设等差数列{a n }的前n 项和为S n ,则S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列.类比以上结论:设等比数列{b n }的前n 项积为T n ,则T 3,________,________,T 12T 9成等比数列.解析:等比数列{b n }的前n 项积为T n , 则T 3=b 1b 2b 3,T 6=b 1b 2…b 6,T 9=b 1b 2…b 9,T 12=b 1b 2…b 12,所以T 6T 3=b 4b 5b 6,T 9T 6=b 7b 8b 9,T 12T 9=b 10b 11b 12,所以T 3,T 6T 3,T 9T 6,T 12T 9的公比为q 9,因此T 3,T 6T 3,T 9T 6,T 12T 9成等比数列.答案:T 6T 3 T 9T 6考点三 演绎推理[典例] 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[证明] (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)∴⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提)又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论) [解题技法] 演绎推理问题求解策略(1)演绎推理是由一般到特殊的推理,常用的一般模式为三段论.(2)演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.[题组训练]1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:选C因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.2.已知函数y=f(x)满足:对任意a,b∈R,a≠b,都有af(a)+bf(b)>af(b)+bf(a),试证明:f(x)为R上的单调增函数.证明:设x1,x2∈R,取x1<x2,则由题意得x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),∴x1[f(x1)-f(x2)]+x2[f(x2)-f(x1)]>0,(x2-x1)[f(x2)-f(x1)]>0,∵x1<x2,∴f(x2)-f(x1)>0,f(x2)>f(x1).∴y=f(x)为R上的单调增函数.考点四逻辑推理问题[典例](2019·安徽示范高中联考)某参观团根据下列要求从A,B,C,D,E五个镇选择参观地点:①若去A镇,也必须去B镇;②D,E两镇至少去一镇;③B,C两镇只去一镇;④C,D两镇都去或者都不去;⑤若去E镇,则A,D两镇也必须去.则该参观团至多去了()A.B,D两镇B.A,B两镇C.C,D两镇D.A,C两镇[解析]假设去A镇,则也必须去B镇,但去B镇则不能去C镇,不去C镇则也不能去D镇,不去D镇则也不能去E镇,D,E镇都不去则不符合条件.故若去A镇则无法按要求完成参观.同理,假设不去A镇去B镇,同样无法完成参观.要按照要求完成参观,一定不能去B 镇,而不去B镇的前提是不去A镇.故A,B两镇都不能去,则一定不能去E镇,所以能去的地方只有C,D两镇.故选C.[答案] C[解题技法] 逻辑推理问题求解的2种途径求解此类推理性试题,要根据所涉及的人与物进行判断,通常有两种途径:(1)根据条件直接进行推理判断;(2)假设一种情况成立或不成立,然后以此为出发点,联系条件,判断是否与题设条件相符合.[题组训练]1.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题.甲:“我不会证明.”乙:“丙会证明.”丙:“丁会证明.”丁:“我不会证明.”根据以上条件,可以判断会证明此题的人是()A.甲B.乙C.丙D.丁解析:选A四人中只有一人说了真话,只有一人会证明此题,由丙、丁的说法知丙与丁中有一个人说的是真话,若丙说了真话,则甲必是假话,矛盾;若丁说了真话,则甲说的是假话,甲就是会证明的那个人,符合题意,故选A.2.(2019·大连模拟)甲、乙、丙、丁、戊和己6人围坐在一张正六边形的小桌前,每边各坐一人.已知:①甲与乙正面相对;②丙与丁不相邻,也不正面相对.若己与乙不相邻,则以下选项正确的是()A.若甲与戊相邻,则丁与己正面相对B.甲与丁相邻C.戊与己相邻D.若丙与戊不相邻,则丙与己相邻解析:选D由题意可得到甲、乙位置的示意图如图(1),因此,丙和丁的座位只可能是1和2,3和4,4和3,2和1,由己和乙不相邻可知,己只能在1或2,故丙和丁只能在3和4,4和3,示意图如图(2)和图(3),由此可排除B、C两项.对于A项,若甲与戊相邻,则己与丁可能正面相对,也可能不正面相对,排除A.对于D项,若丙与戊不相邻,则戊只能在丙的对面,则己与丙相邻,正确.故选D.图(1)图(2)图(3)[课时跟踪检测]1.下列三句话按三段论的模式排列顺序正确的是()①2 020能被2整除;②一切偶数都能被2整除;③2 020是偶数.A.①②③B.②①③C.②③①D.③②①解析:选C根据题意并按照演绎推理的三段论可知,大前提:一切偶数都能被2整除.小前提:2 020是偶数.结论:2 020能被2整除.所以正确的排列顺序是②③①.故选C.2.下列推理中属于归纳推理且结论正确的是()A .设数列{a n }的前n 项和为S n .由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f (x )=x cos x 满足f (-x )=-f (x )对∀x ∈R 都成立,推断:f (x )=x cos x 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y 2b2=1(a >b >0)的面积S =πabD .由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n 解析:选A 选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =n (1+2n -1)2=n 2,选项D 中的推理属于归纳推理,但结论不正确.3.观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第( )A .22项B .23项C .24项D .25项解析:选C 由题意可知,两数的和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5是和为8的第3项,所以为该列算式的第24项.故选C.4.(2018·南宁摸底联考)甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是( )A .甲是工人,乙是知识分子,丙是农民B .甲是知识分子,乙是农民,丙是工人C .甲是知识分子,乙是工人,丙是农民D .甲是农民,乙是知识分子,丙是工人解析:选C 由“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人.所以选C.5.若等差数列{a n }的前n 项之和为S n ,则一定有S 2n -1=(2n -1)a n 成立.若等比数列{b n }的前n 项之积为T n ,类比等差数列的性质,则有( )A .T 2n -1=(2n -1)+b nB .T 2n -1=(2n -1)b nC .T 2n -1=(2n -1)b nD .T 2n -1=b 2n -1n解析:选D 在等差数列{a n }中,a 1+a 2n -1=2a n , a 2+a 2n -2=2a n, …,故有S 2n -1=(2n -1)a n , 在等比数列{b n }中,b 1b 2n -1=b 2n ,b 2·b 2n -2=b 2n ,…,故有T 2n -1=b 1b 2…b 2n -1=b 2n -1n.6.我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形,则f (n )的表达式为( )A .f (n )=2n -1B .f (n )=2n 2C .f (n )=2n 2-2nD .f (n )=2n 2-2n +1解析:选D 因为f (2)-f (1)=4,f (3)-f (2)=8,f (4)-f (3)=12,…,结合图形不难得到f (n )-f (n -1)=4(n -1),累加得f (n )-f (1)=2n (n -1)=2n 2-2n ,故f (n )=2n 2-2n +1.7.在正整数数列中,由1开始依次按如下规则,将某些数染成红色:先染1;再染两个偶数2,4;再染4后面最近的3个连续奇数5,7,9;再染9后面的最近的4个连续偶数10,12,14,16;再染16后面最近的5个连续奇数17,19,21,23,25,…,按此规则一直染下去,得到一个红色子数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个红色子数列中,由1开始的第2 019个数是( )A .3 971B .3 972C .3 973D .3 974解析:选D 按照染色步骤对数字进行分组.由题意可知,第1组有1个数,第2组有2个数,…,根据等差数列的前n 项和公式,可知前n 组共有n (n +1)2个数.由于2 016=63×(63+1)2<2 019<64×(64+1)2=2 080,因此,第2 019个数是第64组的第3个数,由于第1组最后一个数是1,第2组最后一个数是4,第3组最后一个数是9,…,所以第n 组最后一个数是n 2,因此第63组最后一个数为632=3 969,第64组为偶数组,其第1个数为3 970,第2个数为3 972,第3个数为3 974,故选D.8.观察下列等式:1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为________.解析:观察所给等式可知,每行最左侧的数分别为1,2,3,…,则第n 行最左侧的数为n ;每个等式左侧的数的个数分别为1,3,5,…,则第n 个等式左侧的数的个数为2n -1,而第n 个等式右侧为(2n -1)2,所以第n 个等式为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)29.(2018·上饶二模)二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“特级球”的三维测度V =12πr 3,则其四维测度W =________.解析:∵二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2,观察发现S ′=l ,三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,观察发现V ′=S ,∴四维空间中“特级球”的三维测度V =12πr 3,猜想其四维测度W 满足W ′=V =12πr 3,∴W =3πr 4.答案:3πr 410.在数列{a n }中,a 1=2,a n +1=λa n +λn +1+(2-λ)2n (n ∈N *),其中λ>0,{a n }的通项公式是________________.解析:a 1=2,a 2=2λ+λ2+(2-λ)·2=λ2+22, a 3=λ(λ2+22)+λ3+(2-λ)·22=2λ3+23, a 4=λ(2λ3+23)+λ4+(2-λ)·23=3λ4+24.由此猜想出数列{a n }的通项公式为a n =(n -1)λn +2n . 答案:a n =(n -1)λn +2n11.(2019·吉林实验中学测试)如图所示,椭圆中心在坐标原点,F 为左焦点,当FB ⊥AB 时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”可推出“黄金双曲线”的离心率e 等于________.解析:类比“黄金椭圆”,设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则F (-c,0),B (0,b ),A (a,0), 所以FB ―→=(c ,b ),AB ―→=(-a ,b ). 易知FB ―→⊥AB ―→,所以FB ―→·AB ―→=b 2-ac =0, 所以c 2-a 2-ac =0,即e 2-e -1=0, 又e >1,所以e =5+12. 答案:5+1212.已知O 是△ABC 内任意一点,连接AO ,BO ,CO 并延长,分别交对边于A ′,B ′,C ′,则OA ′AA ′+OB ′BB ′+OC ′CC ′=1,这是一道平面几何题,其证明常采用“面积法”: OA ′AA ′+OB ′BB ′+OC ′CC ′=S △OBC S △ABC +S △OCA S △ABC +S △OAB S △ABC =S △ABC S △ABC=1. 请运用类比思想,对于空间中的四面体A BCD ,存在什么类似的结论,并用“体积法”证明.解:在四面体A BCD 中,任取一点O ,连接AO ,DO ,BO ,CO 并延长,分别交四个面于E ,F ,G ,H 点.则OE AE +OF DF +OG BG +OH CH =1.证明:在四面体O BCD 与A BCD 中,OE AE =h 1h =13S △BCD ·h 113S △BCD ·h=V O BCDV A BCD .同理有OF DF =V O -ABC V D -ABC ,OG BG =V O-ACD V B -ACD ,OH CH =V O-ABDV C -ABD .∴OE AE +OF DF +OG BG +OH CH=V O -BCD +V O -ABC +V O -ACD +V O -ABDV A -BCD =V A -BCD V A -BCD=1.。

合情推理与演绎推理

合情推理与演绎推理

合情推理与演绎推理知识点一:推理的概念根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论.知识点二:合情推理根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果、个人的经验和直觉等,经过观察、分析、比较、联想、归纳、类比等推测出某些结果的推理过程。

其中归纳推理和类比推理是最常见的合情推理。

1.归纳推理(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)。

(2)一般模式:部分整体,个体一般(3)一般步骤:①通过观察个别情况发现某些相同性质;②从已知的相同的性质中猜想出一个明确表述的一般性命题;③检验猜想.(4)归纳推理的结论可真可假归纳推理一般都是从观察、实验、分析特殊情况开始,提出有规律性的猜想;一般地,归纳的个别情况越多,就越具有代表性,推广的一般性命题就越可靠.由于归纳推理的前提是部分的、个别的事实,因此归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然的,而是或然的,所以归纳推理所得的结论不一定是正确的.2.类比推理(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)一般模式:特殊特殊(3)类比的原则:可以从不同的角度选择类比对象,但类比的原则是根据当前问题的需要,选择恰当的类比对象.(4)一般步骤:①找出两类对象之间的相似性或一致性;②用一类对象的已知特征去推测另一类对象的特征,得出一个明确的命题(猜想);③检验猜想.(5)类比推理的结论可真可假类比推理中的两类对象是具有某些相似性的对象,同时又应是两类不同的对象;一般情况下,如果类比的相似性越多,相似的性质与推测的性质越相关,那么类比得出的命题就越可靠.类比结论具有或然性,所以类比推理所得的结论不一定是正确的。

合情推理与演绎推理的意义

合情推理与演绎推理的意义

合情推理与演绎推理的意义(1)合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推导过程。

演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新结论的推理过程。

(2)在解决问题的过程中,合情推理具有猜测和发现结论,探索和提供思路的作用,有利于创新意识的培养。

例如,在研究球体时,我们会自然地联想到圆。

由于球与圆在形状上有类似的地方,即都具有完美的对称性,都是到定点的距离等于定长的点的集合,因此我们推测圆的一些特征,球也可能有。

圆的切线,切线与圆只交于一点,切点到圆心的距离等于圆的半径,类似地,我们推测可能存在这样的平面,与球只交于一点,该点到球心的距离等于球的半径。

平面内不共线的3个点确定一个圆,类似地,我们猜想空间中不共面的4个点确定一个球等。

演绎推理是数学中严格证明的工具,在解决数学问题时起着重要的作用。

“三段论”是演绎推理的一般模式,前提和结论之间存在必然的联系,只要前提是真实的,推理的形式是正确的,那么结论也必定是正确的。

例如,三角函数都是周期函数,sinx是三角函数,因此推导证明出该函数是周期函数。

又如,这样一道问题“证明函数f(x)=-x+2x在(-0,1)上是增函数”。

大前提是增函数的定义,小前提是推导函数f(x)在(-c,1)上满足增函数的定义,进而得出结论。

合情推理从推理形式上看,是由部分到整体、个别到一般、由特殊到特殊的推理;而演绎推理是由一般到特殊的推理。

从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确。

就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程。

但数学结论、证明思路等的发现,主要靠合情推理。

因此,合情推理与演绎推理是相辅相成的。

合情推理与演绎推理

合情推理与演绎推理

合情推理与演绎推理一、 知识讲解推理:由一个或几个事实(或假设)得出一个判断的思维方式前提为真,结论可能为真的推理称为合情推理.⎧⎧⎪⎨⎨⎩⎪⎩归纳推理合情推理推理类比推理演绎推理(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全 部对象都具有这些特征,或者由个别事实概括出一般性的结论,这样的推理 称为归纳推理(简称归纳).特征:从特殊现象到一般现象归纳推理的一般步骤:已知条件 观察归纳 大胆猜想 检验猜想(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已 知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比). 归纳推理和类比推理的过程:从具体问题出发 观察、分析、比较、联想 归纳、类比 提出猜想 检验猜想(3)演绎推理:从一般性的原理出发,推出某个特殊情况下的结论, 这种推理称为演绎推理.说明:1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式;包括⑴大前提---已知的一般原理;⑵小前提---所研究的特殊情况;⑶结论-----据一般原理,对特殊情况做出的判断.三段论可表示为:大前提:M 是P小前提:S 是M结 论:S 是P二、典型例题例 根据图中5个图形及相应点的个数的变化规律,试猜测第n 个图形中 有 个点.例 根据给出的数塔猜测123456×9+7等于1×9+2=1112×9+3=111123×9+4=11111234×9+5=11111……例 证明函数f (x )=-x 2+2x 在(-∞,1]上是增函数.三:小结思考 设(),(),22x x x xa a a a f x g x --+-== 其中 0,1a a >≠且 (1)5=2+3,请你推测(5)f 能否用(2),2(3),(3)f g f g (),来表示 ;(2)如果(1)中获得一个结论,请你推测能否将其推广.。

2015年高考数学一轮复习课时训练第3节 合情推理与演绎推理

2015年高考数学一轮复习课时训练第3节 合情推理与演绎推理

第3节合情推理与演绎推理课时训练练题感提知能【选题明细表】A组一、选择题1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是( B )(A)① (B)② (C)③ (D)①和②解析:由演绎推理三段论可知,①是大前提;②是小前提;③是结论.故选B.2.(2013河南焦作二模)给出下面类比推理命题(其中Q为有理数集,R 为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”;②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a, b,c,d∈Q,则a+b=c+d⇒a=c,b=d”;③若“a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”.其中类比结论正确的个数是( C )(A)0 (B)1 (C)2 (D)3解析:①②正确,③错误,因为两个复数如果不是实数,不能比较大小.故选C.3.(2013上海闸北二模)平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为( C )(A)n+1 (B)2n(C)(D)n2+n+1解析:1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域; ……;n条直线最多可将平面分成1+(1+2+3+…+n)=1+=个区域,选C.4.定义A*B,B*C,C*D,D*A的运算分别对应图中的(1)(2)(3)(4),那么如图中(a)(b)所对应的运算结果可能是( B )(A)B*D,A*D (B)B*D,A*C(C)B*C,A*D (D)C*D,A*D解析:观察图形及对应运算分析可知,基本元素为A→|,B→□,C→—,D→○,从而可知图(a)对应B*D,图(b)对应A*C.故选B.5.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是( B )(A)(7,5) (B)(5,7) (C)(2,10) (D)(10,1)解析:依题意,由和相同的整数对分为一组不难得知,第n组整数对的和为n+1,且有n个整数对.这样前n组一共有个整数对.注意到<60<.因此第60个整数对处于第11组的第5个位置,可得为(5,7).故选B.6.对于a、b∈(0,+∞),a+b≥2(大前提),x+≥2(小前提),所以x+≥2(结论).以上推理过程中的错误为( A )(A)小前提(B)大前提(C)结论 (D)无错误解析:大前提是a,b∈(0,+∞),a+b≥2,要求a、b都是正数;x+≥2是小前提,没写出x的取值范围,因此本题中的小前提有错误.故选A.二、填空题7.(2013山东实验中学一模)以下是对命题“若两个正实数a1,a2满足+=1,则a≤”的证明过程:证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a 1+a2≤.根据上述证明方法,若n个正实数满足++…+=1时,你能得到的结论为.(不必证明)解析:由题意可构造函数f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2=nx2-2(a1+a2+…+a n)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ=4(a1+a2+…+a n)2-4n≤0,即a 1+a2+…+a n≤.答案:a 1+a2+…+a n≤8.(2013茂名一模)已知21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,24×1×3×5×7=5×6×7×8,…依此类推,第n个等式为.解析:由前4个等式可归纳得出第n个等式为2n×1×3×5×…×(2n-1)=(n+1)(n+2)…(n+n).答案:2n×1×3×5×…×(2n-1)=(n+1)(n+2)…(n+n)9.(2013江西师大附中模拟)若数轴上不同的两点A,B分别与实数x1,x2对应,则线段AB的中点M与实数对应,由此结论类比到平面得,若平面上不共线的三点A,B,C分别与二元实数对(x1,y1),(x2,y2), (x3,y3)对应,则△ABC的重心G与对应.解析:由类比推理得,若平面上不共线的三点A,B,C分别与二元实数对(x1,y1),(x2,y2),(x3,y3)对应,则△ABC的重心G与(,)对应.答案:(,)10.设等差数列{a n}的前n项和为S n,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列{b n}的前n项积为T n,则T4, , ,成等比数列.解析:对于等比数列,通过类比等差数列的差与等比数列的商,可得T4,,,成等比数列.答案:11.用黑白两种颜色的正方形地砖依照如图所示的规律拼成若干个图形,则按此规律,第100个图形中有白色地砖块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是.解析:按拼图的规律,第1个图有白色地砖3×3-1(块),第2个图有白色地砖3×5-2(块),第3个图有白色地砖3×7-3(块),…,则第100个图中有白色地砖3×201-100=503(块).第100个图中黑白地砖共有603块,则将一粒豆子随机撒在第100个图中,豆子落在白色地砖上的概率是.答案:503三、解答题12.在锐角三角形ABC中,求证:sin A+sin B+sin C>cos A+cos B+ cos C.证明:∵△ABC为锐角三角形,∴A+B>,∴A>-B,∵y=sin x在上是增函数,∴sin A>sin=cos B,同理可得sin B>cos C,sin C>cos A,∴sin A+sin B+sin C>cos A+cos B+cos C.B组13.在实数集R中定义一种运算“*”,对任意给定的a,b∈R,a*b为唯一确定的实数,且具有性质(1)对任意a,b∈R,a*b=b*a;(2)对任意a∈R,a*0=a;(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.关于函数f(x)=(3x)*的性质,有如下说法①函数f(x)的最小值为3;②函数f(x)为奇函数;③函数f(x)的单调递增区间为,.其中所有正确说法的个数为( B )(A)0 (B)1 (C)2 (D)3解析:f(x)=f(x)*0=*0=0*+[(3x)*0]+-2×0=3x×+3x+=3x++1.当x=-1时,f(x)<0,故①错误;因为f(-x)=-3x-+1≠-f(x),所以②错误;令f'(x)=3->0,得x>或x<-,因此函数f(x)的单调递增区间为,,③正确.故选B. 14.(2013中山市高三期末)如图,对大于或等于2的自然数m的n次幂进行如下方式的“分裂”:仿此,62的“分裂”中最大的数是;20133的“分裂”中最大的数是.解析:22的“分裂”中最大的数是3=2×2-1,32的“分裂”中最大的数是5=2×3-1,42的“分裂”中最大的数是7=2×4-1,…,由归纳推理可得62的“分裂”中最大的数是2×6-1=11;23的“分裂”中最大的数是5=22+1,33的“分裂”中最大的数是11=32+2,43的“分裂”中最大的数是19=42+3,…,由归纳推理可得20133的“分裂”中最大的数是20132+2012.答案:11 20132+201215.已知函数f(x)=,(1)分别求f(2)+f(),f(3)+f(),f(4)+f()的值;(2)归纳猜想一般性结论,并给出证明;(3)求值:f(1)+f(2)+f(3)+…+f(2013)+f()+f()+…+f().解:(1)∵f(x)=,∴f(2)+f()=+=+=1,同理可得f(3)+f()=1,f(4)+f()=1.(2)由(1)猜想f(x)+f()=1,证明:f(x)+f()=+=+=1.(3)f(1)+f(2)+f(3)+…+f(2013)+f()+f()+…+f() =f(1)+[f(2)+f()]+[f(3)+f()]+…+[f(2013)+f()] =+=+2012=.。

合情推理与演绎推理

合情推理与演绎推理
合情推理与演绎推理
平度市第九中学 高二数学组 纪云尚
一、推理的定义
推理 是从一个或几个已知的判断, 得出另一个新判断的思维过程。
推理的结构:任何推理都包含前提和 结论两部分。前提是推理的依据部分, 可以是一个也可以是几个;结论是根据 前提所推出的判断。
二、推理的分类 归纳推理
合情推理 推理
演绎推理

⑤ a // b a1 b1 , a2 b2 ( R) ⑤ a // b a b , a b , a b ( R) 1 1 2 2 3 3
a b a1b1 a2b2
④ a b a1b1 a2b2 a3b3
有大气层
一年中有季节更替 温度适合生物生存 有生命存在
有大气层
一年中有季节更替 大部分时间适合地球 上某些一直生物生存 可能有生命存在
火星与地球类比的思维过程:
地球
存在类似特征
火星
地球上有生命存在
猜测火星上也可能有生命存在
注:(1)类比推理是由一类对象特征到另 一类对象特征的推理。 (2)类比推理的一般模式为:
需证明
三、类比推理
类比推理,是根据两个或两类对象 有部分属性相同,从而推出它们其它属 性也相同的推理方法—— 从 特殊到特 殊的推理方法。 类比推理与归纳推理一样具有不可 靠性。 由类比得到的结论,只是猜想,经 过证明的才是正确的。
太阳系其他行星上有生命吗? 地球 绕太阳公转,自转 火星 绕太阳公转,自转
① a b (a1 b1 , a2 b2 )
空间向量
若a (a1 , a2 , a3 ) , b (b1 , b2 , b3 )

合理推理与演绎推理

合理推理与演绎推理

【思路分析】可通过画当直线条数n为3,4,5时,分别计算出它们将平面分成
的区域数
S n ,从中发现规律,再归纳出结论。
【解析】设平面被n条直线分成
S 1 =1+1=2; 当n=2时,
S n 部分,则 当n=1时,
S 2 =1+1+2=4; 当n=3时,
S 3 =1+1+2+3=7;当n=4时,
S 4 =1+1+2+3+4=11.据此猜想,得
在进行归纳、类比,然后提出猜想的推理称为合情推理。
合情推理又具体分为归纳推理和类比推理两类。
1.
归纳推理:由某类事物的部分对象具有某些特征,推出该类
事物的全部对象具有这些特征的推理,或者由个别事实概括出一
般结论的推理。简言之,归纳推理是由部分到整体、个别到一般
的推理,归纳推理简称归纳。
(2). 类比推理:由两类对象具有某些类似特征和其中 一类对象的某些已知特征,推出另一类对象也具有这 些特征的推理,简言之,类比推理是由特殊到特殊的 推理,类比推理简称类比。
完全归纳是指没有办法穷尽 全部被研究的对象,得出的
的特征进行归纳。归纳是指 通过对特例的分析来引出普
陈述,结论是从前提中通过 推理而获得的猜想,是普遍
结论只能算猜想结论的正确 与否有待于进一步证明或举
遍结论的一种推理形式,它 由推理的前提和结论两部分
性的陈述、判断。归纳分为 完全归纳与不完全归纳,不
单击添加副标题
2.1 合情 推理与演
绎推理
2023
01 一.推理的概念:根据一个或几个已知事实(或假设)得出一个判 断,这种思维方式叫做推理。从结构上说,推理一般由两部分 组成,一部分是已知的事实(或假设)叫做前提,一部分是由 已知推出的判断,叫做结论。

合情推理与演绎推理

合情推理与演绎推理

合情推理与演绎推理一、推理:1、推理的定义:从一个或几个已知命题得出另一个新命题的思维过程称为推理2、推理的结构:推理的前提:所依据的命题,它告诉我们已知的知识是什么;推理的结论:根据前提推得的命题,它告诉我们推出的知识是什么。

3、推理的一般形式:推理可看作是用连接词将前提和结论连结起来的一个逻辑连接。

常用的连接有:“因为…所以…”、“如果…那么…”、“根据…可知…”等等形式。

下面是三个推理案例:① 前提:当0=n 时,11112=+-n n ② 前提:矩形的对角线的平方等于长和宽的平方和当1=n 时,11112=+-n n 结论:长方体对角线的平方等于长、宽、高的平方和当2=n 时,13112=+-n n ③ 前提:所有的树都是植物,梧桐是树当3=n 时,17112=+-n n 结论:梧桐是植物当4=n 时,23112=+-n n当5=n 时,31112=+-n n31,23,17,13,11,11都是质数结论:对于所有的自然数11,2+-n n n 的值都是质数4、推理的分类:推理一般可分为“合情推理”和“演绎推理”两种类型。

二、合情推理:合情推理只有两种形式,那就是归纳推理和类比推理。

观察、比较、估算、联想是归纳和类比的方法;自觉、顿悟、灵感是产生合情推理的心理活动形式;归纳推理是由特殊到一般的推理,类比推理是特殊到特殊的推理。

合情推理过程概括为:可见,归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理、我们把它们统称为合情推理1、归纳推理(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论性的结论的推理,称为归纳推理(简称归纳)。

(2)特点:① 归纳推理是“由部分到整体,由个体到一般”的推理;② 归纳推理的前提是几个已知的特殊现象,结论是尚属未知的一般现象;③ 归纳推理具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验。

第3讲 合情推理与演绎推理

第3讲 合情推理与演绎推理

第3讲合情推理与演绎推理◆高考导航·顺风启程◆[知识梳理]1.合情推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理;(2)特点:演绎推理是由一般到特殊的推理;(3)模式:三段论.“三段论”是演绎推理的一般模式,包括:1.辨明两个易误点(1)演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.(2)合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据. 2.把握合情推理与演绎推理的三个特点(1)合情推理包括归纳推理和类比推理,所得到的结论都不一定正确,其结论的正确性是需要证明的.(2)在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误.(3)应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.[知识自测]1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ) (4)“所有3的倍数都是9的倍数,某数m 是3的倍数,则m 一定是9的倍数”,这是三段论推理,但其结论是错误的.( )(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n =n(n ∈N *).( ) (6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( ) [答案] (1)× (2)√ (3)× (4)√ (5)× (6)× 2.下面几种推理过程是演绎推理的是( )A .在数列{a n }中,a 1=1,a n =12⎝⎛⎭⎫a n -1+1a n -1(n ≥2),由此归纳数列{a n }的通项公式B .由平面三角形的性质,推测空间四面体性质C .两直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线与第三条直线形成的同旁内角,则∠A +∠B =180°D .某校高二共10个班,1班51人,2班53人,3班52人,由此推测各班都超过50人[解析] A 、D 是归纳推理,B 是类比推理,C 符合三段论模式,故选C. [答案] C3.(2018·济南调研)类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:①垂直于同一个平面的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③垂直于同一个平面的两个平面互相平行; ④垂直于同一条直线的两个平面互相平行. 则正确的结论是______.[解析] 显然①④正确;对于②,在空间中垂直于同一条直线的两条直线可以平行,也可以异面或相交;对于③,在空间中垂直于同一个平面的两个平面可以平行,也可以相交.[答案] ①④题型一 归纳推理(高频考点题、多角突破) 考向一 与数字有关的推理1.(2018·甘肃两市三校3月联考)观察下列等式:1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为__________________.[解析] 由前4个等式可知,第n 个等式的左边第一个数为n ,且连续2n -1个整数相加,右边为(2n -1)2,故第n 个等式为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.[答案] n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2 考向二 与不等式有关的推理2.(2018·山西四校联考)已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +axn ≥n +1(n ∈N *),则a =______.[解析] 第一个式子是n =1的情况,此时a =11=1;第二个式子是n =2的情况,此时a =22=4;第三个式子是n =3的情况,此时a =33=27,归纳可知a =n n .[答案] n n考向三 与数列有关的推理3.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k边形数中第n 个数的表达式:三角形数N (n,3)=12n 2+12n ,正方形数N (n,4)=n 2, 五边形数N (n,5)=32n 2-12n ,六边形数N (n,6)=2n 2-n . ……可以推测N (n ,k )的表达式,由此计算N (10,24)=______. [解析] 由N (n,3)=12n 2+12n =3-22n 2+4-32nN (n,4)=4-22n 2+4-42nN (n,5)=5-22n 2+4-52nN (n,6)=6-22n 2+4-62 n∴N (n ,k )=k -22n 2+4-k2n故N (10,24)=24-22×102+4-242×10=1 000,故答案1 000.[答案] 1 000考向四 与图形有关的推理4.(2018·青岛模拟)某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度相等,两两夹角为120°;二级分形图是在一级分形图的每条线段末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n 级分形图.n 级分形图中共有______条线段.[解析] 分形图的每条线段的末端出发再生成两条线段,由题图知,一级分形图有3=(3×2-3)条线段,二级分形图有9=(3×22-3)条线段,三级分形图中有21=(3×23-3)条线段,按此规律n 级分形图中的线段条数a n =3×2n -3(n ∈N *).[答案] 3×2n -3(n ∈N *)方法感悟归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.【针对补偿】1.(2018·重庆模拟)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A .21B .34C .52D .55[解析] 因为2=1+1,3=2+1,5=3+2,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为21+34=55.[答案] D2.(2016·山东卷)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2;⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3;⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4;⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …… 照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=_______.[解析] 通过类比,可以发现,最前面的数字是43,接下来是和项数有关的两项的乘积,即n (n +1),故答案为43×n ×(n +1).[答案] 43×n ×(n +1)3.(2018·山东省滕州第二中学模拟)在△ABC 中,不等式1A +1B +1C ≥9π成立;在凸四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立;在凸五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,…,依此类推,在凸n 边形A 1A 2…A n 中,不等式1A 1+1A 2+…+1A n≥__________成立.[解析] 因为1A +1B +1C ≥9π=32π,1A +1B +1C +1D ≥162π=422π, 1A +1B +1C +1D +1E ≥253π=523π,…, 所以1A 1+1A 2+…+1A n ≥n 2(n -2)π(n ∈N *,n ≥3).[答案] n 2(n -2)π(n ∈N *,n ≥3)题型二 类比推理(重点保分题、共同探讨) 考向一 类比定义1.给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集): ①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C , 则a -c =0⇒a =c ”;②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C , 则a -b >0⇒a >b ”;④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1”.其中类比结论正确的个数为( ) A .1 B .2 C .3D .4[解析] 类比结论正确的有①②. [答案] B 考向二 类比性质2.(2018·西安月考)对于命题:如果O 是线段AB 上一点,则|OB →|OA →+|OA →|OB →=0;将它类比到平面的情形是:若O 是△ABC 内一点,有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0;将它类比到空间的情形应该是:若O 是四面体ABCD 内一点,则有______.[解析] 线段长度类比到空间为体积,再结合类比到平面的结论,可得空间中的结论为V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0. [答案] V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0考向三 类比方法 3.求1+1+1+…的值时,采用了如下方法:令1+1+1+…=x ,则有x=1+x ,解得x =1+52(负值已舍去).可用类比的方法,求得1+12+11+12+1…的值为______.[解析] 令1+12+1…=x ,则有1+12+1x =x ,解得x =1+32(负值已舍去).[答案]1+32方法感悟类比推理的分类及处理方法4.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线则有如下命题:若P (x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是______.[解析] 类比椭圆的切点弦方程可得双曲线x 2a 2-y 2b 2=1的切点弦方程为x 0x a 2-y 0yb 2=1.[答案]x 0x a 2-y 0yb 2=1 5.(2018·西安模拟)设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2S a +b +c ;类比这个结论可知:四面体S -ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球的半径为R ,四面体S -ABC 的体积为V ,则R =( )A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4 C.3VS 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4[解析] 设四面体的内切球球心为O ,那么由V =V O -ABC +V O -SAB +V O -SAC +V O -SBC , 即V =13S 1R +13S 2R +13S 3R +13S 4R ,可得R =3V S 1+S 2+S 3+S 4.[答案] C6.(2018·南昌模拟)如图,在梯形ABCD 中,AB ∥CD ,AB =a ,CD =b (a >b ).若EF ∥AB ,EF 到CD 与AB 的距离之比为m ∶n ,则可推算出:EF =ma +nb m +n .用类比的方法,推想出下面问题的结果.在上面的梯形ABCD 中,分别延长梯形的两腰AD 和BC 交于O 点,设△OAB ,△ODC 的面积分别为S 1,S 2,则△OEF 的面积S 0与S 1,S 2的关系是()A .S 0=mS 1+nS 2m +nB .S 0=nS 1+mS 2m +nC.S 0=m S 1+n S 2m +nD.S 0=n S 1+m S 2m +n[解析] 在平面几何中类比几何性质时,一般是由平面几何中点的性质类比推理线的性质;由平面几何中线段的性质类比推理面积的性质.故由EF =ma +nb m +n 类比到关于△OEF 的面积S 0与S 1,S 2的关系是S 0=m S 1+n S 2m +n .[答案] C题型三 演绎推理(重点保分题、共同探讨)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n·S n (n ∈N *).用三段论的形式证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[证明] (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ), 即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S nn ,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2),(大前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)方法感悟(1)演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略,本题中,等比数列的定义在解题中是大前提,由于它是显然的,因此省略不写.(2)在推理论证过程中,一些稍复杂一点的证明题常常要由几个三段论才能完成. 【针对补偿】7.已知函数y=f(x)满足:对任意a,b∈R,a≠b,都有af(a)+bf(b)>af(b)+bf(a),试证明:f(x)为R上的单调增函数.[证明]设x1,x2∈R,取x1<x2,则由题意得x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),所以x1[f(x1)-f(x2)]+x2[f(x2)-f(x1)]>0,[f(x2)-f(x1)](x2-x1)>0,因为x1<x2,所以f(x2)-f(x1)>0,f(x2)>f(x1).所以y=f(x)为R上的单调增函数.◆牛刀小试·成功靠岸◆课堂达标(五十七)[A基础巩固练]1.(2018·洛阳统考)下面四个推导过程符合演绎推理三段论形式且推理正确的是() A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数[解析]A项中小前提不正确,选项C、D都不是由一般性结论到特殊性结论的推理,所以选项A、C、D都不正确,只有B项的推导过程符合演绎推理三段论形式且推理正确.[答案] B2.(2018·西安八校联考)观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第()A.22项B.23项C.24项D.25项[解析]两数和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5是和为8的第3项,所以为第24项.[答案] C3.(2018·泉州模拟)正偶数列有一个有趣的现象:①2+4=6;②8+10+12=14+16;③18+20+22+24=26+28+30,…按照这样的规律,则2 016所在等式的序号为()A.29B.30C .31D .32[解析] 由题意知,每个等式正偶数的个数组成等差数列3,5,7,…,2n +1,…,其前n 项和S n =n [3+(2n +1)]2=n (n +2)且S 31=1 023,即第31个等式中最后一个偶数是1 023×2=2 046,且第31个等式中含有63个偶数,故2 016在第31个等式中.[答案] C4.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f ′1(x ),f 3(x )=f ′2(x ),…,f n +1(x )=f ′n (x ),n ∈N *,则f 2 017(x )=( )A .sin x +cos xB .-sin x -cos xC .sin x -cos xD .-sin x +cos x[解析] f 2(x )=f ′1(x )=cos x -sin x ,f 3(x )=f ′2(x )=-sin x -cos x ,f 4(x )=f ′3(x )=-cos x +sin x ,f 5(x )=f ′4(x )=sin x +cos x ,f 6(x )=f ′5(x )=cos x -sin x ,…,可知f n (x )是以4为周期的函数,因为2 017=504×4+1,所以f 2 017(x )=f 1(x )=sin x +cos x .故选A.[答案] A5.若数列{a n }是等差数列,则数列{b n }⎝⎛⎭⎫b n =a 1+a 2+…+a n n 也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nnC .d n =n c n1+c n 2+…+c n nnD .d n =nc 1·c 2·…·c n[解析] 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d ,∴b n =a 1+(n -1)2d =d2n +a 1-d2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2…c n =c n 1·q 1+2+…+(n -1)=c 1·qn (n -1)2,∴d n =nc 1·c 2·…·c n =c 1·qn -12,即{d n }为等比数列,故选D. [答案] D6.在直角坐标系xOy 中,一个质点从A (a 1,a 2)出发沿图中路线依次经过B (a 3,a 4),C (a 5,a 6),D (a 7,a 8),…,按此规律一直运动下去,则a 2 015+a 2 016+a 2 017等于( )A .1 006B .1 007C .1 008D .1 009[解析] 由直角坐标系可知A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),即a 1=1,a 2=1,a 3=-1,a 4=2,a 5=2,a 6=3,a 7=-2,a 8=4,…,由此可知,所有数列偶数个都是从1开始逐渐递增的,且都等于所在的个数除以2,则a 2 016=1 008,每四个数中有一个负数,且为每组的第三个数,每组的第1个奇数和第2个奇数互为相反数,且从-1开始逐渐递减的,则2 015÷4=503余3,则a 2 015=504,a 2 017÷4=504余1,∴则a 2 017=505,∴a 2 015+a 2 016+a 2 017=-504+1 008+505=1 009.[答案] D7.(2018·云南名校联考)观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n 个等式为______.[解析] 由第一个等式13=12,得13=(1+0)2;第二个等式13+23=32,得13+23=(1+2)2;第三个等式13+23+33=62,得13+23+33=(1+2+3)2;第四个等式13+23+33+43=102,得13+23+33+43=(1+2+3+4)2,由此可猜想第n 个等式为13+23+33+43+…+n 3=(1+2+3+…+n )2=⎣⎡⎦⎤n (n +1)22.[答案] 13+23+33+43+…+n 3=⎣⎡⎦⎤n (n +1)228.已知f (x )=xe x ,f 1(x )=f ′(x ),f 2(x )=[f 1(x )]′,…,f n +1(x )=[f n (x )]′,n ∈N *,经计算:f 1(x )=1-x e x ,f 2(x )=x -2e x ,f 3(x )=3-xe x,…,照此规律,则f n (x )=__________. [解析] 因为f 1(x )=(-1)(x -1)e x ,f 2(x )=(-1)2(x -2)e x ,f 3(x )=(-1)3(x -3)e x,…,所以f n (x )=(-1)n (x -n )e x.[答案] (-1)n (x -n )e x9.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按下图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是______.[解析] 将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 21+S 22+S 23=S 24.[答案] S 21+S 22+S 23=S 2410.在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C.[证明] ∵△ABC 为锐角三角形,∴A +B >π2,∴A >π2-B ,∵y =sin x 在⎝⎛⎭⎫0,π2上是增函数, ∴sin A >sin ⎝⎛⎭⎫π2-B =cos B , 同理可得sin B >cos C ,sin C >cos A , ∴sin A +sin B +sin C >cos A +cos B +cos C.[B 能力提升练]1.[n ]表示不超过n 的最大整数. 若S 1=[1]+[2]+[3]=3,S 2=[4]+[5]+[6]+[7]+[8]=10,S 3=[9]+[10]+[11]+[12]+[13]+[14]+[15]=21, …则S n =( ) A .n (n +2) B .n (n +3) C .(n +1)2-1D .n (2n +1)[解析] 观察得到:S n 是从n 2开始到(n +1)2(不含)之前共2n +1个n 的和,所以S n为n (2n +1),即[n 2]+[n 2+1]+[n 2+2]+…+[(n +1)2-1]=n (2n +1).[答案] D2.已知面积为S 的凸四边形中,四条边长分别记为a 1,a 2,a 3,a 4,点P 为四边形内任意一点,且点P 到四条边的距离分别记为h 1,h 2,h 3,h 4,若a 11=a 22=a 33=a 44=k ,则h 1+2h 2+3h 3+4h 4=2Sk .类比以上性质,体积为V 的三棱锥的每个面的面积分别记为S 1,S 2,S 3,S 4,此三棱锥内任一点Q 到每个面的距离分别为H 1,H 2,H 3,H 4,若S 11=S 22=S 33=S 44=K ,则H 1+2H 2+3H 3+4H 4=( )A.4V KB.3V KC.2V KD.V K[解析] 根据三棱锥的体积公式,得13S 1H 1+13S 2H 2+13S 3H 3+13S 4H 4=V ,即KH 1+2KH 2+3KH 3+4KH 4=3V ,∴H 1+2H 2+3H 3+4H 4=3VK.[答案] B3.通过计算可得下列等式: 23-13=3×12+3×1+1; 33-23=3×22+3×2+1; 43-33=3×32+3×3+1; …;(n +1)3-n 3=3×n 2+3×n +1. 将以上各等式两边分别相加,得(n +1)3-13=3(12+22+…+n 2)+3(1+2+3+…+n )+n ,即12+22+32+…+n 2=16n (n+1)(2n +1).类比上述求法,请你求出13+23+33+…+n 3的值. [解] ∵24-14=4×13+6×12+4×1+1; 34-24=4×23+6×22+4×2+1; 44-34=4×33+6×32+4×3+1; …;(n +1)4-n 4=4×n 3+6×n 2+4×n +1. 将以上各式两边分别相加,得(n +1)4-14=4×(13+23+…+n 3)+6×(12+22+…+n 2)+4×(1+2+…+n )+n ,∴13+23+…+n 3=14⎣⎡(n +1)4-14-6×16n (n +1)·(2n +1)-4×⎦⎤n (n +1)2-n =14n 2(n +1)2. 4.如图,我们知道,圆环也可以看作线段AB 绕圆心O 旋转一周所形成的平面图形,又圆环的面积S =π(R 2-r 2)=(R -r )×2π×R +r2.所以,圆环的面积等于以线段AB =R -r 为宽,以AB 中点绕圆心O 旋转一周所形成的圆的周长2π×R +r2为长的矩形面积.请你将上述想法拓展到空间,并解决下列问题:若将平面区域M ={(x ,y )|(x -d )2+y 2≤r 2}(其中0<r <d )绕y 轴旋转一周,则所形成的旋转体的体积是______.[解析] 平面区域M 的面积为πr 2,由类比知识可知:平面区域M 绕y 轴旋转一周得到的旋转体为实心的车轮内胎,旋转体的体积等于以圆(面积为πr 2)为底,以O 为圆心、d 为半径的圆的周长2πd 为高的圆柱的体积,所以旋转体的体积V =πr 2×2πd =2π2r 2d .[答案] 2π2r 2d5.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现,(1)求函数f (x )的对称中心;(2)计算f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫32 017+f ⎝⎛⎭⎫42 017+…+f ⎝⎛⎭⎫2 0162 017. [解] (1)f ′(x )=x 2-x +3,f ″(x )=2x -1,由f ″(x )=0,即2x -1=0,解得x =12.f ⎝⎛⎭⎫12=13×⎝⎛⎭⎫123-12×⎝⎛⎭⎫122+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝⎛⎭⎫12,1. (2)由(1)知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝⎛⎭⎫12,1,所以f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2, 即f (x )+f (1-x )=2.故f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫2 0162 017=2,f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫2 0152 017=2,f ⎝⎛⎭⎫32 017+f ⎝⎛⎭⎫2 0142 017=2, …,f ⎝⎛⎭⎫2 0162 017+f ⎝⎛⎭⎫12 017=2.所以f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫32 017+f ⎝⎛⎭⎫42 017+…+f ⎝⎛⎭⎫2 0162 017=12×2×2 016=2 016.[C 尖子生专练]某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮;现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f (n +1)与f (n )之间的关系式, 并根据你得到的关系式求出f (n )的表达式; (3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1的值. [解] (1)f (5)=41. f (2)-f (1)=4=4×1 f (3)-f (2)=8=4×2 (2)因为f (4)-f (3)=12=4×3 f (5)-f (4)=16=4×4由上式规律,所以得出f (n +1)-f (n )=4n . 因为f (n +1)-f (n )=4n ⇒f (n +1)=f (n )+4n ⇒ f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2) =f (n -3)+4(n -1)+4(n -2)+4(n -3)=… =f (1)+4(n -1)+4(n -2)+4(n -3)+4=2n 2-2n +1 (3)当n ≥2时,1f (n )-1=12n (n -1)=12[1n -1-1n ],则1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1 =1+12[1-12+12-13+13-14+…+1n -1-1n ]=1+12[1-1n ]=32-12n .。

高考文科数学一轮复习课件——第3节 合情推理与演绎推理

高考文科数学一轮复习课件——第3节 合情推理与演绎推理
答案:(2)2n2+n
︱高中总复习︱一轮·文数
考点二 类比推理 【例 2】 (1)给出下面类比推理(其中 Q 为有理数集,R 为实数集,C 为复数集): ①“若 a,b∈R,则 a-b=0⇒ a=b”类比推出“a,c∈C,则 a-c=0⇒ a=c”; ②“若 a,b,c,d∈R,则复数 a+bi=c+di⇒ a=c,b=d”类比推出“a,b,c,d∈Q,则 a+b 2 =c+d 2 ⇒ a=c,b=d”; ③“a,b∈R,则 a-b>0⇒ a>b”类比推出“若 a,b∈C,则 a-b>0⇒ a>b”; ④“若 x∈R,则|x|<1⇒ -1<x<1”类比推出“若 z∈C,则|z|<1⇒ -1<z<1”. 其中类比结论正确的个数为( ) (A)1 (B知熟悉定义类比新定义
平面几何与立体几何、等 差数列与等比数列
︱高中总复习︱一轮·文数
【跟踪训练2】 若{an}是等差数列,m,n,p是互不相等的正整数,则有(m-n)ap+
(n-p)am+(p-m)an=0,类比上述性质,相应地,对等比数列{bn},m,n,p是互不相等
的正整数,有
.
解析:等差数列的三项之和类比等比数列的三项之积,等差数列中(m-n)ap 类比等比数列
函数,以上推理( C )
(A)结论正确
(B)大前提不正确
(C)小前提不正确
(D)全不正确
解析:f(x)=sin(x2+3)不是正弦函数,所以小前提不正确.故选C.
︱高中总复习︱一轮·文数
3.某种树的分枝生长规律如图所示,则预计到第6年树的分枝数为( D ) (A)5 (B)6 (C)7 (D)8

2014届高考江苏专用(理)一轮复习第十四章第3讲合情推理与演绎推理

2014届高考江苏专用(理)一轮复习第十四章第3讲合情推理与演绎推理

解析 对于椭圆, 延长 F2M 与 F1P 的延长线交于 Q.由对称 性知,M 为 F2Q 的中点,且 PF2=PQ,从而 OM∥F1Q 且 1 OM= F1Q.而 F1Q=F1P+PQ=F1P+PF2=2a,所以 OM 2 =a.对于双曲线,过点 F2 作∠F1PF2 内角平分线的垂线, 垂足为 M,类比可得 OM=a.
2x1-12x2+1-2x2-12x1+1 = 2x1+12x2+1 22x1-2x2 = . 2x1+12x2+1 ∵x1>x2,∴2x1>2x2>0, 即 2x1-2x2>0,又∵2x1+1>0,2x2+1>0. 22x1-2x2 ∴ >0. 2x1+12x2+1 ∴f(x1)>f(x2). ∴f(x)在 R 上为单调递增函数.
在空间内,若两个正方体的棱长的比为1∶2,则它们的 体积比为________. 解析 答案 由正方体的体积之比等于棱长的立方之比可得. 1∶8
2.给出下列三个类比结论. ①(ab)n=anbn与(a+b)n类比,则有(a+b)n=an+bn; ②loga(xy)=logax+logay与sin(α+β)类比,则有sin(α+β) =sin αsin β; ③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+ 2a· 2. b+b 其中结论正确的序号是________. 答案 ③
(1)合情推理是从已知的结论推测未知的结论,发现与猜想
的结论都要经过进一步严格证明. (2)演绎推理是由一般到特殊的推理,它常用来证明和推理 数学问题,注意推理过程的严密性,书写格式的规范性.
考点自测
1.(2012· 盐城市第一学期摸底考试)在平面上,若两个正方
形的边长的比为1∶2,则它们的面积比为1∶4;类似地,
[方法总结] 演绎推理是从一般到特殊的推理;其一般形式 是三段论,应用三段论解决问题时,应当首先明确什么是 大前提和小前提,如果前提是显然的,则可以省略.

合情推理与演绎推理

合情推理与演绎推理

第3讲合情推理与演绎推理讲义讲义一、导入【教学建议】推理是人们思维活动的过程,是根据一个或几个已知的判断来确定一个新的判断的推理过程,本节课要求学生了解合情推理的含义,能进行简单的归纳推理和类比推理;掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解合情推理和演绎推理之间的联系和差异.人们仿照鱼类的外形和它们在水中的沉浮原理,发明了潜水艇;为了回答“火星上是否有生命”这个问题,科学家把火星与地球作类比,发现火星具有一些与地球类似的特征,如火星也是围绕太阳运行,绕轴自转的行星,也有大气层,在一年中也有季节的变更,而且火星上大部分时间的温度适合地球上某些已知生物的生存等等,由此,科学家们猜测火星上也可能有生命存在.二、知识讲解知识点1 合情推理1.归纳推理是由部分到整体,由具体到抽象,由特殊到一般,从个别事实中概括出一般结论的思维模式.类比推理是在两类不同的事物之间进行对比,找出若干相同或相似之处之后,推测在其他方面也可能存在相同或相似之处的一种推理模式.类比推理是由特殊到特殊的推理.2.归纳推理的一般步骤(1)观察:通过观察个别事物发现某些相同性质.(2)概括、归纳:从已知的相同性质中概括、归纳出一个明确表述的一般性命题.(3)猜测一般性结论3.归纳推理的基本逻辑形式是:S1是(或不是或具有性质)P,S2是(或不是或具有性质)P,S3是(或不是或具有性质)P,……Sn是(或不是或具有性质)P.∵S1、S2、S3、…,Sn是S类的对象,∴所有S都是(或都不是或都具有性质)P.4.由已知数、式进行归纳推理的方法(1)要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律.(2)要特别注意所给几个等式(或不等式)中结构形式的特征.(3)提炼出等式(或不等式)的综合特点.(4)运用归纳推理得出一般结论.5.类比推理类比推理的思维过程大致是:观察、比较→联想、类推→猜测新的结论.该过程主要包括两个步骤:(1)找出两类事物之间的相似性或一致性.(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.知识点2 演绎推理1.三段论“三段论”是演绎推理的一般模式,包括:(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.其一般推理形式为大前提:M是P.小前提:S是M.结论:S是P .利用集合知识说明“三段论”:若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.2.在演绎推理中,前提与结论之间存在必然的联系,只要前提是真实的,推理的形式是正确的,那么结论必定是正确的.因而演绎推理是数学中严格证明的工具,而合情推理的结论不一定正确.3.分析演绎推理的构成时,要正确区分大前提、小前提、结论,省略大前提的要补出来.4.判断演绎推理是否正确的方法(1)看推理形式是否为由一般到特殊的推理,只有由一般到特殊的推理才是演绎推理,这是最易出错的地方;(2)看大前提是否正确,大前提往往是定义、定理、性质等,注意其中有无前提条件;(3)看小前提是否正确,注意小前提必须在大前提范围之内;(4)看推理过程是否正确,即看由大前提,小前提得到的结论是否正确.【教学建议】 带领学生一起归纳各类推理的思维过程与一般步骤,通过难度层层递进的例题,加深对于推理的理解,提高应用能力. 【题干】(1)“鲁班发明锯子”的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.该过程体现了( )A .归纳推理B .类比推理C .没有推理D .以上说法都不对【答案】B【解析】推理是根据一个或几个已知的判断来确定一个新的判断的思维过程,上述过程是推理,由性质类比可知是类比推理.【题干】(2) 在等差数列{a n }中,若a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,类比上述性质,在等比数列{b n }中,若b 9=1,则存在的等式为________________.【答案】b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *)【解析】 利用类比推理,借助等比数列的性质,b 29=b 1+n ·b 17-n , 可知存在的等式为b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *).【题干】(3)二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“特级球”的三维测度V =12πr 3,则 三、例题精析 例题1其四维测度W =________.【答案】 3πr 4【解析】 二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;观察发现S ′=l ,三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,观察发现V ′=S ,∴四维空间中“特级球”的三维测度V =12πr 3,猜想其四维测度W ,则W ′=V =12πr 3,∴W =3πr 4.【题干】(4) 祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆y 2a 2+x 2b 2=1(a >b >0)所围成的平面图形绕y 轴旋转一周后,得一橄榄状的几何体(如图)(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于.【答案】4π3×b 2a 【解析】 椭圆的长半轴长为a ,短半轴长为b ,现构造两个底面半径为b ,高为a 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积V =2(V 圆柱-V 圆锥)=2(π×b 2×a -π3×b 2a )=4π3×b 2a . 【题干】(1) 在数列5,9,17,33,x ,…中,x 的值为( )A .47B .65C .63D .128【答案】B【解析】5=22+1,9=23+1,17=24+1,33=25+1,猜想x=26+1=65.【题干】(2) 某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120°;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n 级分形图. 例题2n 级分形图中共有________条线段.【答案】3×2n -3【解析】分形图的每条线段的末端出发再生成两条线段,由题图知,一级分形图有3=(3×2-3)条线段,二级分形图有9=(3×22-3)条线段,三级分形图中有21=(3×23-3)条线段,按此规律n 级分形图中的线段条数a n =3×2n -3.【题干】(3) 刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:甲说:“我们四人都没考好.”乙说:“我们四人中有人考得好.”丙说:“乙和丁至少有一人没考好.”丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的 两人说对了.【答案】乙,丙【解析】 甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确.故答案为乙,丙.【题干】(4) 观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2; ⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; ……照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2= . 【答案】43n (n +1) 【解析】每组角的分母恰好等于右边两个相邻正整数因数的和.因此答案为43n (n +1).【题干】(1) 在“△ABC 中,E ,F 分别是边AB ,AC 的中点,则EF ∥BC ”的推理过程中,大前提是( )A .三角形的中位线平行于第三边B .三角形的中位线等于第三边长的一半C .E ,F 为AB ,AC 的中点D .EF ∥BC【答案】A【解析】大前提是“三角形的中位线平行于第三边”.【题干】(2) 有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 【答案】B【解析】用小前提“S 是M ”,判断得到结论“S 是P ”时,大前提“M 是P ”必须是所有的M ,而不是部分.【题干】(3) 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列; (2)S n +1=4a n .【答案】(1)见解析,(2)见解析【解析】 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n, ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n .故S n +1n +1=2·S n n ,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义)(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1 =4a n (n ≥2).(小前提)又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提)∴对于任意正整数n ,都有S n +1=4a n .(结论) 例题3。

合情推理与演绎推理(总结)

合情推理与演绎推理(总结)
(1)归纳是由特殊到一般的推理; (2)类比是由特殊到特殊的推理; (3)演绎推理是由一般到特殊的推理.
2.从推理的结论来看:
合情推理的结论不一定正确,有待证明; 演绎推理得到的结论一定正确.
联系:二者相辅相成,演绎推理是证明数学结论、建立数学体系的思维过 程,但数学结论、证明思路的发现主要靠合情推理.
+(n+1)=n(n+3)/2个圈,由n(n+3)/2≤55知,n最大为9,即前
55个圈中的●有9个,故选B.
答案:B
9.在平面几何中有如下结论:正三角ABC的内 切圆面积为S1,外接圆面积为S2,则S2(S1)=4(1), 推广到空间可以得到类似结论:正四面体P-ABC 的内切球体积为V1,外接球体积为V2,则V1/V2= ________.
C
[解析] 只有选项C是由 一般到特殊的推理,属 于演绎推理.
4.(2019·哈尔滨师大附中高二月考)《论语·学路》篇中
说:“名不正,则言不顺;言不顺,则事不成;事不成,则
礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措
手足;所以,名不正,则民无所措手足.”上述推理用的是
() A.类比推理
B.归纳推理
C.演绎推理
D.一次三段论
解析:这是一个复合三段论,从“名不正”推出“民无
所措手足”,连续运用五次三段论,属演绎推理形式.
答案:C
5.“指数函数是增函数,函数 f(x)=2x 是指数函数,所
以函数 f(x)=2x 是增函数”,以上推理( )
A.大前提不正确 B.小前提不正确
C.结论不正确
D.正确
解析:指数函数 y=ax(a>0 且 a≠1),当 a>1 时,指数函
解析: 正四面体的内切球的半径为r1,外接球的半径为 r2,则r1/r2=1/3,∴V1/V2=1/27. 答案:1/27

2014届高考数学文二轮专题突破:专题三 第3讲推理与证明

2014届高考数学文二轮专题突破:专题三 第3讲推理与证明

第3讲推理与证明【高考考情解读】 1.高考主要考查对合情推理和演绎推理的理解及应用;直接证明和间接证明的考查主要作为证明和推理数学命题的方法,常与函数、数列、不等式、解析几何等综合命题.2.归纳推理和类比推理等主要是和数列、不等式等内容联合考查,多以选择题和填空题的形式出现,难度中等;而考查证明问题的知识面广,涉及知识点多,题目难度较大,主要考查逻辑推理能力、归纳能力和综合能力,难度较大.1.合情推理(1)归纳推理①归纳推理是由某类事物的部分对象具有某些特征,推出该类事物的所有对象具有这些特征的推理,或者由个别事实概括出一般结论的推理.②归纳推理的思维过程如下:实验、观察→概括、推广→猜测一般性结论(2)类比推理①类比推理是由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.②类比推理的思维过程如下:观察、比较→联想、类推→猜测新的结论2.演绎推理(1)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般性原理.②小前提——所研究的特殊情况.③结论——根据一般原理,对特殊情况做出的判断.(2)合情推理与演绎推理的区别归纳和类比是常用的合情推理,从推理形式上看,归纳是由部分到整体、个别到一般的推理;类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.3.直接证明(1)综合法用P 表示已知条件、已有的定义、定理、公理等,Q 表示所要证明的结论,则综合法可用框图表示为P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q (2)分析法用Q 表示要证明的结论,则分析法可用框图表示为Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→4.间接证明反证法的证明过程可以概括为“否定——推理——否定”,即从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题)的过程.用反证法证明命题“若p 则q ”的过程可以用如图所示的框图表示.考点一 归纳推理例1 (2013·湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数N (n,6)=2n 2-n………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. 答案 1 000解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,…,可以推测: 当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,得到一个明显成立的条件∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000.归纳推理的一般步骤是:(1)通过观察个别事物发现某些相同的性质;(2)从已知的相同性质中推出一个明确表述的一般性命题.并且在一般情况下,如果归纳的个别事物越多,越具有代表性,那么推广的一般性结论也就越可靠.(1)在数列{a n }中,若a 1=2,a 2=6,且当n ∈N *时,a n +2是a n ·a n +1的个位数字,则a 2 014等于 ( )A .2B .4C .6D .8答案 A解析 由a 1=2,a 2=6,得a 3=2,a 4=2,a 5=4,a 6=8,a 7=2,a 8=6,…, 据此周期为6, 又2 014=6×335+4, 所以a 2 014=a 4=2,故答案选A.(2)(2012·江西)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于 ( )A .28B .76C .123D .199答案 C解析 令a n =a n +b n ,则a 1=1,a 2=3,a 3=4,a 4=7,…得a n +2=a n +a n +1,从而a 6=18,a 7=29,a 8=47,a 9=76,a 10=123. 考点二 类比推理例2 (1)在平面几何中有如下结论:若正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14.推广到空间几何可以得到类似结论:若正四面体ABCD 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=________.(2)椭圆与双曲线有许多优美的对偶性质,如对于椭圆有如下命题:AB 是椭圆x 2a 2+y 2b 2=1(a >b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB =-b 2a 2.那么对于双曲线则有如下命题:AB 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB =________. 答案 (1)127 (2)b 2a2解析 (1)本题考查类比推理,也即是由特殊到特殊的推理.平面几何中,圆的面积与圆的半径的平方成正比,而在空间几何中,球的体积与半径的立方成正比,所以V 1V 2=127.(2)设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则有⎩⎨⎧x 0=x 1+x 22,y 0=y 1+y22.将A ,B 代入双曲线x 2a 2-y 2b2=1中得x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1, 两式相减得x 21-x 22a 2=y 21-y 22b2,即(x 1-x 2)(x 1+x 2)a 2=(y 1-y 2)(y 1+y 2)b 2,即(y 1-y 2)(y 1+y 2)(x 1-x 2)(x 1+x 2)=b 2a 2, 即k OM ·k AB =b 2a2.类比推理是合情推理中的一类重要推理,强调的是两类事物之间的相似性,有共同要素是产生类比迁移的客观因素,类比可以由概念性质上的相似性引起,如等差数列与等比数列的类比;也可以由解题方法上的类似引起,当然首先是在某些方面有一定的共性,才能有方法上的类比,本题即属于此类.一般来说,高考中的类比问题多发生在横向与纵向类比上,如圆锥曲线中椭圆与双曲线等的横向类比以及平面与空间中三角形与三棱锥的纵向类比等.(1)若数列{a n }是等差数列,b n =a 1+a 2+…+a nn,则数列{b n }也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nnC .d n =n c n 1+c n 2+…+c nnnD .d n =nc 1·c 2·…·c n(2)命题p :已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1、F 2是椭圆的两个焦点,P 为椭圆上的一个动点,过F 2作∠F 1PF 2的外角平分线的垂线,垂足为M ,则OM 的长为定值.类比此命题,在双曲线中也有命题q :已知双曲线x 2a 2-y 2b 2=1(a >b >0),F 1、F 2是双曲线的两个焦点,P 为双曲线上的一个动点,过F 2作∠F 1PF 2的________的垂线,垂足为M ,则OM 的长为定值________. 答案 (1)D (2)内角平分线 a解析 (1)由{a n }为等差数列,设公差为d , 则b n =a 1+a 2+…+a n n =a 1+n -12d ,又正项数列{c n }为等比数列,设公比为q , 则d n =nc 1c 2…c n =nc n 1qn 2-n 2=c 1q n -12,故选D. (2)对于椭圆,延长F 2M 与F 1P 的延长线交于Q . 由对称性知,M 为F 2Q 的中点,且PF 2=PQ ,从而OM ∥F 1Q 且OM =12F 1Q .而F 1Q =F 1P +PQ =F 1P +PF 2=2a ,所以OM =a .对于双曲线,过F 2作∠F 1PF 2内角平分线的垂线,垂足为M , 类比可得OM =a .因为OM =12F 1Q =12(PF 1-PF 2)=12·2a =a .考点三 直接证明与间接证明例3 已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0 (n ≥1);数列{b n }满足:b n =a 2n +1-a 2n (n ≥1).(1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列. (1)解 已知3(1+a n +1)1-a n =2(1+a n )1-a n +1化为1-a 2n +11-a 2n =23,而1-a 21=34,所以数列{1-a 2n }是首项为34,公比为23的等比数列, 则1-a 2n =34×⎝⎛⎭⎫23n -1,则a 2n=1-34×⎝⎛⎭⎫23n -1, 由a n a n +1<0,知数列{a n }的项正负相间出现, 因此a n =(-1)n+11-34×⎝⎛⎭⎫23n -1, b n =a 2n +1-a 2n=-34×⎝⎛⎭⎫23n +34×⎝⎛⎭⎫23n -1 =14×⎝⎛⎭⎫23n -1.(2)证明 假设存在某三项成等差数列,不妨设为b m 、b n 、b p ,其中m 、n 、p 是互不相等的正整数,可设m <n <p ,而b n =14×⎝⎛⎭⎫23n -1随n 的增大而减小,那么只能有2b n =b m +b p ,可得2×14×⎝⎛⎭⎫23n -1=14×⎝⎛⎭⎫23m -1+14×⎝⎛⎭⎫23p -1,则2×⎝⎛⎭⎫23n -m=1+⎝⎛⎭⎫23p -m . 当n -m ≥2时,2×⎝⎛⎭⎫23n -m≤2×⎝⎛⎭⎫232=89,上式不可能成立,则只能有n -m =1,此时等式为43=1+⎝⎛⎭⎫23p -m , 即13=⎝⎛⎭⎫23p -m ,那么p -m =log 2313,左边为正整数,右边为无理数,不可能相等. 所以假设不成立,那么数列{b n }中的任意三项不可能成等差数列.(1)有关否定性结论的证明常用反证法或举出一个结论不成立的例子即可.(2)综合法和分析法是直接证明常用的两种方法,我们常用分析法寻找解决问题的突破口,然后用综合法来写出证明过程,有时候,分析法和综合法交替使用.已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数.(1)对任意实数λ,证明:数列{a n }不是等比数列; (2)试判断数列{b n }是否为等比数列.(1)证明 假设存在一个实数λ,使{a n }是等比数列, 则有a 22=a 1a 3,即⎝⎛⎭⎫23λ-32=λ⎝⎛⎭⎫49λ-4 ⇔49λ2-4λ+9=49λ2-4λ⇔9=0,矛盾. 所以{a n }不是等比数列.(2)解 因为b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1⎝⎛⎭⎫23a n -2n +14 =-23(-1)n ·(a n -3n +21)=-23b n ,又b 1=-(λ+18),所以当λ=-18时,b n =0 (n ∈N *),此时{b n }不是等比数列; 当λ≠-18时,b 1=-(λ+18)≠0,由b n +1=-23b n ,可知b n ≠0,所以b n +1b n =-23(n ∈N *).故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列;综上知,当λ=-18时,数列{b n }构不成等比数列;当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列.1.合情推理的精髓是“合情”,即得到的结论符合“情理”,其中主要是归纳推理与类比推理.归纳推理是由部分得到整体的一种推理模式.类比推理是由此及彼的推理模式;演绎推理是一种严格的证明方式.2.直接证明的最基本的两种证明方法是综合法和分析法,这两种方法也是解决数学问题时常见的思维方式.在实际解题时,通常先用分析法寻求解题思路,再用综合法有条理地表述解题过程.1.将全体正奇数排成一个三角形数阵:按照以上排列的规律,第45行从左向右的第17个数为________. 答案 2 013解析 观察数阵,记第n 行的第1个数为a n ,则有 a 2-a 1=2, a 3-a 2=4, a 4-a 3=6, a 5-a 4=8, ……a n -a n -1=2(n -1).将以上各等式两边分别相加,得a n -a 1=2+4+6+8+…+2(n -1)=n (n -1), 所以a n =n (n -1)+1,所以a 45=1 981.又从第3行起数阵每一行的数都构成一个公差为2的等差数列,则第45行从左向右的第17个数为1 981+16×2=2 013.2.在计算“1×2+2×3+…+n (n +1)”时,某同学学到了如下一种方法:先改写第k 项,k (k +1)=13[k (k +1)(k +2)-(k -1)k (k +1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),…n (n +1)=13[n (n +1)(n +2)-(n -1)n (n +1)].相加,得1×2+2×3+…+n (n +1)=13n (n +1)(n +2).类比上述方法,计算“1×2×3+2×3×4+…+n (n +1)(n +2)”的结果为________. 答案 14n (n +1)(n +2)(n +3)解析 类比k (k +1)=13[k (k +1)(k +2)-(k -1)k (k +1)],可得到k (k +1)(k +2)=14[k (k +1)(k +2)(k +3)-(k -1)k (k +1)(k +2)],先逐项裂项,然后累加即得14n (n +1)(n +2)(n +3).(推荐时间:60分钟)一、选择题1.下列关于五角星的图案构成一个数列,该数列的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n (n +2)2答案 C解析 从图中观察五角星构成规律, n =1时,有1个; n =2时,有3个; n =3时,有6个; n =4时,有10个;…所以a n =1+2+3+4+…+n =n (n +1)2.2.①已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2;②已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下结论正确的是( )A .①与②的假设都错误B .①与②的假设都正确C .①的假设正确;②的假设错误D .①的假设错误;②的假设正确 答案 D解析 反证法的实质是否定结论,对于①,其结论的反面是p +q >2,所以①不正确;对于②,其假设正确.3.已知函数f (x )是R 上的单调增函数且为奇函数,数列{a n }是等差数列,a 3>0,则f (a 1)+f (a 3)+f (a 5)的值( ) A .恒为正数 B .恒为负数 C .恒为0D .可正可负答案 A解析 由已知得f (0)=0,a 1+a 5=2a 3>0,所以a 1>-a 5. 由于f (x )单调递增且为奇函数,所以f (a 1)+f (a 5)>f (-a 5)+f (a 5)=0,f (a 3)>0. ∴选A.4.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1)答案 B解析 依题意,就每组整数对的和相同的分为一组,不难得知每组整数对的和为n +1,且每组共有n 个整数时,这样的前n 组一共有n (n +1)2个整数时,注意到10(10+1)2<60<11(11+1)2,因此第60个整数对处于第11组(每对整数对的和为12的组)的第5个位置,结合题意可知每对整数对的和为12的组中的各数对依次为(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个整数对是(5,7),选B.5.已知正三角形内切圆的半径是其高的13,把这个结论推广到空间正四面体,类似的结论是( )A .正四面体的内切球的半径是其高的12B .正四面体的内切球的半径是其高的13C .正四面体的内切球的半径是其高的14D .正四面体的内切球的半径是其高的15答案 C解析 原问题的解法为等面积法, 即S =12ah =3×12ar ⇒r =13h ,类比问题的解法应为等体积法, V =13Sh =4×13Sr ⇒r =14h ,即正四面体的内切球的半径是其高的14,所以应选C.6.把非零自然数按一定的规则排成了如图所示的三角形数表(每行比上一行多一个数).设a ij (i 、j ∈N *)是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如a 42=8,若a ij =2 010,则i ,j 的值的和为( )A .75B .76C .77D .78 答案 C解析 观察偶数行的变化规律,2 010是数列:2,4,6,8,…的第1 005项,前31个偶数行的偶数的个数为(2+62)×312=32×31=992,所以2 010是偶数行的第32行第13个数,即三角形数表中的第64行第13个数,所以i =64,j =13,所以i +j =77.故选C. 二、填空题7.有一个奇数列1,3,5,7,9,…,现在进行如下分组:第一组含一个数{1},第二组含两个数{3,5},第三组含三个数{7,9,11},第四组含四个数{13,15,17,19},…,现观察猜想每组内各数之和为a n 与其组的编号数n 的关系为________. 答案 a n =n 3解析 由题意知a 1=1=13,a 2=3+5=8=23,a 3=7+9+11=27=33,a 4=13+15+17+19=64=43,….因此可归纳出a n =n 3.8.(2013·陕西)观察下列等式:(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 …照此规律,第n 个等式可为______________. 答案 (n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1)解析 由已知的三个等式左边的变化规律,得第n 个等式左边为(n +1)(n +2)…(n +n ),由已知的三个等式右边的变化规律,得第n 个等式右边为2n 与n 个奇数之积,即2n ×1×3×…×(2n -1).9.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n行有n 个数,且两端的数均为1n ,每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第10行第3个数(从左往右数)为________.答案1360解析 由上面的规律可知第n 行的第一个数为1n ,第二个数为1n (n -1),所以第9行的第二个数为18×9,第10行的第一个数为110,第二个数为19×10=190,设第3个数为x ,即x +190=19×8⇒x =1360. 10.对大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:23⎩⎨⎧35,33⎩⎪⎨⎪⎧7911,43⎩⎪⎨⎪⎧13151719,….仿此,若m 3的“分裂数”中有一个是59,则m 的值为________.答案 8解析 由已知可观察出m 3可分裂为m 个连续奇数,最小的一个为(m -1)m +1.当m =8时,最小的数为57,第二个便是59.∴m =8. 三、解答题11.观察下列三角形数表,假设第n 行的第二个数为a n (n ≥2,n ∈N *).(1)依次写出第六行的所有6个数字;(2)归纳出a n +1与a n 的关系式并求出a n 的通项公式. 解 (1)第六行的所有6个数字分别是6,16,25,25,16,6. (2)依题意a n +1=a n +n (n ≥2),a 2=2,a n =a 2+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=2+2+3+…+(n -1)=2+(n -2)(n +1)2.所以a n =12n 2-12n +1(n ≥2).12.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.(1)解 由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2,故a n =2n -1+2,S n =n (n +2). (2)证明 由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r .即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+(2q -p -r )2=0.∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∵(p +r 2)2=pr ,(p -r )2=0,∴p =r .与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成等比数列.13.已知数列{a n }有a 1=a ,a 2=p (常数p >0),对任意的正整数n ,S n =a 1+a 2+…+a n ,并有S n 满足S n =n (a n -a 1)2.(1)求a 的值并证明数列{a n }为等差数列;(2)令p n =S n +2S n +1+S n +1S n +2,是否存在正整数M ,使不等式p 1+p 2+…+p n -2n ≤M 恒成立,若存在,求出M 的最小值;若不存在,说明理由. 解 (1)由已知,得S 1=1×(a -a )2=a 1=a ,所以a =0.由a 1=0得S n =na n2,则S n +1=(n +1)a n +12,∴2(S n +1-S n )=(n +1)a n +1-na n , 即2a n +1=(n +1)a n +1-na n , 于是有(n -1)a n +1=na n , 并且na n +2=(n +1)a n +1,∴na n +2-(n -1)a n +1=(n +1)a n +1-na n , 即n (a n +2-a n +1)=n (a n +1-a n ),则有a n +2-a n +1=a n +1-a n ,∴{a n }为等差数列. (2)由(1)得S n =n (n -1)p2,∴p n =(n +2)(n +1)p 2(n +1)np 2+(n +1)np2(n +2)(n +1)p2=2+2n -2n +2,∴p 1+p 2+p 3+…+p n -2n =⎝⎛⎭⎫2+21-23+⎝⎛⎭⎫2+22-24+…+⎝⎛⎭⎫2+2n -2n +2-2n =2+1-2n +1-2n +2. 由n 是整数可得p 1+p 2+p 3+…+p n -2n <3.故存在最小的正整数M =3,使不等式p 1+p 2+p 3+…+p n -2n ≤M 恒成立.。

【数学知识点】合情推理和演绎推理的区别

【数学知识点】合情推理和演绎推理的区别

【数学知识点】合情推理和演绎推理的区别
合情推理是由特殊到一般或特殊到特殊的推理,演绎推理是由一般到特殊的推理。

从推理的结论来看,合情推理的结论不一定正确有待证明;演绎推理得到的结论一定正确。

演绎推理是证明数学结论,建立数学体系的重要思维过程。

1、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

感谢您的阅读,祝您生活愉快。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 合情推理与演绎推理1.推理(1)定义:根据一个或几个已知的判断来确定一个新的判断的思维过程.(2)分类:推理⎩⎪⎨⎪⎧合情推理演绎推理2.合情推理归纳推理类比推理定义由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理 由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理特点由部分到整体、由个别到一般的推理由特殊到特殊的推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.(2)特点:演绎推理是由一般到特殊的推理. (3)模式:三段论⎩⎪⎨⎪⎧①大前提:已知的一般原理;②小前提:所研究的特殊情况;③结论:根据一般原理,对特殊情况做出的判断.判断正误(正确的打“√”,错误的打“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ) (4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( ) 答案:(1)× (2)√ (3)× (4)×(教材习题改编)已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( ) A .a n =3n -1 B .a n =4n -3 C .a n =n 2D .a n =3n -1解析:选C.由a 1=1,a n =a n -1+2n -1,则 a 2=a 1+2×2-1=4;a 3=a 2+2×3-1=9; a 4=a 3+2×4-1=16,所以a n =n 2.(2017·高考全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩解析:选D.依题意,四人中有2位优秀,2位良好,由于甲知道乙、丙的成绩,但还是不知道自己的成绩,则乙、丙必有1位优秀,1位良好,甲、丁必有1位优秀,1位良好,因此,乙知道丙的成绩后,必然知道自己的成绩;丁知道甲的成绩后,必然知道自己的成绩,因此选择 D.推理“①矩形是平行四边形,②三角形不是平行四边形,③三角形不是矩形”中的小前提是________.解析:由演绎推理三段论可知,①是大前提,②是小前提,③是结论. 答案:②在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________. 解析:V 1V 2=13S 1h113S 2h 2=⎝⎛⎭⎫S 1S 2·h 1h 2=14×12=18.答案:1∶8归纳推理(高频考点)归纳推理是每年高考的常考内容,题型多为选择题或填空题,难度稍大,属中高档题.高考对归纳推理的考查常有以下三个命题角度: (1)与数字(数列)有关的等式的推理; (2)与不等式(式子)有关的推理; (3)与图形变化有关的推理.[典例引领]角度一 与数字(数列)有关的等式的推理有一个奇数组成的数阵排列如下:1 3 7 13 21 … 5 9 15 23 … … 11 17 25 … … … 19 27 … … … … 29 … … … … … … … … … … …则第30行从左到右第3个数是________.【解析】 观察每一行的第一个数,由归纳推理可得第30行的第1个数是1+4+6+8+10+…+60=30×(2+60)2-1=929.又第n 行从左到右的第2个数比第1个数大2n ,第3个数比第2个数大2n +2,所以第30行从左到右的第2个数比第1个数大60,第3个数比第2个数大62,故第30行从左到右第3个数是929+60+62=1 051. 【答案】 1 051角度二 与不等式(式子)有关的推理(2016·高考山东卷)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2;⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …… 照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=__________. 【解析】 每组角的分母恰好等于右边两个相邻正整数因数的和.因此答案为43n (n +1).【答案】 43n (n +1)角度三 与图形变化有关的推理我国的刺绣有着悠久的历史,如图所示中的(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形,则f (n )的表达式为( )A .f (n )=2n -1B .f (n )=2n 2C .f (n )=2n 2-2nD .f (n )=2n 2-2n +1【解析】 我们考虑f (2)-f (1)=4,f (3)-f (2)=8,f (4)-f (3)=12,…,结合图形不难得到f (n )-f (n -1)=4(n -1),累加得f (n )-f (1)=2n (n -1)=2n 2-2n ,故f (n )=2n 2-2n +1. 【答案】 D归纳推理问题的常见类型及解题策略(1)与“数字”相关问题:主要是观察数字特点,找出等式左右两侧的规律.(2)与不等式有关的推理:观察所给几个不等式两边式子的特点,注意纵向看、找出隐含规律.(3)与图形有关推理:合理利用特殊图形归纳推理得出结论.[通关练习]1.观察三角数阵,记第n 行的第m 个数为a (n ,m ),则下列关系正确的是( )1 1 1 12 1 13 3 1 14 6 4 1…1 10 45 … 45 10 1A .a (n +1,m +1)=a (n ,m )+a (n ,m +1)B .a (n +1,m +1)=a (n -1,m -1)+a (n ,m )C .a (n +1,m +1)=a (n ,m )+a (n +1,m )D .a (n +1,m +1)=a (n +1,m )+a (n ,m +1)解析:选A.观察分析得出三角数阵中的每一个数等于其“肩上”两个数之和.所以a (n +1,m+1)=a (n ,m )+a (n ,m +1).2.(2018·青岛模拟)某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度相等,两两夹角为120°;二级分形图是在一级分形图的每条线段末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n 级分形图.n 级分形图中共有________条线段.解析:分形图的每条线段的末端出发再生成两条线段,由题图知,一级分形图有3=3×2-3条线段,二级分形图有9=3×22-3条线段,三级分形图中有21=3×23-3条线段,按此规律n 级分形图中的线段条数a n =3×2n -3(n ∈N *). 答案:3×2n -3(n ∈N *)类比推理[典例引领]如图,在Rt △ABC 中,∠C =90°,设a ,b ,c 分别表示三条边的长度,由勾股定理,得c 2=a 2+b 2.类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.【解】 如题图所示,在Rt △ABC 中, ∠C =90°.设a ,b ,c 分别表示3条边的长度,由勾股定理,得c 2=a 2+b 2. 类似地,在四面体P -DEF 中,∠PDF =∠PDE =∠EDF =90°.设S 1,S 2,S 3和S 分别表示△PDF ,△PDE ,△EDF 和△PEF 的面积,相应于直角三角形的2条直角边a ,b 和1条斜边c ,图中的四面体有3个“直角面”S 1,S 2,S 3和1个“斜面”S .于是,类比勾股定理的结构,我们猜想S 2=S 21+S 22+S 23成立.若本例条件“由勾股定理,得c 2=a 2+b 2”换成“cos 2 A +cos 2 B =1”,则在空间中,给出四面体性质的猜想. 解:如图,在Rt △ABC 中,cos 2A +cos 2B =⎝⎛⎭⎫b c 2+⎝⎛⎭⎫a c 2=a 2+b 2c 2=1.于是把结论类比到四面体P -A ′B ′C ′中,我们猜想,四面体P -A ′B ′C ′中,若三个侧面P A ′B ′,PB ′C ′,PC ′A ′两两互相垂直,且分别与底面所成的角为α,β,γ,则cos 2α+cos 2β+cos 2γ=1.[通关练习]1.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“若z 1,z 2∈C ,则z 1-z 2=0⇒z 1=z 2”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“若a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若z 1,z 2∈C ,则z 1-z 2>0⇒z 1>z 2”. 其中类比得到的结论正确的个数是( ) A .0 B .1 C .2D .3解析:选C.由复数的减法运算可知①正确;因为a ,b ,c ,d 都是有理数,2是无理数,所以②正确;因为复数不能比较大小,所以③不正确.2.(2018·山东烟台五校联考)已知命题:在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0).△ABC 的顶点B 在椭圆上,顶点A ,C 分别为椭圆的左、右焦点,椭圆的离心率为e ,则sin A +sin C sin B =1e ,现将该命题类比到双曲线中,△ABC 的顶点B 在双曲线上,顶点A ,C 分别为双曲线的左、右焦点,设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),双曲线的离心率为e ,则有________________.解析:在双曲线中,设△ABC 的外接圆的半径为r ,则|AB |=2r sin C ,|AC |=2r sin B ,|BC |=2r sin A ,则由双曲线的定义得||BA |-|BC ||=2a ,|AC |=2c ,则双曲线的离心率e =c a =|AC |||BA |-|BC ||=sin B|sin A -sin C |,即|sin A -sin C |sin B =1e .答案:|sin A -sin C |sin B =1e演绎推理[典例引领]数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .【证明】 (1)因为a n +1=S n +1-S n ,a n +1=n +2n S n ,所以(n +2)S n =n (S n +1-S n ), 即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列. (结论)(大前提是等比数列的定义) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), 所以S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).又因为a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1, 所以对于任意正整数n ,都有S n +1=4a n .演绎推理的推证规则(1)演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略;(2)在推理论证过程中,一些稍复杂一点的证明题常常要由几个三段论才能完成.已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调增函数. 证明:设x 1,x 2∈R ,取x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), 所以x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0, 因为x 1<x 2,所以f (x 2)-f (x 1)>0,f (x 2)>f (x 1). 所以y =f (x )为R 上的单调增函数.把握合情推理与演绎推理的三个特点(1)合情推理包括归纳推理和类比推理,所得到的结论都不一定正确,其结论的正确性是需要证明的.(2)在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误.(3)应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的. 易错防范(1)演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.(2)合情推理中运用猜想时不能凭空想象,要有猜想或拓展的依据.1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:选C.因为f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确. 2.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中正确结论的个数是( ) A .0 B .1 C .2D .3解析:选B.(a +b )n ≠a n +b n (n ≠1,a ·b ≠0),故①错误. sin(α+β)=sin αsin β不恒成立,如α=30°,β=60°,sin 90°=1,sin 30°·sin 60°=34,故②错误.由向量的运算公式知③正确.3.若等差数列{a n }的公差为d ,前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,公差为d2.类似地,若各项均为正数的等比数列{b n }的公比为q ,前n 项的积为T n ,则等比数列{nT n }的公比为( )A.q 2 B .q 2 C.qD.n q解析:选C.由题意知,T n =b 1·b 2·b 3·…·b n =b 1·b 1q ·b 1q 2·…·b 1q n -1=b n 1q1+2+…+(n -1)=b n 1q (n -1)n2,所以nT n =b 1qn -12,所以等比数列{nT n }的公比为q ,故选C.4.(2018·陕西渭南模拟)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,故将其称为三角形数,由以上规律,知这些三角形数从小到大形成一个数列{a n },那么a 10的值为( ) A .45 B .55 C .65D .66解析:选B.第1个图中,小石子有1个, 第2个图中,小石子有3=1+2个, 第3个图中,小石子有6=1+2+3个, 第4个图中,小石子有10=1+2+3+4个, …故第10个图中,小石子有1+2+3+…+10=10×112=55个,即a 10=55,故选B.5.(2018·安徽江淮十校联考)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,则1+11+11+…=( )A.-5-12B.5-12C.1+52D.1-52解析:选C.1+11+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52⎝ ⎛⎭⎪⎫x =1-52舍,故1+11+11+…=1+52,故选C. 6.在平面几何中:△ABC 的∠ACB 内角平分线CE 分AB 所成线段的比为AC BC =AEBE.把这个结论类比到空间:在三棱锥A BCD 中(如图)DEC 平分二面角A CD B 且与AB 相交于E ,则得到类比的结论是________.解析:由平面中线段的比转化为空间中面积的比可得AE EB =S △ACDS △BCD. 答案:AE EB =S △ACDS △BCD7.(2018·陕西咸阳模拟)观察下列式子:1×2<2,1×2+2×3<92,1×2+2×3+3×4<8,1×2+2×3+3×4+4×5<252,…,根据以上规律,第n (n ∈N *)个不等式是____________________.解析:根据所给不等式可得第n 个不等式是1×2+2×3+…+n ·(n +1)<(n +1)22.答案:1×2+2×3+…+n ·(n +1)<(n +1)228.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________.解析:类比椭圆的切点弦方程可得双曲线x 2a 2-y 2b 2=1的切点弦方程为x 0x a 2-y 0yb 2=1.答案:x 0x a 2-y 0yb2=19.在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C . 证明:因为△ABC 为锐角三角形, 所以A +B >π2,所以A >π2-B ,因为y =sin x 在⎝⎛⎭⎫0,π2上是增函数,所以sin A >sin ⎝⎛⎭⎫π2-B =cos B ,同理可得sin B >cos C ,sin C >cos A ,所以sin A +sin B +sin C >cos A +cos B +cos C .10.给出下面的数表序列:表1 表2 表31 1 3 1 3 54 4 812…其中表n (n =1,2,3,…)有n 行,第1行的n 个数是1,3,5,…,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明).解:表4为1 3 5 74 8 1212 2032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n (n ≥3),即表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.1.如图所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于( )A.5+12B.5-12C.5-1D.5+1解析:选A.设“黄金双曲线”的方程为x 2a 2-y 2b2=1(a >0,b >0), 则B (0,b ),F (-c ,0),A (a ,0).在“黄金双曲线”中,因为FB →⊥AB →,所以FB →·AB →=0.又FB →=(c ,b ),AB →=(-a ,b ),所以b 2=ac .而b 2=c 2-a 2,所以c 2-a 2=ac .在等号两边同除以a 2,得e 2-1=e ,解得e =5+12⎝ ⎛⎭⎪⎫e =1-52舍去. 2.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A .2人B .3人C .4人D .5人解析:选B.利用推理以及逻辑知识求解.首先要证,没有任意两个同学的数学成绩是相同的.假设A ,B 两名同学的数学成绩一样,由题知他们的语文成绩不一样,这样他们的语文成绩总有一个人比另一个人高,相应地由题可知,语文成绩较高的同学比另一个同学“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此看得出,没有任意两个同学的数学成绩是相同的.因为数学成绩等级只有3种,因而同学数量最大为3.之后要验证3名同学能否满足条件.易证3名同学的成绩等级分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件,因此满足条件的最多人数是3.3.考察等式:C 0m C r n -m +C 1m C r -1n -m +…+C r m C 0n -m =C r n ,(*) 其中n ,m ,r ∈N *,r ≤m <n 且r ≤n -m .某同学用概率论方法证明等式(*)如下:设一批产品共有n 件,其中m 件是次品,其余为正品.现从中随机取出r 件产品,记事件A k ={取到的r 件产品中恰有k 件次品},则P (A k )=C k m C r -k n -m C r n,k =0,1,…,r .显然A 0,A 1,…,A r 为互斥事件,且A 0∪A 1∪…∪A r =Ω(必然事件),因此1=P (Ω)=P (A 0)+P (A 1)+…+P (A r )=C 0m C r n -m +C 1m C r -1n -m +…+C r m C 0n -m C r n,所以C 0m C r n -m +C 1m C r -1n -m +…+C r m C 0n -m =C r n ,即等式(*)成立. 对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一.但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:①等式(*)成立;②等式(*)不成立;③证明正确;④证明不正确.试写出所有正确判断的序号:____________.解析:显然公式C 0m C r n -m +C 1m C r -1n -m +…+C r m C 0n -m =C r n 是正确的,该公式的证明过程利用了构造概率事件的方法,其列举了该事件发生的所有的互斥事件,且其和事件为必然事件,其概率之和为1,故其证明过程是正确的,正确判断的序号为①③.答案:①③4.(2018·湖北八校联考模拟) 祖暅是我国南北朝时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆y 2a 2+x 2b 2=1(a >b >0)所围成的平面图形绕y 轴旋转一周后,得一橄榄状的几何体(称为椭球体)(如图),课本中介绍了应用祖暅原理求球体体积公式的方法,请类比此法,求出椭球体体积,其体积等于______________.解析:椭圆的长半轴长为a ,短半轴长为b ,现构造两个底面半径为b ,高为a 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球体的体积V =2(V 圆柱-V 圆锥)=2(π×b 2×a -13π×b 2a )=43π×b 2a . 答案:43π×b 2a 5.已知O 是△ABC 内任意一点,连接AO ,BO ,CO 并延长,分别交对边于A ′,B ′,C ′,则OA ′AA ′+OB ′BB ′+OC ′CC ′=1,这是一道平面几何题,其证明常采用“面积法”: OA ′AA ′+OB ′BB ′+OC ′CC ′=S △OBC S △ABC +S △OCA S △ABC +S △OAB S △ABC =S △ABC S △ABC=1. 请运用类比思想猜想,对于空间中的四面体V -BCD ,存在什么类似的结论,并用“体积法”证明.解:结论:在四面体V -BCD 中,任取一点O ,连接VO ,DO ,BO ,CO 并延长,分别交四个面于E ,F ,G ,H 点.则OE VE +OF DF +OG BG +OH CH=1. 证明如下:在四面体O -BCD 与V -BCD 中,设其高分别为h 1,h ,则OE VE =h 1h =13S △BCD ·h 113S △BCD·h =V O ­BCD V V ­BCD . 同理,OF DF =V O ­VBC V D ­VBC ;OG BG =V O ­VCD V B ­VCD ;OH CH =V O ­VBD V C ­VBD, 所以OE VE +OF DF +OG BG +OH CH= V O ­BCD +V O ­VBC +V O ­VCD +V O ­VBD V V ­BCD =V V ­BCD V V ­BCD=1. 6.我们将具有下列性质的所有函数组成集合M :函数y =f (x )(x ∈D ),对任意x ,y ,x +y 2∈D 均满足f ⎝⎛⎭⎫x +y 2≥12[f (x )+f (y )],当且仅当x =y 时等号成立.(1)若定义在(0,+∞)上的函数f (x )∈M ,试比较f (3)+f (5)与2f (4)的大小;(2)设函数g (x )=-x 2,求证:g (x )∈M .解:(1)对于f ⎝⎛⎭⎫x +y 2≥12[f (x )+f (y )],令x =3,y =5得f (3)+f (5)≤2f (4).(2)证明:g ⎝⎛⎭⎫x 1+x 22-12[g (x 1)+g (x 2)]=-(x 1+x 2)24+x 21+x 222=(x 1-x 2)24≥0, 所以g ⎝⎛⎭⎫x 1+x 22≥12[g (x 1)+g (x 2)],所以g (x )∈M .。

相关文档
最新文档