常用超声波探伤标准要求
超声波探伤检测标准
超声波探伤检测标准
超声波探伤检测是一种常用的无损检测方法,用于检测材料或构件内部的缺陷、异物和界面等问题。
超声波探伤的标准可以根据不同应用领域和具体要求而有所差异,下面介绍一些常见的超声波探伤检测标准:
1. ISO 11666:金属材料超声波探伤检验标准。
该标准规定了
金属材料超声波探伤的一般原则、设备要求、检测方法以及评定缺陷的方法。
2. ASTM E114:用超声波探伤测定金属材料中缺陷尺寸的标
准指南。
该标准规定了用超声波在金属材料中测量缺陷的方法和标准。
3. ASME BPVC Section V Article 4:超声波检测标准。
该标准
是美国机械工程师协会制定的一系列标准之一,用于指导核电、石油化工、航空航天等行业的超声波探伤检测。
4. GB 11345:金属材料超声波探伤检测规范。
该标准是中国
国家标准,规定了金属材料超声波探伤的技术要求、设备要求以及缺陷评定方法。
5. AWS D1.1:结构用钢的超声波检测标准。
该标准是美国焊
接协会制定的,用于钢结构焊接接头的超声波探伤检测。
以上是一些常见的超声波探伤检测标准,具体的标准选择应根据具体应用领域和要求的不同进行确定。
在进行超声波探伤检
测时,还需要考虑材料的特性、检测设备的性能以及操作人员的技术水平等因素。
超声波探伤检测规范
超声波探伤检测规范一.目的对回转支承产品配套使用的毛坯内部质量进行超声波探伤检测,以确保产品质量。
二.范围所有进厂回转支承毛坯(包括50Mn和42CrMo材料)三.检测标准检验方法依据GB/T 6402-2008≤钢锻件超声检测方法≥的规定进行检验,标准GB/T 6402-2008适用于脉冲反射式超声波检验法对厚度或直径大于100mm的碳钢及低合金钢一般锻件的超声波检测。
四.检测条件及探伤方法(1)环形毛坯锻件接触法检验时,一般在粗加工完成后,锻件表面粗糙度Ra 值应小于3.2um,表面应平整,无影响声耦合的氧化皮,赃物等附着物,并满足检验要求;(2)在探头与检测面之间,应使用合适的耦合剂;(3)根据锻件加工工艺,环形毛坯主要探测面为外圆百分之百检测,辅助探测为上下端面;(4)扫查方式为手工扫查,探头在检测面的扫查间距,应保证有15%的声束覆盖;(5)扫查速度即探头相对锻件的移动速度,应在150mm/s以下;(6)在毛坯粗加工到要求的表面粗糙度时,从毛坯外圆面及上下端面进行100%的扫查,同时为了避免耦合层厚度的影响,也进行变换探头频率探测,以便检测出缺陷。
a)探头频率选择频率选择:对于毛坯厚度较小时,应选择较大的探头频率以提高其检测分辨力,毛坯厚度较大时,应选择较小的探头频率以提高其穿透能力。
b)检验方案1、对于客户明确要求的毛坯,进行全检。
2、对于三个车间直径较大的毛坯,都进行一定数量的抽检探测,其满足的比例为:3、在实际操作过程中,对发现内部有质量缺陷的毛坯提供的毛坯进行加严检验。
五、合格判定(1)在探伤过程中,对发现有缺陷的毛坯,及时将其缺陷孔当量和缺陷实际位置计算出来,并记录备案,及时将其反馈于部门领导及车间与供应部门。
(2)当缺陷孔当量小于Φ2mm时,按照国标GB/T 6402-2008其毛坯不做废品处理,仍按正常工序加工,但及时对其进行追踪,观察其加工过程中的情况,将其型号、编号,及有关缺陷情况进行记录,以备案。
超声波焊缝探伤标准
超声波焊缝探伤标准超声波焊缝探伤是一种常用的无损检测方法,广泛应用于焊接质量的评定和缺陷的检测。
本文将介绍超声波焊缝探伤的标准,包括其定义、应用范围、技术要求等内容,以期为相关领域的从业人员提供参考。
超声波焊缝探伤是指利用超声波技术对焊缝进行缺陷检测的方法。
它可以有效地检测焊缝中的各种缺陷,如气孔、夹杂、裂纹等,对焊接质量的评定具有重要意义。
超声波焊缝探伤广泛应用于航空航天、汽车制造、铁路运输等领域,对提高产品质量、保障安全生产具有重要意义。
超声波焊缝探伤的标准主要包括以下几个方面:首先,超声波探伤设备的选择和校准。
超声波探伤设备是进行焊缝探伤的关键工具,其选择和校准直接影响着探伤结果的准确性。
因此,超声波探伤设备的选择和校准应符合相关标准要求,确保其性能和准确性。
其次,超声波探伤操作规程的制定和执行。
超声波焊缝探伤需要进行严格的操作规程,包括探头的放置、超声波的发射和接收、数据的采集和分析等步骤。
操作规程的制定和执行应符合相关标准要求,确保探伤结果的准确性和可靠性。
再次,焊缝探伤的技术要求和评定标准。
超声波焊缝探伤需要对焊缝中的各种缺陷进行检测和评定,其技术要求和评定标准应符合相关标准要求,确保焊接质量的评定准确性和一致性。
最后,超声波焊缝探伤的报告和记录。
超声波焊缝探伤的结果应当进行报告和记录,报告和记录内容应符合相关标准要求,确保探伤结果的可追溯性和可验证性。
综上所述,超声波焊缝探伤标准是保障焊接质量和产品安全的重要依据,相关领域的从业人员应当严格遵守相关标准要求,确保超声波焊缝探伤工作的准确性和可靠性。
同时,相关标准的制定和更新也是保障超声波焊缝探伤工作质量的重要保障,应当引起相关部门和单位的重视和关注。
超声波探伤标准
超声波探伤标准超声波探伤是一种非破坏性检测技术,广泛应用于工业领域,特别是在金属材料的质量检测和缺陷检测中起着重要作用。
超声波探伤标准是指对超声波探伤技术的相关标准和规范,它对超声波探伤的设备、操作、数据分析和结果评定等方面进行了详细规定,是保证超声波探伤工作质量和结果准确性的重要依据。
超声波探伤标准的制定是为了规范超声波探伤工作流程,提高探伤结果的可靠性和准确性。
在实际工作中,遵循超声波探伤标准能够帮助操作人员正确操作设备,准确获取数据,并对结果进行科学评定,从而保证探伤工作的质量和效果。
超声波探伤标准主要包括以下几个方面的内容:1. 设备要求,超声波探伤设备是进行超声波探伤工作的基础,其性能和操作方式直接影响探伤结果。
因此,超声波探伤标准对设备的性能、精度、校准和维护等方面进行了详细规定,确保设备能够满足探伤工作的要求。
2. 操作规程,超声波探伤操作规程是指对探伤工作中操作人员的要求和操作流程进行规范。
包括操作人员的资质要求、操作步骤、数据采集方式、记录方法等内容,确保操作人员能够正确、规范地进行探伤工作。
3. 数据分析,超声波探伤的数据分析是对探伤结果进行科学评定和判读的重要环节。
超声波探伤标准对数据分析的方法、标准曲线的建立和使用、缺陷识别和评定等方面进行了规定,确保数据分析结果的准确性和可靠性。
4. 结果评定,超声波探伤标准对探伤结果的评定标准和方法进行了详细规定,包括对正常和异常结果的判定标准、缺陷的类型和大小评定等内容,确保探伤结果能够客观、准确地反映被检测物体的质量和状态。
总之,超声波探伤标准是保证超声波探伤工作质量和结果准确性的重要依据,遵循超声波探伤标准能够帮助操作人员规范操作、准确获取数据,并对结果进行科学评定,从而保证探伤工作的质量和效果。
因此,在超声波探伤工作中,必须严格遵循超声波探伤标准的要求,确保探伤工作的准确性和可靠性。
GB4730超声波探伤标准
GB/T4730-2005承压设备用钢锻件超声检测和质量分级4.2 承压设备用钢锻件超声检测和质量分级4.2.1范围本条适用于承压设备用碳钢和低合金钢锻件的超声检测和质量分级。
本条不适用于奥氏体钢等粗晶材料锻件的超声检测,也不适用于内外半径之比小于80%的环形和筒形锻件的周向横波检测。
4.2.2探头双晶直探头的公称频率应选用5MHz。
探头晶片面积不小于150mm2;单晶直探头的公称频率应选用2MHz~5MHz,探头晶片一般为φ14mm~φ25mm。
4.2.3试块应符合3.5的规定。
4.2.3.1单直探头标准试块采用CSI试块,其形状和尺寸应符合图4和表4的规定。
如确有需要也可采用其他对比试块。
图4 CSI标准试块表4 CSI标准试块尺寸 mm4.2.3.2双晶直探头试块a) 工件检测距离小于45mm时,应采用CSⅡ标准试块。
b) CSⅡ试块的形状和尺寸应符合图5和表5的规定。
图5 CSⅡ标准试块表5 CSⅡ标准试块尺寸 mm4.2.3.3 检测面是曲面时,应采用CSⅢ标准试块来测定由于曲率不同而引起的声能损失,其形状和尺寸按图6所示。
图6 CSIII标准试块4.2.4检测时机检测原则上应安排在热处理后,孔、台等结构机加工前进行,检测面的表面粗糙度Rα≤6.3μm。
4.2.5 检测方法 4.2.5.1 一般原则锻件应进行纵波检测,对筒形和环形锻件还应增加横波检测。
4.2.5.2 纵波检测a) 原则上应从两个相互垂直的方向进行检测,尽可能地检测到锻件的全体积。
主要检测方向如图7所示。
其他形状的锻件也可参照执行。
b) 锻件厚度超过400mm 时,应从相对两端面进行100%的扫查。
注: 为应检测方向; ※为参考检测方向。
图7 检测方向(垂直检测法)4.2.5.3 横波检测钢锻件横波检测应按附录C(规范性附录)的要求进行。
4.2.6 灵敏度的确定4.2.6.1 单直探头基准灵敏度的确定当被检部位的厚度大于或等于探头的3倍近场区长度,且探测面与底面平行时,原则上可采用底波计算法确定基准灵敏度。
超声波探伤标准GB11345-89
GB 11345-1989《钢焊缝手工超声波探伤方法和探伤结果分级》JG/T 203-2007《钢结构超声波探伤及质量分级法》中华人民共和国国家标准钢焊缝手工超声波探伤方法和探伤结果分级 11345-89Method for manual ultrasonic testing and classificationof testing results for ferritic steel wdlds1 主题内容与适用范围本标准规定了检验焊缝及热影响区缺陷,确定缺陷位置、尺寸和缺陷评定的一般方法及探伤结果的分级方法.本标准适用于母材厚度不小于8mm的铁素体类钢全焊透熔化焊对接焊缝脉冲反射法手工超声波检验.本标准不适用于铸钢及奥氏体不锈钢焊缝;外径小于159mm的钢管对接焊缝;内径小于等于200mm的管座角焊缝及外径小于250mm和内外径之比小于80%的纵向焊缝.2 引用标准ZB Y 344 超声探伤用探头型号命名方法ZB Y 231 超声探伤用探头性能测试方法ZB Y 232 超声探伤用1号标准试块技术条件ZB J 04 001 A型脉冲反射式超声探伤系统工作性能测试方法3 术语3.1 简化水平距离l'从探头前沿到缺陷在探伤面上测量的水平距离.3.2 缺陷指示长度△l焊缝超声检验中,按规定的测量方法以探头移动距离测得的缺陷长度.3.3 探头接触面宽度W环缝检验时为探头宽度,纵缝检验为探头长度,见图1.3.4 纵向缺陷大致上平行于焊缝走向的缺陷.3.5 横向缺陷大致上垂直于焊缝走向的缺陷.3.6 几何临界角β'筒形工件检验,折射声束轴线与内壁相切时的折射角.3.7 平行扫查在斜角探伤中,将探头置于焊缝及热影响区表面,使声束指向焊缝方向,并沿焊缝方向移动的扫查方法.3.8 斜平行扫查在斜角探伤中,使探头与焊缝中心线成一角度,平等于焊缝方向移动的扫查方法.3.9 探伤截面串列扫查探伤时,作为探伤对象的截,一般以焊缝坡口面为探伤截面,见图2.3.10 串列基准线串列扫查时,作为一发一收两探头等间隔移动基准的线.一般设在离探伤截面距离为0.5跨距的位置,见图2.3.11 参考线探伤截面的位置焊后已被盖住,所以施焊前应予先在探伤面上,离焊缝坡口一定距离画出一标记线,该线即为参考线,将作为确定串列基准线的依据,见图3.3.12 横方形串列扫查将发、收一组探头,使其入射点对串列基准线经常保持等距离平行于焊缝移动的扫查方法,见图4.3.13 纵方形串列扫查将发、收一组探头使其入射点对串列基准线经常保持等距离,垂直于焊缝移动的扫查方法,见图4.4 检验人员4.1 从事焊缝探伤的检验人员必须掌握超声波探伤的基础技术,具有足够的焊缝超声波探伤经验,并掌握一定的材料、焊接基础知识.4.2 焊缝超声检验人员应按有关规程或技术条件的规定经严格的培训和考核,并持有相考核组织颁发的等级资格证书,从事相对应考核项目的检验工作.注:一般焊接检验专业考核项目分为板对接焊缝;管件对接焊缝;管座角焊缝;节点焊缝等四种.4.3 超声检验人员的视力应每年检查一次,校正视力不得低于1.0.5 探伤仪、探头及系统性能5.1 探伤仪使用A型显示脉冲反射式探伤仪,其工作频率范围至少为1-5MHz,探伤仪应配备衰减器或增益控制器,其精度为任意相邻12dB误差在±1dB内.步进级每档不大于2dB, 总调节量应大于60dB,水平线性误差不大于1%,垂直线性误差不大于5%.5.2 探头5.2.1 探头应按ZB Y344标准的规定作出标志.5.2.2 晶片的有效面积不应超过500mm2,且任一边长不应大于25mm.5.2.3 声束轴线水平偏离角应不大于2°.5.2.4 探头主声束垂直方向的偏离,不应有明显的双峰,其测试方法见ZB Y231.5.2.5 斜探头的公称折射角β为45°、60°、70°或K值为1.0、1.5、2.0、2.5,折射角的实测值与公称值的偏差应不大于2°(K值偏差不应超过±0.1),前沿距离的偏差应不大于1mm.如受工件几何形状或探伤面曲率等限制也可选用其他小角度的探头.5.2.6 当证明确能提高探测结果的准确性和可靠性,或能够较好地解决一般检验时的困难而又确保结果的正确,推荐采用聚焦等特种探头.5.3 系统性能5.3.1 灵敏度余量系统有效灵敏度必须大于评定灵敏度10dB以上.5.3.2 远场分辨力a.直探头:X≥30dB;b.斜探头:Z≥6dB.5.4 探伤仪、探头及系统性能和周期检查5.4.1 探伤仪、探头及系统性能,除灵敏度余量外,均应按ZB J04 001的规定方法进行测试.5.4.2 探伤仪的水平线性和垂直线性,在设备首次使用及每隔3个月应检查一次.5.4.3 斜探头及系统性能,在表1规定的时间内必须检查一次.6 试块6.1 标准试块的形状和尺寸见附录A,试块制造的技术要求应符合ZB Y232的规定,该试块主要用于测定探伤仪、探头及系统性能.6.2 对比试块的形状和尺寸见附录B.6.2.1 对比试块采用与被检验材料相同或声学性能相近的钢材制成.试块的探测面及侧面,在以2.5MHz以上频率及高灵敏条件下进行检验时,不得出现大于距探测面20mm处的Φ2mm平底孔反射回来的回波幅度1/4的缺陷回波.6.2.2 试块上的标准孔,根据探伤需要,可以采取其他形式布置或添加标准孔,但应注意不应与试块端角和相邻标准孔的反射发生混淆.6.2.3 检验曲面工件时,如探伤面曲率半径R小于等于W2/4时,应采用与探伤面曲率相同的对比试块.反射体的布置可参照对比试块确定,试块宽度应满足式(1):b≥2λ S/De (1)式中 b----试块宽度,mm;λ--波长,mm;S---声程,m;De--声源有效直径,mm6.3 现场检验,为校验灵敏度和时基线,可以采用其他型式的等效试块.7 检验等级7.1 检验等级的分级根据质量要求检验等级分为A、B、C三级,检验的完善程度A级最低,B级一般,C级最高,检验工作的难度系数按A、B、C顺序逐级增高.应按照工件的材质、结构、焊接方法、使用条件及承受载荷的不同,合理的选用检验级别.检验等级应接产品技术条件和有关规定选择或经合同双方协商选定.注:A级难度系数为1;B级为5-6;C级为10-12.本标准给出了三个检验等级的检验条件,为避免焊件的几何形状限制相应等级检验的有效性,设计、工艺人员应考虑超声检验可行性的基础上进行结构设计和工艺安排.7.2 检验等级的检验范围7.2.1 A级检验采用一种角度的探头在焊缝的单面单侧进行检验,只对允许扫查到的焊缝截面进行探测.一般不要求作横向缺陷的检验.母材厚度大于50Mm时,不得采用A级检验.7.2.2 B级检验原则上采用一种角度探头在焊缝的单面双侧进行检验,对整个焊缝截面进行探测.母材厚度大于100mm时,采用双面双侧检验.受几何条件的限制,可在焊缝的双面半日侧采用两种角度探头进行探伤.条件允许时应作横向缺陷的检验.7.2.3 C级检验至少要采用两种角度探头在焊缝的单面双侧进行检验.同时要作两个扫查方向和两种探头角度的横向缺陷检验.母材厚度大于100mm时,采用双面侧检验.其他附加要求是:a.对接焊缝余高要磨平,以便探头在焊缝上作平行扫查;b.焊缝两侧斜探头扫查经过的母材部分要用直探头作检查;c.焊缝母材厚度大于等于100mm,窄间隙焊缝母材厚度大于等于40mm时,一般要增加串列式扫查,扫查方法见附录C.8 检验准备8.1 探伤面8.1.1 按不同检验等级要求选择探伤面.推荐的探伤面如图5和表2所示.8.1.2 检验区域的宽度应是焊缝本身再加上焊缝两侧各相当于母材厚度30%的一段区域,这个区域最小10mm,最大20mm,见图6.8.1.3 探头移动区应清除焊接飞溅、铁屑、油垢及其他外部杂技.探伤表面应平整光滑,便于探头的自由扫查,其表面粗糙度不应超过6.3μm,必要时应进行打磨:a.采用一次反射法或串列式扫查探伤时,探头移动区应大于1.25P:P=2δtgβ (2)或P=2δK (3)式中 P----跨距,mm;δ--母材厚度,mmb.采用直射法探伤时,探头移动区应大于0.75P.8.1.4 去除余高的焊缝,应将余高打磨到与邻近母材平齐.保留余高的焊缝,如焊缝表面有咬边,较大的隆起凹陷等也应进行适当的修磨,并作圆滑过渡以影响检验结果的评定.8.1.5 焊缝检验前,应划好检验区段,标记出检验区段编号.8.2 检验频率检验频率f一般在2-5MHz范围内选择,推荐选用2-2.5MHz公称频率检验.特殊情况下,可选用低于2MHz或高于2.5MHz的检验频率,但必须保证系统灵敏度的要求.8.3 探头角度8.3.1 斜探头的折射角β或K值应依据材料厚度,焊缝坡口型式及预期探测的主要缺陷来选择.对不同板厚推荐的探头角度和探头数量见表2.8.3.2 串列式扫查,推荐选用公称折射角为45°的两个探头,两个探头实际折射角相差不应超过2°,探头前洞长度相差应小于2mm.为便于探测厚焊缝坡口边缘未熔合缺陷,亦可选用两个不同角度的探头,但两个探头角度均应在35°-55°范围内.8.4 耦合剂8.4.1 应选用适当的液体或糊状物作为耦合剂,耦合剂应具有良好透声性和适宜流动性,不应对材料和人体有作用,同时应便于检验后清理.8.4.2 典型的耦合剂为水、机油、甘油和浆糊,耦合剂中可加入适量的"润湿剂"或活性剂以便改善耦合性能.8.4.3 在试块上调节仪器和产品检验应采用相同的耦合剂.8.5 母材的检查采用C级检验时,斜探头扫查声束通过的母材区域应用直探头作检查,以便探测是否有有探伤结果解释的分层性或其他缺陷存在.该项检查仅作记录,不属于对母材的验收检验.母材检查的规程要点如下:a.方法:接触式脉冲反射法,采用频率2-5MHz的直探头,晶片直径10-25mm;b.灵敏度:将无缺陷处二次底波调节为荧光屏满幅的100%;c.记录:凡缺陷信号幅度超过荧光屏满幅20%的部位,应在工件表面作出标记,并予以记录.9 仪器调整和校验9.1 时基线扫描的调节荧光屏时基线刻度可按比例调节为代表缺陷的水平距离l(简化水平距离l');深度h;或声程S,见图7. 9.1.1 探伤面为平面时,可在对比试块上进行时基线扫描调节,扫描比例依据工件工和选用的探头角度来确定,最大检验范围应调至荧光屏时基线满刻度的2/3以上.9.1.2 探伤面曲率半径R大于W2/4时,可在平面对比试块上或与探伤面曲率相近的曲面对比试块上,进行时基线扫描调节.9.1.3 探伤面曲率半径R小于等于W2/4时,探头楔块应磨成与工件曲面相吻合,在6.2.3条规定的对比试块上作时基线扫描调节.9.2 距离----波幅(DAC)曲线的绘制9.2.1 距离----波幅曲线由选用的仪器、探头系统在对比试块上的实测数据绘制见图8,其绘制方法见附录D,曲线由判废线RL,定量线SL和评定线EL组成,不同验收级别的各线灵敏度见表3.表中的DAC是以Φ3mm标准反射体绘制的距离--波幅曲线--即DAC基准线.评定线以上至定量线以下为1区(弱信号评定区);定量线至判废线以下为Ⅱ区(长度评定区);判废线及以上区域为Ⅲ区(判废区).9.2.2 探测横向缺陷时,应将各线灵敏度均提高6dB.9.2.3 探伤面曲率半径R小于等于W2/4时,距离--波幅曲线的绘制应在曲面对比试块上进行.9.2.4 受检工件的表面耦合损失及材质衰减应与试块相同,否则应进行传输损失修整见附录E,在1跨距声程内最大传输损失差在2dB以内可不进行修整.9.2.5 距离--波幅曲线可绘制在坐标纸上也可直接绘制在荧光屏刻度板上,但在整个检验范围内,曲线应处于荧光屏满幅度的20%以上,见图9,如果作不到,可采用分段绘制的方法见图10.9.3 仪器调整的校验9.3.1 每次检验前应在对比试块上,对时基线扫描比例和距离--波幅曲线(灵敏度)进行调节或校验.校验点沙于两点.9.3.2 检验过程中每4h之内或检验工作结束后应对时基线扫描和灵敏度进行校验,校验可在对比试块或其他儿试块上进行.9.3.3 扫描调节校验时,如发现校验点反射波在扫描线上偏移超过原校验点刻度读数的10%或满刻度的5%(两者取较小值),则扫描比例应重新调整,前次校验后已经记录的缺陷,位置参数应重新测定,并予以更正.9.3.4 灵敏度校验时,如校验点的反射波幅比距离--波幅曲线降低20%或2dB以上,则仪灵敏度应重新调整,并对前次校验后检查的全部焊缝应重新检验.如校验点的反射波幅比距离--波幅曲线增加20%或2dB以上,仪器灵敏度应重新调整,而前次校验后,已经记录的缺陷,应对缺陷尺寸参数重新测定并予以评定.10 初始检验10.1 一般要求10.1.1 超声检验应在焊缝及探伤表面经外观检查合格并满足8.1.3条的要求后进行.10.1.2 检验前,探伤人员应了解受验工件的材质、结构、曲率、厚度、焊接方法、焊缝种类、坡口形式、焊缝余高及背面衬垫、沟槽等情况.10.1.3 探伤灵敏度应不低于评定线灵敏度.10.1.4 扫查速度不应大于150mm/s, 相邻两次探头移动间隔保证至少有探头宽度10%的重叠.10.1.5 对波幅超过评定线的反射波,应根据探头位置、方向、反射波的位置及10.1.2条了解的焊缝情况,判断其是否为缺陷.判断为缺陷的部位应在焊缝表面作出标记.10.2 平板对接焊缝的检验10.2.1 为探测纵向缺陷,斜探头垂直于焊缝中心线在探伤面上,作锯齿型扫查见图11.探头前后移动的范围应保证扫查到全部焊缝截面及热影响区.在保持探头垂直焊缝作前后移动的同时,还应作10°-15°的左右转动.10.2.2 为探测焊缝及热影响区的横向缺陷应进行平行和斜平行扫查.a. B级检验时,可寅边缘使探头与焊缝中心线成10°-20°作斜平行的扫查(图12);b. C级检验时,可将探头放在焊缝及热影响区上作两个方向的平行扫查(图13),焊缝母材厚度超过100mm 时,应在焊缝的两面作平行扫查或者采用两种角度探头(45°和60°或45°和70°并用)作单面两个方向的平行扫查;亦可用两个45°探头作串列式平行扫查;c. 对电渣焊缝还应增加与焊缝中心线成45°的斜向扫查.10.2.3 为确定缺陷的位置、方向、形状、观察缺陷动态波形或区分缺陷讯号与伪讯号,可采用前后、左右、转角、环绕等四种探头基本扫查方式(图14).10.3 曲面工件对接焊缝的检验10.3.1 探伤面为曲面时,应按6.2.3和9.1.3条的规定选用对比试块,并采用10.2条的方法进行检验,C 级检验时,受工件几何形状限制,横向缺陷探测无法实施时,应在检验记录中予以注明.10.3.2 环缝检验时,对比试块的曲率半径为探伤面曲率半径0.9-1.5倍的对比试块均可采用.探测横向缺陷时按10.3.3条的方法进行.10.3.3 纵缝检验时,对比试块的曲率半径与探伤面曲率半径之差应小于10%.10.3.3.1 根据工件的曲率和材料厚度选择探头角度,并考虑几何临界角的限制,确保声束能扫查到整个焊缝厚度.条件允许时,声束在曲底面的入射角度不应超过70°.10.3.3.2 探头接触面修磨后,应注意探头入射点和折射角或K值的变化,并用曲面试块作实际测定. 10.3.3.3 当R大于W2/4采用平面对比试块调节仪器时,检验中应注意到荧光屏指示的缺陷深度或水平距离与缺陷实际的径向埋藏深度或水平距离孤长的差异,必要时应进行修正.10.4 其他结构焊缝的检验10.4.1 一般原则a.尽可能采用平板焊缝检验中已经行之有效的各种方法;b.在选择探伤面和探头时应考虑到检测各种类型缺陷的可能性,并使声束尽可能垂直于该结构焊缝中的主要缺陷.10.4.2 T型接头10.4.2.1 腹板厚度不同时,选用的折射角见表4,斜探头在腹板一侧作直射法和一次反射法探伤见图15位置2.10.4.2.2 采用折射角45°(K1)探头在腹板一侧作直射法和一次反射法探测焊缝及腹板侧热影响区的裂纹(图16).10.4.2.3 为探侧腹板和翼板间未焊透或翼板侧焊缝下层状撕裂等缺陷,可采用直探头(图15位置1)或斜探头(图16位置3)在翼板外侧探伤或采用折射角45°(K1)探头在翼板内侧作一次反射法探伤(图15位置3).10.4.3 角接接头角接接头探伤面及折射角一般按图17和表4选择.10.4.4 管座角焊缝10.4.4.1 根据焊缝结构形式,管座角焊缝的检验有如下五种探侧方法,可选择其中一种或几种方式组合实施检验.探测方式的选择应由合同双方商定,并重点考虑主要探测对象和几何条件的限制(图18、19). a.在接管内壁表面采用直探头探伤(图18位置1);b.在容器内表面用直探头探伤(图19位置1);c.在接管外表面采用斜探头探伤(图19位置2);d.在接管内表面采用斜探头探伤(图18位置3,图19位置3);e.在容器外表面采用斜探头探伤(图18位置2).10.4.4.2 管座角焊缝以直探头检验为主,对直探头扫查不到的区域或结构,缺陷向性不适于采用直探头检验时,可采用斜探头检验,斜探头检验应符合10.4.1条的规定.10.4.5 直探头检验的规程a.推荐采用频率2.5Mhz直探头或双晶直探头,探头与工件接触面的尺寸W应小于2√R;b.灵敏度可在与工件同曲率的试块上调节,也可采用计算法或DGS曲线法,以工件底面回波调节.其检验等级评定见表5.11 规定检验11.1 一般要求11.1.1 规定检验只对初始检验中被标记的部位进行检验.11.1.2 探伤灵敏度应调节到评定灵敏度.11.1.3 对所有反射波幅超过定量线的缺陷,均应确定其位置,最大反射波幅所在区域和缺陷指示长度. 11.2 最大反射波幅的测定11.2.1 对判定为缺陷的部位,采取10.2.3条的探头扫查方式、增加探伤面、改变探头折射角度进行探测,测出最大反射波幅并与距离--波幅曲线作比较,确定波幅所在区域.波幅测定的允许误差为2DB.11.3 位置参数的测定11.3.1 缺陷位置以获得缺陷最大反射波的位置来表示,根据相应的探头位置和反射波在荧光屏上的位置来确定如下全部或部分参数.a.纵坐标L代表缺陷沿焊缝方向的位置.以检验区段编号为标记基准点(即原点)建立坐标.坐标正方向距离L表示缺陷到原点之间的距离见图20;b.深度坐标h代表缺陷位置到探伤面的垂直距离(mm).以缺陷最大反射波位置的深度值表示;c.横坐标q代表缺陷位置离开焊缝中心线的垂直距离,可由缺陷最大反射波位置的水平距离或简化水平距离求得.11.3.2 缺陷的深度和水平距离(或简化水平距离)两数值中的一个可由缺陷最大反射波在荧光屏上的位置直接读出,另一数值可采用计算法、曲线法、作图法或缺陷定位尺求出.11.4 尺寸参数的测定应根据缺陷最大反射波幅确定缺陷当量值Φ或测定缺陷指示长度△l.11.4.1 缺陷当量Φ,用当量平底孔直径表示,主要用于直探头检验,可采用公式计算,DGS曲线,试块对比或当量计算尺确定缺陷当量尺寸.11.4.2 缺陷指示长度△l的测定推荐采用如下二种方法.a.当缺陷反射波只有一个高点时,用降低6dB相对灵敏度法测长见图21;b.在测长扫查过程中,如发现缺陷反射波峰值起伏变化,有多个高点,则以缺陷两端反射波极大值之间探头的移动长度确定为缺陷指示长度,即端点峰值法见图22.12 缺陷评定12.1 超过评定线的信号应注意其是否具有裂纹等危害性缺陷特征,如有怀疑时采取改变探头角度,增加探伤面、观察动态波型、结合结构工艺特征作判定,如对波型不能准确判断时,应辅以其他检验作综合判定.12.2 最大反射波幅位于Ⅱ区的缺陷,其指示长度小于10mm时按5mm计.12.3 相邻两缺陷各向间距小于8mm时,两缺陷指示长度之和作为单个缺陷的指示长度.13 检验结果的等级分类13.1 最大反射波幅位于Ⅱ区的缺陷,根据缺陷指示长度按表6的规定予以评级.13.2 最大反射波幅不超过评定线的缺陷,均应为Ⅰ级.13.3 最大反射波幅超过评定线的缺陷,检验者判定为裂纹等危害性缺陷时,无论其波幅和尺寸如何,均评定为Ⅳ级.13.4 反射波幅位于Ⅰ区的非裂纹性缺陷,均评为Ⅰ级.13.5 反射波幅位于Ⅲ区的缺陷,无论其指示长度如何,均评定为Ⅳ级.13.6 不合格的缺陷,应予返修,返修区域修后,返修部位及补焊受影响的区域,应按原探伤条件进行复验,复探部位的缺陷亦应按12章评定.14 记录与报告14.1 检验记录主要内容:工件名称、编号、焊缝编号、坡口形式、焊缝种类、母材材质、规格、表面情况、探伤方法、检验规程、验收标准、所使用的仪器、探头、耦合剂、试块、扫描比例、探伤灵敏度.所发现的超标缺陷及评定记录,检验人员及检验日期等.反射波幅位于Ⅱ区,其指示长度小于表6的缺陷也应予记录.14.2 检验报告主要内容:工件名称、合同号、编号、探伤方法、探伤部位示意图、检验范围、探伤比例收标准、缺陷情况、返修情况、探伤结论、检验人员及审核人员签字等.14.3 检验记录和报告应至少保存7年.14.4 检验记录和报告的推荐格式见附录F.附录A标准试块的形状和尺寸(补充件)注:尺寸公差±0.1;各边垂直度不大于0.05;C面尺寸基准面,上部各折射角刻度尺寸值见表A1,下部见表A2.附录B对比试块的形状和尺寸(补充件)B1 对比试块的形状和尺寸见表B1.注:①尺寸公差±0.1mm; ②各边垂直度不大于0.1; ③表面粗糙度不大于6.3μm; ④标准孔与加工面的平行度不大于0.05.附录C串列扫查探伤方法(补充件)C1 探伤设备C1.1 超声波探伤仪的工作方式必须具备一发一收工作状态.C1.2 为保证一发一收探头相对于串列基准线经常保持等距离移动,应配备适宜的探头夹具,并适用于横方型及纵方型两种扫查方式.C1.3 推荐采用,频率2-2.5Mhz,公称折射角45°探头,两探头入射点间最短间距应小于20mm.C2 仪器调整C2.1 时基线扫描的调节采用单探头按标准正文9.1 的方法调节,最大探测范围应大于1跨距声程.C2.2 灵敏度调整在工件无缺陷部位,将发、收两探头对向放置,间距为1跨距,找到底面最大反射波见图C1及式C1,调节增益使反射波幅为荧光屏满幅高度的40%,并以此为基准波高.灵敏度分别提高8dB、14dB和20dB代表判废灵敏度、定量灵敏度和评定灵敏度.C3 检验程序C3.1 检验准备a.探伤面对接焊缝的单面双侧;b.串列基准线如发、收两探头实测折射角的平均值为β或K值平均为K.在离参考线(参考线至探伤截面的距离L'-0.5P)的位置标记串列基准线,见图C2及式C2.0.5P=δtgβ (C1)或0.5P=δK (C2)C3.2 初始探伤C3.2.1 探伤灵敏度不低于评定灵敏度.C3.2.2 扫查方式采用横方形或纵方形串列扫查,扫查范围以串列基准线为中心尽可能扫查到整个探伤截面,每个探伤截面应扫查一遍.C3.2.3 标记超过评定线的反射波,被判定为缺陷时,应在焊缝的相应位置作出标记.C3.3 规定探伤C3.3.1 对象只对初始检验标记部位进行探伤.C3.3.2 探伤灵敏度为评定灵敏度.C3.3.3 缺陷位置不同深度的缺陷,其反射波均出现在相当于半跨距声程位置见图C3.缺陷的水平距离和深度分别为:(C3)(C4)C3.3.4 缺陷以射波幅在最大反射波探头位置,以40%线为基准波高测出缺陷反射波的dB数作为缺陷的相对波幅,记为SL±----dB.C3.3.5 缺陷指示长度的测定采用以评定灵敏度为测长灵敏度的绝对灵敏度法测量缺陷指示长度.即进行左右扫查(横方形串列扫查),以波幅超过评定线的探头移动范围作为缺陷指示长度.C4 缺陷评定所有反射波幅度超过评定线的缺陷均应按标准正文第12章的规定予以评定,并按第13章的规定对探伤结果作等级分类.附录D距离----波幅(DAC)曲线的制作(补充件)D1 试件D1.1 采用标准附录B对比试块或其他等效形式试块绘制DAC曲线.D1.2 R小于等于W2/4时,应采用探伤面曲率与工件探伤面曲率相同或相近的对比试块.D2 绘制步骤DAC曲线可绘制在坐标纸上(称DAC曲线),亦可直接绘制在荧光屏前透明的刻度板上(称DAC曲线板).D2.1 DAC曲线的绘制步骤如下:a.将测试范围调整到探伤使用的最大探测范围,并按深度、水平或声程法调整时基线扫描比例;b.根据工件厚度和曲率选择合适的对比试块,选取试块上民探伤深度相同或接近的横孔为第一基准孔,将探头置于试块探伤面声束指向该孔,调节探头位置找到横孔的最高反射波;c.调节"增益"或"衰减器"使该反射幅为荧光屏上某一高度(例如满幅的40%)该波高即为"基准波高",此时,探伤系统的有效灵敏度应比评定灵敏度高10dB;d.调节衰减器,依次探测其他横孔,并找到最大反射波高,分别记录各反射波的相对波幅值(dB);e.以波幅(dB)为纵坐标,以探沿距离(声程、深度或水平距离)为横坐标,将c、d记录数值描绘在坐标纸上;f.将标记各点连成圆滑曲线,并延长到整个探测范围,最近探测点到探距离O点间画水平线,该曲线即为Φ3mm横孔DAC曲线的基准线;g.依据标准正文表3规定的各线灵敏度,在基准线下分别绘出判废线、定量线、评定线,并标记波幅的分区;h.为便于现场探伤校验灵敏度,在测试上述数据的同时,可对现场使用的便携试块上的某一参考反射体进行同样测量,记录其反射波位置和反射波幅(dB)并标记在DAC曲线图上.D2.2 DAC曲线的绘制步骤如下:a.同D2.1a;b.依据工件厚度和曲率选择合适的对比试块,在试块上所有孔深小于等于探测深度的孔中,选取能产生最大反射波幅的横孔为第一基准孔;c.调节"增益"使该孔的反射波为荧光屏满幅高度的80%,将其峰值标记在荧光屏前辅助面板上.依次探测其它横孔,并找到最大反射波 ,地峰值点标记在辅助面板上,如果做分段绘制,可调节衰减器分段绘制曲线;d.将各标记点连成圆滑曲线,并延伸到整个探测范围,该曲线即为Φ3mm横孔DAC曲线基准线;定量灵敏度下,如分别将灵敏度提高或降低6dB,该线将分别代表评定或判废线.(A级检验DAC基准线即为判废线);。
常用超声波探伤标准要求
YB/T036.10-1992
●密集缺陷:在钢中距离50mm的范围内,有5个以上大于或等于探伤灵敏度基准的缺陷波,称密集缺陷。
●条状缺陷:当缺陷反射波幅大于或等于探伤灵敏度基准波幅,长度大于或等于30mm的连续性缺陷,称条状缺陷。
单个缺陷的等级分类mm
●允许有当量直径2~5mm分散的单个缺陷存在,但相邻两个缺陷的距离不小于其较大缺陷直径的5倍,总数量不得超过56个。
●在应力较大区域不允许有当量直径大于4mm的缺陷。
50~200MW汽轮发电机转子锻件技术条件
JB/T1267-93
●不允许有当量直径≥2.0mm连续性缺陷信号和游动缺陷信号。
●当量直径小于2mm的缺陷不计,允许2~4mm缺陷存在,但相邻两缺陷的距离不小于其中较大缺陷直径的7倍。
●距中心孔表面75mm以外部位,允许有3个小于当量直径1.6mm的密集缺陷区,但密集区在任何方向的尺寸均应不大于20mm,并且任何两缺陷区间距离应不小于120mm。
●不允许有游动缺陷信号和条状缺陷信号。
50MW以下汽轮发电机转子锻件技术条件
JB/T7026-93
●小于当量直径2mm的缺陷不计。
●不允许有当量直径≥2mm的密集型缺陷密集型缺陷信号,连续性缺陷信号,及游动信号。
●当量直径为1.6~3.5 mm的所有缺陷均应记录其轴向、径向和周向位置并报告需方。当量直径为1.6~3.5 mm的缺陷总数不得超过20个,并不允许存在当量直径大于3.5 mm的任何缺陷。
●30Cr1Mo1V钢锻件距轴线150 mm以外部位,30Cr2Ni4MoV钢锻件距轴线170 mm以外部位,允许有3个小于当量直径1.6 mm的密集缺陷区,但密集区在任何方向的尺寸均不应大于20 mm,并且
常用超声波探伤标准要求[参考资料]
●≥2mm当量单个缺陷在合格证书中注明。
25-200MW汽轮机转子体和主轴锻件技术条件
JB/T1265-93
●当量直径2mm以下的单个分散缺陷信号不计,但杂波高度应低于当量直径2mm幅度的50%。
冶金设备制造通用技术条件(锻钢件超声波探伤方法)
YB/T036.10-1992
●密集缺陷:在钢中距离50mm的范围内,有5个以上大于或等于探伤灵敏度基准的缺陷波,称密集缺陷。
●条状缺陷:当缺陷反射波幅大于或等于探伤灵敏度基准波幅,长度大于或等于30mm的连续性缺陷,称条状缺陷。
标准号
要求
模锻锤和大型机械锻压机用模块技术条件
GB11880-89
●允许存在个别的、分散的、不大于当量直径¢2mm的冶金缺陷。
●在100cm2的面积内,当量直径¢2~¢4 mm的冶金缺陷不超过3个,其中¢3~¢4 mm的冶金缺陷只允许有1个。
●允许有2-4个小于当量直径¢2mm的冶金缺陷的密集区,但每区不得超过10cm3,每区之间距不得小于150mm。
●距中心孔表面75mm以外部位,允许有3个小于当量直径1.6mm的密集缺陷区,但密集区在任何方向的尺寸均应不大于20mm,并且任何两缺陷区间距离应不小于120mm。
●不允许有游动缺陷信号和条状缺陷信号。
50MW以下汽轮发电机转子锻件技术条件
JB/T7026-93
●小于当量直径2mm的缺陷不计。
●不允许有当量直径≥2mm的密集型缺陷密集型缺陷信号,连续性缺陷信号,及游动信号。
●允许有当量直径2~5mm分散的单个缺陷存在,但相邻两个缺陷的距离不小于其较大缺陷直径的5倍,总数量不得超过56个。
超声波探伤作业指导书
超声波探伤作业指导书超声波探伤作业指导书一、适用范围超声检测适用于承压设备原材料和零部件的检测,包括板材、复合板材、碳钢和低合金钢锻件、管材、棒材、奥氏体不锈钢锻件等,也适用于承压设备对接焊接接头、T型焊接接头、角焊缝以及堆焊层等的检测。
二、引用标准本作业指导书引用了XXX第三部分:超声检测和GB/T无损检测术语两个标准。
三、一般要求1、超声检测人员应具备一定的基础知识和探伤经验,并经过有关部门认可的资格考核。
2、探伤仪器应采用A型脉冲反射式超声波探伤仪,频率应在1~5MHz之间,并且在满刻度的75%范围内呈线性显示,垂直线性误差不得超过5%。
仪器的水平线性、分辨力和衰减器的精度等指标应符合JB/T 的规定。
3、探头应符合以下要求:①纵波直探头的晶片直径应在10~30mm之间,工作频率1~5MHz,误差不得超过±10%。
②横波斜探头的晶片面积应在100~400mm²之间,K值一般取1~3.③纵波双晶直探头晶片之间的声绝缘必须良好。
4、仪器系统的性能应符合以下要求:①在达到所探工件的最大检测声程时,其有效灵敏度余量不得小于10dB。
②仪器与探头的组合频率与公称频率误差不得大于±10%。
③仪器与直探头组合的始脉冲宽度(在基准灵敏度下):对于频率为5MHz的探头,宽度不大于10mm;对于频率为2.5MHz的探头,宽度不大于15mm。
④直探头的远场分辨力应不小于30dB,斜探头的远场分辨力应不小于6dB。
⑤仪器与探头的系统性能应按JB/T 9124和JB/T 的规定进行测试。
四、探伤时机及准备工作1、探伤一般应安排在最终热处理后进行。
若因热处理后工件形状不适于超声探伤,也可将探伤安排在热处理前,但热处理后仍应对其进行尽可能完全的探伤。
2、工件在外观检查合格后方可进行超声探伤,所有影响超声探伤的油污及其他附着物应予以清除。
3、探伤面的表面粗糙度Ra应为6.3μm。
五、探伤方法1、为确保检测时超声波声束能扫查到工件的整个被检区域,探头的每次扫查覆盖率应大于探头直径的15%。
超声波探伤检测标准
超声波探伤检测标准摘要:1.超声波探伤检测标准的概述2.超声波探伤的原理3.超声波探伤的优点4.超声波探伤检测标准的制定与实施5.超声波探伤检测标准的发展趋势正文:一、超声波探伤检测标准的概述超声波探伤检测标准是一种非破坏性检测技术,广泛应用于各种材料和零部件的检测中。
超声波探伤技术利用超声波在材料中的传播特性,检测材料内部的缺陷、裂纹等问题,以评估其质量和安全性。
在实际应用中,为了保证超声波探伤检测的准确性和可靠性,需要制定一系列的技术标准和规范。
二、超声波探伤的原理超声波探伤的原理是利用超声波在材料中的传播速度和衰减特性,检测材料内部的缺陷、裂纹等问题。
超声波在传播过程中,如果遇到材料内部的缺陷或界面,会产生反射、散射等现象,这些现象会被探头接收并转换为电信号。
通过分析这些电信号的特征,可以判断材料内部是否存在缺陷,以及缺陷的性质、位置、大小等。
三、超声波探伤的优点超声波探伤技术具有许多优点,使其成为非破坏性检测的主要方法之一。
首先,超声波探伤可以检测到材料内部的缺陷,而不会破坏材料的表面和结构。
其次,超声波探伤可以检测到各种不同类型的缺陷,包括裂纹、夹杂、气孔等。
此外,超声波探伤还具有较高的检测速度和灵敏度,可以有效地提高检测效率和准确性。
四、超声波探伤检测标准的制定与实施为了保证超声波探伤检测的准确性和可靠性,需要制定一系列的技术标准和规范。
这些标准和规范包括超声波探伤的设备标准、检测方法标准、数据处理和分析标准等。
超声波探伤检测标准的制定和实施,有助于确保检测结果的可靠性和一致性,提高检测技术的应用水平和效果。
五、超声波探伤检测标准的发展趋势随着超声波探伤技术的不断发展和应用,超声波探伤检测标准也在不断完善和更新。
超声波探伤级别标准
超声波探伤级别标准超声波探伤是一种常用的无损检测方法,其应用范围涵盖了许多行业,如航空航天、汽车制造、建筑工程等。
在进行超声波探伤时,对不同的材料和零部件,需要根据其特性和使用环境确定不同的探伤级别标准,以确保检测的准确性和可靠性。
首先,我们需要了解超声波探伤的基本原理。
超声波探伤是利用超声波在材料内部的传播特性来检测材料内部的缺陷,其原理是利用超声波在材料中传播时,当遇到缺陷时会发生反射、折射或衍射,从而形成回波信号,通过对回波信号的分析,可以确定材料内部的缺陷位置、大小和形状。
根据超声波探伤的应用对象不同,其级别标准也会有所不同。
一般来说,超声波探伤级别可以分为三个等级,A级、B级和C级。
A级超声波探伤是最高级别的探伤,适用于对关键部件和高风险部件进行检测,如飞机发动机叶片、核电设备等。
A级探伤要求探伤人员具有高级别的资质和经验,同时使用最先进的超声波探伤设备,确保对微小缺陷的准确检测。
B级超声波探伤是中等级别的探伤,适用于对一般零部件和结构进行检测,如汽车发动机零部件、建筑结构等。
B级探伤要求探伤人员具有中级别的资质和经验,使用符合标准要求的超声波探伤设备,确保对常见缺陷的准确检测。
C级超声波探伤是最低级别的探伤,适用于对一般材料和构件进行检测,如金属管道、焊接接头等。
C级探伤要求探伤人员具有基础的资质和经验,使用简单易操作的超声波探伤设备,确保对明显缺陷的准确检测。
除了以上三个级别外,还有一些特殊级别的超声波探伤,如D级探伤适用于对特殊材料和构件进行检测,E级探伤适用于对特殊环境和条件下进行检测。
这些特殊级别的探伤要求探伤人员具有特殊的资质和经验,同时需要使用专门的超声波探伤设备。
总的来说,超声波探伤级别标准的确定需要根据实际情况和要求来进行评估和选择。
在进行超声波探伤时,必须严格按照相应级别标准的要求进行操作,确保检测的准确性和可靠性,从而保证材料和构件的安全可靠性。
同时,探伤人员需要不断提升自身的技术水平和经验,以适应不同级别标准的要求,为超声波探伤工作的开展提供更加可靠的保障。
超声波探伤要求
超声波探伤试验要领1.适用范围:适用于国机重工挖掘机焊接结构件中厚度8mm~203mm全焊透熔化焊对接焊及热影响区的质量控制。
2.目的对国机重工挖掘机上的焊接结构件,超声波探伤的内容方法及程序明确化,更有效、可靠的进行检查,以达到保证焊接质量的目的。
3.装备3.1 探伤仪使用A型显示脉冲反射式探伤仪,其工作频率范围至少为1~5Hz,探伤仪应配备衰减器或增益控制器,其精度为任意相邻12dB误差在±1dB内。
步进级每档不大于2dB,总调节量应大于60dB,水平线性误差不大于1%,垂直线性误差不大于5%。
所有装备应有增益控制键装备,并按照正确方法校正距离波幅曲线和屏幕距离波高曲线高度直线。
3.2 波形要求3.3 接触法机器类,耦合剂、水等接触法。
3.4 试片基准试片是IIW(国际焊接学会)试验片1.5mm孔开始基准,设定灵敏度并使用。
4.系统性能及周期检查4.1灵敏度余量系统有效灵敏度必须大于评定灵敏度10dB以上。
4.2探伤仪的水平线性和垂直线性,在设备首次使用及每隔3个月应检查一次。
4.3斜探头及系统性能,在下表规定的时间内必须检查一次。
表1 斜探头及系统性能检查周期4.4灵敏度校验时,如检验点的反射波幅比距离-波幅曲线相差20%或2dB以上时,则仪器灵敏度应重新调整,并对前次校验后检查的全部焊缝应重新检验。
5.一般要求事项5.1试验范围试验范围指的是为了所有检查部位在表面扫描,探头的各扫描方向的直角上垂直方向覆盖探伤10%。
5.2探伤速度探伤速度无指定速度下每秒不能超过150mm/s,相邻两次探头移动间隔保证至少有探头宽度10%的重叠。
5.3表面准备5.3.1焊接部位两角不能有任何焊渣、油漆、异物等再检查区内。
5.3.2焊接部位情况应符合其表面粗糙度不应超过6.3μm,在焊接表面不规范时应打磨或机加工处理表面。
6.工序6.1设定灵敏度灵敏度设定是在IIW(国际焊接学会)试片1.5mm孔开始,发射的指示值调成80%,±5%基准。
常用超声波探伤标准要求
允许极限值的大小分级
当量范围
部位允许量
总数
轴身
传动轴
非传动轴
¢2~¢3
12
5பைடு நூலகம்
5
22
>¢3~¢4
3
1
4
8
总数
15
6
9
30
●在应力较大区域不允许有当量直径大于3mm的单个缺陷缺陷和≥2mm当量直径的密集缺陷信号。
300~600MW汽轮发电机转子锻件技术条件
JB/T7178-93
●其他部位不允许当量直径>3mm的缺陷。
●不允许有当量直径≥2mm的密集缺陷。(密集型缺陷信号是指在边长50mm立方体内,数量不少于5个,当量直径不小于2mm的缺陷信号)
●≥2mm当量单个缺陷在合格证书中注明。
25-200MW汽轮机转子体和主轴锻件技术条件
JB/T1265-93
●当量直径2mm以下的单个分散缺陷信号不计,但杂波高度应低于当量直径2mm幅度的50%。
●不允许有当量直径≥1.6mm连续性缺陷信号和游动缺陷信号。
●允许有当量直径1.6~3.55mm的缺陷存在,但相邻两个缺陷的距离不小于其较大缺陷直径的10倍,总数量不得超过30个。
●在应力较大区域,不允许有当量直径大于2mm的缺陷,和≥1.6mm当量直径的密集缺陷信号。
锻钢件无损检测
JB/T5000-15-2007
标准号
要求
模锻锤和大型机械锻压机用模块技术条件
GB11880-89
●允许存在个别的、分散的、不大于当量直径¢2mm的冶金缺陷。
●在100cm2的面积内,当量直径¢2~¢4 mm的冶金缺陷不超过3个,其中¢3~¢4 mm的冶金缺陷只允许有1个。
超声波、磁粉探伤要求
3、焊缝及热影响区打磨
探伤时无焊接药皮
超声波、磁粉、渗透探伤的适用范围及要求
超声波探伤
除焊缝外,表面光洁度均不低于12.5um;形状尽量简单
磁粉探伤
渗透(着色)探伤
铸钢件
1、应在正火后进行
2、合适尺寸范围:25-400mm
1、只适合铁磁性材料;
2、只适合检测距表面3mm的开口及不开口的气孔、夹渣、裂纹及缺陷;
3、表面应干净,无污物及氧化皮锈蚀。
1、只能检测开口缺陷;
2、适用于金属、非金属材料;
3、不适合多孔结构;
4、表面应干净;5、铸Fra bibliotek表面至少经打磨
锻件
1、探伤应在热处理后进行;
2、最小厚度25mm。即厚度小于25mm对小于φ2缺陷不易检出
轴类
以下三种情况不适宜
1、细长轴类横向缺陷
2、离开心部与轴线平行的缺陷
3、直径40mm以下
焊缝
1、板厚应≥8mm;
常用超声波探伤标准要求
要求
模锻锤和大型机械锻压机用模块技术条件
GB11880-89
●允许存在个别的、分散的、不大于当量直径¢2mm的冶金缺陷。
●在100cm2的面积内,当量直径¢2~¢4 mm的冶金缺陷不超过3个,其中¢3~¢4 mm的冶金缺陷只允许有1个。
●允许有2-4个小于当量直径¢2mm的冶金缺陷的密集区,但每区不得超过10cm3,每区之间距不得小于150mm。
●允许有当量直径2~5mm分散的单个缺陷存在,但相邻两个缺陷的距离不小于其较大缺陷直径的5倍,总数量不得超过56个。
●在应力较大区域不允许有当量直径大于4mm的缺陷。
50~200MW 汽轮发电机转子锻件技术条件
JB/T1267-93
●不允许有当量直径≥2.0mm连续性缺陷信号和游动缺陷信号。
●当量直径小于2mm的缺陷不计,允许2~4mm缺陷存在,但相邻两缺陷的距离不小于其中较大缺陷直径的7倍。
●单个分散的缺陷应符合下表规定
允许极限值的大小分级
当量范围
部位允许量
总数
轴身
传动轴
非传动轴
¢2~¢3
12
5
5
22
>¢3~¢4
3
1
4
8
总数
15
6
9
30
●在应力较大区域不允许有当量直径大于3mm的单个缺陷缺陷和≥2mm当量直径的密集缺陷信号。
300~600MW汽轮发电机转子锻件技术条件
JB/T7178-93
常用超声波探伤标准要求
标准名称
标准号
要求
承压设备无损检测第3部分:超声检测
JB/T4730.3-2005
钢锻件
●记录当量直径超过¢4mm单个缺陷。
超声波探伤轨头核伤判伤标准
超声波探伤轨头核伤判伤标准
一、核伤尺寸
核伤尺寸是判断轨头核伤严重程度的重要指标之一。
根据超声波探伤结果,可以测量出核伤的直径和深度。
一般情况下,核伤直径大于1mm或深度大于2mm时,应判定为重伤。
对于直径小于1mm或深度小于2mm的核伤,应根据实际情况进行判定。
二、核伤深度
核伤深度是判断轨头核伤严重程度的另一个重要指标。
根据超声波探伤结果,可以测量出核伤的深度。
一般情况下,核伤深度大于2mm时,应判定为重伤。
对于深度小于2mm的核伤,应根据实际情况进行判定。
三、核伤位置
核伤位置也是判断轨头核伤严重程度的重要指标之一。
如果核伤位于轨头的关键部位,如轨颚、轨底等,则应判定为重伤。
如果核伤位于非关键部位,则应根据实际情况进行判定。
四、核伤数量
核伤数量也是判断轨头核伤严重程度的重要指标之一。
如果轨头上有多个核伤,则应判定为重伤。
如果只有一个或少数几个核伤,则应根据实际情况进行判定。
五、表面裂纹
表面裂纹也是轨头损伤的一种表现形式。
如果超声波探伤结果显示轨头表面存在裂纹,则应根据裂纹的长度、深度和位置进行判定。
如果裂纹较长、较深或位于关键部位,则应判定为重伤。
如果裂纹较短、较浅或位于非关键部位,则应根据实际情况进行判定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
50~200MW汽轮发电机转子锻件技术条件
JB/T1267-93
●不允许有当量直径≥2.0mm连续性缺陷信号和游动缺陷信号。
●当量直径小于2mm的缺陷不计,允许2~4mm缺陷存在,但相邻两缺陷的距离不小于其中较大缺陷直径的7倍。
●单个分散的缺陷应符合下表规定
●当量直径为1.6mm~3.5mm的所有缺陷应记录其位置,并报告给需方。当量直径为1.6mm~3.5mm的缺陷总数不得超过20个,并不允许当量直径大于3.5mm的任何缺陷。
●距中心孔表面75mm以外部位,允许有3个小于当量直径1.6mm的密集缺陷区,但密集区在任何方向的尺寸均应不大于20mm,并且任何两缺陷区间距离应不小于120mm。
创作编号:GB8878185555334563BT9125XW
创作者:凤呜大王*
常用超声波探伤标准要求
标准名称
标准号
要求
承压设备无损检测第3部分:超声检测
JB/T4730.3-2005
钢锻件
●记录当量直径超过¢4mm单个缺陷。
●记录密集型缺陷:饼性锻件,当量直径≥¢4mm;其它锻件,当量直径≥¢3mm。
●在锻件中心φ150 mm范围内,不允许有当量直径大于3.0 mm(100 MW以下转子锻件,不允许有当量直径大于3.5 mm)的单个缺陷和大于或等于当量直径2.0 mm的密集缺陷信号。
●外圆槽深加25 mm范围内,不允许有当量直径大于3.0 mm(100 MW以下转子锻件,不允许有当量直径大于3.5 mm)的单个缺陷。其余部位允许2~4 mm分散缺陷存在,但相邻两个缺陷的距离不小于其较大缺陷直径的7倍。
Ⅴ
起始记录当量值¢,mm
1.6
2
3
5
8
单个缺陷最大允许当量值¢,mm
2
3
5
8
12
缺陷任一方向延伸的最大长度,mm
不允许
30
40
60
80
缺陷处底波降低量的最大允许值 dB
6
8
12
16
20
密集型缺陷最大允许范围 ×10mm3
125
250
500
1000
3000
标准名称
标准号
要求
模锻锤和大型机械锻压机用模块技术条件
冶金设备制造通用技术条件(锻钢件超声波探伤方法)
YB/T036.10-1992
●密集缺陷:在钢中距离50mm的范围内,有5个以上大于或等于探伤灵敏度基准的缺陷波,称密集缺陷。
●条状缺陷:当缺陷反射波幅大于或等于探伤灵敏度基准波幅,长度大于或等于30mm的连续性缺陷,称条状缺陷。
单个缺陷的等级分类mm
单个、分散缺陷的当量直径和数量
当量直径范围mm
部位允许量(个)
总数
轴身
传动轴
非传动轴
≥2~3
12
5
5
22
≥3~4
3
1
4
8
总数
15
6
9
30
50MW以下汽轮发电机无中心孔转子锻件技术条件
JB/T 8705-1998
●小于当量直径2 mm的缺陷不计。
●不允许有连续性缺陷信号及游动信号。
●在中心φ150 mm范围内不允许有当量直径大于4 mm的缺陷和大于或等于当量直径2.0 mm的密集缺陷信号。
●重量超过5吨的模块,除倍尺外,可允许有1个当量直径¢6mm的冶金缺陷存在。
大型锻造合金钢支撑辊
JB/T4120-2006
●对于整锻支承辊,离辊身表面100mm深的表层不允许有大于当量直径¢2mm的缺陷。
●在其他超声波检测区域范围内,当单个缺陷波连续保持F≥1/2,有缺陷部位的底波Bf≤1/2的缺陷面积不大于25cm2。
●当量直径为1.6~3.5 mm的所有缺陷均应记录其轴向、径向和周向位置并报告需方。当量直径为1.6~3.5 mm的缺陷总数不得超过20个,并不允许存在当量直径大于3.5 mm的任何缺陷。
●30Cr1Mo1V钢锻件距轴线150 mm以外部位,30Cr2Ni4MoV钢锻件距轴线170 mm以外部位,允许有3个小于当量直径1.6 mm的密集缺陷区,但密集区在任何方向的尺寸均不应大于20 mm,并且
28
4
8
10
1
3
18
3
5
56
8
16
●轴身部位离中心孔表面30mm以内和外圆槽深加25mm范围内不应当有直径1.6mm的密集型缺陷。允许有当量直径3mm以下的单个分散缺陷存在。
●不允许有游动缺陷信号和条状缺陷信号。
标准名称
标准号
要求
300-600MW汽轮机转子锻件技术条件
JB/T7027-93
●当量直径1.6mm以下的单个分散缺陷信号不计,但杂波高度应低于当量直径1.6mm幅度的50%。
任何两个密集区间距离不应小于120 mm。
●由缺陷引起底波衰减损失达到3 dB时,应当记录并报告给需方。
●不允许有游动信号和条状缺陷信号。
50~200MW汽轮发电机无中心孔转子锻件技术条件
JB/T8706-1998
●当量直径小于2.0 mm的缺陷不计,不允许有当量直径等于或大于2.0 mm连续缺陷信号和流动缺陷信号。
标准名称
标准号
要求
300~600MW汽轮发电机无中心孔转子锻件技术条件
JB/T8708-1998
●不允许有当量直径等于或大于1.6 mm连续缺陷信号和游动缺陷信号;
●当量直径小于1.6 mm的缺陷不计,当量直径等于或大于1.6 mm的缺陷应记录并报告需方;
●在转子锻件中心φ160 mm范围内,不允许有当量直径大于2 mm的缺陷和大于或等于当量直径1.6 mm的密集缺陷信号;
●外圆槽深加25 mm范围内不允许有当量直径大于4 mm的缺陷,其它区域允许有当量直径2~5mm分散的单个缺陷存在,但相邻两个缺陷的距离不小于其较大缺陷直径的5倍。
●锻件的单个缺陷总数量不得超过56个。
工业汽轮机转子体锻件技术条件
JB/T7022- 2002
●当量直径1.6m以下的单个分散缺陷不计,但杂波高度应低于当量直径1.6mm幅度的50%.
等级
1
2
3
4
5
缺陷当量直径¢
≤3
>3,≤6
>6,≤9
>9,≤12
>12
条状缺陷的等级分类mm
等级
1
2
3
4
5
缺陷指示长度
≤40
>40,≤50
>50,≤60
>60,≤70
>70
50MW以下汽轮发电机转子锻件技术条件
JB/T7026-2004
●小于当量直径2mm的缺陷不计.
●不允许有连续性缺陷信号及游动信号,不允许有当量直径大于或等十2mm的缺陷构成的密集区存在。
●在应力较大的区域内,对有中心孔的转子在离中心孔表面30mm和外圆槽深加25mm范围,对
实心转子在离中心轴线75mm以内(或称离中心轴线沪150mm范围),不允许有当量直径大于
4m m的单个分散缺陷存在:其他区域不允许有当量直径大于5mm的单个分散缺陷存在,允许有2m m- 4m m的分散缺陷存在,相邻两个缺陷的距离不小于其较大缺陷直径的五倍锻件的5倍。单个缺陷总数量不得超过56个。
质量等级(平底孔直径mm)
1
2
3
4
单个点状不连续
≤12
≤8
≤5
≤3
长条或密集性点状不连续
≤8
≤5
≤3
≤2
锻件和锻材的超声检测
SEP1921-84
允许极限值的大小分级
尺寸级别
单个缺陷(mm)
长条缺陷(mm)
最大面积(mm)
A
14
10
80
B
10
7
60
C
7
5
40
D
5
3
30
E
3
2
30
25MW以下汽轮机转子体和主轴锻件技术条件
●外圆槽深加25 mm范围内,不允许有当量直径大于2 mm的缺陷,其余部位允许有当量直径1.6~3.5 mm的分散缺陷存在,但相邻两缺陷距离不小于其较大当量缺陷直径10倍;
●整个锻件缺陷总数不允许超过30个;
300MW以上汽轮机
无中心孔转子锻件技术条件
JB/T8707-1998
●当量直径1.6 mm以下的单个分散缺陷信号不计,但杂波高度应低于当量直径1.6 mm幅度的50%。
●允许有当量直径1.6~3.55mm的缺陷存在,但相邻两个缺陷的距离不小于其较大缺陷直径的10倍,总数量不得超过30个。
●在应力较大区域,不允许有当量直径大于2mm的缺陷,和≥1.6mm当量直径的密集缺陷信号。
锻钢件无损检测
JB/T5000-15-2007
不同缺陷类型质量等级划分
缺陷类别
等级
Ⅰ
Ⅱ
Ⅲ
Ⅳ
单个缺陷的质量分级mm
等级
Ⅰ
Ⅱ
Ⅲ
Ⅳ
Ⅴ
缺陷当量直径
≤¢4
¢4+(>0dB~8 dB)
¢4+(>8dB~12dB)
¢4+(>12dB~16dB)
>¢4+16dB
密集区缺陷的质量分级mm
等级
Ⅰ
Ⅱ
Ⅲ
Ⅳ
Ⅴ
密集区缺陷占检测总面积的百分比
0
>0~5
>5~10
>10~20
>20
钢锻件超声检测方法
GB/T6402-2008
●不允许有游动缺陷信号和条状缺陷信号。
50MW以下汽轮发电机转子锻件技术条件
JB/T7026-93
●小于当量直径2mm的缺陷不计。